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S1 Experimental Line-intensity ratios

Experimental Method

Figure S1: DW-CMDS schematic and mode squeezing concept. (A) Configuration of the ex-

perimental setup for dual-wavelength cavity mode dispersion spectroscopy (DW-CMDS). (B) Res-

onance condition of the probe beams. Abbreviations: AOM, acousto-optic modulator; ECDL,

external-cavity diode laser; EOM, electro-optic modulator; PD, photodiodes.

A schematic of the experimental setup is shown in fig. S1. Two external cavity diode lasers

(ECDL, Toptica DL Pro) were used for the DW-CMDS measurements. Both lasers, operating at

wavelengths 𝜆1 and 𝜆2, were locked to a high-finesse optical cavity using the Pound-Drever-Hall

(PDH) technique. Two lasers were combined using a fiber optic combiner, sharing a common

frequency-locking path. The optical cavity consisted of a pair of high-reflectivity (HR) mirrors

(𝑅 = 99.998% at 1.5 - 1.7 𝜇m), separated by 140 cm, corresponding to a free spectral range (FSR) of

107.282 MHz and a mode width of approximately 0.6 kHz. Different modulation frequencies (20 and

30 MHz) were applied to the lasers, allowing simultaneous PDH locking of both without interference

using the same optical path. An acousto-optic modulator (AOM1/AOM2) was introduced to shift

the frequency of each locking beam.

Another beam from each laser, used for spectral probing, was coupled into a fiber electro-optic

modulator (EOM) and directed into the optical cavity. The resonance condition for a probing laser

beam is depicted in fig. S1B. It is fulfilled when the sum of the AOM frequency ( 𝑓𝐴𝑂𝑀1 or 𝑓𝐴𝑂𝑀2)

and the fiber-EOM frequency ( 𝑓𝐸𝑂𝑀) equals the frequency shift of a cavity mode (Δ 𝑓 (𝑀1) or



Δ 𝑓 (𝑀2)) from the locking mode.

𝑓𝐴1 + 𝑓𝐸 = Δ 𝑓 (𝑀1) ≈ 𝑀1FSR @𝜆1; (S1)

𝑓𝐴2 + 𝑓𝐸 = Δ 𝑓 (𝑀2) ≈ 𝑀2FSR @𝜆2; (S2)

As the AOM frequencies differ from the cavity’s FSR, only one sideband of one probing beam

meets the resonance condition at a given fiber-EOM modulation frequency. By scanning the EOM

frequency and detecting the transmitted light power with a photodetector (PD1), we precisely

determined the frequency shifts in the cavity modes due to the molecular absorption. Two sets

of frequency shifts at both wavelengths were measured within a single spectral scan, which took

approximately 10 seconds. Displayed in fig. S2 is a sample CMDS spectrum of the P(5) line (upper

panel) together with transmittance spectra at two different cavity modes, one on the baseline far

from the molecular absorption line P(5) center and the other one close to P(5) center.

The power of the locking lasers before entering the cavity was about 0.1 mW, while the power of

the probe lasers was approximately 2 mW. Note that the probe light was modulated by a fiber-EOM,

and the carrier was not resonant with the cavity mode. The sidebands that were resonant with the

cavity mode accounted for approximately 1/3 of the total power. Spectra were acquired by scanning

the sidebands of the f-EOM. Each measurement captured a pair of spectral lines simultaneously

and took about 10 seconds to complete. The signal-to-noise ratio (SNR) of a single spectrum was

approximately 2000:1.

The aluminum cavity cylinder was temperature-stabilized using a locking servo. After the cav-

ity temperature was stabilized, the measured temperature ranged between 298.41 K and 298.43

K. The temperature of the resonant cavity was monitored using two calibrated platinum resistance

thermometers, which were in good contact with the cavity walls. These thermometers were posi-

tioned at both ends of the cavity, and their readings were recorded using an MKT50 device from

Anton Parr. The sensors have been calibrated at the triple points of water and gallium, with an

uncertainty of ±5 mK. After filling the gas sample into the cavity, a stabilization period of at least

20 minutes was taken before measurements to ensure thermal equilibrium between the gas and the

cavity. A typical measurement result of the sensor temperatures, as illustrated in fig. S3, shows the

temperature drift of the two sensors over a period of 7.5 hours. The results indicate fluctuations of

less than 2 mK, with a temperature difference of approximately 2 mK between the two sensors. The



Figure S2: Single demonstration of the CMDS spectrum. Transmitted laser amplitude spec-

tra at two different cavity modes (lower panels). The difference between the center frequencies

with/without gas, Δ𝜈 of each cavity mode, was determined, which contributes to the CMDS spec-

trum shown in the upper panel.



experimental temperature value was determined by averaging the readings from both sensors.

Gas pressure was measured using a diaphragm pressure gauge (Leybold CTR101N, range 10

Torr) with a nominal uncertainty of 1.2‰. Given the wide range of line strengths, the sample

pressure during the experiments varied between 3 Pa and 648 Pa, depending on the intensity of the

spectral lines being measured.

Figure S3: Temperature drift of the sample cavity monitored by platinum sensors. The red

and grey lines illustrate the temperature drift plots derived from each of the two sensors within

the sample chamber across a span of 7.5 hours. Meanwhile, the blue line depicts the average

temperature outcome from both sensors.

In principle, the all-frequency-based CMDS method is irrelevant to mirror reflectivities. How-

ever, HR mirrors are essential because they ensure a narrow cavity mode width, enabling precise

determination of the mode center frequency. Additionally, the mode width must be sufficiently

narrow compared to the molecular linewidth, as the dispersion signal measured at a given mode

represents an average over the mode’s frequency range. In our setup, the cavity mode width re-

mains below 2 kHz across the entire measurement range, while the Doppler-broadened molecular

linewidth exceeds 200 MHz. This large disparity (mode width ≪ molecular linewidth) means that



minor changes in mirror reflectivity, as long as they maintain a sufficiently high reflectivity to

preserve the narrow mode width, have a negligible impact. Particularly, the reflectivities at the two

wavelengths do not need to be matched; they only need to ensure that the cavity modes remain

sharp enough for accurate frequency determination.

Line-intensity ratios and uncertainties

The dispersion spectra can be expressed as follows:

Δ𝜈̃

𝜈̃𝑀
=

𝐼

2𝑛𝜈̃𝐶
× Im[𝜑(𝜈̃𝑀 − 𝜈̃𝐶)], (S3)

where 𝜈̃𝑀 is the 𝑀 − 𝑡ℎ mode frequency of the cavity, 𝜈̃𝐶 is the center frequency of the transition,

𝐼 is the area under the absorption line (amplitude), and 𝑛 is the refractive index. The profile of the

dispersion spectrum is the imaginary component of the normalized line function 𝜑( ˜𝜈𝑀 − 𝜈̃𝐶) (31).

Speed-dependent Voigt (SDV) profile was adopted to fit the experimental spectra. The SDV

profile parameters include: the line center frequency 𝜈𝐶 , the integrated absorption area 𝐼, the

Doppler half-width Γ𝐷 , the Lorentzian half-width Γ0, the speed-dependent collisional narrowing

coefficient Γ2, the pressure shift coefficient Δ0, and the speed-dependent pressure shift coefficient

Δ2.

During the fitting process, 𝜈𝐶 and 𝐼 were treated as free parameters. The Doppler half-width Γ𝐷

was fixed to the calculated value at the experimental temperature, while Γ0 and Γ2 were fixed as the

product of the experimental pressure and the parameters 𝛾0 and 𝛾2. The pressure shift coefficients

Δ0 and Δ2 were set to zero. The obtained intensity ratios and their statistical uncertainties are listed

in table S1 (column 4).

The uncertainties in the experimentally measured intensity ratios primarily arise from the

statistical uncertainty, temperature fluctuations, frequency drift, and spectral fitting methods.

Statistical Errors: The intensity ratio data were derived from fitting over 600 spectra for each

pair of lines. The statistical uncertainty for each intensity ratio was approximately 4 × 10−5, as

shown in table S1. For some line pairs, multiple measurements were conducted under different

conditions, and the results are also listed in the same table. These results are consistent within the

error margins.



Line Profile Parameters: When fitting the spectral data with the SDV profile, attempts were

made to either fix or free the parameters Γ0 and Γ2. The relative deviation in the intensity ratios

obtained from these fits was less than 45 ppm, which is comparable to the statistical uncertainty.

Frequency Calibration: The frequency of the RF signal used to tune the f-EOM sidebands for

scanning the dispersion spectra was referenced to a GPS-calibrated rubidium clock, with a nominal

uncertainty of 2×10−12. The precision of the microwave frequency was better than 0.01 Hz, making

its contribution to the experimental error negligible.

Temperature Drift: During measurements, the temperature drift of the system was typically

around 1 mK. For all measured line pairs, the energy difference between the lower states |𝐸1 − 𝐸2 |

did not exceed 160 cm−1. According to Eq. S5 (see below), the contribution of temperature drift to

the intensity ratio was less than 1 × 10−5.



Table S1: Line-intensity ratios of CO lines in the (3-0) band. Un-

certainties in parentheses are 1𝜎 statistical errors.

Transition 𝑃 (Pa) 𝑇 (K) 𝐼1/𝐼2 at 𝑇𝑒𝑥𝑝 1 𝐴(𝑚1)/𝐴(𝑚2) 2

Exp. UCL2025 UCL2022 Exp. UCL2025 UCL2022

R(0) / R(1) 15.88 298.429 0.503012(20) 0.503034 0.503053 0.822015 0.822050 0.822082

R(1) / R(3) 8.14 298.430 0.534955(15) 0.534964 0.535003 0.875766 0.875781 0.875845

R(3) / R(5) 6.95 298.426 0.767994(18) 0.768060 0.768112 0.936956 0.937037 0.937100

R(5) / R(10) 7.12 298.431 1.073886(17) 1.073925 1.074081 0.901332 0.901365 0.901496

R(1) / R(10) 7.18 298.431 0.441206(10) 0.441258 0.441384 0.739608 0.739695 0.739907

R(10) / R(13) 7.18 298.430 1.472357(19) 1.472480 1.472584 0.950862 0.950942 0.951009

R(13) / R(15) 7.18 298.429 1.458483(58) 1.458540 1.458599 0.968856 0.968894 0.968933

R(15) / R(17) 14.33 298.426 1.594931(48) 1.595013 1.595069 0.969778 0.969828 0.969862

R(17) / R(19) 26.12 298.430 1.738204(35) 1.738285 1.738336 0.970451 0.970496 0.970524

R(19) / R(21) 50.62 298.430 1.889597(38) 1.889763 1.889809 0.970908 0.970993 0.971017

R(21) / R(22) 50.62 298.432 1.417658(30) 1.417585 1.417600 0.985592 0.985542 0.985552

R(22) / R(23) 98.36 298.434 1.446427(52) 1.446543 1.446556 0.985549 0.985628 0.985637

R(23) / R(24) 98.36 298.437 1.475842(22) 1.475839 1.475850 0.985708 0.985706 0.985713

R(24) / R(25) 206.0 298.434 1.505442(45) 1.505511 1.505520 0.985731 0.985776 0.985782

R(25) / R(26) 422.2 298.429 1.535529(49) 1.535573 1.535581 0.985812 0.985840 0.985845

R(26) / R(27) 423.9 298.428 1.566004(63) 1.566029 1.566035 0.985883 0.985899 0.985902

R(1) / P(1) 12.88 298.428 2.076074(125) 2.076108 2.075855 0.416684 0.416691 0.416640

R(5) / P(5) 3.29 298.430 1.376124(28) 1.376060 1.375445 0.965122 0.965077 0.964646

7.58 298.429 1.376132(41) 0.965128

11.21 298.928 1.376095(43) 0.965102

R(10) / P(10) 6.42 298.428 1.428264(49) 1.428260 1.427033 1.209416 1.209413 1.208373

R(15) / P(15) 12.88 298.428 1.567518(47) 1.567575 1.565564 1.428752 1.428804 1.426971

R(17) / P(17) 12.88 298.427 1.634831(65) 1.634820 1.632438 1.519477 1.519466 1.517252

R(20) / P(20) 49.12 298.428 1.745511(70) 1.745488 1.742478 1.661507 1.661486 1.658621

R(21) / P(21) 49.12 298.427 1.784819(93) 1.784836 1.781596 1.710702 1.710718 1.707613

Continued on next page



Table S1 – Continued

Transition 𝑃 (Pa) 𝑇 (K) 𝐼1/𝐼2 at 𝑇𝑒𝑥𝑝 1 𝐴(𝑚1)/𝐴(𝑚2) 2

Exp. UCL2025 UCL2022 Exp. UCL2025 UCL2022

77.07 298.430 1.784829(36) 1.710712

97.11 298.428 1.784802(45) 1.710686

R(23) / P(23) 121.8 298.431 1.867087(56) 1.867108 1.863374 1.812346 1.812367 1.808742

125.7 298.427 1.867099(75) 1.812358

139.6 298.427 1.867157(50) 1.812414

153.5 298.429 1.867182(56) 1.812439

R(26) / P(26) 225.8 298.427 1.999426(130) 1.999373 1.994801 1.973568 1.973515 1.969003

334.6 298.428 1.999467(80) 1.973609

417.6 298.431 1.999478(99) 1.973620

440.7 298.428 1.999611(64) 1.973751

529.8 298.429 1.999612(52) 1.973752

543.5 298.428 1.999598(56) 1.973738

647.6 298.427 1.999587(56) 1.973727

1 𝐼1/𝐼2 corresponds to the line intensity ratio between two transitions at the experimental temperature;
2 𝐴(𝑚1)/𝐴(𝑚2) corresponds to the ratio of Einstein-𝐴 coefficients of two transitions.

S2 Empirical model

Einstein-𝐴 coefficients

The intensity of a rovibrational transition at temperature𝑇 , which can be experimentally determined

as the integrated absorbance divided by the molecular number density, is given by (34, 35):

𝑆 =
𝑛𝑎𝑔

′𝐴

8𝜋𝑐𝜈̃2𝑄(𝑇)
exp(− 𝐸

𝑘𝐵𝑇
) [1 − exp(− ℎ𝑐𝜈̃

𝑘𝐵𝑇
)], (S4)

where ℎ is the Planck constant, 𝑐 is the speed of light, 𝑘𝐵 is the Boltzmann constant, 𝑛𝑎 is

the isotopologue abundance, 𝑔′ is the statistical weights of the upper state, 𝐴 is the Einstein-𝐴



coefficient, 𝑄(𝑇) is the partition function (36), 𝜈̃ is the transition frequency in wavenumber, and 𝐸

is the lower-state energy.

Therefore, the experimentally measured line-intensity ratio of two lines relates to the ratio of

their Einstein-𝐴 coefficients:

𝑆1(𝑚1, 𝑇)
𝑆2(𝑚2, 𝑇)

=
𝜈̃2

2𝑔
′
1𝐴1

𝜈̃2
1𝑔

′
2𝐴2

exp(𝐸2 − 𝐸1
𝑘𝐵𝑇

)1 − 𝑒
− ℎ𝑐𝜈1

𝑘𝐵𝑇

1 − 𝑒
− ℎ𝑐𝜈2

𝑘𝐵𝑇

. (S5)

The intensity ratio between 𝑆1(𝑚1, 𝑇) and 𝑆2(𝑚2, 𝑇) can be directly inferred from the integrated

area ratio of the lines 𝐼1 and 𝐼2, determined through experimental spectrum fitting. In the case of the

rotation-vibration transitions of CO, the 𝑔′ factor is expressed as 2𝐽′ + 1, with 𝐽′ representing the

rotational quantum number of the upper state. For two near-infrared transitions (ℎ𝑐𝜈̃ ≫ 𝑘𝐵𝑇), the

value of the term exp(− ℎ𝑐𝜈̃
𝑘𝐵𝑇

) is exceedingly small (≪ 10−10), and therefore negligible. Einstein-𝐴

ratios were derived according to Eq. S5, and they are listed in table S1.

The main source of error in the Einstein-𝐴 ratio comes from the experimental line intensity ratio

and the temperature uncertainty when employing Eq. S5. Errors related to transition frequency and

lower state energy levels are negligible. As stated earlier, temperature measurement uncertainties

were predominantly due to probe calibration error of 5 mK. For each analyzed line pair, the difference

in lower state energy levels, |𝐸1 − 𝐸2 |, was chosen below 160 cm−1. The relative uncertainty from

temperature errors was calculated to be below 1.6 × 10−5 according to Eq. S5. Note that for a line

pair sharing the same lower state, the R(𝐽)/P(𝐽) ratio is temperature-independent.

In order to ensure consistency, separate measurements were taken for the intensity ratios of the

following three pairs of spectral lines: R(1) to R(3), R(3) to R(5), and R(5) to R(10). Based on table

S1, one can compute that 𝐴𝑅 (1)
𝐴𝑅 (3)

× 𝐴𝑅 (3)
𝐴𝑅 (5)

× 𝐴𝑅 (5)
𝐴𝑅 (10)

= 0.875765(25) × 0.936955(22) × 0.901324(18) =

0.739584(31). Furthermore, a separate measurement was conducted for the intensity ratio between

R(1) and R(10), yielding 𝐴𝑅 (1)
𝐴𝑅 (10)

= 0.739599(21). The results demonstrate an excellent agreement

within the allowable margin of error.

Herman-Wallis Factors

In the context of diatomic molecules, the Einstein-𝐴 coefficient can be expressed as the product

of the vibrational transition dipole moment component, a rotational component known as the



Hönl-London factor describing the dependence of spectroscopic line intensities on the rotational

quantum number, and a correction factor known as the Herman-Wallis factor (HWF) associated

with vibration-rotation coupling (35, 57, 58). Therefore, the Einstein-𝐴 coefficient of a specific

rovibrational transition can be interpreted as:

𝐴 =
16𝜋3𝜈̃3

3𝜖0ℎ(2𝐽 ′ + 1) |M𝑣𝑖𝑏 |2L𝐹 (𝑚), (S6)

where M𝑣𝑖𝑏 is the vibrational transition dipole moment independent of rotation quantum numbers,

the rotational quantum number 𝑚 is defined as 𝐽 + 1 for an R branch line and −𝐽 for a P branch

line, and L is the Hönl-London factor. For rovibrational transitions of CO, we have L𝑃(𝐽) = 𝐽 and

L𝑅(𝐽) = 𝐽 + 1. The Herman-Wallis factor can be expressed as 𝐹 (𝑚) = (1 + 𝐶𝑚 + 𝐷𝑚2 + · · · )2.

Therefore, the Einstein-𝐴 ratio of two infrared transition lines of CO in the same vibrational band

can be converted to the ratios of HWFs:

𝐴1
𝐴2

=
𝜈̃3

1 (2𝐽
′

2 + 1)L𝑚1

𝜈̃3
2 (2𝐽

′
1 + 1)L𝑚2

×
𝐹𝑚1

𝐹𝑚2

. (S7)

As shown in fig. S4, we applied second- and third-order polynomial fit within the HWF model

to the experimental data, and the obtained HWF parameters are as follows:

𝐹 (2) (𝑚) = (1 + 𝑚

168.3252
+ 𝑚2

35204
)2, (S8)

𝐹 (3) (𝑚) = (1 + 𝑚

169.0628
+ 𝑚2

30966
+ 𝑚3

16883000
)2. (S9)

To facilitate comparing the results, we used the R(15) line as a reference to normalize the values

of other lines. For example, the R(1)/R(15) ratio was derived as follows: R(1)/R(15) = R(1)/R(3) ×

R(3)/R(5) × R(5)/R(10) × R(10)/R(15). For the P(𝐽) data, the R(𝐽)/R(15) value and the R(𝐽)/P(𝐽)

ratio were used. Note the accumulation of experimental errors during such a transfer process. The

ratios of Einstein-𝐴 ratios, derived from Eqs. S8& S9, are presented by table S2. We can see that the

third-order polynomial model (Eq. S9) can reproduce well the experimental values. The statistical

deviation is approximately 2.4 × 10−5, being comparable with the experimental uncertainties. The

second-order polynomial fitting results (Eq.. S8) have a deviation of 1.9 × 10−3. The deviations

between the ratios of 𝐹 (𝑚)/𝐹 (16) obtained from different models are shown in fig. S4C. All results

are illustrated as deviations from those given by Eg. S9. The experimental results are also presented



Figure S4: The Herman-Wallis factors (HWFs) for the (3-0) band of 12C16O. (A) Ratios of

HWFs, 𝐹 (𝑚1)/𝐹 (𝑚2), representing values according to Eq. S9. Experimental data points are indi-

cated as orange squares. The dashed line marks𝑚2 = 16. (B) Ratios of HWFs referenced to the R(15)

line, 𝐹 (𝑚1)/𝐹 (16), representing the data along the dashed line marked on the panel (A), see the Sup-

porting Information. Red dots show the experimental values. Blue and pink curves are the UCL2025

and UCL2022 ab initio calculated results, respectively. The red solid and dashed lines represent the

analytical results given by Eq. S9. (C) The relative deviations Δ = 𝛿𝐹 (𝑚)/𝐹 (16)/𝛿 𝑓 𝑖𝑡

𝐹 (𝑚)/𝐹 (16) − 1(in

%) of the UCL2022 and UCL2025 results against the empirical model from the analytical results of

Eq. S9. The orange dashed line indicates the analytical result obtained by a 2nd-order polynomial

fit to the experimental results. The gray-blue shadow indicates the ±𝜎 confidence region.



as scattering points in the figure. We can see that the experimental results are well reproduced by

Eq. S9 including the third-order term. If a Herman-Wallis type function limited to the second-order

term is used, the deviation (orange dashed line on fig. S4) reaches over 0.1% for most lines. The

ab initio results (7) have an almost linear deviation, indicating a distinct difference in the P and R

branches. As a result, the ab initio calculated R(𝐽)/P(𝐽) line intensity ratios show a considerable

𝐽-dependent deviation from the experimental results.

The conventional Herman-Wallis factor model incorporates only first-order and second-order

terms. However, in high-precision experimental studies or high rotational quantum number (𝐽) tran-

sitions, the contributions from vibrational anharmonicity, centrifugal distortion effects, and higher-

order derivatives of the dipole moment become non-negligible. Under such conditions, a third-order

correction term (e.g., 𝑚3) must be incorporated to enhance the model’s predictive accuracy. Includ-

ing the third-order coefficient signifies a refined characterization of the vibration-rotation interaction

on the matrix elements of dipole moments of diatomic molecules. This refinement is fundamentally

rooted in three physical phenomena: (1) the intrinsic higher-order anharmonicity of nuclear motion

(manifested through asymmetric potential energy surface deformations), (2) energy redistribution

between rotational and vibrational modes (mediated by Coriolis coupling and centrifugal distor-

tion), and (3) nonlinear dipole moment responses to nuclear displacement, quantified through the

third-order term 𝜇3 in the Taylor expansion of the dipole moment function 𝜇(𝑅).

S3 Ab initio Calculations

The interaction and complementary mutual validation of experiment and theory is the constant

feature of high-accuracy line intensity studies. It is only through such close interaction that new

and subtle characteristics can be discovered. The ability to conduct intensity ratio measurements

an order of magnitude more accurately than the absolute line intensities shines a new light on

theoretical approaches.

The traditional model for high accuracy transitions intensities of a vibrational band relies on a

single “band” transition dipole with the behavior on individual line intensities as a function of 𝐽

accounted for by analytic Hönl-London factors; corrections due to small variations in the wavefunc-

tion caused by vibration-rotation interactions are then modeled using empirical Hermann-Wallis



Table S2: The Herman-Wallis factors (HWFs) of the corresponding transitions normalized to the

R(15) line in the (3-0) band of CO.

Trans. Exp. Fit (P2) Fit (P3) UCL2025 UCL2022

Value Δ (%) Value Δ (%)

P(26) 0.617673 0.615390 0.617690 0.617575 -0.0186 0.618912 0.1978

P(23) 0.636816 0.634967 0.636812 0.636702 -0.0173 0.637909 0.1723

P(21) 0.650156 0.648604 0.650134 0.650038 -0.0148 0.651162 0.1581

P(17) 0.678199 0.677329 0.678218 0.678172 -0.0068 0.679138 0.1356

P(15) 0.693021 0.692440 0.693011 0.692996 -0.0022 0.693886 0.1263

P(10) 0.732290 0.732489 0.732309 0.732376 0.0091 0.733087 0.1062

P(5) 0.775116 0.775932 0.775124 0.775262 0.0178 0.775807 0.0881

P(1) 0.812081 0.813259 0.812095 0.812269 0.0214 0.812690 0.0733

R(0) 0.831480 0.832816 0.831538 0.831720 0.0219 0.832083 0.0655

R(1) 0.841483 0.842824 0.841507 0.841691 0.0219 0.842025 0.0616

R(3) 0.861937 0.863306 0.861955 0.862135 0.0209 0.862414 0.0533

R(5) 0.883138 0.884421 0.883097 0.883267 0.0193 0.883493 0.0448

R(10) 0.939136 0.940074 0.939136 0.939243 0.0114 0.939347 0.0225

R(13) 0.975065 0.975502 0.975052 0.975100 0.0049 0.975139 0.0089

R(15) 1.000000 1.000000 1.000000 1.000000 — 1.000000 —

R(17) 1.025775 1.025219 1.025779 1.025727 -0.0051 1.025691 -0.0086

R(19) 1.052400 1.051175 1.052415 1.052306 -0.0104 1.052238 -0.0168

R(21) 1.079951 1.077884 1.079932 1.079765 -0.0155 1.079669 -0.0244

R(22) 1.093962 1.091525 1.094029 1.093834 -0.0178 1.093725 -0.0278

R(23) 1.108349 1.105361 1.108357 1.108133 -0.0202 1.108014 -0.0309

R(24) 1.122880 1.119393 1.122918 1.122667 -0.0224 1.122537 -0.0339

R(25) 1.137704 1.133623 1.137716 1.137439 -0.0243 1.137301 -0.0365

R(26) 1.152752 1.148053 1.152755 1.152454 -0.0261 1.152308 -0.0388

R(27) 1.168031 1.162686 1.168038 1.167714 -0.0277 1.167562 -0.0408

∗ Fit(P2) and Fit(P3) correspond to quadratic and cubic polynomial expansions of 𝐹 (𝑚);
† Δ is the relative deviation of the calculated value from the Fit(P3) value given by Eq. S9, in %.



factors. Our first principles approach uses the precise, rotational-state dependent wavefunctions

obtained by direct and accurate solution of the nuclear-motion Schrödinger equation (59); these

solutions have been demonstrated to be highly accurate (60), and this approach to more robust than

using even empirically determined Hermann-Wallis factors (12). Instead of using a single transition

dipole our approach uses a dipole moment curve (DMC) which varies as a function of internuclear

separation. These curves are computed using state-of-the-art high-level ab initio theory. Ab initio

electronic structure theory is largely concerned with obtaining good energy predictions and, in

particular, the use of variational methods which ensure that larger calculations yield a better (lower)

energy. However, dipoles are not subject to the variational principle; their calculation relies on

obtaining a balanced treatment of the problem, which, for CO, means that the calculation treats the

electronic charge distribution about each atom at precisely the same level. Our cited studies and

this work show that is the ab initio treatment of the dipole moment which is the key to obtaining

ultra-high accuracy.

All electronic structure computations were carried out with the quantum chemistry package

Molpro (61). Dipoles were computed using the finite differences (FD) approach, which necessitated

two calculations per point for the dipoles and one other at zero field to obtain the energy at that

geometry (62).

Dipoles were calculated at the multi-reference configuration interaction (MRCI) level of theory,

the fixed reference Davidson correction (+Q) has been applied to the MRCI dipoles using aug-cc-

pCV6Z basis set (61). We note that extensive coupled-cluster calculations by Koput (63) gave CO

transition intensities significantly less accurate than our previous MRCI studies. At the MRCI level,

the accuracy of the DMC is largely determined by the complete active space (CAS) employed, here

6220. In order to calculate the CO line intensities one variationally we used the Duo program (59),

which solves the rovibrational Schrödinger equation with the use of DMC described above, and

the potential energy curve (PEC) taken from Ref. (64). This approach is fully within the Born-

Oppenheimer approximation; one correction to which is rotational non-adiabatic contribution as

represented by the 𝐽-dependent effective potential of Meshkov et al. (27) We plan to study the

effects of Born-Oppenheimer breakdown in its entirety in future work.

A comparison of line intensity ratios obtained using accurate ab initio dipole moments calcula-

tions (UCL2022) (7) is presented in table S1. However, the calculated results of the ratios R(𝐽)/P(𝐽),



Figure S5: Comparison with theoretical calculations. Discrepancies between observed line-

intensity ratios and ab initio calculated results from this work, designated as UCL2025, and the

previous calculated results (7), noted as UCL2022. (A) Intensity ratios of R(𝐽)/P(𝐽) pairs. (B)

Discrepancies between the calculated and experimental ratios of R(𝐽)/R(𝐽 + 1) and R(𝐽)/R(𝐽 + 2).

Ratios of R(1)/R(10), R(5)/R(10), and R(10)/R(13) are also explicitly marked.



R(𝐽)/R(𝐽 + 1), and R(𝐽)/R(𝐽 + 2) using UCL2022 are found to lie well outside the experimental

uncertainties (see table S1). fig. S4 plots observed minus calculated (obs-calc) residues for the

R(𝐽)/P(𝐽) residues, showing that the UCL2022 residues give a straight line at an angle to the 𝐽

axis. This angle represents a discovery in this work characteristics of the relative line intensities,

different from the conventional characteristics of absolute line intensities. Minimization of this

angle represents a goal for future theoretical calculation of the R(𝐽)/P(𝐽) or R(𝐽)/R(𝐽 + 𝑁).

We tested different versions of the dipole moment curves (DMCs ab initio calculations developed

in Ref. (7) and found that a new DMC calculation (UCL2025) using a 6220 Complete Active Space

(CAS), as compared to the CAS 7220 used in Ref. (7), results in agreement within the experimental

uncertainty (see table S1). As shown in fig. S4, the UCL2025 calculations show that the angle of the

line is practically zero, which represents excellent agreement between calculations and experiment.

The standard deviation of the obs.-calc. residues is 0.003% and the mean value of these residues is

only 0.0003%. No characteristics of the line intensities have ever been demonstrated with such an

agreement between ab initio theory and experiment. As listed in table S1, we compared the results

of calculations and observations for two other ratios, R(𝐽)/R(𝐽 +1) and R(𝐽)/R(𝐽 +2). The standard

deviations of the residues are slightly larger, that is, 0.007% for R(𝐽)/R(𝐽 + 1) and about 0.006%

for R(𝐽)/R(𝐽 + 2). The residues given in table S1 are illustrated in fig. S S5. Though the calculated

R(𝐽)/R(𝐽 + 𝑁) ratios agree less well with the experiment, they are still close to the experimental

uncertainties. Although the obs.-calc. for ratios between lines with different 𝐽 are somewhat larger,

these measurements could be used for accurate LRT temperature measurement, while the R(𝐽)/P(𝐽)

ratios are independent of temperature and cannot be used for this purpose.
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