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We present an optical detection method for #CO, using mid-infrared two-photon absorption (TPA) spec-
troscopy. Leveraging a custom-built optical parametric oscillator (OPO) and a high-finesse cavity, we demon-
strate sub-parts-per-billion (ppb) detection limits for ¥CO, at room temperature. The technique exploits the
Q(14) vibrational transition at 4516 nm, where near-resonant intermediate states enhance TPA signals while

suppressing interference from abundant isotopologues such as !3CO,. Cavity-enhanced detection, combined
with active frequency stabilization, enables precise measurements with a detection limit of 0.4 ppb. Theoretical
analysis confirms the method’s potential to reach the natural abundance level (0.0012 ppb) with higher laser
power, addressing critical challenges in monitoring nuclear facility emissions and fossil-fuel-derived CO,. The
results pave the way for field-deployable systems for real-time, in situ monitoring of atmospheric #CO,.

1. Introduction

Carbon-14 is the only long-lived radioactive carbon isotope. It is
produced at a nearly constant rate in the atmosphere through the
14N(n,p)'4C reaction, where thermal neutrons generated by cosmic
rays or nuclear waste interact with atmospheric nitrogen [1]. Once
formed, 14C rapidly oxidizes and exists primarily as carbon dioxide.
With a half-life of 5700 years, beta decay results in a natural 4C/C
abundance of approximately 1.2 parts per trillion (ppt) [2,3]. Despite
its low concentration, this stability makes 14C highly useful in applica-
tions such as radiocarbon dating. Additionally, 14C serves as a critical
tracer for distinguishing fossil fuel-derived CO, (ff-CO,) from biogenic
or atmospheric CO, fluxes [4,5]. Since fossil fuels have undergone
complete radioactive decay over geological timescales, ff-CO, contains
no detectable 14C. Conversely, elevated 14C levels are found in nuclear
waste, including reactor components [6,7], ion exchange resins, and
moderator graphite [8]. Consequently, measuring 1#CO, concentrations
is essential for monitoring potential leaks from nuclear facilities. Given
CO,’s rapid atmospheric diffusion, accurate quantification of 14CO,
near such sites is vital for radiation protection and environmental
safety.

Conventional techniques for detecting 14CO,, such as accelerator
mass spectrometry (AMS) and liquid scintillation counting (LSC), are
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laboratory-based and require extensive sample preparation, making
real-time, in situ monitoring impractical [9-12]. Given the impor-
tance of monitoring 4CO, around nuclear facilities, developing online
measurement methods is essential. Optical detection techniques, with
their non-invasive nature, rapid response, and in situ capabilities,
offer a promising solution and have garnered significant international
interest. Over the past two decades, cavity-enhanced spectroscopy has
emerged as a powerful tool for detecting 14CO, [13-18]. For en-
riched samples (~ 10 ppb), spectral interference is less problematic,
enabling robust measurements. A Finnish group has further validated
this approach for tracing nuclear facility emissions [14,17]. Due to
the extremely low natural abundance of 14C, optical detection based
on single-photon absorption (SPA) faces major challenges, including
spectral interference from abundant isotopologues (e.g., 13CO,) and
other atmospheric absorbers. The absorption interference from CO,
isotopologues mainly originates from their hot-band transitions, which
diminish at lower temperatures. Galli et al. pioneered the use of cryo-
genic SPA spectroscopy, achieving detection sensitivities as low as
5 ~ 10 parts-per-quadrillion (ppq) [19,20]. However, these methods
require stringent experimental conditions, primarily due to the use of
cryogenic cooling systems. To overcome limitations in resolution in
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Fig. 1. Simulated single-photon absorption (SPA) and two-photon absorption (TPA) spectra near 4516 nm. The inset shows the two-photon absorption peak of
14C0, at a concentration of 70 ppb. Vertical lines in different colors indicate the absorption lines of other isotopologues/molecules in the sample. Note that the
14N, 10 line also contributes to the SPA signal. In the simulation, nitrous oxide concentration was set to 1 ppb in the CO, sample with a total pressure of 50 Pa

at 296 K.

principle, a double-resonance spectroscopic technique utilizing two-
wavelength lasers has been proposed [21], significantly improving
spectral discrimination. Although molecular energy transfer processes
make double-resonance spectroscopy measurements sensitive to drifts
in laser power and sample pressure, the method has great potential
in trace detection. Jiang et al. have, for the first time, experimen-
tally demonstrated room-temperature detection of radiocarbon dioxide
(14C02) molecules in ~ 1.5x natural abundance CO, samples, achieving
a sensitivity of 1.4 parts-per-quadrillion (ppq, 10~!°) in terms of aver-
age measurement precision and a quantitation accuracy of 4.6 ppq [22,
23].

An alternative approach — one-color two-photon absorption (TPA)
using a single laser — was initially proposed by Lehmann et al. [24,25]
and has recently been experimentally demonstrated by our group [26,
27]. These experiments confirmed the quantitative detection capability
of two-photon spectroscopy: measurements of 13CO, samples at varying
concentrations, cross-validated with isotope ratio mass spectrometry
(IRMS), achieved a detection accuracy of 0.5%, meeting the require-
ments for high-precision carbon isotope analysis. This high-resolution,
narrow-linewidth approach is therefore highly suitable for 14CO, de-
tection. As shown in Fig. 1, the simulated TPA spectrum is clearly
distinguishable from conventional SPA spectra arising from major CO,
isotopologues and other molecules, such as N,O. It should also be
noted that dominant atmospheric components, such as N,, O,, and
Ar, contribute to neither SPA nor TPA spectra in the spectral region
of interest. Most water vapor can be effectively removed from air
samples using a cold trap at approximately —70 °C without considerable
loss of CO,, and residual trace H,O does not introduce absorption
features near 4.5 pm. Therefore, the TPA method offers a feasible
route for detecting *CO, in atmospheric samples. Nevertheless, the
development of practical 1*CO, optical sensors based on TPA has so far
been hindered by the limited availability of high-power laser sources in
the relevant mid-infrared region.

In this work, we report the first implementation of a two-photon
spectroscopic sensor for detecting 1#CO,, enabled by a custom-built

mid-infrared OPO light source. The system achieves a sub-parts-per-
billion (ppb) detection limit, with clear spectral discrimination demon-
strated for 14CO, concentrations of 71 ppb and 2 ppb. Supported by
theoretical analysis, our results confirm the feasibility of extending this
approach to natural-abundance samples, highlighting its promise for
high-precision environmental monitoring.

2. Experiment

The experimental setup is schematically presented in Fig. 2. Mid-
infrared light from a home-made continuous-wave OPO source [28,29]
is coupled into a high-finesse cavity. The cavity comprises two low-loss
mirrors with a reflectivity of R ~ 99.995% in the range from 4500 to
4550 nm. The mirrors have radii of curvature of 1 m and are spaced
40 cm apart, yielding a Gaussian beam waist of about 0.76 mm at the
focus. The measured ring-down time of the empty cavity is about 30 ps
and the circulating intra-cavity laser power is enhanced by a factor of
5082 relative to the input power, as calculated according to Ref. [30].

In two-photon absorption spectroscopy measurements, the OPO
mid-infrared idler light is locked to the high-finesse cavity. The OPO’s
pump light, with a linewidth of 10 kHz (integrated over 100 ps), is
locked to an ultra-low expansion glass (ULE) cavity using the Pound-
Drever-Hall (PDH) method. A second PDH loop locks the OPO idler
light to the high-finesse cavity, with the fast feedback signal sent to the
electro-optical modulator (EOM) placed inside the OPO cavity and the
slow feedback signal sent to a piezo actuator attached to one of the OPO
cavity mirrors. Therefore, the frequency drift of the longitudinal mode
of the high-finesse cavity is transferred to that of the OPO mid-infrared
idler light, which can be monitored by measuring the OPO’s signal light
frequency since the OPO’s pump light frequency has been locked. To
further stabilize the cavity length and the idler frequency, a frequency
reference is employed, such as near-infrared optical frequency comb
(OFC) referenced to a GPS-disciplined clock (accuracy 1.2x10712). The
OFC records the frequencies of the OPO’s pump and signal beams by
measuring the offsets (4f, and Af,) between these beams and their
nearest comb lines. The difference (4f, — Af) is used in a phase
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Fig. 2. Schematic diagram of mid-infrared cavity-enhanced two-photon device and molecular transition energy level diagram. Abbreviations: ECDL, external
cavity diode laser; PD, photodetector; OPO, optical parametric oscillator; PPLN, periodically poled lithium niobate; EO, electro-optic modulator; PZT, piezoelectric

transducer; OFC, optical frequency comb.

lock loop (PLL) to generate a feedback signal, which is applied to a
piezoelectric actuator attached to one of the cavity mirrors. This active
stabilization suppresses cavity length fluctuations [31,32]. For precise
MIR frequency scans, the PLL’s reference microwave function generator
is finely adjusted. The transmitted cavity power is detected using a
HgCdTe amplified photodetector (PD1), while a second photodetector
(PD2) monitors the input power to account for long-term fluctuations.

We define the dimensionless amplitude of the TPA signal, S;py,
using the cavity transmittance «x at the center frequency v,:

P..(v
= L), €]
Pic,O
1- 72Pio
Srpa = sz = y_:’ (2)

where P,. and P, are intra-cavity laser powers with and without the
two-photon absorption, respectively; y, is the two-photon absorption
rate proportional to the mole fraction of the analyte [24], y, = c¢(1 —
R)/L is the cavity loss rate without absorption from the sample, ¢ is
the speed of light, R is the reflectivity of the cavity mirror, and L
is the distance between two cavity mirrors. The TPA signal can be
enhanced by either (1) using mirrors with higher reflectivity and lower
loss [33,34], which reduces y,, or (2) increasing the input laser power
(before signal saturation occurs), thereby boosting P, (. The detailed
derivations of the formulas can be found in our previous work [26].

3. Result and discussion

To measure the TPA signal of 14CO,, we utilize the vibrational tran-
sition with the largest two-photon absorption coefficient (y,). Specif-
ically, we select Q(14) transition from the J = 14 (00001) state to
the J = 14 (00021) state at 4516 nm, chosen for two key reasons:
(i) The asymmetric stretching fundamental band provides the strongest

vibrational transition in the molecule. (ii) The near-resonant transition
group, P(14) (00001 — 00011) and R(13) (00011 — 00021), has the
closest frequency detuning, minimizing the laser resonance mismatch
and significantly enhancing the two-photon transition rate [22,35-37].
While two-photon transitions are ubiquitous in molecules, most are
challenging to observe due to weak transition dipole moments and large
detuning from near-resonant states.

As a demonstration, we measured two carbon dioxide gas samples
with 14CO, abundances of 71 + 11 ppb and 2 + 0.3 ppb. The 71 ppb
sample was measured at a gas pressure of 47 Pa and a circulating
laser power of approximately 20 W, with the raw spectrum shown in
Fig. 3(a). The Doppler-free nature of TPA results in a linewidth that
is significantly narrower than that of adjacent SPA features, exceeding
two orders of magnitude in reduction compared to SPA transitions,
thereby greatly enhancing spectral selectivity. As shown in Fig. 3(b),
the SPA contribution manifested as a linear background that was
removed during transmittance signal normalization [26]. Using Eq. (2),
we derived the TPA signal amplitude of 2.5 x 10~ with a linewidth of
2.01 + 0.04 MHz, as shown in Fig. 3(c). This amplitude is consistent
with the calculated value of 4.5 x 10~3, supporting the validity of the
computational model. For our analysis, Voigt profile fitting served as
a reasonable approximation, while more rigorous solutions to the line
profile model can be found in Refs. [24,38,39], and Eq. (2) provides
an exact solution only at exact resonance conditions. It should be
noted that theoretical calculations are used to guide predictions of
two-photon signal strength and the selection of experimental condi-
tions, and the sample concentration is obtained via calibration against
standard samples, as detailed in our previous work [26].

According to Eq. (2), at a fixed sample concentration, the TPA signal
amplitude increases proportionally with intra-cavity laser power and
gas pressure before saturation [26]. In contrast, for SPA, the saturation
parameter increases with power, resulting in signal reduction [40].
Furthermore, the saturation power for TPA is inherently higher than
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Fig. 3. The two-photon spectral diagrams of 1#CO, at a concentration of 71 ppb obtained under 20 W power and 47 Pa pressure conditions, where (a) is the
spectrogram directly obtained from the experiment, (b) is the normalized transmittance spectrogram obtained after baseline subtraction, and (c) is its corresponding
two-photon absorption spectrogram. (d) The residuals obtained from the Voigt fitting in (c). Abbreviations: Exp: Experimental; BL: Baseline; VF: Voigt fitting.

that for SPA. Consequently, under identical concentration and pres-
sure conditions, increasing the laser power enhances the TPA signal
while simultaneously suppressing the SPA signal. This observed power-
dependent behavior unambiguously confirms the anticipated trade-off
between TPA enhancement and SPA suppression. Fig. 4 shows the
averaged result of 1264 spectra of a 2 ppb 4C0,/CO, sample, with
each spectrum acquired over approximately 50 s. To compensate for
the low concentration, the sample pressure and intra-cavity power
were increased to 299 Pa and 83 W, respectively. The resulting spec-
trum exhibits a broadened linewidth of 13.4 + 1.7 MHz and yields a
noise-equivalent detection limit of about 0.4 ppb (k = 3).

The system’s ultimate sensitivity remains fundamentally limited by
available intra-cavity laser power. This two-photon absorption tech-
nique exhibits particular advantages for atmospheric monitoring appli-
cations due to its narrow linewidth and immunity to interference from
nearby absorbers, making the method ideally suited for challenging
detection scenarios such as radiocarbon emission monitoring in nuclear
facilities [17].

To evaluate the potential of the TPA approach, we calculated the
14C0, abundance (14C/C) that can be detected under current noise-
equivalent detection limit (TPA signal about 1 x 10~°), using spectral
parameters from Ref. [37] at 4516 nm under varying pressures and
laser powers, based on the current experimental setup. The calculations
employed an approximate analytical formula, valid under the condition
that the laser-induced Rabi frequency remained significantly smaller
than the detuning (4v) [24,26]. When the Rabi frequency becomes
comparable to the detuning, the approximate 4C/C underestimates

the numerical solution of the density matrix by less than 50%. Nev-
ertheless, this level of accuracy suffices to demonstrate the prospective
signal trends. Previous quantitative measurements of 14C/C ratios were
conducted under low sample pressures and laser powers (red triangle
and square in Fig. 5). On the contour plot, the yellow dot-dashed lines
mark the experimental conditions where the TPA linewidth corresponds
to 1% and 10% of the single-photon absorption (SPA) linewidth. A
narrower TPA linewidth indicates enhanced selectivity, highlighting
the method’s potential for highly discriminative detection.

We have confirmed [26] a clear scaling relationship between the
TPA signal and both laser power and gas pressure, and demonstrated
[41] the attainment of an intra-cavity infrared laser power up to 2 kW.
This combination of a validated scaling law and high achievable power
establishes a clear pathway toward significantly enhanced sensitiv-
ity and, ultimately, detection at natural abundance. Future advances
in high-power lasers, cavity mirror coatings, and noise suppression
techniques — such as active noise-eater stabilization or frequency
modulation spectroscopy — will further solidify the promise of this
TPA-based approach for measuring naturally abundant 4CO,. A key
advantage of our sensor lies in its ability to perform cavity-enhanced
detection using a single laser source operating at room temperature, sig-
nificantly reducing instrumental complexity. This feature is particularly
advantageous for scalable, in situ atmospheric monitoring deployments.
Furthermore, the methodology is readily adaptable to the detection
of other trace molecular species or radicals. In particular, polyatomic
molecules offer dense rovibrational transition spectra, which provide
a wealth of near-resonant intermediate states and thereby facilitate
efficient enhancement of TPA signals.
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Fig. 4. The two-photon spectrum of '#CO, at a concentration of 2 ppb obtained under a circulating laser power of 83 W and sample pressure of 299 Pa. The
upper panel shows the normalized TPA spectrum, and the lower panel gives the corresponding fitting residuals.
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