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Abstract We present radiometric 81Kr dating results for ice samples collected at the outlets of the Guliya
ice cap in the western Kunlun Mountains of the Tibetan Plateau. This first application of 81Kr dating on
midlatitude glacier ice was made possible by recent advances in Atom Trap Trace Analysis, particularly a
reduction in the required sample size down to 1 μL STP of krypton. Eight ice blocks were sampled from
the bottom of the glacier at three different sites along the southern edges. The 81Kr data yield upper age
limits in the range of 15–74 ka (90% confidence level). This is an order of magnitude lower than the ages
exceeding 500 ka which the previous 36Cl data suggest for the bottom of the Guliya ice core. It is also
significantly lower than the widely used chronology up to 110 ka established for the upper part of the core
based on ice δ18O.

Plain Language Summary The oldest ice that has ever been found outside of the polar regions
is from the bottom of the Guliya ice cap in the western Kunlun mountains on the Tibetan Plateau.
Previous dating results from the Guliya ice core, drilled in 1992, indicate that the bottom ice is more than
500,000 years old. However, due to the lack of alternative dating methods in that time range, the age
scale of the Guliya ice core has so far not been checked independently. In this work we present dating
results for the Guliya ice cap with a new dating method for ice based on the radioactive decay of the
extremely rare krypton isotope 81Kr. Eight ice samples were retrieved at three different margin sites of
the Guliya ice cap, where the old bottom ice is expected to resurface. The 81Kr measurements for
these samples yield upper age limits in the range of 15–74 ka, which is significantly lower than the
previous dating results for the ice core.

1. Introduction

Alpine ice cores in the midlatitude and low‐latitude regions provide high‐resolution records of past climate
and environment. High rates of ice accumulation and melting are responsible for the relatively short history
of ice core records on the Tibetan Plateau as compared to the polar regions. Longer ice cores and older ice are
being sought on the Tibetan Plateau for the purpose of extending the climate history in this region. The
Malan and Puruogangri ice cores in the central Tibetan Plateau (Thompson et al., 2006; Wang et al., 2003)
and the Dasuopu ice core in the middle of the Himalayas (Thompson et al., 2000; Yao et al., 2002) provide
records of the past several thousand years. Samples from the bottom of the Dunde ice core in the northeast-
ern Tibetan Plateau were first interpreted to be glacial‐stage ice (Thompson et al., 1989), but later proved to
be a Holocene deposit (Thompson et al., 2005). The longest (308.6 m) ice core and the oldest bedrock ice so
far discovered on the Tibetan Plateau is from the Guliya ice cap in the western Kunlun Mountains
(Thompson et al., 1997; Yao et al., 1997). Developing a chronology for this Guliya ice core (GIC1992 here-
after), as for Tibetan ice cores in general, is challenging. Dating by layer counting is difficult for ice cores
from the Tibetan Plateau because the monsoonal type precipitation pattern in this region generates weaker
seasonal variation (Hou et al., 2004). For GIC1992 an age scale up to 110 ka was established down to 266‐m
depth by comparing the δ18O signal with the CH4 record from GISP2 in Greenland. Moreover, the 36Cl data
suggest that the bottom ice may be older than 500 ka. Since then, the GIC1992 record has been widely used
as a reference for correlating regional climate signals (e.g., Cheng et al., 2012; Chevalier et al., 2011; Cosford
et al., 2008; Hayashi et al., 2017; Mahowald et al., 2011).
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However, the established Guliya chronology is difficult to reconcile with several recent findings. Cheng et al.
(2012) encountered inconsistencies between the δ18O record of GIC1992 and the Kesang stalagmite record.
Their work suggests that the relationship between δ18O and CH4 may be inversed, leading to a shortening of
the GIC1992 age scale by a factor of 2. Meanwhile, at the Chongce ice cap (~30 km away from the GIC1992
drilling site), luminescence dating provides an upper age limit of 42 ± 4 ka for the basal sediment (Zhang
et al., 2018), which is an order of magnitude lower than what the 36Cl data suggests for the bottom ice of
GIC1992. Moreover, 14C dating in combination with ice flow modeling for ice cores from the Chongce ice
cap indicates Holocene deposition (Hou et al., 2018), which is consistent with all other Tibetan ice cores
except GIC1992. Given the proximity between the Guliya and the Chongce ice caps, these results make it
difficult to argue that the large difference in age scale between GIC1992 and the other Tibetan ice cores is
due to different local climate conditions in the western Kunlun Mountains (Thompson et al., 2005). All
the foregoing findings raise the need for examining the GIC1992 chronology with an independent
dating method.
81Kr is a cosmogenic radionuclide with a half‐life of 229 ± 11 ka. The 81Kr concentration in the atmosphere
(isotopic abundance 81Kr/Kr ~1 × 10−12) is spatially homogeneous with only small changes over the past 1.5
million years (Buizert et al., 2014). These properties as well as its chemical inertness make it a desirable tra-
cer for groundwater and ice over the age range of 40 ka to 1.3 Ma (Loosli & Oeschger, 1969; Lu et al., 2014).
Meanwhile, the anthropogenic 85Kr (half‐life 10.76 ± 0.02 a), which is mainly produced by nuclear fuel
reprocessing, can be used to identify any young (<60 a) components or contamination of an old sample with
modern air (Winger et al., 2005). Development of the analytical method of Atom Trap Trace Analysis
(ATTA) has made radiokrypton dating available to the Earth science community at large (Jiang et al.,
2012). Due to the large required sample size (5–10 μL STP of krypton), so far 81Kr has been used mainly
for dating groundwater, while for glacier ice only a demonstration study was conducted on large blue ice
samples (~350 kg) from Taylor Glacier, Antarctica (Buizert et al., 2014). Recently, the required sample size
for 81Kr‐ and 85Kr‐analysis has been reduced down to 1 μL STP of krypton, which can be extracted from
about 10 kg of Antarctic ice (containing ~100 mL STP air per kg ice) or 20–40 kg of Tibetan glacier ice
(25–50 mL STP air/kg; Li et al., 2011). This sample size is still too large to reassess the historic GIC1992
directly, but is sufficient for 81Kr dating of samples from the margin sites of the Guliya ice cap, as presented
in this work.

2. Methods
2.1. Site Description and Ice Sampling

Guliya is a large ice cap in the western Kunlun Mountains on the Tibetan Plateau with a total area of about
376 km2 (Thompson et al., 1997; Yao et al., 1997). Its southern part is of nonsurge type with stationary ter-
minus positions (Yasuda & Furuya, 2015). Remote sensing data show that the glaciers in this region have
experienced less change in recent decades compared to other glaciated mountainous regions in western
China (Shangguan et al., 2017). The Guliya ice cap even gained mass from 2000–2015 (Kutuzov et al.,
2018) primarily due to increasing precipitation in the westerly regime (Yao et al., 2012). Ice core drilling
and ground‐penetrating radar show that the glacier thickness varies from about 50 m at the summit to a
maximum thickness of 371 m at a location 1.5 km upstream of the GIC1992 drilling site (Figure 1;
Kutuzov et al., 2018; Thompson et al., 1997). The glacier flows from the summit at 6,710‐m altitude down
to the margins at approximately 5,500 m (Thompson et al., 1997) with an average slope of <3–5°
(Kutuzov et al., 2018). Limited field observation indicates increasing negative surface mass balance going
from the equilibrium line altitude of around 6,000 m to lower elevation sites (Li et al., 2019). The ablation
of the ice cap is also characterized by cliff melting at the end of the glacier outlets so that the bottom ice layers
become accessible over large sections of the glacier edge.

The criteria used in selecting sampling sites include less crevasse in the upper‐stream ice flow and exposure
of basal ice. The samples were collected at the bases of the vertical ice walls at three glacier outlets between
2015 and 2017. GLY1 is located downstream of the GIC1992 drilling site from 1992 (Thompson et al., 1997);
GLY2 and GLY3 are located at the outlets of the glacier summit (Figure 1). In total eight ice blocks were
sampled, of which four were retrieved from a 6‐m‐deep cave (hereafter cave samples) to avoid potential
gas loss and contamination with modern air due to ice fractures (Buizert et al., 2014; Craig et al., 1990).
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As the 85Kr results demonstrated that this practice is unnecessary at these sites, the later four ice samples
were retrieved near the surface of the ice wall (hereafter surface samples).

At GLY1 (Figure 1), a 6‐m‐deep horizontal cave was dug using a chainsaw and a pick along a clear bubble ice
layer near the bottom of the ice wall. The underlying 2‐m section contains dust layers with dark mud and
pebbles and is thus not suitable for sampling with a chainsaw. Two vertically adjacent ice block samples
(GLY1‐1 on top of GLY1–2) were collected in the white bubble layer at the end of the cave. At GLY2, also
a 6‐m‐deep ice cave was dug approximately 3 m above the bottom dust layer, and two ice blocks were col-
lected in the bubble ice layer. Moreover, two near‐surface glacier ice samples were retrieved along the ice
cliff in order to compare dating results between cave and surface ice as well as to date the silty ice at the very
bottom. At GLY3, silty ice blocks from the very bottom were collected (Figure 2).

In addition to the samples for radiokrypton dating, ice samples for stable water isotope analysis were
collected along the bottom of the ice wall surface. The surface layers were removed in the field since they
may have been affected by melting. A glacier ice column with a total length of more than 5.3 m was sampled
to the visible lowermost part of the glacier cliff at GLY2. A 1.27‐m‐long ice column was sampled at GLY3 in
the same layer where the ice blocks for 81Kr analysis had been sampled (Figure 2). All the ice samples were
kept in a freezer at −20 °C during the transport to the city of Lhasa, where they were stored in a cold room
until degassing or cutting. The ice samples for δ18O analysis from GLY1 were lost due to technical failure of
the cooling facility such that only the δ18O profiles from GLY2 and GLY3 are presented in the following.

2.2. Air Extraction From the Ice Samples

For 81Kr and 85Kr analysis, the air trapped in the ice has to be extracted. Prior to extraction, the surface of the
ice samples is cleaned to remove any layers or flaky debris that may contain modern air. The ice is then
brought out of the cold room and placed in a stainless steel chamber which is thereafter sealed and evacuated
for about 30 min by scroll pumps through a water trap (stainless steel bellow immersed in ethanol at
−80 oC). Since during pumping the chamber is constantly being flushed by the water vapor from the
sublimating ice, the remaining atmospheric gas in the container is rendered negligible. After evacuation,

Figure 1. (a) Location of the Guliya ice cap on the Tibetan Plateau; (b) photograph showing the glacier cliff (~20‐m tall) at sampling site GLY3; (c) sampling sites
GLY1, GLY2, and GLY3 for bottom ice of the Guliya ice cap during 2015–2017. The red dot marks the summit (6,710 m a.s.l.) and the red star the location
of the Guliya ice core (GIC1992) drilling site (6,200 m a.s.l.) from 1992 (Thompson et al., 1997).
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the chamber is heated by a stove for 60–90 min (depending on the ice mass) until the ice has completely
melted. The gas released from the ice passes through the water trap and is compressed into a sample
cylinder. The air content of the ice sample is determined based on the final pressure in the sample cylinder
(Table 1). Extraction efficiencies higher than 95% and contamination with modern air below 1% are typically
achieved with this degassing method at a processing time of about 2–3 hr per sample. More details on the
extraction system and procedure are provided in the supporting information.

2.3. Krypton Purification and 81Kr Measurement

The extracted gas from the ice samples was sent to the University of Science and Technology of China
(USTC) for krypton purification and for ATTA analysis of both 81Kr and 85Kr. Krypton is separated from
the extracted gas using a purification system based on titanium gettering and gas chromatography
(Tu et al., 2014), typically yielding krypton purities and recoveries both higher than 90%.

The 81Kr and 85Krmeasurements are performed with the latest ATTA instrument at USTC, where individual
81Kr and 85Kr atoms are selectively laser‐cooled and then detected in a magneto‐optical trap. The stable and
abundant 83Kr is also measured for normalization. The resulting 81Kr/83Kr and 85Kr/83Kr ratios for the
sample are compared to the corresponding ratios of a reference krypton gas to derive the 81Kr abundance
as a percentage of the atmospheric value (pMKr) and the 85Kr abundance given in the units of dpm/cc (decay
per minute per cubic centimeter STP krypton), a convention originating from decay counting. More details
on 81Kr and 85Kr analysis with ATTA can be found in Jiang et al. (2012).

2.4. Stable Water Isotopes

The ice columns collected along the ice cliff at GLY2 and GLY3 were cut in the cold room into samples of
2‐cm intervals. The melted ice samples were measured using Picarro L2140i liquid water analyzer in the
Institute of International River and Eco‐security, Yunnan University, with a precision of ±0.15‰ for δ18O
referenced to VSMOW2.

Figure 2. Vertical δ18O profiles along a 5.3‐m column at GLY2 and a 1.27‐m column at GLY3. The boxes show the
positions of the 81Kr‐dated glacier ice samples along the vertical profiles. The zero in height corresponds to the visible
bottom of the glacier cliff, but is not necessarily the bedrock as debris may cover the lowermost part of the glacier. The
size and the vertical position of the samples are roughly to scale. For GLY2, the δ18O data of the lower 3.3 m have an
average of −15.0‰ and a standard deviation (std) of 1.1‰, whereas in the upper 2 m the average is −17.5‰ (std = 2.0‰).
For GLY3, the average is −16.6‰ (std = 2.4‰).
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3. Results and Discussion
3.1. δ18O Results

Figure 2 shows the oxygen isotope variation along the 5.3‐m bottom ice at GLY2 and the 1.27‐m profile at
GLY3. It is difficult to match these short δ18O profiles from GLY2 and GLY3 with the δ18O record from
GIC1992 (Thompson et al., 1997). However, the δ18O fluctuations along the profile provide hints whether
the ice originates from the bottom or not. The accumulation layers of the glacier rapidly become thinner
toward the bottom. The fast fluctuations of the δ18O signal is averaged out when the thickness of the layers
become less than the 2‐cm cutting interval. The large fluctuations in the δ18O profile at GLY3 as well as in
the upper part of GLY2 are comparable to those at the top of GIC1992 (Thompson et al., 2018), suggesting
that these samples are not derived from the bottom of the glacier. The samples were collected from the
visible lowest part of the glacier cliff, which is not necessarily the lowest part of the ice as the bottom may
be covered by debris from the glacier. This explanation is supported by the observation of a large amount
of pebbles being deposited in front of the glacier cliff at GLY3. In contrast, the fluctuations in the δ18O profile
at GLY2 exhibit reduced fluctuations toward the bottom of the glacier. This indicates that GLY2‐4, collected
at the bottom of the GLY2 profile, is likely close to the very bottom of the glacier ice. The reduced fluctua-
tions in the lower 3.3 m of the δ18O profile at GLY2 may also result from mixing of ice of different ages
due to complex flow leading to averaging of the δ18O values. The same mechanism may be responsible for
the higher fluctuations in the δ18O profile at GLY3 and at the top of GLY2 (e.g., if layers with higher δ18O
values are transported next to layers with lower δ18O values) although no stratigraphic disturbance has been
observed at the three sampling sites.

It is difficult to match the δ18O records from this study to the one from GIC1992 because of the high ambi-
guity in matching the excursions and because the ice at GLY2 and GLY3 originates from a different accumu-
lation zone than the ice at the GIC1992 drilling site. At the height of 3.3 m the δ18O record at GLY2 exhibits a
shift in the mean from−17.5‰ to−15‰, and below that the standard deviation is reduced from 2‰ to 1.1‰
(Figure 2). This behavior is similar for the δ18O signal of GIC1992 with the difference that the mean δ18O
value at the bottom 40 m is higher than the bottom 3.3 m at GLY2 by about 2‰. This is likely due to the
altitude difference of the accumulation zones of the ice at GLY2 and GIC1992.

3.2. Air Content

The measured air contents in the ice samples are listed in Table 1. They vary from 32 ml STP/kg to 59 ml
STP/kg, which is typical for Himalayan ice cores (Hou et al., 2007; Li et al., 2011) and significantly lower
than the air content of Antarctic ice, typically ranging between 100 and 120 ml STP/kg (Buizert et al.,
2014; Raynaud & Lebel, 1979), or that of Greenland ice at 80–100 ml/kg (Raynaud et al., 1997). This is
due to the lower air pressure at high elevation (5,500–6,700 m) of the deposition site and the higher tempera-
ture compared to Antarctica (Eicher et al., 2016; Martinerie et al., 1992). We deliberately collected the

Table 1
Compilation of the 81Kr and 85Kr Results

Sample Note Weight (kg) Air content (ml STP/kg) Krypton (μl STP) 85Kr (dpm/cc) 81Kr (pMKr) 81Kr age (ka)

GLY1‐1 Cave 34 52 1.4 <1.5 97 ± 7 <52
GLY1‐2 Cave 28 46 1.3 1.6 ± 0.2 106 ± 6 <15

GLY2‐1 Cave 53 37 1.1 6.1 ± 1.8 93 ± 7 <74

GLY2‐2 Cave 69 41 2.5 2.5 ± 0.2 97 ± 5 <39

GLY2‐3 Surface 52 45 1.7 0.7 ± 0.2 97 ± 5 <39

GLY2‐4 Surface 30 32 0.7 <0.4 104 ± 7 <25

GLY3‐1 Surface 43 29 1.8 1.0 ± 0.2 93 ± 5 <58
GLY3‐2 Surface 36 50 1.4 4.1 ± 0.4 98 ± 6 <45

Lhasa‐Air1 May 2017 — — 0.9 75 ± 2 — —

Lhasa‐Air2 Oct 2017 — — 0.9 76 ± 3 — —

Note. The 81Kr abundance is reported in units of pMKr (percentModern Krypton). The atmospheric level is 100 pMKr. The 85Kr abundance is reported in units of
dpm/cc (decays per minute per cubic centimeter STP of krypton). The errors are 1σ standard deviations, whereas upper limits are reported for a 90% confidence
level.
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samples from ice layers with visibly high bubble content and avoided those with transparent ice which are
likely layers of re‐frozen meltwater.

3.3. 85Kr and 81Kr Results

The measured 81Kr and 85Kr abundances for the eight glacier ice samples as well as two air samples of Lhasa
are listed in Table 1. As described above, the 85Kr in the atmosphere has almost exclusively been produced
anthropogenically in the past 60 years. Therefore, any sample older than that should have a vanishing 85Kr
abundance. Five of the eight samples have 85Kr activity levels below 3% of the Lhasa air value (Table 1),
whereas GLY2‐1, GLY2‐2, and GLY3‐2 have 85Kr values corresponding to about 8%, 3%, and 5%, respec-
tively. Air leaks are thoroughly investigated on instruments used in the degassing, purification, and ATTA
measurement, leading to the conclusion that contamination of modern air during these processes is below
1%. It thus seems more likely that modern air had already entered the ice prior to sampling, for example,
by cracking/melting and refreezing, as has been observed in earlier works on glacier ice close to the surface
of margin sites (Buizert et al., 2014; Craig et al., 1990). Since there is no obvious correlation between 85Kr and
whether the sample is from the surface or from a cave, potential contamination processes at the very front of
the glacier ice cliff do not seem to be responsible for that.

Since the measured 81Kr abundances are close to the modern value of 100 pMKr, contamination of modern
air at these low concentrations does not affect the reported 81Kr abundances within the given precisions. For
all samples they are consistent with modern atmospheric 81Kr abundance within 1σ, except for GLY3‐1
which still lies within a 2σ error. We translate the measured relative 81Kr abundances into 81Kr ages using
the Feldman‐Cousins method (Feldman & Cousins, 1998). As the 81Kr abundances are close to modern, this
method yields upper age limits (90% confidence level) for the individual samples that range between 15 and
74 ka.

3.4. Implication for the Guliya Ice Core Chronology

The obtained results for 81Kr and δ18O of the Guliya margin samples allow for a discussion in the context of
the results from GIC1992 (Thompson et al., 1997) (see section 1). The 81Kr measurements do not show evi-
dence for ice older than 74 ka at the bottom of the sampledmargin sites of the Guliya ice cap. For the samples
fromGLY1, where the ice fromGIC1992 is expected to outcrop (Kutuzov et al., 2018), the upper limits for the
81Kr age do not exceed 52 ka. For GLY2‐4, whose δ18O profile exhibits bottom ice characteristics, the 81Kr
results provide an upper age limit of only 25 ka. The obtained upper age limits do not necessarily rule out
the existence of older ice somewhere else in the Guliya ice cap. It is possible that the old ice at the bottom
of GIC1992 is frozen to the bedrock and does not flow out to the margin sites. However, radar measurements
indicate that the ice at the bottom of GIC1992 does flow and is not trapped at the bedrock (Kutuzov et al.,
2018). A further explanation is that the stratigraphy of the glacier ice is folded when traveling from the
GIC1992 drilling site to the margin, such that the old ice may not be at the bottom. No evidence for folding
was observed at the glacier terminals, which exhibit clear horizontal layer structures, but folding on inter-
mediate distance scales may have occurred. Yet another possibility is that the bottom 100 m of GIC1992,
which are supposedly older than 50 ka, are rapidly thinning toward the outlet of the glacier, and therefore
may be contained in a much smaller vertical extent at the very bottom of the glacier cliff. Since the samples
at GLY1 were taken in about 2‐m height above bedrock, they may not reach into this old bottom section.
However, measurements of the mass balance and the glacier surface velocity (Chadwell, 2017; Li et al.,
2019) indicate that a large fraction of the upper glacier layers is lost when flowing from the equilibrium line
altitude to the edge of the glacier at GLY1 where the remaining glacier cliff is about 10 m in height.
Therefore, it does not seem likely that the bottom 100 m at the GIC1992 drilling site are thinning to below
our sampling height about 2 m above bedrock at GLY1.

4. Conclusions and Outlook

Radiometric 81Kr dating has been used to determine the age of bottom ice samples at the Guliya ice cap.
Eight ice blocks, each weighing 28–69 kg, were collected at three different outlets of the glacier and analyzed
for 81Kr using the ATTA method. The 81Kr results yield upper limits in the range of 15–74 ka, which is an
order of magnitude lower than previously suggested by 36Cl dating of the Guliya ice core and also signifi-
cantly lower than the Guliya chronology reaching up to 110 ka based on δ 18O measurements. After
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results from the Kesang stalagmite cave (~860‐km distance to the Guliya ice cap) and the Chongce ice cap
(~30‐km distance), the 81Kr data in this work (obtained directly from bottom samples of the Guliya ice
cap) represent yet another result that calls for further dating measurements to check the established
Guliya chronology. Measurements of 14C, 36Cl, 10Be, δ18Oatm, and argon isotope ratios are planned for a
new Guliya ice core that has been drilled in 2015 close to the location of the 1992 Guliya core drilling site
(Thompson et al., 2018). Meanwhile, at the USTC laboratory, work is in progress to further reduce the sam-
ple size required for 81Kr analysis so that bottom samples from the Guliya ice core can be measured directly.
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