文章编号: 0253-2239(2009)04-0986-05

碘稳频中红外差频激光光谱技术

邓文平 高 波 成国胜 胡水明

(合肥微尺度物质科学国家实验室,中国科学技术大学化学物理系,安徽 合肥 230026)

摘要 为实现中红外波段的高精度线型研究,建立了一套在2.5~5μm波段连续可调谐的中红外差频激光光谱测 量系统。基于宽带连续可调谐钛宝石激光器(700~900 nm)和单频连续 Nd;YAG 激光器(1064 nm),利用碘多普 勒展宽吸收和频率调制技术,对 Nd;YAG 激光的频率进行反馈控制,使1064 nm的 Nd;YAG 激光的波长稳定性好 于1×10⁻⁵ cm⁻¹。由此差频输出的波长稳定性达到1×10⁻⁴ cm⁻¹水平,适合高精度的线形研究。并通过对 CH,分 子在2927 cm⁻¹附近吸收谱线的测量,表明该系统可以结合频率调制方法,进行离灵敏的光谱检测。 关键词 非线性光学;中红外激光;吸收线形;激光稳频;差频产生;频率调制光谱术

中图分类号 O561.3 文献标识码 A doi: 10.3788/AOS20092904.0986

Iodine-Line Stabilized Mid-Infrared Difference Frequency Laser Spectroscopy

Deng Wenping Gao Bo Cheng Guosheng Hu Shuiming

(Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China)

Abstract To study the precise line profile in the mid-infrared (MIR) region, a versatile continuous wave (CW) MIR difference frequency generation (DFG) spectrometer is built up utilizing a CW Ti; Sapphire laser (700~900 nm) and a CW single-frequency 1064 nm Nd; YAG laser. The spectrometer covers the $2.5 \sim 5 \mu m$ region by tuning the frequency of the Ti; Sapphire laser. The frequency of the Nd; YAG laser is stabilized within 1×10^{-5} cm⁻¹ when it is locked on the Doppler-broadened I₂ absorption line near 532nm. As a result, the DFG laser frequency is stabilized to the level of 1×10^{-4} cm⁻¹, which is suitable for precise line profile measurements. An absorption line of CH₄ near 2927 cm⁻¹ was recorded using this spectrometer and it presents an example for the sensitive detection with the frequency-modulation spectroscopy method.

Key words nonlinear opticis; mid-infrared laser; absorption line profile; laser frequency stabilization; difference frequency generation; frequency-modulation spectroscopy

1引言

很多有机和无机分子在中红外波段(400~ 4000 cm⁻¹)都有丰富的吸收光谱结构,这个波段的 高灵敏光谱测量在痕量检测等实际应用中有着 重 要的意义^[1~3]。另一方面,高精度的光谱线形测量, 对于研究分子碰撞和建立准确的线形理论,对于大 气吸收和遥感监测等应用都十分关键。这就特别需 要在中红外波段具有高度频率稳定性(好于 10⁻⁴ cm⁻¹)的激光光源。

在这个波段工作的激光器主要有二氧化碳激光器、量子级联激光器以及光参变振荡等等,但是目前仍然存在着各种各样的限制,如波段覆盖范围小或不能在常温下运行等等,频率稳定性不足也是一个重要的限制。差频产生(Difference frequency generation,DFG)技术是利用两束近红外或可见波段的激光光束在非线性光学晶体中产生差频输出,

收稿日期: 2008-04-07; 收到修改稿日期: 2008-09-26

基金项目:科技部重大研究计划(2007CB815203)、国家自然科学基金(20533060、10574124)和教育部霍英东教育基金会 (101013)资助课题。

作者简介:邓文平(1979-),男,博士研究生,主要从事高分辨分子光谱研究。E-mail: wpdeng3@mail.vstc.edu.cn 导师简介:胡水明(1973-),男,教授,主要从事分子光谱和原子冷却研究。E-mail:smhu@ustc.edu.cn

从而获得中红外波段的激光[2.4]。它具有可调谐、 连续输出、结构简单、光谱覆盖范围大等优点,并且 可以利用种子光源的特点实现多种光谱调制技术。 目前 Sigrist 等人已经成功地应用其来进行痕量检测 等[5]。然而迄今为止,还很少见有讨论其输出波长的 稳定性 以及应用该方法进行高精度的线形测量。6]。

本文将介绍利用差频方法建立单频光源系统, 其在2.5~5 um范围内连续可调谐,并利用激光稳 频技术,将该激光输出的频率稳定性提高到 1×10⁻⁴ cm⁻¹ 水平,从而可以利用其开展准确的线 形测量研究。

2 实验原理

激光在非线性介质内混合,在满足特定的相位 匹配条件下,可以得到其高次谐波输出。由于晶体 中对于不同频率的光折射率不同,只有几束光的参 数满足一定条件,才能实现相位匹配。而准相位匹 配技术[7] 是通过周期性极化晶体非线性系数的周期 性变化,从而使几束光在晶体中传播时相位的失配 能得到补偿,从而实现匹配。利用两束近红外激光 (voume v signal)在周期性极化的 LiNbO3 晶体(PPLN) 中产生中红外波段的差频光(vuller)输出。三束光满 足准相位匹配条件:

$$\nu_{pump} = \nu_{signal} + \nu_{idler}$$

$$K_{\text{pump}} = K_{\text{signal}} + K_{\text{idler}} + K_{\text{PPLN}}.$$
 (1)

通过洗择合适的 PPLN 极化周期,使得三束光 沿着晶体光轴方向传播时,能够一直满足该相位匹 配条件,最大程度地利用晶体的作用距离。而且同 时可以使用 LiNbO3 晶体非线性系数最大的方向, 以最大限度的提高非线性转化效率。

用在700~900 nm波段可调谐的钛宝石激光作 为抽运光,固定波长1064 nm的 Nd: YAG 激光作为 信号光,使用极化周期约18~23 μm的 PPLN 晶体, 可以满足以上的相位匹配条件,从而产生2.5~ 5 um可调谐的中红外差频激光。

单色光的电场分量可以表达为

$$E = A \sin(2\pi \nu t + \varphi). \tag{2}$$

光调制技术就是对光的幅度 A,频率 ν ,相位 φ , 等施加周期性的变化,然后对探测器输出信号解调, 以去除信号中其他频率成分的干扰,从而有效提高 信噪比。例如在将讨论的 DFG 系统中,可以通过控 制 Nd: YAG 激光器内的 PZT 改变其腔长,或者改 变晶体温度,从而改变其输出激光频率(ν)。其中通 过 PZT 调节范围比较小(最大不到0.01 cm⁻¹),但 速度较快(带宽100 kHz);而通过激光晶体温度改 变的频率范围大(可达1 cm⁻¹,不跳模0.1 cm⁻¹), 但调制速度很慢(带宽1 Hz)。所以控制 PZT 适合 作 Nd: YAG 激光的波长或频率(ν)调制,而温度控 制则适合用来调谐 Nd:YAG 激光的波长。另外,我 们也可以用外加的电光晶体(EOM)对钛宝石激光 或者 Nd: YAG 激光进行高速的相位 φ 调制。当然 也可以用机械斩波器对光束直接进行斩波,即对光 强进行幅度(A)调制。一般说来,幅度调制得到的 是直接吸收谱,受光强波动影响较大,调制频率低 (小于3 kHz); 而波长和相位调制的调制频率可以 很高(MHz),得到的是零背景的微分谱线,可大幅 提高信噪比,所以在痕量检测以及激光稳频等应用 时,经常使用这种调制方法[5.8]。

实 3 验

用一台宽带可调谐环型腔钛宝石激光器 (Coherent 899-29)和一台连续波 Nd: YAG 激光器 (Innolight Mephisto2000) 经双色片共线后共聚焦 通过周期性极化的铌酸锂晶体 PPLN (Crystal Technology Inc.),产生的差频光经滤光片和样品 池后由液氮冷却的 InSb 探测器接收。光路结构如 图1所示。

钛宝石激光器和 Nd: YAG 激光器的波长可以 通过一台波长计(Burleigh WA1500)进行监视。 LiNbO₃ 晶体温度可通过反馈式自动控温器进行调 节,以达到最佳的相位匹配。PPLN 晶体的折射率 参数可由其 Sellmeier 公式[9.10] 计算得到,并可计算 出满足相位匹配条件的相应晶体温度。通过选择不 同极化周期的 PPLN 晶体和改变晶体的温度,来满 足相位匹配条件。钛宝石激光器输出功率约为 700 mW,Nd: YAG 激光器的1064 nm激光输出最 高可达2 W,差频输出功率为数十微瓦水平,足以进 行吸收光谱测量。

编写了 Labview 程序,通过外接计算机上的 16 位模数转换卡(NI PCI-6221)控制钛宝石激光器的 波长扫描,实现其在程序控制下的自动步进式扫描。 宽带可调谐钛宝石激光器有调谐范围宽、频率稳定 性好、操作简单等优点。这些优点可被该差频激光 系统所继承。根据具体的实验要求,我们也可以将 产生的差频光分成两路,以实现差分探测,以降低来 自功率波动和标准具干涉效应带来的影响,进一步 提高信噪比。

光

Ti²S¹Ti; sapphire laser, WM: wavemeter, EOM; electro-optic modulator, InSb; InSb detector, PBS; polarizing beam splitter, PPLN; periodically poled lithium miobate crystal, KTP; potassium titanyl phosphate crystal, BS; beam splitter, TC; temperature controller, DM; dichroic mirror, OI; opical isolator, TT; temperature tuner, PD; silicon photo detector, HV; high-voltage amplifier, FG; function generator, Lock-in; lock-in amplifier.

- 图 1 中红外差频产生和 PZT 调制稳频的示意图
- Fig. 1 Configuration of the MIR difference frequency generation and PZT frequency modulation for stabilization

实验发现,由于 Nd:YAG 激光器受环境温度变 化等的影响,输出频率存在着比较严重的长程漂移, 可达到10-3 cm-1/min,甚至出现跳变。这一方面会 限制 DFG 输出光的频率稳定性,另一方面也会引起 光谱信号的明显变化,降低信噪比。因此,需要对 Nd:YAG 激光器的输出进行稳频。目前通常用碘 饱和光谱的调制转移。11.12]或三次谐波探测来对 Nd: YAG 激光器进行稳频[13],由于碘蒸汽在红外 波段的吸收较弱,需要先把 Nd: YAG 激光倍频到 532 nm后,再利用碘分子在该处的强吸收线进行稳 频。采用碘分子的多普勒展宽吸收线的调制解调谱 来对 Nd: YAG 激光进行稳频,因为相对饱和吸收稳 频方法。这种方法需要的1064 nm激光功率很小, 虽然稳频精度比饱和吸收方法所能达到的水平要 低,但已经足以达到要求;而且由于多普勒吸收线用 于稳频时的动态范围更大,有利于实现 Nd: YAG 激 光器的长时间稳频,实验表明可以用这种方法轻易 地实现数小时的稳频,便于开展长时间的测量。如 前面一部分所讨论的,这里稳频所需要的频率调制 谱可以通过两种方法来得到,一种是直接对 Nd:YAG激光器中的 PZT 附加一个小的调制信号,

来调制输出的激光波长,另一种是外加电光调制器 来对激光进行相位调制。

如图 2 所示,实验中分出一部分 Nd: YAG 激 光(约100 mW),利用 KTP 晶体倍频到532 nm(单 次通过得到约5.5 μW),经滤光片后再依次通过一 个共振型电光调制器 EOM(New Focus, 4421) 和 一个低压碘蒸汽池(10 cm,25 ℃),其吸收信号由 一个硅探测器测得。电光调制器由一个射频源驱动 (1 GHz, New Focus 3363), 由于该射频频率很高, 对探测器的带宽要求很高,因此对射频驱动信号进 行了幅度调制,调制频率60 kHz,探测器输出信号 用锁相放大器(SRS 830)对此调制信号解调后输 出。图 3(b)为扫描 Nd: YAG 激光波长时得到其倍 频光的碘蒸汽 R(56)32-0(18788.338 cm⁻¹)和 P(53)32-0(18788.424 cm⁻¹)两直接吸收线^[14]。稳 颗时,碘P(53)32-0 吸收线的调制解调信号作为误 差信号被提供给比例积分微分(PID)反馈控制器 (SRS SIM960),其输出再经高压放大器(NewFocus 3211,带宽0.5 MHz)来对 Nd: YAG 激光器的 PZT 进行反馈控制,从而对激光频率进行锁定。图 4(a) 和(b)分别为在反馈回路开路和闭合条件下,通过 监测此误差信号所测得的Nd:YAG激光器频率漂

图 2 EOM 调制解调方法用于 Nd: YAG 激光稳频

图 3 I₂ 多普勒展宽直接吸收和调制解调谱 Fig. 3 Direct absorption and frequency modulation spectra of Doppler-broadened I₂ absorption lines

图 4 EOM 调制解调方法稳频时 Nd: YAG 激光器 输出的频率稳定性

Fig. 4 Frequency drift of the Nd: YAG laser with open/closed loop of the frequency-stabilization with the EOM modulation method

移情况。可以看出,在约10 min或更长的监测时间 内,自由输出 Nd: YAG 激光的频率波动达到 5×10^{-4} cm⁻¹, 稳频回路闭合时则可控制到 1×10^{-6} cm⁻¹水平。

用信号发生器(INSTEK GFG-3015)的正弦输 出在 PZT 上施加一个25 kHz的调制,激光频率的 调制深度由调制信号的强度决定,实验中约为 1.5×10⁻⁴ cm⁻¹。图 3(a)即为扫描 Nd: YAG 激 光波长时得到碘蒸气 R(56)32-0 和 P(53)32-0 吸收 线的微分谱。探测器得到的信号被锁相放大器 (SRS 830)解调后作为微分误差信号送到 PID 反馈 控制器,PID 输出经高压放大器后,再被用来控制 YAG 激光器的 PZT。

图 5 为在反馈回路开环(loop off)和闭合(loop on)条件下,用该方法通过监测此误差信号所测得的 Nd:YAG 激光器频率漂移情况。可以看出,在约15 min检测时间内,Nd:YAG 激光器在稳频反馈回路开环时频率波动约为2×10⁻⁴ cm⁻¹,而在回路闭合时的频率波动减小到约7×10⁻⁶ cm⁻¹。

由上可见,通过用 PZT 或者 EOM 调制方法, 获得误差信号再通过 PID 反馈稳频后,所得的 Nd:YAG稳定都要好于1×10⁻⁵ cm⁻¹,满足了高精 度线型研究的要求。然而相对来说,使用 EOM 调 制解调稳频的方法,没有直接对用于产生 DFG 的 1064 nm激光进行调制,即所谓的无调制稳频 (modulation-free),但使用了代价较高的电光调制 器,而 PZT 调制方法较简单,其附加的调制为小幅 度的快速调制,对本实验影响不大。

为检验利用碘线对 Nd:YAG 激光稳频后 DFG 输出光束的频率稳定性,利用DFG输出对CH4分

Fig. 5 Frequency drift of the Nd: YAG laser with open/closed loop of the frequency-stabilization with the PZT modulation method

子位于2927.0762 cm⁻¹的吸收线进行 了测量。实验 中分别通过两种调制解调方法对 Nd:YAG 激光进 行稳频。缓慢扫描钛宝石激光器的频率,当观察激 光扫描至谱线线腰处时(图 6 中垂直虚线所标位 置),中止扫描钛宝石激光频率,使得 DFG 频率停留 在该 CH4 谱线线腰处,通过观测此时的吸收信号波 动来检测 DFG 激光频率的漂移。

如图 6(a)所示,用 EOM 调制解调方法稳频 Nd: YAG 激光时,当 PID 闭环(loop on)的时候,800 秒内 DFG 激光的频率稳定性估计为 5.3×10^{-5} cm⁻¹;但是 当 PID 开环(loop off)的时候,800 秒内 DFG 激光的 频率漂移为 3.2×10^{-4} cm⁻¹。

而用 PZT 调制解调方法稳频 Nd: YAG 激光时, 当 PID 闭环的时候,800 秒内 DFG 激光的频率稳定 性估计为 1×10^{-4} cm⁻¹,但是当 PID 开环时,800 秒内 DFG 激光的频率漂移为 4×10^{-4} cm⁻¹,见图 6(b)。

由上可见,两种 Nd:YAG 稳频方法都显著地提 高了 DFG 输出的频率稳定性。我们估计此时 DFG 输出的频率波动主要由钛宝石激光的频率漂移导致 (钛宝石激光器的标称频率漂移约1 MHz),但已经 不再影响线型测量应用的需要。通过对钛宝石激光 或者 Nd:YAG 激光进行频率或相位调制,进而实现 对 DFG 输出的光学调制,可以获得 DFG 光的调制 光谱测量。以最简单的对 Nd:YAG 激光进行 PZT 调制为例,用如图 1 的实验结构,对在约20 cm长的吸 收池中的极少量的 CH₄ 气(P≪1 Pa),分别测量了其 直接吸收光谱和 PZT 调制解调谱,如图 7。实验中对 Nd:YAG 激光施加了约1.5×10⁻⁴ cm⁻¹幅度的频率 调制,调制速度为5 kHz。可见,用调制解调方法获得 的微分谱可以显著地提高光谱的信噪比,从而使探测 灵敏度明显提高。

图 6 EOM (a)和 PZT(b)调制解调方法稳频 Nd: YAG 激光时 DFG 输出的频率稳定性

Fig. 6 Frequency drift of the DFG emission with/without frequency-stabilization of the Nd: YAG laser with

EOM modulation method and the PZT modulation method (b)

图 7 痕量 CH,在2927.0762 cm⁻¹处的吸收线的直接吸收 和 PZT 调制解调信号的比较

Fig. 7 Direct absorption and PZT frequency modulation spectra of trace CH₄ absorption line at 2927, 0762 cm⁻¹

4 结 论

基于连续可调谐钛宝石激光器和一台连续波的 Nd:YAG激光光源,利用非线性 PPLN 晶体,搭设了 一台可在2.5~5μm可调的中红外差频光源。其具有 覆盖波长范围宽、方便调谐和频率调制、可步进扫描 波长、高光谱分辨率等优点。并利用碘线稳频方法, 使 1064 nm 的 Nd:YAG 激光频率稳定到1× 10⁻⁵ cm⁻¹以内,并实验检验输出差频光频率在光谱 扫描测量时的稳定性好于1×10⁻⁴ cm⁻¹,已经足够用 于高精度的线型研究。实验表明,该系统可应用于高 精度线型测量、痕量检测等研究。如果进一步对钛宝 石激光器进行稳频,DFG 的频率稳定性将可进一步提 高,但将会增加光谱系统进行频率扫描控制的复杂性。

参考文献

- 1 F. K. Tittel, D. Richter, A. Fried. Mid-infrared laser applications in spectroscopy [C]. Topics Appl. Phys., 2003, 89, 445-516
- 2 C. Fischer, M. W. Sigrist, Mid-IR Difference Frequency Generation [C]. Topics Appl. Phys., 2003, 89, 97-143

3 Chen Dong, Liu Wenqing, Zhang Yujun et al.. Difference frequency generation based mid-infrared system for high sensitive detection of atmospheric Gas [J]. J. Atmospheric and Environmental Optics, 2007, 2(2); 126-130

陈 东,刘文清,张玉钧等. 差频产生中红外光源的大气痕量成 分高灵敏检测系统研究[J]. 大气与环境光学学报, 2007, 2(2): 126-130

4 Li Xiaoqin, Jiang Jian, Wang Zhishan et al., Widely Tunable Continuous-Wave Mid-IR Difference-Frequency Generation Source with Fiber Laser and Amplifier [J]. Acta Optica Sinica, 2007, 27(10); 1807-1811

李晓芹,将 建, 无执山等.光纤型宽带可调连续波差频产生中 红外激光器[J].光学学报, 2007, 27(10): 1807-1811

- 5 M. Seiter, D. Keller, M. W. Sigrist. Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase-matching in LiNb()₃[J]. Appl. Phys. B., 1998. 67(3): 351~356
- 6 R. Wehr, J. R. Drummond, A. D. May. Design of a differencefrequency infrared laser spectrometer for absorption line-shape studies [J]. Appl. Opt., 2007, 46(6): 978-985
- 7 J. A. Armstrong, N. Bloembergen, J. Ducuing *et al.* Interactions between Light Waves in a Nonlinear Dielectric [J]. *Phys. Rev.*, 1962, **127**(6): 1918-1939
- 8 K. Song, E. C. Jung. Recent developments in modulation spectroscopy for trace gas detection using tunable diode lasers [J]. Appl. Spec. Rev., 2003. 38(4): 395-432
- 9 D. H. Jundt. Temperature-dependent selfmeier equation for the index of refraction, ne, in congruent lithium niobate [J]. Opt. Lett., 1997, 22(20): 1553-1555
- 10 L. H. Deng, X. M. Gao, Z. S. Cao et al.. Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using midinfrared difference-frequency generation [J]. Opt. Commun., 2006, 268(1): 110-114
- 11 M. L. Eickhoff, J. L. Hall. Optical frequency standard at 532 nm [J]. IEEE Trans. on Instrum. and Meas., 1995, 44(2): 155-158
- 12 Chen Yanping, Jiang Yanyi, Bi Zhiyi et al., Modulation transfer spectroscopy of I₂ enhanced by an external optical cavity [J]. Chin. J. Lasers, 2005, 32(5): 6557-6558 陈艳萍,蒋燕义,毕志毅 等. 光学谐振腔增强碘分子调制转移光 谱[J]. 中国激光, 2005, 32(5): 6557-6558
- 13 K. Nyholm, M. Merimaa, T. Ahola et al. Frequency stabilization of a diode-pumped Nd: YAG laser at 532 nm to iodine by using third-harmonic technique [J]. IEEE Trans. on Instrum. and Meas., 2003, 52(2): 284-287
- 14 J. Ye, L. Robertsson, S. Picard et al., Absolute frequency atlas of molecular I₂ lines at 532 nm [J]. IEEE Trans. on Instrum. and Meas., 1999, 48(2): 544-549