



# Journal of Molecular Spectroscopy



journal homepage: www.elsevier.com/locate/jms

# $(0\,0\,0)$ and $(0\,1\,0)$ energy levels of the HD<sup>18</sup>O and D<sub>2</sub><sup>18</sup>O molecules from analysis of their v<sub>2</sub> bands

An-Wen Liu<sup>a</sup>, Ke-Feng Song<sup>a</sup>, Hong-Yu Ni<sup>a</sup>, Shui-Ming Hu<sup>a</sup>, Olga V. Naumenko<sup>b,\*</sup>, Irina A. Vasilenko<sup>b</sup>, Semen N. Mikhailenko<sup>b</sup>

<sup>a</sup> Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China <sup>b</sup> Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Akademician Zuev Square, 634021 Tomsk, Russia

#### ARTICLE INFO

Article history: Received 21 June 2010 Available online 3 December 2010

Keywords: Fourier transform spectroscopy Water molecule Absorption spectrum  $HD^{18}O$  $D_2^{18}O$ Rotation-vibration assignments

# ABSTRACT

High-resolution Fourier-transform spectra of water samples enriched by deuterium and oxygen-18 at room temperature are analyzed in the range 969–2148 cm<sup>-1</sup>. Line positions of about 2470 transitions up to  $J_{max}$  = 22 and  $K_{a max}$  = 12 of the v<sub>2</sub> bands of the HD<sup>18</sup>O and D<sub>2</sub><sup>18</sup>O molecules are reported. This has allowed the determination of extended sets of rotational energies of the (0 0 0) and (0 1 0) vibrational states for both molecules. The generation function model of an effective rotational Hamiltonian was used in the data reduction to account for the strong centrifugal distortion of the rotational levels. Values of effective Hamiltonian parameters have been determined. The RMS standard deviations of the least-squares fits of the energy levels were  $2.4 \times 10^{-4}$  cm<sup>-1</sup> for 293 energy levels of the ground state and  $3.2 \times 10^{-4}$  cm<sup>-1</sup> for 281 energy levels of the (010) state of D<sub>2</sub><sup>18</sup>O, and  $2.6 \times 10^{-4}$  cm<sup>-1</sup> for 227 energy levels of the ground state and  $4.2 \times 10^{-4}$  cm<sup>-1</sup> for 246 energy levels of the (0 1 0) state of HD<sup>18</sup>O. Comparisons of obtained data with the theoretical predictions as well as with other observations are presented.

© 2010 Elsevier Inc. All rights reserved.

# 1. Introduction

Study of the high resolution rovibrational spectra of the water vapor isotopic species is of continuous interest during last two decades. Recently, an exhaustive analysis of the H<sub>2</sub><sup>18</sup>O, H<sub>2</sub><sup>17</sup>O, HD<sup>16</sup>O, HD<sup>18</sup>O, HD<sup>17</sup>O, and D<sub>2</sub><sup>18</sup>O published rotation-vibrational transitions have been performed, and consistent sets of the experimental energy levels have been derived based on the Rydberg–Ritz principle [1–4]. Rare isotopic species of the water molecule, like HD<sup>18</sup>O, and, especially, D<sub>2</sub><sup>18</sup>O are much less investigated compared to other more abundant isotopologues. Complete list of the available studies can be found in [1,3] for HD<sup>18</sup>O and in [4,5] for D<sub>2</sub><sup>18</sup>O. Even for the lowest vibrational states (0 0 0) and (0 1 0), the experimental sets of rotational energy levels were limited (until recent study for D<sub>2</sub><sup>18</sup>O [5]), by  $J \leq 16$  and  $K_a \leq 10$ . Accurate experimental rotational energy levels of the (0 0 0) and (0 1 0) states represent the initial and essential information for determination of all the upper

\* Corresponding author. Address: Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademician Zuev Square, 634021 Tomsk, Russia. Fax: +7 382 2 49 20 86.

E-mail address: olga@asd.iao.ru (O.V. Naumenko).

experimental levels in room temperature spectra. The present study is aimed at improving and enlarging the set of experimental energy levels of the  $(0\,0\,0)$  and  $(0\,1\,0)$  states of the  $D_2^{18}O$  and HD<sup>18</sup>O molecules using newly recorded high resolution Fourier transform spectra in the 969–2148 cm<sup>-1</sup> spectral range combined with all previously published rotation-vibrational transitions of these two water isotopologues. The  $(0\,0\,0)$  and  $(0\,1\,0)$  rotational energy levels have been derived from solution of the system of the Rydberg–Ritz linear equations which includes all validated rotation-vibrational transitions.

#### 2. Experimental details

The spectra were recorded with a Bruker IFS 120 HR Fourier transform spectrometer in Hefei. Experimental details of the measurements have been presented in our previous papers [5,6]. Here we just give a brief summary of the experimental conditions.

The enriched  $D_2^{18}O$  water sample used in the measurements was purchased from ICON Services. The stated isotopic concentration of <sup>18</sup>O is 98%. The spectrum region was extended down to 970 cm<sup>-1</sup>. A globar source, a liquid nitrogen cooled MCT detector, and a KBr beam-splitter were used. The unapodized spectral resolution was 0.005 cm<sup>-1</sup>. A 1.5-m base path length adjustable

<sup>0022-2852/\$ -</sup> see front matter  $\circledcirc$  2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jms.2010.10.007

multi-pass gas cell operated at room temperature was used. Total path length for the spectra recording was 15 m. The sample pressure was measured with two capacitance manometers (MKS Baratron 627B) of 1 torr and 20 torr full-scale ranges with an overall accuracy of 0.15%. The sample pressures were 38 and 1520 Pa. Different optical filters were applied to improve the signal-to-noise ratio and to allow the high resolution measurements. The line posi-

tions were calibrated using the absorption lines of  $H_2^{16}O$  and  $HD^{16}O$ . Their values were taken from the *HITRAN* 2008 database [7]. The accuracy of the line positions of unblended and not-very-weak lines was estimated to be better than  $2 \times 10^{-4}$  cm<sup>-1</sup>.

Two examples of the recorded spectra near 1176 cm<sup>-1</sup> (upper panel) and 1583 cm<sup>-1</sup> (lower panel) with the rotation-vibration assignments are shown in Fig. 1.



**Fig. 1.** Part of the spectrum near 1176 cm<sup>-1</sup> (upper panel) and near 1583 cm<sup>-1</sup> (lower panel). Rotation-vibration assignments are given for the HD<sup>18</sup>O and D<sub>2</sub><sup>18</sup>O lines. Lines of other water species are marked by the code of molecule: 161 – H<sub>2</sub><sup>16</sup>O, 162 – HD<sup>16</sup>O, 262 – D<sub>2</sub><sup>16</sup>O, 181 – H<sub>2</sub><sup>18</sup>O, 172 – HD<sup>17</sup>O, and 272 – D<sub>2</sub><sup>17</sup>O.

# 3. Results and discussion

# 3.1. Spectrum assignment

The assignment of experimental spectra recorded in 969–2148 cm<sup>-1</sup> region has been performed using the accurate variational computations [8] based on Partridge and Schwenke potential energy surface [9] and Schwenke and Partridge dipole moment function [10]. Hereinafter calculated spectra from [8] will

be referred to as PS data (PS energy levels, PS line positions, PS line intensities). It turned out that PS and experimental energy levels for the (0 1 0) state agree very well both for  $D_2^{18}O$  and  $HD^{18}O$ , what is illustrated in Fig. 2. Maximum *obs-cal* deviations were found to be of 0.16 and  $-0.08 \text{ cm}^{-1}$ , and RMS deviations equal to 0.055 and 0.040 cm<sup>-1</sup> for HD<sup>18</sup>O and  $D_2^{18}O$ , respectively. Deviations of the PS energy levels of the ground states from the observed data are also included in Fig. 2 for both considered molecules. Typical regular structure of the *obs-calc* deviations can be easily found in



**Fig. 2.** Discrepancies between the experimental (*E*<sup>OBS</sup>) and calculated (*E*<sup>PS</sup>) energies for D<sub>2</sub><sup>18</sup>O (upper panel) and HD<sup>18</sup>O (lower panel). Discrepancies for the ground states are given by triangles. Discrepancies for the (0 1 0) states are given by circles.

#### Table 1

Summary of experimental sources for the  ${\rm D_2}^{18}{\rm O}$  data used to retrieve energy levels from transitions.

| Spectral region (cm <sup>-1</sup> ) | Number o | f transitions         | Reference  |
|-------------------------------------|----------|-----------------------|------------|
|                                     | Total    | Selected <sup>a</sup> |            |
| 0.2968-12.5557                      | 21       | 21                    | [11]       |
| 19.8843-37.5600                     | 8        | 2                     | [12]       |
| 34.5178-216.3729                    | 144      | 143                   | [13]       |
| 953.309-1453.719                    | 507      | 506                   | [14]       |
| 969.135-1605.474                    | 1154     | 1145                  | This study |
| 971.308-1684.135                    | 45       | 13                    | [15]       |
| 974.389-1443.467                    | 138      | 132                   | [16]       |
| 2088.501-3217.693                   | 2905     | 2889                  | [5]        |
| 2594.842-2917.267                   | 303      | 282                   | [17]       |
| 6127.288-8245.646                   | 277      | 122                   | [4]        |
| Total                               | 5502     | 5255                  |            |

<sup>a</sup> Number of transitions included in the energy levels determination.

#### Table 2

Experimental energy levels for the ground and  $(0\ 1\ 0)$  states of  $D_2^{18}O$  and  $HD^{18}O$ .

the figure. The resulting experimental line lists with assignments, which include 1155 and 1306 transitions for  $D_2^{18}O$  and  $HD^{18}O$ , respectively, are attached to this paper as Supplementary materials. A number of strong and middle- intensity experimental lines of interest are blended by absorption of other water isotopologues or saturated in our spectra, and then dropped form the list. On this reason, full transition lists have been generated in the considered spectral region for  $HD^{18}O$  and  $D_2^{18}O$  molecules using precise upper and lower energy levels derived in this study (see the following section), and PS line intensities. These lists are also provided as Supplementary material to this paper.

As we are interested in the determination of the rotational levels of two lowest vibrational states only, we will not describe here in details the procedure of rotation-vibrational transitions validating and processing which is similar to that in [1,3], as this will be a subject of future studies planned by the International Union of Pure and Applied Chemistry (IUPAC) task group [2,3].

| Ј <sub>Ка Кс</sub> |   |   | D2 <sup>18</sup> O |    |                  |    | HD <sup>18</sup> O |    |                  |    |
|--------------------|---|---|--------------------|----|------------------|----|--------------------|----|------------------|----|
|                    |   |   | (0 0 0)            |    | (010)            |    | (000)              |    | (010)            |    |
|                    |   |   | EOBS               | δE | E <sup>OBS</sup> | δE | EOBS               | δE | E <sup>OBS</sup> | δE |
| 0                  | 0 | 0 |                    |    | 1170.15729       | 36 |                    |    | 1396.26639       | 8  |
| 1                  | 0 | 1 | 12.08203           | 16 | 1182.24816       | 22 | 15.41842           | 8  | 1411.73581       | 6  |
| 1                  | 1 | 1 | 19.87760           | 16 | 1191.15935       | 22 | 29.45975           | 6  | 1427.69235       | 6  |
| 1                  | 1 | 0 | 22.33847           | 16 | 1193.73743       | 24 | 32.14882           | 8  | 1430.59234       | 6  |
| 2                  | 0 | 2 | 35.74246           | 20 | 1205.93930       | 20 | 45.89839           | 4  | 1442.30643       | 4  |
| 2                  | 1 | 2 | 41.58219           | 16 | 1212.76578       | 20 | 57.59726           | 4  | 1455.72021       | 4  |
| 2                  | 1 | 1 | 48.95900           | 16 | 1220.49347       | 20 | 65.65885           | 4  | 1464.41355       | 4  |
| 2                  | 2 | 1 | 72.26100           | 18 | 1247.09404       | 20 | 107.63032          | 2  | 1512.01078       | 4  |
| 2                  | 2 | 0 | 72.75734           | 12 | 1247.57672       | 18 | 107.97917          | 4  | 1512.36892       | 4  |
| 3                  | 0 | 3 | 70.10194           | 16 | 1240.35958       | 20 | 90.76520           | 4  | 1487.28117       | 4  |
| 3                  | 1 | 3 | 73.84413           | 12 | 1244.88626       | 16 | 99.58688           | 4  | 1497.53949       | 2  |
| 3                  | 1 | 2 | 88.51550           | 16 | 1260.26391       | 18 | 115.66495          | 2  | 1514.87761       | 4  |
| 3                  | 2 | 2 | 108.51317          | 12 | 1283.37887       | 16 | 153.82193          | 2  | 1558.35340       | 2  |
| 3                  | 2 | 1 | 110.86621          | 14 | 1285.68184       | 22 | 155.52603          | 2  | 1560.10612       | 2  |
| 3                  | 3 | 1 | 153.47950          | 10 | 1333.96838       | 14 | 230.20191          | 4  | 1644.26275       | 4  |
| 3                  | 3 | 0 | 153.54393          | 16 | 1334.02646       | 18 | 230.23080          | 4  | 1644.29059       | 4  |
| 4                  | 0 | 4 | 114.30815          | 12 | 1284.62064       | 14 | 149.18777          | 2  | 1545.78813       | 2  |
| 4                  | 1 | 4 | 116.39397          | 14 | 1287.25177       | 18 | 155.20823          | 2  | 1552.92145       | 2  |
| 4                  | 1 | 3 | 140.47778          | 12 | 1312.53966       | 16 | 181.81788          | 2  | 1581.62669       | 2  |
| 4                  | 2 | 3 | 156.42452          | 14 | 1331.34381       | 16 | 215.10969          | 2  | 1619.83429       | 2  |
| 4                  | 2 | 2 | 162.81888          | 10 | 1337.66371       | 14 | 219.97924          | 2  | 1624.85865       | 2  |
| 4                  | 3 | 2 | 202.66301          | 14 | 1383.19218       | 16 | 292.30915          | 2  | 1706.58704       | 4  |
| 4                  | 3 | 1 | 203.09986          | 12 | 1383.58729       | 14 | 292,50603          | 2  | 1706.77931       | 2  |
| 4                  | 4 | 1 | 263.87422          | 12 | 1451.97676       | 16 | 397.42826          | 4  | 1824.30269       | 4  |
| 4                  | 4 | 0 | 263.88128          | 10 | 1451.98269       | 16 | 397,42942          | 4  | 1824.30399       | 4  |
| 5                  | 0 | 5 | 167.93242          | 14 | 1338.22184       | 16 | 220.46393          | 2  | 1617.06470       | 2  |
| 5                  | 1 | 5 | 168.98230          | 10 | 1339.60618       | 14 | 224,22298          | 2  | 1621.61781       | 2  |
| 5                  | 1 | 4 | 204.04141          | 14 | 1376.54881       | 14 | 263.59302          | 2  | 1664.12591       | 2  |
| 5                  | 2 | 4 | 215.65559          | 12 | 1390.65482       | 14 | 291.24216          | 2  | 1696.19508       | 2  |
| 5                  | 2 | 3 | 228.63441          | 14 | 1403.62341       | 16 | 301.74477          | 2  | 1707.08203       | 2  |
| 5                  | 3 | 3 | 264.17810          | 10 | 1444.77111       | 12 | 370.04456          | 2  | 1784.60112       | 2  |
| 5                  | 3 | 2 | 265.82606          | 12 | 1446.27157       | 18 | 370.81443          | 2  | 1785.35426       | 2  |
| 5                  | 4 | 2 | 325.45906          | 12 | 1513.61441       | 14 | 474.88954          | 2  | 1902.02445       | 4  |
| 5                  | 4 | 1 | 325.52011          | 14 | 1513.66561       | 16 | 474.90656          | 2  | 1902.04034       | 2  |
| 5                  | 5 | 1 | 403.03348          | 12 | 1600.44505       | 18 | 608.47285          | 4  | 2050.72941       | 4  |
| 5                  | 5 | 0 | 403.03405          | 14 | 1600.44537       | 20 | 608.47285          | 4  | 2050.72943       | 6  |
| 6                  | 0 | 6 | 230.92083          | 10 | 1401.06224       | 14 | 304.21938          | 2  | 1700.67863       | 2  |
| 6                  | 1 | 6 | 231.41580          | 14 | 1401.74468       | 18 | 306.40761          | 2  | 1703.39257       | 2  |
| 6                  | 1 | 5 | 278.19601          | 10 | 1451.29619       | 16 | 360.26396          | 2  | 1761.63675       | 2  |
| 6                  | 2 | 5 | 285.82477          | 14 | 1460.93398       | 18 | 381.91861          | 2  | 1787.12673       | 2  |
| 6                  | 2 | 4 | 307.81955          | 10 | 1483.13493       | 14 | 400.81549          | 2  | 1806.81576       | 2  |
| 6                  | 3 | 4 | 337.85625          | 12 | 1518.55523       | 16 | 463.36149          | 2  | 1878.26414       | 2  |
| 6                  | 3 | 3 | 342.33760          | 10 | 1522.68399       | 12 | 465.58309          | 2  | 1880.44222       | 2  |
| 6                  | 4 | 3 | 399.54702          | 14 | 1587.76071       | 16 | 568.00177          | 2  | 1995.45117       | 2  |
| 6                  | 4 | 2 | 399.83918          | 12 | 1588.00671       | 14 | 568.08582          | 2  | 1995.52942       | 2  |
| 6                  | 5 | 2 | 476.94793          | 14 | 1674.44350       | 20 | 701.11622          | 2  | 2143.67288       | 4  |
| 6                  | 5 | 1 | 476.95525          | 12 | 1674.44924       | 16 | 701.11700          | 2  | 2143.67381       | 4  |
| 6                  | 6 | 1 | 570.29268          | 16 | 1778.41999       | 22 | 862.22648          | 4  | 2321.85520       | 10 |
| 6                  | 6 | 0 | 570.29271          | 14 | 1778.41995       | 18 | 862.22687          | 4  | 2321.85509       | 6  |

(continued on next page)

| Ј <sub>Ка Кс</sub> |        |          | D2 <sup>18</sup> O |                      |                  |          | HD <sup>18</sup> O |          |            |    |
|--------------------|--------|----------|--------------------|----------------------|------------------|----------|--------------------|----------|------------|----|
|                    |        |          | (000)              |                      | (010)            |          | (000)              |          | (010)      |    |
|                    |        |          | E <sup>OBS</sup>   | δE                   | E <sup>OBS</sup> | δE       | EOBS               | δE       | EOBS       | δE |
| 7                  | 0      | 7        | 303 34067          | 16                   | 1473 20117       | 22       | 400 36333          | 2        | 1796 50592 | 2  |
| 7                  | 1      | 7        | 303 56470          | 10                   | 1473 52405       | 14       | 401 57381          | 2        | 1798 04440 | 2  |
| 7                  | 1      | 6        | 362 02089          | 14                   | 1535 80377       | 22       | 470 93811          | 2        | 1873 24272 | 2  |
| 7                  | 2      | 6        | 366 55016          | 10                   | 1541 79495       | 14       | 486 80393          | 2        | 1892 28373 | 2  |
| 7                  | 2      | 5        | 399 57652          | 14                   | 1575 44492       | 22       | 516 79903          | 2        | 1923 69038 | 4  |
| 7                  | 3      | 5        | 423 40998          | 10                   | 1604 27712       | 14       | 572 12817          | 2        | 1987 44896 | 2  |
| 7                  | 3      | 4        | 433 08181          | 14                   | 1613 33778       | 16       | 577 34773          | 2        | 1992 58832 | 2  |
| 7                  | 1      | 4        | 495.00101          | 14                   | 1674 43030       | 10       | 676 81767          | 2        | 2104 63720 | 2  |
| 7                  | 4      | 2        | 400.14412          | 14                   | 1675 29202       | 12       | 677 11905          | 2        | 2104.03723 | 2  |
| 7                  | -4     | 3        | 563 33036          | 14                   | 1760.01805       | 14       | 800 31715          | 2        | 2104.91703 | 2  |
| 7                  | 5      | 2        | 562 20172          | 14                   | 1760.05117       | 20       | 800,27467          | 2        | 2252.22157 | 2  |
| 7                  | 5      | 2        | 656 56991          | 14                   | 1964 92410       | 20       | 060 00070          | 2        | 2232.22810 | 4  |
| 7                  | 6      | 2        | 030.30661          | 14                   | 1004.02410       | 10       | 909.90070          | 4        | 2429.00190 | 4  |
| 7                  | 0      | 1        | 764 00010          | 10                   | 1004.02402       | 20       | 1157 47022         | 4        | 2429.00105 | 4  |
| /                  | 7      | 1        | 764.88018          | 18                   | 1984.84136       | 24       | 1157.47032         | 6        | 2635.92278 | 8  |
| /                  | /      | 0        | /64.88041          | 22                   | 1984.84148       | 26       | 1157.47036         | 6        | 2635.92297 | 8  |
| 8                  | 0      | 8        | 385.25063          | 12                   | 1554.70542       | 16       | 508.92972          | 2        | 1904.57377 | 4  |
| 8                  | 1      | 8        | 385.34994          | 16                   | 1554.85483       | 22       | 509.57563          | 2        | 1905.41554 | 2  |
| 8                  | 1      | 7        | 455.01449          | 10                   | 1629.44843       | 14       | 594.70702          | 2        | 1997.98408 | 4  |
| 8                  | 2      | 7        | 457.49049          | 16                   | 1632.88385       | 18       | 605.55010          | 2        | 2011.30532 | 2  |
| 8                  | 2      | 6        | 502.90253          | 10                   | 1679.59030       | 14       | 649.04983          | 2        | 2057.06023 | 4  |
| 8                  | 3      | 6        | 520.46205          | 14                   | 1701.57634       | 18       | 696.12360          | 2        | 2111.93807 | 2  |
| 8                  | 3      | 5        | 537.99594          | 10                   | 1718.30876       | 14       | 706.59869          | 2        | 2122.31989 | 2  |
| 8                  | 4      | 5        | 585.16497          | 14                   | 1773.55748       | 18       | 801.35920          | 2        | 2229.60850 | 2  |
| 8                  | 4      | 4        | 587.91510          | 10                   | 1775.91191       | 14       | 802.23305          | 2        | 2230.42239 | 2  |
| 8                  | 5      | 4        | 662.25506          | 14                   | 1859.91303       | 20       | 933.12340          | 4        | 2376.42114 | 4  |
| 8                  | 5      | 3        | 662.42876          | 12                   | 1860.04937       | 14       | 933.15523          | 2        | 2376.44936 | 4  |
| 8                  | 6      | 3        | 755,25847          | 22                   | 1963.64020       | 20       | 1093.02722         | 4        | 2553.36291 | 6  |
| 8                  | 6      | 2        | 755 26372          | 18                   | 1963 64403       | 18       | 1093 02767         | 4        | 2553 36306 | 6  |
| 8                  | 7      | 2        | 863 56652          | 22                   | 2083 70923       | 28       | 1279 99739         | 6        | 2758 80347 | 8  |
| 8                  | 7      | 1        | 863 56641          | 16                   | 2003.70323       | 18       | 1279 99774         | 6        | 2758 80308 | 6  |
| 8                  | ,<br>8 | 1        | 005.50041          | 24                   | 2005.70052       | 28       | 1/02 03/68         | 8        | 2001 102/0 | 8  |
| 0                  | 0      | 0        | 085 05067          | 24                   | 2210.55554       | 20       | 1402.00400         | 0        | 2001 10225 | 12 |
| 0                  | 0      | 0        | 965.95907          | 20                   | 2216.39936       | 22       | 1492.95500         | 0        | 2991.19255 | 12 |
| 9                  | 0      | 9        | 476.68013          | 18                   | 1645.61384       | 20       | 629.96928          | 4        | 2024,93989 | 4  |
| 9                  | 1      | 9        | 4/6./2323          | 12                   | 1645.68182       | 20       | 630.30543          | 4        | 2025.38904 | 4  |
| 9                  | 1      | 8        | 557.09832          | 16                   | 1732.05282       | 22       | 730.87595          | 2        | 2135.08257 | 4  |
| 9                  | 2      | 8        | 558.37482          | 12                   | 1733.90903       | 20       | 737.82016          | 2        | 2143.83909 | 4  |
| 9                  | 2      | 7        | 616.68195          | 16                   | 1794.46897       | 20       | 796.74981          | 2        | 2206.09838 | 2  |
| 9                  | 3      | 7        | 628.58818          | 10                   | 1810.03734       | 14       | 835.04799          | 2        | 2251.43223 | 2  |
| 9                  | 3      | 6        | 656.47940          | 16                   | 1837.12429       | 22       | 853.54655          | 2        | 2269.91732 | 2  |
| 9                  | 4      | 6        | 696.41162          | 12                   | 1884.97216       | 16       | 941.59441          | 2        | 2370.33950 | 4  |
| 9                  | 4      | 5        | 702.68700          | 16                   | 1890.43075       | 18       | 943.75952          | 2        | 2372.36006 | 2  |
| 9                  | 5      | 5        | 773.71361          | 12                   | 1971.44932       | 14       | 1072.57972         | 4        | 2516.31514 | 4  |
| 9                  | 5      | 4        | 774.27947          | 14                   | 1971.89676       | 18       | 1072.68836         | 4        | 2516.41164 | 4  |
| 9                  | 6      | 4        | 866.39041          | 12                   | 2074.89120       | 18       | 1231.63192         | 10       | 2692.38010 | 6  |
| 9                  | 6      | 3        | 866.41624          | 16                   | 2074.91017       | 12       | 1231.63317         | 6        | 2692.38186 | 6  |
| 9                  | 7      | 3        | 974.60025          | 16                   | 2194.92412       | 18       | 1417.86661         | 10       | 2897.06346 | 8  |
| 9                  | 7      | 2        | 974 60067          | 20                   | 2194 92448       | 18       | 1417 86782         | 6        | 2897 06398 | 8  |
| 9                  | 8      | 2        | 1097 10683         | 18                   | 2329 98982       | 32       | 1630 10338         | 10       | 3128 72162 | 14 |
| g                  | 8      |          | 1097 10720         | 10                   | 2329 98992       | 32       | 1630 10461         | 8        | 3128 72146 | 17 |
| q                  | q      | 1        | 1232 65596         | 28                   | 2478 56997       | 26       | 1867 33501         | 46       | 3385 98912 | 74 |
| g                  | Q      | 0        | 1232.65609         | 32                   | 2478 57017       | 26       | 1867 33583         | 28       | 3385 98977 | 24 |
| 10                 | 0      | 10       | 577 62572          | 14                   | 1745 02066       | 18       | 763 51262          | 20<br>4  | 2157 6/18/ | 6  |
| 10                 | 1      | 10       | 577 65 171         | 20                   | 1745.03000       | 10<br>74 | 762 60500          |          | 2137.04404 | 1  |
| 10                 | 1      | 10       | 577.05471          | 2U<br>14             | 1/43.9/03/       | 24       | 70,00022           | 4        | 2137,88040 | 4  |
| 10                 | 1      | 9        | 260,000,40         | 14                   | 1043.09028       | 18       | 0/9.09933          | 4        | 2284.10678 | 4  |
| 10                 | 2      | 9        | 669.00849          | 18                   | 1844.65442       | 22       | 883.310/3          | 4        | 2289.56494 | 4  |
| 10                 | 2      | 8        | /39.93212          | 14                   | 1919.02133       | 16       | 958.94111          | 4        | 2369.83402 | 4  |
| 10                 | 3      | 8        | /4/.36502          | 18                   | 1929.23220       | 22       | 988.54292          | 4        | 2405.56980 | 4  |
| 10                 | 3      | 7        | 787.59463          | 14                   | 1968.92706       | 16       | 1017.97492         | 4        | 2435.24000 | 4  |
| 10                 | 4      | 7        | 819.57541          | 18                   | 2008.39557       | 22       | 1097.41708         | 4        | 2526.73224 | 4  |
| 10                 | 4      | 6        | 831.84164          | 14                   | 2019.29610       | 20       | 1102.13870         | 4        | 2531.15682 | 4  |
| 10                 | 5      | 6        | 897.67756          | 18                   | 2095.50311       | 22       | 1227.71925         | 6        | 2671.93518 | 4  |
| 10                 | 5      | 5        | 899.22489          | 12                   | 2096.73631       | 16       | 1228.03537         | 6        | 2672.21536 | 4  |
| 10                 | 6      | 5        | 989.98990          | 20                   | 2198.59540       | 20       | 1385.73591         | 18       | 2846.93445 | 8  |
| 10                 | 6      | 4        | 990.08634          | 14                   | 2198.66648       | 18       | 1385.74699         | 16       | 2846.94455 | 8  |
| 10                 | 7      | 4        | 1097 98387         | 10                   | 2318,48250       | 28       | 1571.08747         | 22       | 3050,70815 | 14 |
| 10                 | 7      | 3        | 1097 98700         | 18                   | 2318 48338       | 14       | 1571 08734         | 20       | 3050 70795 | 12 |
| 10                 | ,<br>8 | 2        | 1220 53557         | 24                   | 2453 66225       | 28       | 1782 50339         | 20       | 3281 51309 | 16 |
| 10                 | 0      | с<br>С   | 1220.33337         | 2 <del>-</del><br>22 | 2733.00223       | 10       | 1702.50555         | 22       | 2701.51505 | 10 |
| 10                 | 0      | 2        | 1220.33371         | 24                   | 2433.00231       | 10       | 1/02.30330         | 20       | 3201.31334 | 10 |
| 10                 | 9      | <u>ک</u> | 1250.31291         | 54                   | 2002.34239       | 50       | 2010.90/14         | 30<br>24 | 2527,90803 | 34 |
| 10                 | 9      | 1        | 1356.31593         | 26                   | 2002.54243       | 30       | 2018.90/46         | 34       | 3337.90/61 | 54 |
| 10                 | 10     | 1        | 1504.07350         | 44                   | 2/03.04111       | 44       | 22/9.40956"        | 52       | 3818./3049 | 38 |
| 10                 | 10     | 0        | 1504 07343         | 44                   | 2/63 64098       | 42       | 22/940927*         | 50       | 381873057  | 64 |

| Ј <sub>Ка Кс</sub> |        |         | D2 <sup>18</sup> O |          |                          |          | HD <sup>18</sup> O       |          |                  |          |
|--------------------|--------|---------|--------------------|----------|--------------------------|----------|--------------------------|----------|------------------|----------|
|                    |        |         | (000)              |          | (010)                    |          | (000)                    |          | (010)            |          |
|                    |        |         | EOBS               | δE       | EOBS                     | δE       | F <sup>OBS</sup>         | δE       | F <sup>OBS</sup> | δE       |
| 11                 | 0      | 11      | C00 1120C          | 24       | 1955 69369               | 26       | 000 56003                | 0        | 2202 70452       | 10       |
| 11                 | 1      | 11      | 688 12059          | 24<br>16 | 1855.69663               | 20       | 909.56903                | 8<br>8   | 2302.70453       | 8        |
| 11                 | 1      | 10      | 788.95752          | 22       | 1964.48380               | 22       | 1039.31865               | 8        | 2444.94619       | 6        |
| 11                 | 2      | 10      | 789.26419          | 14       | 1964.97152               | 20       | 1041.76688               | 8        | 2448.20897       | 6        |
| 11                 | 2      | 9       | 872.08524          | 24       | 2052.51293               | 22       | 1134.59365               | 6        | 2547.20686       | 6        |
| 11                 | 3      | 9       | 876.40911          | 14       | 2058.76332               | 22       | 1156.21549               | 6        | 2573.94963       | 6        |
| 11                 | 3      | 8       | 930.22506          | 22       | 2112.65155               | 22       | 1199.28328               | 8        | 2617.73636       | 6        |
| 11                 | 4      | 8       | 954.26270          | 16       | 2143.45867               | 20       | 1268.63563               | 8        | 2698.60444       | 6        |
| 11                 | 4      | 7       | 975.27916          | 24       | 2162.59303               | 30       | 1277.85519               | 18       | 2707.30175       | 4        |
| 11                 | 5      | 7       | 1034.02554         | 16       | 2231.97698               | 14       | 1398.55039               | 28       | 2843.29068       | 6        |
| 11                 | 5      | 6       | 1037.68623         | 20       | 2234.93148               | 22       | 1399.35823               | 28       | 2844.00682       | 6        |
| 11                 | 6      | 6       | 1126.06687         | 18       | 2334./6013               | 14       | 1555.30041               | 18       | 3017.04556       | 16       |
| 11                 | 7      | 5       | 120.30830          | 24<br>18 | 2334.98303               | 20       | 1739 66130               | 26       | 3017.07714       | 14       |
| 11                 | 7      | 4       | 1233 73341         | 26       | 2454 38301               | 20       | 1739 66214               | 20       | 3219 73621       | 24       |
| 11                 | 8      | 4       | 1356.22389         | 26       | 2589,58633               | 34       | 1950.12627               | 28       | 3449.55549*      | 26       |
| 11                 | 8      | 3       | 1356.22401         | 32       | 2589.58622               | 32       | 1950.12643               | 30       | 3449.55568       | 26       |
| 11                 | 9      | 3       | 1492.18801         | 34       | 2738.72623               | 36       | 2185.59031               | 42       | 3704.96589       | 34       |
| 11                 | 9      | 2       | 1492.18786         | 48       | 2738.72625               | 40       | 2185.59034               | 40       | 3704.96581       | 36       |
| 11                 | 10     | 2       | 1640.29705         | 40       | 2900.25271               | 42       | 2445.11174*              | 60       | 3984.74712       | 52       |
| 11                 | 10     | 1       | 1640.29696         | 44       | 2900.25260               | 52       | 2445.11212*              | 62       | 3984.74679       | 52       |
| 11                 | 11     | 1       | 1799.31429         | 72       | 3072.72811               | 60       |                          |          | 4287.91433       | 62       |
| 11                 | 11     | 0<br>12 | 1/99.31414         | 80       | 30/2./2818               | 60       | 1069 12425               | 10       | 4287.91462       | 64<br>o  |
| 12                 | 1      | 12      | 808.09882          | 22       | 1974.85552               | 32       | 1068 16700               | 10       | 2460.17755       | 8        |
| 12                 | 1      | 11      | 918,91462          | 18       | 2094.52313               | 20       | 1211.60753               | 8        | 2617.66274       | 8        |
| 12                 | 2      | 11      | 919.06084          | 26       | 2094.76632               | 34       | 1212.98590               | 8        | 2619.55322       | 8        |
| 12                 | 2      | 10      | 1013.02147         | 16       | 2194.66720               | 22       | 1322.76128               | 10       | 2737.20148       | 10       |
| 12                 | 3      | 10      | 1015.40776         | 24       | 2198.29132               | 26       | 1337.66582               | 22       | 2756.16005       | 10       |
| 12                 | 3      | 9       | 1083.18882         | 20       | 2267.12827               | 22       | 1396.62024               | 16       | 2816.57123       | 12       |
| 12                 | 4      | 9       | 1100.03517         | 26       | 2289.73759               | 24       | 1454.97301               | 18       | 2885.68709       | 10       |
| 12                 | 4      | 8       | 1132.35987         | 22       | 2319.87483               | 18       | 1471.27148               | 14       | 2901.20727       | 10       |
| 12                 | 5      | 8       | 1182.53686         | 26       | 2380.68434               | 26       | 1585.03903               | 30       | 3030.35156       | 14       |
| 12                 | 5      | 7       | 1190.14910         | 20       | 2386.94188               | 18       | 1586.89562               | 30       | 3031.99930       | 12       |
| 12                 | 6      | 6       | 1274.39970         | 20       | 2403.30790               | 20       | 1740.54165               | 22       | 3202.72032       | 14       |
| 12                 | 7      | 6       | 1381 80316         | 30       | 2602 59049               | 28       | 1923 59251               | 22       | 3404 14311*      | 38       |
| 12                 | 7      | 5       | 1381.85429         | 20       | 2602.62557               | 22       | 1923,59507               | 42       | 3404.14473       | 24       |
| 12                 | 8      | 5       | 1504.14871         | 36       | 2737.73070               | 42       | 2132.96094*              | 52       | 3632.83348       | 44       |
| 12                 | 8      | 4       | 1504.15017         | 28       | 2737.73192               | 26       | 2132.96171               | 44       | 3632.83284       | 50       |
| 12                 | 9      | 4       | 1640.22982         | 54       | 2887.07208               | 48       | 2367.36819               | 46       | 3887.13963       | 38       |
| 12                 | 9      | 3       | 1640.23013         | 32       | 2887.07232               | 32       | 2367.36788               | 44       | 3887.13996       | 38       |
| 12                 | 10     | 3       | 1788.65883         | 46       | 3048.99942               | 54       |                          |          | 4165.77100       | 56       |
| 12                 | 10     | 2       | 1/88.65913         | 36       | 3048.99964               | 38       |                          |          | 4165.77097       | 58       |
| 12                 | 11     | 2       | 1946.15242         | 62<br>50 | 3222.03320               | 92       |                          |          | 4407.72408       | 70<br>72 |
| 12                 | 12     | 1       | 2117 48828         | 144      | 3404 78836               | 92       |                          |          | 4407.72450       | 12       |
| 12                 | 12     | 0       | 2117.48837         | 128      | 3404.78851               | 86       |                          |          |                  |          |
| 13                 | 0      | 13      | 937.57799          | 34       | 2103.37895               | 36       | 1239.15655               | 10       | 2629.85808       | 12       |
| 13                 | 1      | 13      | 937.57904          | 28       | 2103.38159               | 28       | 1239.17820               | 10       | 2629.88980       | 12       |
| 13                 | 1      | 12      | 1058.27746         | 30       | 2233.85734               | 30       | 1396.05625               | 26       | 2802.35954       | 10       |
| 13                 | 2      | 12      | 1058.34652         | 24       | 2233.97751               | 30       | 1396.81437               | 18       | 2803.42988       | 10       |
| 13                 | 2      | 11      | 1162.85571         | 32       | 2345.52997               | 28       | 1522.77767               | 22       | 2939.03737       | 22       |
| 13                 | 3      | 11      | 1164.12638         | 24       | 2347.55282               | 24       | 1532.51319               | 18       | 2951.80289       | 14       |
| 13                 |        | 10      | 1245.44797         | 30       | 2431.23492               | 52<br>22 | 1656 07837               | 10       | 3030.73913       | 16       |
| 13                 | 4      | 9       | 1302.08705         | 32       | 2490.27066               | 30       | 1682.42021               | 26       | 3113.00435       | 18       |
| 13                 | 5      | 9       | 1342.89397         | 24       | 2541.34376               | 24       | 1787.09197               | 24       | 3233.03022       | 18       |
| 13                 | 5      | 8       | 1356.94713         | 34       | 2553.18311               | 32       | 1790.98128*              | 26       | 3236.49388       | 22       |
| 13                 | 6      | 8       | 1435.51526         | 24       | 2644.36096               | 22       | 1941.26896               | 46       | 3403.97996       | 24       |
| 13                 | 6      | 7       | 1437.49270         | 36       | 2645.84756               | 32       | 1941.55193               | 40       | 3404.21778       | 28       |
| 13                 | 7      | 7       | 1542.22865         | 26       | 2763.11727               | 26       | 2122.87937               | 54       | 3603.92287       | 32       |
| 13                 | 7      | 6       | 1542.38310         | 40       | 2763.22474               | 34       | 2122.89139               | 68       | 3603.93318       | 46       |
| 13                 | 8      | 6       | 1664.28408         | 28       | 2898.05967               | 26<br>40 | 2330.99381               | 62<br>70 | 3831.32471       | 34       |
| 13<br>12           | o<br>Q | 5       | 1004.29193         | 44<br>40 | 2030.00433<br>3047 52501 | 42       | 2330.99243<br>2564 21862 | 70<br>86 | 4084 40277       | 60       |
| 13                 | 9      | 4       | 1800.39754         | 62       | 3047.52451               | 48       | 2564.21927               | 70       | 4084.40300       | 72       |
| 13                 | 10     | 4       | 1949.09809         | 42       | 3209.81369               | 52       | 0                        |          | 4361.77464       | 56       |
| 13                 | 10     | 3       | 1949.09806         | 64       | 3209.81340               | 66       |                          |          | 4361.77495       | 62       |
| 13                 | 11     | 3       | 2109.04718         | 64       | 3383.38998               | 46       |                          |          |                  |          |
| 13                 | 11     | 2       | 2109.04691         | 74       | 3383.38968               | 56       |                          |          |                  |          |
| 14                 | 0      | 14      | 1076.53162         | 34       | 2241.30160               | 36       | 1422.63531               | 14       | 2811.90786       | 12       |
|                    |        |         |                    |          |                          |          |                          |          |                  |          |

(continued on next page)

| <i>J</i> <sub>Ка Кс</sub> |        |        | D2 <sup>18</sup> O |          |                  |          | HD <sup>18</sup> O |     |                  |          |
|---------------------------|--------|--------|--------------------|----------|------------------|----------|--------------------|-----|------------------|----------|
|                           |        |        | (000)              |          | (010)            |          | (000)              |     | (010)            |          |
|                           |        |        | E <sup>OBS</sup>   | δE       | E <sup>OBS</sup> | δE       | EOBS               | δE  | E <sup>OBS</sup> | δE       |
| 14                        | 1      | 14     | 1076 53210         | 50       | 2241 30236       | 56       | 1422 64530         | 14  | 2811 92369       | 14       |
| 14                        | 1      | 13     | 1207 05217         | 30       | 2382 50616       | 28       | 1592 72667         | 24  | 2999 11876       | 18       |
| 14                        | 2      | 13     | 1207.03217         | 40       | 2382 56525       | 38       | 1593 13622         | 24  | 2999 71494       | 26       |
| 14                        | 2      | 12     | 1321 74102         | 28       | 2505 25433       | 26       | 1734 34015         | 21  | 3152 29578       | 16       |
| 14                        | 3      | 12     | 1322 40183         | 36       | 2506 35525       | 34       | 1740 41596         | 28  | 3160 51641       | 18       |
| 14                        | 3      | 12     | 1416 35617         | 30       | 2604 12626       | 26       | 1835 26122         | 20  | 3259 13108       | 22       |
| 14                        | 1      | 11     | 1/23 11360         | 36       | 2614 20416       | 20       | 1871 54861         | 20  | 3304 04640       | 22       |
| 14                        | 4      | 10     | 1423.11300         | 20       | 2672 67021       | 22       | 1010 00460         | 20  | 22/2 /0510       | 20       |
| 14                        | -4     | 10     | 1403.20033         | 30       | 2072.07931       | 20       | 2004 520400        | 20  | 2451 17010       | 24       |
| 14                        | 5      | 9      | 1514.70180         | 28       | 2713.39220       | 26       | 2004.33940         | 30  | 3451.17010       | 24       |
| 14                        | 5      | 9      | 1557.56515         | 20       | 2733.77367       | 20       | 2012.02930         | 12  | 2620 79052       | 26       |
| 14                        | 6      | 9      | 1612 05121         | 20       | 2017.01031       | 32       | 2157.55005         | 42  | 2621 25652       | 20       |
| 14                        | 0      | 0      | 1714 00047         | 20       | 2020.00502       | 20       | 2136.20600         | 50  | 2021.22022       | 30       |
| 14                        | 7      | 8      | 1715,20520         | 40       | 2935.92519       | 44       | 2337.51942         | 50  | 3819.00520       | 38       |
| 14                        | /      | 7      | 1/15.38538         | 30       | 2936.21616       | 30       | 2337.55592         | 94  | 3819.09292       | 64       |
| 14                        | 8      | /      | 1836.60314         | 46       | 30/0.53/66       | 44       | 2544.20305         | 232 | 4045.00325       | 82       |
| 14                        | 8      | 6      | 1836.62927         | 36       | 3070.55387       | 32       | 2544.20441         | 230 | 4045.00453       | 74       |
| 14                        | 9      | 6      | 1972.64335         | 60       | 3220.03065       | 54       |                    |     | 4296.72021       | 82       |
| 14                        | 9      | 5      | 19/2.64410         | 40       | 3220.03120       | 36       |                    |     | 4296.72157       | /2       |
| 14                        | 10     | 5      | 2121.55136         | 80       | 3382.62294       | 70       |                    |     |                  |          |
| 14                        | 10     | 4      | 2121.55170         | 48       | 3382.62273       | 48       |                    |     |                  |          |
| 14                        | 11     | 4      | 2281.92008         | 82       |                  |          |                    |     |                  |          |
| 14                        | 11     | 3      | 2281.92059         | 72       |                  |          |                    |     |                  |          |
| 15                        | 0      | 15     | 1224.93847         | 52       | 2388.58353       | 54       | 1618.52279         | 50  | 3006.23097       | 16       |
| 15                        | 1      | 15     | 1224.93881         | 42       | 2388.58307       | 40       | 1618.52806         | 44  | 3006.23887       | 16       |
| 15                        | 1      | 14     | 1365.23156         | 46       | 2540.46950       | 44       | 1801.64481         | 30  | 3207.98589       | 28       |
| 15                        | 2      | 14     | 1365.24671         | 38       | 2540.49919       | 36       | 1801.86293         | 26  | 3208.31383       | 28       |
| 15                        | 2      | 13     | 1489.78576         | 46       | 2673.97921       | 42       | 1957.42643         | 34  | 3376.88151       | 24       |
| 15                        | 3      | 13     | 1490.12464         | 34       | 2674.56915       | 34       | 1961.08412         | 32  | 3381.98912       | 24       |
| 15                        | 3      | 12     | 1595.72339         | 42       | 2785.39591       | 44       | 2074.36200         | 40  | 3500.60435       | 30       |
| 15                        | 4      | 12     | 1599.67827         | 32       | 2791.60669       | 32       | 2100.95388         | 38  | 3534.47927       | 32       |
| 15                        | 4      | 11     | 1674.74858         | 50       | 2865.90440       | 40       | 2155.95554         | 32  | 3588.72452       | 48       |
| 15                        | 5      | 11     | 1697.52477         | 32       | 2897.01420       | 30       | 2237.13408         | 48  | 3684.53473       | 28       |
| 15                        | 5      | 10     | 1732 66344         | 46       | 2928 36089       | 44       | 2250 44841         | 86  | 3696 56337       | 60       |
| 15                        | 6      | 10     | 1793 82393         | 38       | 3002 94720       | 34       | 2389 29886         | 218 | 3853 11112       | 44       |
| 15                        | 6      | 9      | 1802 21712         | 54       | 3009 47040       | 44       | 2505.25000         | 210 | 3854 35476       | 46       |
| 15                        | 7      | 9      | 1800 07164         | 36       | 3120 96452       | 40       | 2567 50167         | 174 | 1019 51616       | 46       |
| 15                        | 7      | 8      | 1000 08182         | 50       | 3121,50452       | 40<br>66 | 2307.30107         | 174 | 4049.54040       | 40<br>60 |
| 15                        | ,<br>, | 0      | 2021 07249         | 14       | 2255 12071       | 26       |                    |     | 4043.02231       | 110      |
| 15                        | 0      | 8      | 2021.07348         | 44<br>00 | 2255 17270       | 30<br>72 |                    |     | 4273.03330       | 72       |
| 15                        | 0      | 7      | 2021.14540         | 50       | 2404 52740       | 12       |                    |     | 4273.04210       | 72       |
| 15                        | 9      | ,<br>, | 2150.91595         | 50       | 2404.52749       | 44       |                    |     | 4524.05407       | 242      |
| 15                        | 9      | 6      | 2130.91722         | 70       | 3404.32904       | 54       |                    |     | 4524.05271       | 244      |
| 15                        | 10     | 6      | 2305.95363         | 70       | 307.301/1        | 20       |                    |     |                  |          |
| 15                        | 10     | 5      | 2400 00490         | 1.40     | 3007.30090       | 12       |                    |     |                  |          |
| 15                        | 11     | 5      | 2400.09489         | 142      |                  |          |                    |     |                  |          |
| 15                        | 11     | 4      | 2466.69438         | 154      | 0545 00405       | 10       | 1000 550 40        |     | 2242 50000       | 10       |
| 16                        | 0      | 16     | 1382.///55         | 50       | 2545.20125       | 48       | 1826.77946         | 56  | 3212.79009       | 46       |
| 16                        | 1      | 16     | 1382.77830         | 66       | 2545.20127       | 56       | 1826.//961         | 64  | 3212./9345       | 50       |
| 16                        | 1      | 15     | 1532.79866         | 46       | 2/07.74017       | 44       | 2022.80780         | 42  | 3428.97648       | 44       |
| 16                        | 2      | 15     | 1532.80602         | 56       | 2/07.75472       | 54       | 2022.92264         | 38  | 3429.15480       | 38       |
| 16                        | 2      | 14     | 1667.05104         | 44       | 2851.79260       | 42       | 2192.14279         | 100 | 3612.87858       | 36       |
| 16                        | 3      | 14     | 1667.22291         | 54       | 2852.10578       | 52       | 2194.28438         | 42  | 3615.96567       | 44       |
| 16                        | 3      | 13     | 1783.64693         | 42       | 2975.01293       | 40       | 2325.33304         | 54  | 3/54.11909       | 32       |
| 16                        | 4      | 13     | 1785.88401         | 52       | 2978.70187       | 50       | 2343.86226         | 60  | 3778.51212       | 40       |
| 16                        | 4      | 12     | 1875.38204         | 50       | 3068.78123       | 48       | 2416.57199         | 136 | 3850.99751       | 54       |
| 16                        | 5      | 12     | 1890.92161         | 66       | 3091.17192       | 60       | 2484.54560         | 218 | 3932.80790       | 38       |
| 16                        | 5      | 11     | 1939.98230         | 56       | 3136.13557       | 42       | 2506.47077         | 74  | 3952.85244       | 48       |
| 16                        | 6      | 11     | 1990.67035         | 72       | 3200.07301       | 70       | 2636.46447         | 118 | 4100.85547       | 102      |
| 16                        | 6      | 10     | 2005.60040         | 54       | 3211.98185       | 48       |                    |     | 4103.39944       | 62       |
| 16                        | 7      | 10     | 2097.13558         | 58       | 3318.15220       | 66       |                    |     |                  |          |
| 16                        | 7      | 9      | 2099.37737         | 56       | 3319.74311       | 48       |                    |     | 4295.52502       | 234      |
| 16                        | 8      | 9      | 2217.65717         | 84       | 3451.76471       | 58       |                    |     |                  |          |
| 16                        | 8      | 8      | 2217.86078         | 130      |                  |          |                    |     | 4517.80283       | 186      |
| 16                        | 9      | 7      | 2353,17657         | 82       | 3600,96179       | 52       |                    |     |                  |          |
| 17                        | 0      | 17     | 1550.02369         | 80       | 2711.13628       | 78       | 2047.35625         | 62  | 3431.54527       | 70       |
| 17                        | 1      | 17     | 1550 02376         | 62       | 2711 13581       | 56       | 2047 35741         | 52  | 3431 54655       | 76       |
| 17                        | 1      | 16     | 1709 73361         | 70       | 2884 30108       | 62       | 2256 10/92         | 74  | 3662 080/1       | 44       |
| 17                        | 2      | 16     | 1709 72700         | 56       | 2004.00100       | 56       | 2256.15405         | 66  | 3662 1772/       | 50       |
| 17                        | 2      | 15     | 1852 55962         | 50       | 2004.30/0/       | 50       | 2230.23440         | 16  | 3860 15051       | 10       |
| 17                        | 2      | 15     | 1033,33803         | 04<br>50 | 2020./4001       | 04<br>50 | 2430.00000         | 40  | 2000,42824       | 40       |
| 17                        | 3<br>7 | 10     | 1000 20020         | 20       | 2172 12500       | 50       | 2439.83330         | 5Z  | 2002.24590       | 314      |
| 17                        | 5      | 14     | 1980.30020         | 70       | 31/3.12590       | 50       | 2587.54188         | 100 | 4018.89370       | 48       |
| 17                        | 4      | 14     | 1981.53/45         | 50       | 31/5.26314       | 56       | 2599.87018         | 304 | 4100 110 11      | 40       |
| 1/                        | 4      | 13     | 2084.45040         | /b       | 3280.36401       | 66       |                    |     | 4128.11844       | 48       |

| Ј <sub>Ка Кс</sub> |   |    | D218O            |     |                  |     | HD <sup>18</sup> O |     |                  |     |
|--------------------|---|----|------------------|-----|------------------|-----|--------------------|-----|------------------|-----|
|                    |   |    | (0 0 0)          |     | (010)            |     | (0 0 0)            |     | (010)            |     |
|                    |   |    | E <sup>OBS</sup> | δE  | E <sup>OBS</sup> | δE  | E <sup>OBS</sup>   | δE  | E <sup>OBS</sup> | δE  |
| 17                 | 5 | 13 | 2094.48368       | 82  | 3295.64628       | 72  |                    |     | 4195.60305       | 126 |
| 17                 | 5 | 12 | 2158.76776       | 72  | 3356.02320       | 104 |                    |     | 4226.75672       | 68  |
| 17                 | 6 | 12 | 2198.82502       | 60  | 3408.63630       | 88  |                    |     | 4363.87623       | 86  |
| 17                 | 6 | 11 | 2223.05595       | 88  | 3428.58329       | 82  |                    |     | 4368.74926       | 232 |
| 17                 | 7 | 11 | 2306.30122       | 78  | 3527.35087       | 66  |                    |     |                  |     |
| 17                 | 7 | 10 | 2310.86959       | 88  |                  |     |                    |     | 4556.81893       | 132 |
| 17                 | 8 | 10 |                  |     | 3660.41277       | 66  |                    |     |                  |     |
| 18                 | 0 | 18 | 1726.65382       | 72  | 2886.36203       | 70  | 2280.21107         | 150 | 3662.44807       | 72  |
| 18                 | 1 | 18 | 1726.65439       | 92  | 2886.36196       | 88  | 2280.21107         | 150 | 3662.44749       | 76  |
| 18                 | 1 | 17 | 1896.01183       | 70  | 3070.13347       | 66  | 2501.76756         | 58  | 3907.27633       | 76  |
| 18                 | 2 | 17 | 1896.01182       | 164 | 3070.13673       | 76  | 2501.79845         | 64  | 3907.32908       | 88  |
| 18                 | 2 | 16 | 2049.30928       | 68  | 3234.84046       | 68  | 2696.89619         | 148 |                  |     |
| 18                 | 3 | 16 | 2049.35317       | 78  | 3234.92798       | 80  | 2697.58978         | 118 |                  |     |
| 18                 | 3 | 15 | 2185.82989       | 68  | 3379.90509       | 58  |                    |     |                  |     |
| 18                 | 4 | 15 | 2186.50473       | 98  | 3381.12268       | 80  |                    |     |                  |     |
| 18                 | 4 | 14 | 2301.65934       | 142 | 3500.09205       | 154 |                    |     |                  |     |
| 18                 | 5 | 14 |                  |     | 3510.05152       | 108 |                    |     |                  |     |
| 18                 | 5 | 13 | 2387.79678       | 146 | 3586.84207       | 208 |                    |     |                  |     |
| 18                 | 6 | 13 | 2417.86459       | 126 |                  |     |                    |     |                  |     |
| 18                 | 6 | 12 | 2454.06272       | 196 |                  |     |                    |     |                  |     |
| 18                 | 7 | 12 | 2527.23526       | 112 |                  |     |                    |     |                  |     |
| 19                 | 0 | 19 | 1912.63700       | 120 | 3070.85720       | 116 | 2525.29056         | 84  | 3905.45821       | 158 |
| 19                 | 1 | 19 | 1912.63708       | 98  | 3070.85663       | 98  | 2525.29027         | 76  | 3905.45821       | 158 |
| 19                 | 1 | 18 |                  |     | 3265.21641       | 170 |                    |     |                  |     |
| 19                 | 2 | 18 | 2091.60750       | 84  | 3265.21642       | 78  |                    |     |                  |     |
| 19                 | 2 | 17 |                  |     | 3440.08686       | 98  |                    |     |                  |     |
| 19                 | 3 | 17 | 2254.31152       | 128 | 3440.13328       | 76  |                    |     |                  |     |
| 19                 | 3 | 16 | 2400.32450       | 160 |                  |     |                    |     |                  |     |
| 19                 | 4 | 16 | 2400.69126       | 108 | 3596.16662       | 86  |                    |     |                  |     |
| 19                 | 4 | 15 | 2527.04556       | 112 |                  |     |                    |     |                  |     |
| 19                 | 5 | 15 | 2530.74889       | 144 |                  |     |                    |     |                  |     |
| 19                 | 5 | 14 | 2625.95201       | 96  |                  |     |                    |     |                  |     |
| 19                 | 6 | 14 | 2647.35485       | 136 |                  |     |                    |     |                  |     |
| 20                 | 0 | 20 | 2107.94994       | 120 |                  |     |                    |     |                  |     |
| 20                 | 1 | 20 | 2107.95051       | 134 |                  |     |                    |     |                  |     |
| 20                 | 1 | 19 | 2296.48967       | 114 | 3469.52329       | 94  |                    |     |                  |     |
| 20                 | 2 | 19 | 2296.48963       | 160 |                  |     |                    |     |                  |     |
| 21                 | 0 | 21 | 2312.55961       | 172 | 3467.53855       | 142 |                    |     |                  |     |
| 21                 | 1 | 21 | 2312.55967       | 148 | 3467.53798       | 128 |                    |     |                  |     |
| 21                 | 2 | 20 | 2510.63256       | 152 |                  |     |                    |     |                  |     |
| 21                 | 4 | 18 | 2856.46917       | 174 |                  | 455 |                    |     |                  |     |
| 22                 | 0 | 22 | 2526.43680       | 176 | 3679.67075       | 158 |                    |     |                  |     |
| 22                 | 1 | 22 | 2526.43737       | 186 | 3679.67069       | 184 |                    |     |                  |     |
| 22                 | I | 21 |                  |     | 3905.70926       | 162 |                    |     |                  |     |

Note:  $J_{Ka \ Kc}$  – rotational quantum numbers;  $E^{OBS}$  – experimental energies, cm<sup>-1</sup>;

 $\delta E$  – experimental energy uncertainties,  $10^{-5}$  cm<sup>-1</sup>;

Energy levels marked by asterisk differ importantly from Ref. [1] data.

#### 3.2. Energy levels determination and modeling for $D_2^{18}O$ molecule

Initial set of processed transitions consisted of 5502 entries coming from 10 original sources [4,5,11–17] shown in Table 1. These transitions have been checked against PS calculations, and then the consistency of the combination differences has been examined. As a result, 53 transitions (21 from Ref. [17] and 32 from Ref. [15], see also comments included in [4,5]) have been excluded from consideration as being in difference from 0.03 to 1.43 cm<sup>-1</sup> with those calculated from obtained experimental energy levels, and they are believed to be incorrect. At the second step of analysis, 194 more transitions (see Table 1) have been removed from the energy levels determination on the reason of poor experimental accuracy revealed from the inspecting the combination differences relations. For a given combination difference (CD), energy level derived from the rejected transition deviated from the averaged value far from declared experimental uncertainty.

As a result of processing the weighted experimental frequencies, 302 energy levels for the ground state and 290 energy levels for the  $(0\ 1\ 0)$  state have been derived, which are included in

Table 2 together with their experimental uncertainties. Despite the fact that the  $D_2^{18}O$  rotation-vibrational transitions have been studied at least in nine papers (see Table 1), the experimental energy levels for the (0 0 0) and (0 1 0) states have been presented only in [5,14]. The energy levels derived here for the ground state are in a very good agreement with our earlier data [5], where 286 energy levels have been reported. RMS deviation between the two (0 0 0) sets is 0.0006 cm<sup>-1</sup>. Concerning the (0 1 0) set, we could improve and enlarge the previous (0 1 0) set [14], where only 136 energy levels have been derived.

The newly obtained  $(0\ 0\ 0)$  and  $(0\ 1\ 0)$  energy levels have been introduced into the least squares fitting using rotational Hamiltonian written through the generating function *G* [18]:

$$H_{rot}^{G} = \sum_{n,m} g_{nm} J^{2n} \{ G(\alpha^{(J)}) \}^{m} + \sum_{n,m} u_{nm} J^{2n} [(J_{+}^{2} + J_{-}^{2}), \{ G(\alpha^{(J)}) \}^{m}]_{+}, \quad (1)$$

where the generating function is defined according to [19]  $G(\alpha^{(J)}) = (2/\alpha^{(J)}) \{ \sqrt{1 + \alpha^{(J)} J_z^2} - 1 \}$ . The *J*-dependence of  $\alpha^{(J)}$  in the generating function is given by the development  $\alpha^{(J)} = \sum_n \alpha_n J^{2n}$ .

| Table 3                                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fitted values of the parameters of effective Hamiltonian for the ground and $(0\ 1\ 0)$ states of HD <sup>18</sup> O and D <sub>2</sub> <sup>18</sup> O. |  |

| Parameter               | HD <sup>18</sup> 0          |                            | D <sub>2</sub> <sup>18</sup> O |                             |  |
|-------------------------|-----------------------------|----------------------------|--------------------------------|-----------------------------|--|
|                         | (000)                       | (010)                      | (0 0 0)                        | (0 1 0)                     |  |
|                         | Value                       | Value                      | Value                          | Value                       |  |
| $g_{00} \times E_{VV}$  |                             | 1396.26654(15)             |                                | 1170.15747(11)              |  |
| $lpha_0 	imes 10^2$     | 0.661(15)                   | $1.1427_7(21)$             | 1.249 <sub>4</sub> (18)        | 27.64 <sub>9</sub> (31)     |  |
| $lpha_1 	imes 10^5$     | 0.8928(12)                  | $-1.06_{2}(11)$            | $1.511_2(14)$                  | 32.40 <sub>6</sub> (37)     |  |
| $lpha_3 	imes 10^{11}$  |                             |                            |                                | $2.322_9(68)$               |  |
| g <sub>10</sub>         | 7.7100366 <sub>9</sub> (35) | 7.7354763(71)              | 6.0416151 <sub>6</sub> (22)    | 6.0461029 <sub>6</sub> (52) |  |
| $g_{20} \times 10^4$    | $-3.53685_{6}(72)$          | $-4.05384_{1}(87)$         | $-3.08816_{2}(26)$             | $-33.4478_{1}(78)$          |  |
| $g_{30} \times 10^{8}$  | 4.054 <sub>8</sub> (49)     | 6.395(35)                  | 6.277 <sub>1</sub> (13)        | 75.06 <sub>5</sub> (45)     |  |
| $g_{40} \times 10^{11}$ | $-0.92_{1}(10)$             |                            | $-1.478_{5}(21)$               | $-18.19_{4}(85)$            |  |
| $g_{50} 	imes 10^{14}$  |                             | -3.61 <sub>9</sub> (16)    |                                |                             |  |
| g <sub>01</sub>         | 15.400219(26)               | 17.4309623(64)             | 9.031906 <sub>8</sub> (17)     | 10.209880 <sub>9</sub> (36) |  |
| $g_{11} \times 10^{3}$  | $-1.27859_{9}(77)$          | $-1.1131_{5}(18)$          | $1.49098_2(36)$                | 18.5893 <sub>3</sub> (92)   |  |
| $g_{21} \times 10^{6}$  | 2.5012(71)                  | $4.791_6(17)$              | -0.2419(22)                    | $0.548_{1}(67)$             |  |
| $g_{31} \times 10^9$    | $-1.365_{5}(21)$            | $-2.093_8(55)$             | 0.1328 <sub>3</sub> (39)       | $3.62_7(16)$                |  |
| $g_{02} \times 10^2$    | 1.3584(56)                  | 2.7394 <sub>9</sub> (87)   | $1.935_{6}(41)$                | 57.19 <sub>5</sub> (79)     |  |
| $g_{12} \times 10^{5}$  | 2.366 <sub>5</sub> (49)     | $-6.71_{4}(48)$            | 3.6432(36)                     | 90.2 <sub>8</sub> (10)      |  |
| $g_{22} 	imes 10^8$     | -2.362(23)                  | -8.867 <sub>9</sub> (58)   |                                |                             |  |
| $g_{32} \times 10^{11}$ |                             | 3.09 <sub>6</sub> (12)     |                                |                             |  |
| $g_{03} \times 10^5$    | 0.611 <sub>1</sub> (77)     |                            | -3.803 <sub>9</sub> (80)       | $-146.1_{2}(21)$            |  |
| $g_{13} \times 10^{7}$  |                             | 3.65 <sub>4</sub> (11)     | -0.6172 (86)                   | $-24.57_{1}(33)$            |  |
| $g_{23} \times 10^{11}$ | 8.37 <sub>9</sub> (14)      | 94.6(14)                   |                                |                             |  |
| $g_{04} \times 10^{8}$  | $-2.44_{5}(18)$             | $-15.54_{7}(40)$           | $1.506_7(40)$                  | 29.1 <sub>1</sub> (29)      |  |
| $g_{14} 	imes 10^9$     |                             | -2.8927(76)                |                                |                             |  |
| $g_{24} \times 10^{12}$ |                             | $-1.898_{3}(89)$           |                                |                             |  |
| $g_{05} \times 10^{10}$ |                             | 16.37 <sub>3</sub> (79)    | 0.309 <sub>3</sub> (24)        | 65.9 <sub>1</sub> (25)      |  |
| $g_{15} \times 10^{12}$ |                             | 3.29 <sub>3</sub> (16)     |                                |                             |  |
| $u_{00} \times 10^{1}$  | 6.745856 <sub>9</sub> (33)  | 7.287240 <sub>5</sub> (44) | 6.157813 <sub>6</sub> (15)     | $6.4547954_2(32)$           |  |
| $u_{10} \times 10^4$    | $-1.18546_{3(}53)$          | $-1.44741_{3}(51)$         | $-1.23147_8(17)$               | $-1.36191_{6}(48)$          |  |
| $u_{20} \times 10^{8}$  | 2.126 <sub>1</sub> (29)     | 3.190 <sub>3</sub> (16)    | 3.1440 <sub>4</sub> (75)       | 3.799 <sub>9</sub> (25)     |  |
| $u_{30} \times 10^{12}$ | -5.095(53)                  |                            | $-7.64_{6}(11)$                | $-9.28_{8}(44)$             |  |
| $u_{50} \times 10^{17}$ |                             | $-2.95_{3}(14)$            |                                |                             |  |
| $u_{01} \times 10^{3}$  | -2.09366(96)                | -3.4986(18)                | $-0.32041_{7}(20)$             | -0.70883(56)                |  |
| $u_{11} \times 10^{7}$  | $10.821_2(74)$              | $15.40_2(19)$              | $-0.8500_4(65)$                | $-1.458_{5}(45)$            |  |
| $u_{21} \times 10^{10}$ | $-8.22_{2}(16)$             | $-14.93_{9}(28)$           |                                | $-1.48_{9}(11)$             |  |
| $u_{02} \times 10^5$    | 1.32065(86)                 | 4.3274(11)                 | 0.258415(67)                   | $0.4986_{6}(27)$            |  |
| $u_{12} \times 10^9$    | $-1.59_{9}(19)$             | 12.33 <sub>9</sub> (47)    |                                |                             |  |
| $u_{22} \times 10^{12}$ |                             |                            | 1.0077(45)                     | 7.04 <sub>4</sub> (14)      |  |
| $u_{03} \times 10^{8}$  | -9.101(10)                  | $-66.62_{9}(83)$           |                                |                             |  |
| $u_{13} \times 10^{11}$ | -7.72 <sub>8</sub> (23)     |                            |                                | 1.365(20)                   |  |
| $u_{04} \times 10^{10}$ |                             | 39.3 <sub>5</sub> (15)     | $-0.650_{2}(34)$               | 1.2946(43)                  |  |
| $u_{24} \times 10^{16}$ |                             |                            | 1.570 <sub>3</sub> (73)        |                             |  |
| $u_{05} \times 10^{13}$ |                             |                            | 4.41 <sub>1</sub> (18)         |                             |  |

*Note:* All linear parameters  $g_{nm}$  and  $u_{nm}$  are in cm<sup>-1</sup>. Non-linear parameters  $\alpha_n$  are dimensionless. 68% confidential intervals of parameters in last digits are given in parentheses.

Numerical parameters  $g_{nm}$ ,  $u_{nm}$ , and  $\alpha_n$  of Hamiltonian (1) are adjustable spectroscopic parameters. This representation of the rotational operator doesn't contain divergent series essential for the conventional perturbative approach, and proved to be much more accurate not only in the fitting, but also in the extrapolation calculations. Relations of the  $H_{rot}^G$  parameters with Watson's constants are discussed in [20]. Spectroscopic parameters of Hamiltonian (1) were determined in a least square fit to experimental rotational energies of each vibrational state.

As our dataset of rotational energies of the ground state was very close to that of Ref. [5], we used the spectroscopic parameters from [5] as the initial approximation in the fitting process. This time we attempted to vary all the parameters given in [5]. Finally, 293 of 302 experimental energy levels of the (0 0 0) state were fitted with RMS deviation of  $2.4 \times 10^{-4}$  cm<sup>-1</sup> by varying 27 parameters. It is worth noticing that all the nine experimental energy levels excluded from the fitting are derived either from single line not supported by CD relation, or from experimentally unresolved lines formed by transitions coming on or originated from nearly degenerate levels. We believe that for all these nine excluded energy levels the calculated values given in Supplementary material II are more accurate than the experimental ones.

The fitting of energy levels for the (0 1 0) state was similar to that for the ground state: 282 energy levels and 29 fitted param-

eters, RMS equals to  $3.2 \times 10^{-4}$  cm<sup>-1</sup>. No resonance perturbations from the nearby states have been detected for the (0 1 0). Again, all the eight excluded experimental energy levels seem to have distorted values. The largest *obs-calc* discrepancy of -0.0114 cm<sup>-1</sup> correspond to  $J_{Ka \ Kc} = 17_{6 \ 12}$  level derived from one single line position. The spectroscopic parameters of the (0 0 0) and (0 1 0) states obtained are presented in Table 3 together with 68% confidential intervals. The full sets of calculated energies of both (0 0 0) and (0 1 0) states are given in Supplementary material II.

# 3.3. Energy levels determination and modeling for HD<sup>18</sup>O molecule

Determination of the HD<sup>18</sup>O energy levels from simultaneous processing all published and validated rovibrational transitions has been performed recently in [1,3], and we used the list of HD<sup>18</sup>O transitions which has been composed from the same original sources, as in [3], and enlarged by 1313 transitions of the  $v_2$ band assigned in this study. The final list consisted of 10,242 entries that corresponds to 7424 spectral lines. After the validation procedure, described above, 1489 transitions have been excluded from consideration, mostly, due to poor experimental accuracy. Totally, 8753 transitions have been processed, including 7506 previously published data, what is sufficiently smaller than



Fig. 3. Ratios of the observed ( $I^{OBS}$ ) and calculated ( $I^{PS}$ ) line intensities of  $D_2^{18}O$  (upper panel) and HD<sup>18</sup>O (lower panel).

8729 transitions validated in [3]. This large difference in the number of validated transitions results from the fact that the computer code RITZ [1] exploited in this study doesn't make provision to enlarging the experimental uncertainties for the transitions-outliers, as MARVEL code does [21]. All the outliers (generally, deviating by more than  $0.002 \text{ cm}^{-1}$  from the values calculated by RITZ) are excluded manually. Finally 237 and 259 energy levels have been determined for the (000) and (010) states, respectively.

Modeling the HD<sup>18</sup>O rotational energies of the ground vibrational state was close to that for  $D_2^{18}O$ : 227 experimental energy levels of 237 observed have been reproduced with RMS =  $2.6 \times 10^{-4}$  cm<sup>-1</sup> by varying 27 parameters. Again, most part of excluded experimental energy levels concerns nearly degenerate pairs. Most difficult case concerned modeling the rotational energies of the (0 1 0) state, since they are perturbed by resonance interactions with the (0 0 0), and (0 2 0) states. We did not account for these perturbations, and the fitting result is still acceptable:



**Fig. 4.** Observed (upper panel), calculated from experimental energy levels (middle panel), and unobserved (lower panel) transitions of D<sub>2</sub><sup>18</sup>O. Line positions on lower panel correspond to PS calculation [8].

246 energy levels of 259 observed have been modeled within RMS of  $4.2 \times 10^{-4}$  cm<sup>-1</sup> by varying 33 parameters. Experimental energy levels of the (0 0 0) and (0 1 0) states of HD<sup>18</sup>O are shown in Table 2. The parameters obtained are included in Table 3. Full set of calculated rotational energies for the (0 0 0) and (0 1 0) states of HD<sup>18</sup>O are given in Supplementary material II.

Before present study, the most complete published sets of the  $(0\ 0\ 0)$  and  $(0\ 1\ 0)$  energy levels of HD<sup>18</sup>O are included in [1,3]: 171 levels for the  $(0\ 0\ 0)$  and 156 levels for the  $(0\ 1\ 0)$  states. The present work gives 237 levels for the ground state and 259 for the  $(0\ 1\ 0)$  state. Comparison of our data with those presented in [1] shows that both sets agree well on average, with RMS deviation



Fig. 5. Observed (upper panel), calculated from experimental energy levels (middle panel), and unobserved (lower panel) transitions of HD<sup>18</sup>O. Line positions on lower panel correspond to PS calculation [8].

of 0.0014 cm<sup>-1</sup> for 318 levels. We did not confirm four energy levels from [1], they are marked by asterisk in Table 2. We also excluded five evident outliers from the comparison they also are marked by asterisk.

#### 3.4. Trivial assignments

As it was already mentioned, part of strong and middle-intensity  $HD^{18}O$  and  $D_2{\,}^{18}O$  absorption lines of the  $\nu_2$  band have

been distorted due to overlapping with other transitions having comparable or larger intensities, and, consequently, have been deleted from the final lists. Complete absorption line list for the  $v_2$ bands of considered molecules has been constructed by using the precise positions calculated from the experimental lower and upper levels derived in this study, and variational intensities [8]. As it was stated in [5], PS intensities for D<sub>2</sub><sup>18</sup>O agree very well with the experimental data [17] in the 2594–2918 cm<sup>-1</sup> spectral region. Comparison of PS intensities of the  $v_2$  band with the experimental values of Toth for D<sub>2</sub><sup>18</sup>O [14] and HD<sup>18</sup>O [22] is included in Fig. 3. Average ratio  $R = I^{OBS}/I^{PS}$  equals to 0.98 for 734 line intensities of HD<sup>18</sup>O and to 0.95 for 515 line intensities of D<sub>2</sub><sup>18</sup>O, confirming very high quality of PS intensities. However, the distribution of the intensity ratios is not symmetrical with respect to R = 1 value both for D<sub>2</sub><sup>18</sup>O and for HD<sup>18</sup>O. It looks like the strongest experimental intensities being underestimated by about 5%.

Line lists of the transitions associated with experimental energy levels derived in this study with PS intensities over  $5 \times 10^{-27}$  cm/molecule include 5264 and 7429 entries for the D<sub>2</sub><sup>18</sup>O and HD<sup>18</sup>O molecules, respectively. The lists are attached to this paper as Supplementary material III. Comparison of the previously observed transitions with those recorded in this paper and calculated from the experimental energy levels of the (0 0 0) and (0 1 0) states is shown in Figs. 4 and 5 for both studied molecules together with the residual unobserved lines. Closed triangles on the upper panels of Figs. 4 and 5 correspond to observed data from literature and open circles represent new measurements. Line list of the residual unobserved lines for both species is included in Supplementary material IV.

#### 4. Conclusion

Fourier transform absorption spectra of the D<sub>2</sub><sup>18</sup>O and HD<sup>18</sup>O molecules have been recorded and assigned based on variational and effective Hamiltonian calculations in the 970–2150 cm<sup>-1</sup> spectral region. Precise energy levels (1088) of the (000) and (010) states including 302 new levels have been derived from 5255 rotation-vibrational transitions for the D<sub>2</sub><sup>18</sup>O and 8753 transitions for the HD<sup>18</sup>O molecules using fundamental Rydberg-Ritz principle. These energy levels have been modeled at a level of experimental accuracy with the effective Hamiltonian written through the generating functions. Detailed and precise lists of the line positions for the D218O and HD18O have been generated in the O-2900 cm<sup>-1</sup> spectral region, involving rotational and v<sub>2</sub> transitions. Line positions calculated from experimental energy levels were completed by variational (PS) line intensities. These lists can be used for various applications, in particular, for calibration purposes as well as for assignment of the high density hot spectra, investigations of the line profile, etc. List of variational lines not observed in  $0-2900 \text{ cm}^{-1}$  spectral region is composed from the PS database [8] which can be useful in future experimental studies of the  $HD^{18}O$  and  $D_2^{18}O$  molecules.

# Acknowledgments

This work was supported in part by RFBR (Russia, G. Nos. 09-05-93105, 10-05-93105 and 10-05-91176) and NNSF (China, G. Nos. 20903085 and 20873132), by the program 3.9 "Fundamental Optical Spectroscopy and Applications" of Russian Academy of Science, and by Chinese Ministry of Science and Technology (2007CB815203). S.N.M. acknowledges also support of Grant No. RUG1-2954-TO-09 of CRDF (USA) and Grant No. 09-05-92508-UK\_a by RFBR. O.V.N. and S.N.M. gratefully acknowledge University of Science and Technology of China for visiting professorship and the support from Chinese Academy of Science. The authors also acknowledge Dr. S.A. Tashkun (Tomsk, Russia) for supplying his computer code RITZ which was used to determine experimental energy levels from observed line positions and for valuable discussions.

#### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jms.2010.10.007.

#### References

- S.N. Mikhailenko, S.A. Tashkun, T.A. Putilova, E.N. Starikova, L. Daumont, A. Jenouvrier, et al., J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 597–608.
- [2] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, M.R. Carleer, A.G. Császár, et al., J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 573–596.
- [3] J. Tennyson, P.F. Bernath, L.R. Brown, A. Campargue, S. Fally, A.G. Császár, et al., J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 2160–2184.
- [4] S.N. Mikhailenko, S.A. Tashkun, L. Daumont, A. Jenouvrier, M. Carleer, S. Fally, A.C. Vandaele, J. Quant. Spectrosc. Radiat. Transfer 111 (2010) 2185–2196.
- [5] H.-Y. Ni, A.-W. Liu, K.-F. Song, S.-M. Hu, O.V. Naumenko, T.V. Kruglova, S.A. Tashkun, Mol. Phys. 106 (2008) 1793–1801.
- [6] A.-W. Liu, J.-H. Du, K.-F. Song, L. Wang, L. Wan, S.-M. Hu, J. Mol. Spectrosc. 237 (2006) 149–162.
- [7] L.S. Rothman, I.E. Gordon, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, et al., J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 533–572.
- [8] <http://spectra.iao.ru>.
- [9] H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618-4639.
- [10] D.W. Schwenke, H. Partridge, J. Chem. Phys. 113 (2000) 6592-6597.
- [11] J. Bellet, W.J. Lafferty, G. Steenbeckeliers, J. Mol. Spectrosc. 47 (1973) 388-402.
- [12] J.W. Fleming, M.J. Gibson, J. Mol. Spectrosc. 62 (1976) 326-337.
- [13] J.W.C. Johns, J. Opt. Soc. Am. B 2 (1985) 1340-1354.
- [14] R.A. Toth, J. Mol. Spectrosc. 162 (1993) 41-54.
- [15] W.F. Wang, T.L. Tan, B.L. Tan, P.P. Ong, J. Mol. Spectrosc. 176 (1996) 226-228.
- [16] G. Di Lonardo, L. Fusina, J. Mol. Spectrosc. 135 (1989) 250-258.
- [17] R.A. Toth, J. Mol. Struct. 742 (2005) 49-68.
- [18] S.N. Mikhailenko, Vl.G. Tyuterev, G. Mellau, J. Mol. Spectrosc. 217 (2003) 195– 211.
- [19] VI.G. Tyuterev, J. Mol. Spectrosc. 151 (1992) 97–121.
  [20] VI.G. Tyuterev, V.I. Starikov, S.A. Tashkun, S.N. Mikhailenko, J. Mol. Spectrosc.
- 170 (1995) 38–58. [21] T. Furtenbacher, A. Császár, J. Tennyson, J. Mol. Spectrosc. 245 (2007) 115–125.
- [22] R.A. Toth, J. Mol. Spectrosc. 162 (1993) 20–40.