

Available online at www.sciencedirect.com



Journal of Molecular Spectroscopy 234 (2005) 270-278

Journal of MOLECULAR SPECTROSCOPY

www.elsevier.com/locate/jms

## High-resolution Fourier transform spectrum of $H_2S$ in the region of the second hexade

O.N. Ulenikov<sup>a,b</sup>, A.-W. Liu<sup>a</sup>, E.S. Bekhtereva<sup>a,b</sup>, O.V. Gromova<sup>b</sup>, L.-Y. Hao<sup>a</sup>, S.-M. Hu<sup>a,c,\*</sup>

<sup>a</sup> Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China,

Hefei 230026, China

<sup>b</sup> Laboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk 634050, Russia <sup>c</sup> USTC Shanghai Institute for Advanced Studies, University of Science and Technology of China, Shanghai 201315, China

> Received 5 March 2005; in revised form 22 July 2005 Available online 8 November 2005

#### Abstract

High-resolution Fourier transform infrared spectrum of  $H_2^{32}S$  was recorded and analyzed in the region of the second hexade  $v = v_1 + \frac{1}{2}v_2 + v_3 = 2.5$ . More than 1700 transitions were assigned to the  $2v_1 + v_2$ ,  $v_1 + v_2 + v_3$ ,  $v_1 + 3v_2$ ,  $3v_2 + v_3$ ,  $5v_2$ , and  $v_2 + 2v_3$  bands with the maximum value of quantum number *J* equal to 18, 18, 13, 11, 13, and 9, respectively. The theoretical analysis was fulfilled with a Hamiltonian model which takes into account numerous resonance interactions between all the vibrational states in this polyad. By a least-square fitting, finally 505 upper energy levels were reproduced by 80 parameters with an rms deviation of 0.0019 cm<sup>-1</sup>.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Vibration-rotation spectra; H<sub>2</sub>S molecule; Resonance interactions; Spectroscopic parameters

#### 1. Introduction

In the recent contributions [1,2], we presented results of analysis of the high-resolution Fourier transform spectrum of the H<sub>2</sub>S molecule in the regions of the  $v = v_1 + \frac{1}{2}v_2 + v_3 = 3$  and v = 3.5 polyads (7300–7900 and 8500–8900 cm<sup>-1</sup>, respectively). In the present work, we will present the results of the high-resolution analysis of the H<sub>2</sub>S spectrum in the longer wavelength region, namely, 5700–6650 cm<sup>-1</sup>, where the v = 2.5 polyad is located.

Because the review of the earlier investigations of the  $H_2S$  spectra was made in [1], we will not repeat it here. As to the high-resolution spectroscopy study in the region which will be presented in this work, it was discussed without any details in [3]. As was mentioned in [3], transitions

of the five bands of this v = 2.5 polyad,  $2v_1 + v_2$ ,  $v_1 + v_2 + v_3$ ,  $v_1 + 3$   $v_2$ ,  $3v_2 + v_3$ , and  $5v_2$ , have been assigned with the maximum values of quantum numbers *J* equal to 8 for the first 4 bands and 12 for the last one. The values of the band centers were also presented. As will be shown in the following sections, the numbers of the obtained upper energy levels were much enlarged in present study compared with in [3]. The experimental details are given in Section 2. Theoretical background of the analysis is considered in Section 3. Description of the spectrum and assignments of the recorded transitions are given in Section 4. Section 5 presents the fitting results and discussion.

#### 2. Experimental details

The hydrogen sulfide sample was purchased from Nanjing Special Gas Company with a stated purity of 99%. The sample was in natural abundance, but throughout this paper, the discussions will be constrained to the main

<sup>\*</sup> Corresponding author. Fax: +86 551 360 2969. E-mail address: smhu@ustc.edu.cn (S.-M. Hu).



Fig. 1. Overview spectrum of  $H_2S$  in the 5500–6650 cm<sup>-1</sup> region. Experimental conditions: path length 105 m, gas pressure 2076 Pa.

11

isotope of this molecule,  $H_2^{32}S$ . The high-resolution spectra of  $H_2S$  in the 5000–6700 cm<sup>-1</sup> region were recorded with a Bruker IFS 120 HR Fourier transform spectrometer (Hefei, China) equipped with a path length adjustable multi-pass gas cell at room temperature. A tungsten source, a Ge detector and a CaF<sub>2</sub> beamsplitter were used. The unapodized spectral resolution was  $0.015 \text{ cm}^{-1}$ . The absorption path length was 105 m, and the pressure was 2076 Pa. Band-pass optical filters were applied in the measurements. An overview of the spectrum is presented in Fig. 1. The line positions were calibrated using H<sub>2</sub>O lines listed in HITRAN [4] database. The accuracy of line positions of unblended and not-very-weak lines was estimated to be  $0.002 \text{ cm}^{-1}$  or better.

### 3. Selection rules and the hamiltonian description

Since  $H_2S$  is an asymmetric top molecule with  $C_{2v}$  symmetry (the value of the asymmetry parameter is  $\kappa \simeq 0.532$ ), the vibrational states (210), (012), (130), (050) are the symmetric states and (111), (031) are antisymmetric. For this reason the selection rules are

$$\Delta J = 0, \pm 1; \ \Delta K_a = \pm (2n+1); \ \Delta K_C = \pm (2m+1)$$
(1)

for the  $2v + v_2$ ,  $v_1 + 3v_2$ ,  $5v_2$ , and  $v_2 + 2v_3$  bands, and  $\Delta J = 0, \pm 1; \ \Delta K_a = \pm 2n; \ \Delta K_C = \pm (2m+1)$ (2)

for the  $v_1 + v_2 + v_3$  and  $3v_2 + v_3$  bands. In Eqs. (1) and (2), *n* and m = 0, 1, 2, ... When n = m = 0, transitions are "allowed," otherwise are so-called "forbidden" transitions.

Due to the presence of resonance interactions between all the states in this polyad, it is necessary to apply the effective Hamiltonian in the form

$$H^{v,v'} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ W & D & F & - & C & - \\ D & W & - & - & C & C \\ F & - & W & F & C & C \\ - & - & F & W & - & C \\ C & C & C & - & W & F \\ - & C & C & C & F & W \end{vmatrix}$$
(3)

5

Here v, v' = 1, 2, ..., 6 and  $|1\rangle = (210), |2\rangle = (012),$  $|3\rangle = (130), |4\rangle = (050), |5\rangle = (111), \text{ and } |6\rangle = (031).$  W denotes the diagonal operator matrix elements of  $H^{vv'}$ ; F and D denote the Fermi and Darling-Dennison-type interactions: C corresponds one of two Coriolis-type interactions, which connect the vibrational states  $(v_1 v_2 v_3)$  and  $(v_1 \pm 1 v_2)$  $v_3 \mp 1$ ), or  $(v_1 v_2 v_3)$  and  $(v_1 v_2 \pm 2 v_3 \mp 1)$ . The diagonal blocks in expression (3) describe the rotational structures of isolated vibrational states and have the form of Watson's operators [5], in A reduction and  $I^r$  representation:

$$\begin{aligned} H^{vv} &= E^{v} + [A^{v} - \frac{1}{2}(B^{v} + C^{v})]J_{z}^{2} + \frac{1}{2}(B^{v} + C^{v})J^{2} \\ &+ \frac{1}{2}(B^{v} - C^{v})J_{xy}^{2} - \Delta_{K}^{v}J_{z}^{4} - \Delta_{JK}^{v}J_{z}^{2}J^{2} - \Delta_{J}^{v}J^{4} \\ &- \delta_{K}^{v}[J_{z}^{2}, J_{xy}^{2}]_{+} - 2\delta_{J}^{v}J^{2}J_{xy}^{2} + H_{K}^{v}J_{z}^{6} + H_{KJ}^{v}J_{z}^{4}J^{2} \\ &+ H_{JK}^{v}J_{z}^{2}J^{4} + H_{J}^{v}J^{6} + [J_{xy}^{2}, h_{K}^{v}J_{z}^{4} + h_{JK}^{v}J^{2}J_{z}^{2} + h_{J}^{v}J^{4}] \\ &+ L_{K}^{v}J_{z}^{8} + L_{KKJ}^{v}J_{z}^{6}J^{2} + L_{JK}^{v}J_{z}^{4}J^{4} + L_{KJJ}^{v}J_{z}^{2}J^{6} + L_{J}^{v}J^{8} \\ &+ [J_{xy}^{2}, l_{K}^{v}J_{z}^{6} + l_{KIJ}^{v}J^{2}J_{z}^{4} + l_{KI}^{v}J^{4}J_{z}^{2} + l_{J}^{v}J^{6}]_{+} + \cdots \qquad (4) \end{aligned}$$

The operators which describe Fermi-type interactions (Darling–Dennison interaction between the states (210) and (012), as well), are presented in the form of

$$H_{F}^{vv'} = F^{vv'} + F_{K}^{vv'}J_{z}^{2} + \dots + F_{xy}^{vv'}J_{xy}^{2} + F_{xyK}^{vv'}[J_{xy}^{2}, J_{z}^{2}]_{+} + F_{xyJ}^{vv'}J_{xy}^{2}J^{2} + \dots$$
(5)

The Coriolis-type interaction operators are in the following form:

 $H^{v,-r,\cdot} = \sum_{v,v'} H^{v,v'} |v\rangle \langle v'|$ 

$$H_{Cy}^{vv'} = 2(C\zeta^{y})^{vv'} \mathbf{i}J_{y} + C_{yK}^{vv'} [\mathbf{i}J_{y}, J_{z}^{2}]_{+} + C_{yJ}^{vv'} \mathbf{i}J_{y}J^{2} + C_{yKK}^{vv'} [\mathbf{i}J_{y}, J_{z}^{4}]_{+} + C_{yJK}^{vv'} [\mathbf{i}J_{y}, J_{z}^{2}J^{2}]_{+} + C_{yJJ}^{vv'} \mathbf{i}J_{y}J^{4} + \dots + C_{xz}^{vv'} [J_{x}, J_{z}]_{+} + C_{xzK}^{vv'} [[J_{x}, J_{z}]_{+}, J_{z}^{2}]_{+} + C_{xzJ}^{vv'} [J_{x}, J_{z}]_{+}J^{2} + \dots + C_{yy}^{vv'} [\mathbf{i}J_{y}, J_{xy}^{2}]_{+} + \dots$$
(6)

In the equations,  $J_{xy}^2 = J_x^2 - J_y^2$  and  $[A, B]_+ = AB + BA$ .

#### 4. Spectrum overview and assignments

Fig. 1 shows the overview spectra of the H<sub>2</sub>S molecule in the region of the second hexade. The predicted band centers are also denoted in this figure. One can see the strong and overlapped "local mode" bands  $2v_1 + v_2$  and  $v_1 + v_2 + v_3$  of H<sub>2</sub><sup>32</sup>S ((20<sup>+</sup>, 1) and (20<sup>-</sup>, 1) in the local mode notations). The *Q*, *P*, and *R* branches can be clearly seen. The  $v_2 + 2v_3$  ((11, 1) in local mode notations) band is extremely weak and is covered by much stronger bands  $2v_1 + v_2$  and  $v_1 + v_2 + v_3$ . The *P* branches of the bands  $v_1 + 3v_2$  and  $3v_2 + v_3$  ((10<sup>+</sup>, 3) and (10<sup>-</sup>, 3) in local mode notations) can be found very close to each other. The low frequency part of their *R* branches can be also recog-



Fig. 2. Small portion of the spectrum of  $H_2S$  in the 6016–6020 and 6265–6269 cm<sup>-1</sup> regions. Assigned transition were denoted. Experimental conditions are the same as given in Fig. 1.

Table 1 Ro-vibrational energy levels for the (111) and (210) states of  $H_2^{32}S$  (in cm<sup>-1</sup>)<sup>a</sup>

| J      | Ka | $K_c$  | (111)     |          |            | (210)     |          |            |
|--------|----|--------|-----------|----------|------------|-----------|----------|------------|
|        |    | 1      | E<br>2    | ⊿<br>3   | $\delta$ 4 | E<br>5    | ⊿<br>6   | $\delta$ 7 |
| 0      | 0  | -      | 6280 1741 | 5        | 10         | 6288 1456 | 0        | , 16       |
| 1      | 0  | 1      | 6302 5732 | 5        | _1         | 6301 6566 | 3        | -10<br>-10 |
| 1      | 1  | 1      | 6304.0853 | 3        | 0          | 6303.1952 | 5        | 7          |
| 1      | 1  | 0      | 6308.5212 | 2        | 10         | 6307.4997 | 1        | -3         |
| 2      | 0  | 2      | 6326.4474 | 4        | 15         | 6325.3755 | 4        | -12        |
| 2      | 1  | 2      | 6326.6677 | 2        | 7          | 6325.6104 | 4        | -7         |
| 2      | 1  | 1      | 6339.8775 | 9        | 6          | 6338.8980 | 8        | -13        |
| 2      | 2  | 1      | 6344.1777 | 4        | 0          | 6343.2743 | 6        | 3          |
| 2      | 2  | 0      | 6347.4779 | 7        | 6          | 6346.4800 | 14       | 5          |
| 3      | 0  | 3      | 6358.8812 | 7        | 17         | 6357.8117 | 4        | -8         |
| 3      | 1  | 3      | 6358.9015 | 11       | -3         | 6357.8373 | 3        | -5         |
| 3      | 1  | 2      | 6383.9454 | 8        | 9          | 6382.2641 | 7        | 5          |
| 3      | 2  | 2      | 6384.6153 | 6        | -2         | 6382.9939 | 10       | 4          |
| 3      | 2  | 1      | 6395.8990 | 5        | 0          | 6394.9042 | 10       | 0          |
| 3      | 3  | 1      | 6404.3971 | 2        | -3         | 6403.5482 | 9        | 15         |
| 3<br>1 | 3  | 4      | 6400.4840 | 3<br>10  | -5         | 6200 2100 | 3<br>7   | -1         |
| 4      | 1  | 4      | 6400.3009 | 10       | 9<br>14    | 6399.2100 | 7        | 12         |
| 4<br>4 | 1  | 3      | 6435 4883 | 6        | 14         | 6434 3865 | 10       | -9         |
| 4      | 2  | 3      | 6435 6380 | 3        | -2         | 6434 5552 | 4        | -6         |
| 4      | 2  | 2      | 6458 0875 | 10       | 0          | 6457 2188 | 8        | 6          |
| 4      | 3  | 2      | 6462.0242 | 12       | -14        | 6461.2993 | 5        | 5          |
| 4      | 3  | 1      | 6470.9123 | 10       | -4         | 6469.9172 | 6        | -3         |
| 4      | 4  | 1      | 6484.7728 | 5        | -7         | 6484.0020 | 20       | -15        |
| 4      | 4  | 0      | 6485.9173 | 19       | -3         | 6485.0805 |          | 34         |
| 5      | 0  | 5      | 6450.7933 | 10       | 4          | 6449.6547 | 7        | 3          |
| 5      | 1  | 5      | 6450.7933 | 10       | 3          | 6449.6547 | 7        | 1          |
| 5      | 1  | 4      | 6496.1529 | 3        | 1          | 6495.0602 | 12       | 8          |
| 5      | 2  | 4      | 6496.1658 | 20       | -17        | 6495.0791 | 4        | 12         |
| 5      | 2  | 3      | 6530.8513 | 12       | -7         | 6529.3183 | 12       | 6          |
| 5      | 3  | 3      | 6531.2810 | 9        | -7         | 6529.8148 | 6        | 13         |
| 5      | 3  | 2      | 6551.0954 | 5        | 5          | 6550.1437 | 7        | -6         |
| 5      | 4  | 2      | 6558.9636 | 17       | -17        | 6558.2651 | 9        | -1         |
| 2      | 4  | 1      | 6565.2936 | 1/       | -2         | 6564.3333 | 10       | -4         |
| 5      | 5  | 1      | 6585.2784 | 12       | -15        | 6585 1205 | 15       | 21         |
| 5      | 0  | 6      | 6510 3432 | 32       | -4         | 6509 1534 | 15       | + 2        |
| 6      | 1  | 6      | 6510 3432 | 32       | 1          | 6509 1534 | 8        | -1         |
| 6      | 1  | 5      | 6565 7994 | 15       | -2         | 6564 6704 | 7        | 10         |
| 6      | 2  | 5      | 6565.7994 | 15       | $-10^{2}$  | 6564.6716 | 8        | 8          |
| 6      | 2  | 4      | 6610.6091 | 6        | 7          | 6609.5420 | 13       | 3          |
| 6      | 3  | 4      | 6610.6737 | 10       | 7          | 6609.6199 | 9        | 6          |
| 6      | 3  | 3      | 6642.6975 | 7        | 21         | 6641.9713 | 3        | -1         |
| 6      | 4  | 3      | 6645.8529 | 7        | -11        | 6645.2880 | 14       | -11        |
| 6      | 4  | 2      | 6662.2629 | 8        | 3          | 6661.2457 | 8        | -11        |
| 6      | 6  | 2      | 6675.4853 |          | -22        | 6674.8337 | 8        | 0          |
| 6      | 6  | 1      | 6679.5085 | 10       | 5          | 6678.6334 | 5        | -15        |
| 6      | 6  | 1      | 6705.8150 | 5        | 0          | 6705.2673 | 5        | -4         |
| 6      | 6  | 0      | 6706.0714 | 13       | 17         | 6705.4533 | 18       | -1         |
| /      | 0  | /      | 65/8.948/ | 16       | -4         | 65//.6988 | 10       | 0          |
| 7      | 1  | 6      | 65/8.948/ | 16       | -4         | 65//.6988 | 10       | 1          |
| /<br>7 | 2  | 0      | 6644.4727 | 14<br>14 | 5          | 6643 2022 | 39<br>20 | -23        |
| 7      | 2  | 0<br>5 | 6699 3100 | 14<br>30 | 5          | 6698 2034 | 59<br>18 | -13        |
| 7      | 23 | 5      | 6600 3733 | 14       | _5         | 6698 2115 | 10       | _4<br>_1   |
| 7      | 3  | 4      | 6742 4733 | 11       | -5         | 6742 4662 | 17       | -10        |
| 7      | 4  | 4      | 6743.6349 | 17       | 14         | 6743.5617 | 8        | 19         |
| 7      | 4  | 3      | 6772.8172 | 5        | 16         | 6771.9142 | 4        | -1         |
| 7      | 5  | 3      | 6779.3686 | 7        | -15        | 6778.7540 | 11       | 3          |
| 7      | 5  | 2      | 6791.9567 | 10       | 8          | 6790.9054 | 5        | -12        |
| 7      | 6  | 2      | 6811.6114 | 10       | -4         | 6811.0142 | 12       | -1         |

Table 1 (continued)

| Tabl     | Table 1 (continued) |        |           |        |            |           |         |          | Table 1 (continued) |          |         |                           |                   |                          |                                 |         |              |
|----------|---------------------|--------|-----------|--------|------------|-----------|---------|----------|---------------------|----------|---------|---------------------------|-------------------|--------------------------|---------------------------------|---------|--------------|
| J        | $K_a$               | $K_c$  | (111)     |        |            | (210)     |         |          | J                   | $K_a$    | $K_c$   | (111)                     |                   |                          | (210)                           |         |              |
|          |                     | 1      | E<br>2    | ⊿<br>3 | $\delta_4$ | E<br>5    | ⊿<br>6  | $\delta$ |                     |          | 1       | E<br>2                    | ⊿<br>3            | $\delta_{4}$             | E<br>5                          | ⊿<br>6  | $\delta$     |
| 7        | 6                   | 1      | 6812 0010 | 0      | - 5        | 6812 1600 | 15      | , 5      | 12                  | r        | 10      | 2                         | 16                | 2                        | 7275 7570                       | 25      | , 1          |
| 7        | 7                   | 1      | 6846 2045 | 8      | 11         | 6845 7814 | 2       | -31      | 12                  | 3        | 10      | 7277 1841                 | 16                | 4                        | 7275 7579                       | 25      | -10          |
| 7        | 7                   | 0      | 6846.3240 | 5      | 5          | 6845.9224 | 11      | 19       | 12                  | 3        | 9       | 7370.2722                 | 13                | -10                      | 7368.9918                       | 19      | 7            |
| 8        | 0                   | 8      | 6656.6017 | 16     | 2          | 6655.2801 | 6       | -2       | 12                  | 4        | 9       | 7370.2722                 | 13                | 21                       | 7368.9918                       | 19      | -14          |
| 8        | 1                   | 8      | 6656.6017 | 16     | 2          | 6655.2801 | 6       | $^{-2}$  | 13                  | 0        | 13      | 7180.1101                 | 8                 | 6                        | 7178.2658                       | 24      | -13          |
| 8        | 1                   | 7      | 6732.1692 | 8      | -12        | 6730.9345 | 8       | 8        | 13                  | 1        | 13      | 7180.1101                 | 8                 | 6                        | 7178.2658                       | 24      | -13          |
| 8        | 2                   | 7      | 6732.1692 | 8      | -9         | 6730.9345 | 8       | 11       | 13                  | 1        | 12      | 7305.6570                 | 22                | 0                        | 7303.9774                       | 16      | -10          |
| 8        | 2                   | 6      | 6796.9799 | 16     | 9          | 6795.8205 | 11      | 26       | 13                  | 2        | 12      | 7305.6570                 | 22                | 0                        | 7303.9774                       | 16      | -10          |
| 8        | 3                   | 6      | 6796.9799 | 16     | -10        | 6795.8205 | 11      | -4       | 13                  | 2        | 11      | 7419.5879                 | 17                | 13                       | 7418.0610                       | 14      | 18           |
| 8        | 3                   | 5      | 6851.0536 | 11     | 11         | 6849.9452 | 33      | -5       | 13                  | 3        | 11      | 7419.5879                 | 17                | 14                       | 7418.0610                       | 14      | 18           |
| 8        | 4                   | 5      | 6851.0858 | 17     | -14        | 6849.9877 | 10      | -2       | 13                  | 3        | 10      | 7522.2922                 | 12                | -4                       |                                 |         |              |
| 8        | 4                   | 4      | 6895.4196 | 6      | 9          | 6891.3000 | 14      | 7        | 13                  | 4        | 10      | 7522.2922                 | 12                | -4                       |                                 |         | • •          |
| 8        | 5                   | 4      | 6894.9900 | 6      | -13        | 6893.1287 | 10      | 10       | 14                  | 0        | 14      | 7311.7528                 | 6                 | 0                        | 7309.7670                       | 10      | -20          |
| 8        | 2                   | 3      | 6920.1795 | 6      | 4          | 6919.1063 | 2       | -/       | 14                  | 1        | 14      | /311./528                 | 6<br>20           | 0                        | /309./6/0                       | 10      | -20          |
| 8        | 6                   | 3      | 6931.8519 | 0      | -25        | 6931.1898 | 11      | 24       | 14                  | 1        | 13      | 7447.2523                 | 20                | -5                       | 7445.4513                       | 14      | -4           |
| 8        | 7                   | 2      | 6940.0048 | 0      | 31         | 6966 7485 | 0       | 4        | 14                  | 2        | 13      | 7570 8866                 | 20                | -3                       | 7560 2531                       | 14      | -4           |
| 8        | 7                   | 1      | 6968 4951 | 26     | 34         | 6967 8920 | 14      | -4       | 14                  | 2        | 12      | 7570.8866                 | 8                 | -2<br>-2                 | 7569.2531                       |         | 0            |
| 8        | 8                   | 1      | 7006 2115 | 12     | 16         | 7005 9052 | 7       | -37      | 14                  | 3        | 11      | 7683 1202                 | 12                | -5                       | 7507.2551                       |         | 0            |
| 8        | 8                   | 0      | 7006 2700 | 35     | 9          | 7005 9859 | 3       | -3       | 14                  | 4        | 11      | 7683 1202                 | 12                | -5                       |                                 |         |              |
| 9        | 0                   | 9      | 6743.2891 | 15     | -2         | 6741.8863 | 3       | -8       | 15                  | 0        | 15      | 7452.3335                 | 14                | 0                        | 7450.2085                       |         | 38           |
| 9        | 1                   | 9      | 6743.2891 | 15     | -2         | 6741.8863 | 3       | -8       | 15                  | 1        | 15      | 7452.3335                 | 14                | 0                        | 7450.2085                       |         | 38           |
| 9        | 1                   | 8      | 6828.8860 | 11     | -11        | 6827.5823 | 15      | -5       | 15                  | 1        | 14      | 7597.7710                 | 15                | -4                       | 7595.8345                       | 15      | -16          |
| 9        | 2                   | 8      | 6828.8860 | 11     | -11        | 6827.5823 | 15      | -4       | 15                  | 2        | 14      | 7597.7710                 | 15                | -4                       | 7595.8345                       | 15      | -16          |
| 9        | 2                   | 7      | 6903.6069 | 18     | -4         | 6902.3886 | 38      | -20      | 15                  | 2        | 13      | 7731.0697                 | 15                | 10                       |                                 |         |              |
| 9        | 3                   | 7      | 6903.6069 | 18     | 12         | 6902.3986 | 38      | -7       | 15                  | 3        | 13      | 7731.0697                 | 15                | 10                       |                                 |         |              |
| 9        | 3                   | 6      | 6967.5786 | 21     | 18         | 6966.4382 | 19      | 16       | 15                  | 3        | 12      | 7852.7641                 | 3                 | -5                       |                                 |         |              |
| 9        | 4                   | 6      | 6967.5786 | 21     | -18        | 6966.4418 | 18      | -42      | 15                  | 4        | 12      | 7852.7641                 | 3                 | -5                       |                                 |         |              |
| 9        | 4                   | 5      | 7020.7480 | 17     | -20        | 7019.4953 | 17      | -16      | 16                  | 0        | 16      | 7601.8304                 | 7                 | 2                        | 7599.5167                       |         | -60          |
| 9        | 5                   | 5      | 7020.8224 | 12     | 15         | 7019.6151 | 11      | 2        | 16                  | 1        | 16      | 7601.8304                 | 7                 | 2                        | 7599.5167                       |         | -60          |
| 9        | 5                   | 4      | 7059.4356 | 7      | 4          | 7058.2722 | 23      | 4        | 16                  | 1        | 15      | 7757.1944                 | 22                | 28                       | 7755.1103                       | 36      | -8           |
| 9        | 6                   | 4      | 7064.5816 | 13     | -19        | 7062.7164 | 3       | 31       | 16                  | 2        | 15      | 7757.1944                 | 22                | 28                       | 7755.1103                       | 36      | -8           |
| 9        | 6                   | 3      | 7085.0664 | 5      | -40        | 7083.8538 | 4       | -25      | 16                  | 2        | 14      | 7900.1103                 | 7                 | -21                      |                                 |         |              |
| 9        | 7                   | 3      | 7103.3357 | 20     | -25        | 7102.6010 | 13      | 24       | 16                  | 3        | 14      | 7900.1103                 | 11                | -21                      |                                 |         |              |
| 9        | /                   | 2      | 7108.9141 | 19     | -9         | /10/.961/ | 10      | 1/       | 16                  | 3        | 13      | 8031.2073                 | 11                | 7                        |                                 |         |              |
| 9        | 8                   | 2      | /142.40/0 | 15     | 10         | /141.8826 | 19      | -3/      | 16                  | 4        | 13      | 8031.2073                 | 11                | 1                        | 7757 7772                       |         | 21           |
| 9        | 0                   | 1      | 7145.0041 | 10     | -12        | 7185 3230 | 11      | 32       | 17                  | 1        | 17      | 7760.2200                 | 3                 | -4                       | 7757.7273                       |         | -21          |
| 9        | 9                   | 0      | 7185.5072 | 14     | -36        | 7185 4030 | 23      | 54       | 17                  | 1        | 16      | 7700.2200                 | 5                 | -                        | 1151.1215                       |         | -21          |
| 10       | 0                   | 10     | 6839.0055 | 12     | 15         | 6837 4862 | 9       | 5        | 17                  | 2        | 16      |                           |                   |                          |                                 |         |              |
| 10       | 1                   | 10     | 6839.0055 | 12     | 15         | 6837.4862 | 9       | 5        | 17                  | 2        | 15      | 8077.9958                 | 10                | -77                      |                                 |         |              |
| 10       | 1                   | 9      | 6934.6125 | 4      | -16        | 6933.2320 | 11      | -30      | 17                  | 3        | 15      | 8077.9958                 | 10                | -77                      |                                 |         |              |
| 10       | 2                   | 9      | 6934.6125 | 4      | -16        | 6933.2320 | 11      | -29      | 18                  | 0        | 18      | 7927.4805                 |                   | -47                      | 7924.7900                       | 8       | 9            |
| 10       | 2                   | 8      | 7019.1200 | 12     | -9         | 7017.9185 | 17      | -1       | 18                  | 1        | 18      | 7927.4805                 |                   | -47                      | 7924.7900                       | 8       | 9            |
| 10       | 3                   | 8      | 7019.1200 | 12     | -3         | 7017.9185 | 17      | -24      | a                   | 4 1. 41  |         | · · · · · · 1             |                   | 6.1                      |                                 | 1       |              |
| 10       | 3                   | 7      | 7092.9622 | 9      | 7          | 7091.7686 | 8       | 3        | atan                | 4 18 th  | e expe  | erimental unco            | $10^{-4}$         | y of the $m^{-1}$ , s is | energy value, of the difference | equal 1 | to one       |
| 10       | 4                   | 7      | 7092.9594 | 14     | 42         | 7091.7686 | 8       | 3        | stan                | in un    | ite of  | $10^{-4} \text{ cm}^{-1}$ | is not            | an , or                  | when the energy                 |         | - <i>L</i> , |
| 10       | 4                   | 6      | 7155.9407 | 22     | 55         | 7154.8048 | 47      | -3       | obta                | ined f   | rom o   | 10 $cm$ , $2$             | ition (           | correspon                | when the chergies               | y van   | sed in       |
| 10       | 5                   | 6      |           |        |            | 7154.8048 | 47      | 16       | the                 | fit with | the w   | reight zero)              | nion (            | correspon                | liding chergies                 | were u  | scu m        |
| 11       | 0                   | 11     | 6942.1142 | 6      | 2          | 6943.7128 | 3       | 14       | the                 | iit with | i the w | vergitt zero).            |                   |                          |                                 |         |              |
| 11       | 1                   | 10     | 6942.1142 | 6      | 2          | 6943./128 | 3<br>10 | 14       |                     |          |         |                           |                   |                          |                                 |         |              |
| 11       | 1                   | 10     | 7049.2990 | 12     | 5          | 7047.8420 | 19      | 30       |                     |          |         |                           |                   |                          |                                 |         |              |
| 11       | 2                   | 10     | 7049.2990 | 12     |            | 7142 3264 | 19      | 30       | nize                | ed. T    | he set  | t of weak li              | ines t            | belongir                 | ng to the $5v_2$                | band    | d can        |
| 11<br>11 | ∠<br>3              | 9      | 7143.0370 | 30     | -49        | 7142.5204 | 15      | _9<br>_5 | be                  | seen     | near    | 5700-5800                 | ) cm <sup>-</sup> | <sup>1</sup> . From      | n the figure                    | , one   | e can        |
| 11       | 3                   | 2<br>8 | 7227 2414 | 13     | _22        | 7225 9859 | 43      | -5<br>-5 | also                | o get a  | an ide  | ea about th               | e rela            | tive str                 | engths of all                   | the h   | ands         |
| 11       | 4                   | 8      | 7227 2414 | 13     | 21         | 7225 9859 | 43      | 46       | in t                | his n    | olvad   | 1                         |                   |                          | <i>0 2 2 2 2 2 2 2 2 2 2</i>    |         |              |
| 11       | 4                   | 7      | 7299.9180 | 10     | -20        | 7298.7480 | 7       | 34       |                     | Acci~    | nmar    | te of the                 | tron              | sitions                  | were made                       | w.+L    | the          |
| 11       | 5                   | 7      | 7299.9007 |        | 17         | 7298.7480 | 7       | 34       | C                   | nosigi   |         | to Count                  | u alls            |                          | were made                       | witi.   |              |
| 12       | 0                   | 12     | 7057.4226 | 16     | -5         | 7055.7103 | 5       | 10       | Gro                 | ound     | Stat    |                           | iation            |                          | rences met                      | noa.    | 1 he         |
| 12       | 1                   | 12     | 7057.4226 | 16     | -5         | 7055.7103 | 5       | 10       | gro                 | und s    | state e | energies we               | re cal            | culated                  | on the base                     | of pa   | ram-         |
| 12       | 1                   | 11     | 7173.0027 | 7      | -3         | 7171.4355 | 4       | 4        | eter                | rs fro   | m [6]   | . As the re               | sult c            | of the a                 | ssignments,                     | altog   | ether        |
| 12       | 2                   | 11     | 7173.0027 | 7      | -3         | 7171.4355 | 4       | 4        | mo                  | re th    | an 1'   | 700 transit               | ions              | of $H_2^{32}$            | S were assig                    | gned.   | For          |

| Table 2                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental ro-vibrational term values for the (031), (130), and (050) vibrational states of the $H_2^{32}S$ molecule (in cm <sup>-1</sup> ) <sup>a</sup> |

| $J 	 K_a$ |   | $K_c$ | (031)     |        | (050)              |           |        |          |           |        |                     |
|-----------|---|-------|-----------|--------|--------------------|-----------|--------|----------|-----------|--------|---------------------|
|           |   | 1     | Е<br>2    | ⊿<br>3 | $\frac{\delta}{4}$ | E<br>5    | ⊿<br>6 | δ<br>7   | E<br>8    | ⊿<br>9 | $\frac{\delta}{10}$ |
| 0         | 0 | 0     | 6077 5942 |        | 6                  | 6074 5824 |        | 18       |           |        |                     |
| 1         | 0 | 1     | 6091.7020 |        | 28                 | 6088.5909 | 3      | -7       | 5811.8842 |        | 9                   |
| 1         | 1 | 1     | 6093.3860 | 2      | 10                 | 6090.4101 | 10     | 1        |           |        |                     |
| 1         | 1 | 0     | 6098.4771 | 5      | 17                 | 6095.4961 | 6      | -10      | 5819.9725 | 2      | -19                 |
| 2         | 0 | 2     | 6116.1259 | 8      | 0                  | 6112.9293 | 8      | 5        |           |        |                     |
| 2         | 1 | 2     | 6116.4969 | 5      | $^{-2}$            | 6113.3528 | 6      | -1       | 5837.6788 | 11     | 14                  |
| 2         | 1 | 1     | 6131.7408 | 14     | -13                | 6128.5799 | 13     | -8       |           |        |                     |
| 2         | 2 | 1     | 6136.7985 | 12     | -11                | 6134.0379 | 8      | 29       | 5861.8695 |        | -59                 |
| 2         | 2 | 0     | 6140.5498 | 2      | 10                 | 6137.6880 | 5      | 7        |           |        |                     |
| 3         | 0 | 3     | 6149.1806 | 20     | 16                 | 6145.8162 | 8      | 7        | 5870.7280 | 2      | -2                  |
| 3         | 1 | 3     | 6149.2355 | 15     | -7                 | 6145.8860 | 31     | 17       |           |        |                     |
| 3         | 1 | 2     | 6177.3481 | 9      | -8                 | 6174.0564 | 9      | -3       | 5903.1172 | 20     | 4                   |
| 3         | 2 | 2     | 6179.0912 | 11     | 3                  | 6176.0316 | 7      | -29      |           |        | •                   |
| 3         | 2 | l     | 6191.9843 | 2      | -3                 | 6188.7594 | 13     | -19      | 5920.0373 | 10     | 38                  |
| 3         | 3 | l     | 6201.9/10 | 11     | 2                  | 6199.5280 | 15     | 19       | 5025 0152 | 27     | 10                  |
| 3         | 3 | 0     | 6204.3116 | 10     | 0                  | 6201.7313 | 8      | 2        | 5935.8153 | 37     | -19                 |
| 4         | 0 | 4     | 6191.0851 | 13     | 0                  | 6187.4687 | 10     | -58      | 5912.9994 | -      | -44                 |
| 4         | 1 | 4     | 6191.0916 | 4      | -16                | 6187.4852 | 18     | 5        | 5913.0215 | 5      | 3                   |
| 4         | 1 | 3     | 6231.6496 | 14     | -2                 | 6228.2777 | 10     | 8        | 50(0 7000 | 4      | 1                   |
| 4         | 2 | 3     | 6232.0346 | 8      | -8                 | 6228.7382 | 12     | -5       | 5960.7009 | 4      | -1                  |
| 4         | 2 | 2     | 6257.8802 | 6      | -21                | 6254.4599 | 6      | 0        | 5006 0024 | 16     | 20                  |
| 4         | 3 | 2     | 6262.6456 | 16     | 19                 | 6259.8005 | 42     | -11      | 5996.8024 | 16     | 28                  |
| 4         | 3 | 1     | 62/2.6/39 | 2      | 11                 | 6269.4363 | 15     | -12      | (020.0210 | 25     | 24                  |
| 4         | 4 | 1     | 6288.8828 | 3      | -1/                | 6286.9027 | 15     | 0        | 6028.9210 | 25     | 24                  |
| 4         | 4 | 0     | 6290.1498 | 14     | -9                 | 0288.0482 | 3      | 8        | 50(4.0927 |        | 4                   |
| 5         | 0 | 5     | 6241.9500 | 20     | -4                 | 6238.0303 | 10     | 31<br>15 | 5964.0827 |        | 4                   |
| 5         | 1 | 5     | 6204 2887 | 20     | -10                | 6236.0303 | 10     | 15       | 5904.0827 |        | -24                 |
| 5         | 1 | 4     | 6294.3007 | 5      | -12                | 6290.8197 | 10     | 11       | 0024.9994 |        | -4/                 |
| 5         | 2 | 4     | 6222 7242 | 21     | 16                 | 6290.9090 | 19     | 11       |           |        |                     |
| 5         | 2 | 2     | 6225 1700 | 21     | 10                 | 6330.2287 | 12     | 15       |           |        |                     |
| 5         | 2 | 3     | 6357,6002 | 11     | 13                 | 6351.9308 | 13     | -19      |           |        |                     |
| 5         | 3 | 2     | 6267 2160 | 0      | -12                | 6364 6201 | 13     | 5        |           |        |                     |
| 5         | 4 | 1     | 6374 2433 | 0      | 20                 | 6371 1004 | 10     | -3       |           |        |                     |
| 5         | 5 | 1     | 6397 4354 | 6      | -6                 | 6396.0659 | 10     | 14       |           |        |                     |
| 5         | 5 | 0     | 6398 0556 | 2      | -0                 | 6396 6003 | 10     | _9       |           |        |                     |
| 6         | 0 | 6     | 6301 7863 | 9      | -2                 | 6297 5138 | 31     |          | 6023 9957 | 5      | 7                   |
| 6         | 1 | 6     | 6301.7863 | 9      | 1                  | 6297 5138 | 31     | _9       | 6023.9957 | 5      | 2                   |
| 6         | 1 | 5     | 6365 9424 | 4      | -3                 | 6362 0960 | 51     | 8        | 0025.5557 | 5      | 2                   |
| 6         | 2 | 5     | 6365 9544 | 12     | -7                 | 6362,1100 | 26     | -13      | 6098 6113 | 9      | -28                 |
| 6         | 2 | 4     | 6417 4776 | 6      | -12                | 6413 8830 | 18     | -17      | 0090.0115 |        | 20                  |
| 6         | 3 | 4     | 6417.8169 | 2      | 19                 | 6414.3005 | 21     | -20      | 6158.6793 |        | -55                 |
| 6         | 3 | 3     | 6454 5611 | -      | -67                | 6450 9139 | 5      | 30       | 010010790 |        | 00                  |
| 6         | 4 | 3     | 6458.5759 |        | 49                 | 6455.5646 | -      | -32      |           |        |                     |
| 6         | 4 | 2     | 6476.9438 | 12     | -8                 | 6473.1473 | 18     | -8       |           |        |                     |
| 6         | 6 | 2     | 6492.8380 |        | 18                 | 6490.6093 | 24     | 9        |           |        |                     |
| 6         | 6 | 1     | 6497.2145 | 12     | 4                  | 6494.5497 | 19     | 18       |           |        |                     |
| 6         | 6 | 1     | 6527.4103 |        | 5                  | 6526.7905 | 2      | -5       |           |        |                     |
| 6         | 6 | 0     | 6527.6962 |        | 4                  | 6527.0284 | 8      | 0        |           |        |                     |
| 7         | 0 | 7     | 6370.5884 | 14     | 25                 | 6365.9190 | 4      | 7        | 6092.7448 | 7      | -2                  |
| 7         | 1 | 7     | 6370.5884 | 14     | 24                 | 6365.9190 | 4      | 2        | 6092.7448 | 7      | -3                  |
| 7         | 1 | 6     | 6446.4213 |        | 11                 | 6442.2435 | 6      | 9        | 6180.9401 |        | -33                 |
| 7         | 2 | 6     | 6446.4213 |        | -11                | 6442.2435 | 6      | -23      |           |        |                     |
| 7         | 2 | 5     | 6509.6386 |        | -67                | 6505.8282 | 6      | 7        |           |        |                     |
| 7         | 3 | 5     | 6509.7165 | 8      | 4                  | 6505.9192 |        | 2        |           |        |                     |
| 7         | 3 | 4     |           |        |                    | 6556.0155 |        | -5       |           |        |                     |
| 7         | 4 | 4     | 6560.9112 | 13     | 1                  |           |        |          |           |        |                     |
| 7         | 4 | 3     |           |        |                    | 6589.8534 | 16     | 12       |           |        |                     |
| 7         | 5 | 3     | 6602.2397 | 23     | 24                 | 6599.3339 |        | -95      |           |        |                     |
| 7         | 5 | 2     |           |        |                    | 6612.2566 | 32     | -41      |           |        |                     |
| 7         | 6 | 2     | 6639.4689 |        | -82                |           |        |          |           |        |                     |
| 7         | 6 | 1     |           |        |                    | 6639.8452 | 15     | 13       |           |        |                     |

### Table 2 (continued)

| J  | $K_a$ | $K_c$ | (031)     | (031) |    |           | (130) |     |           | (050) |     |  |
|----|-------|-------|-----------|-------|----|-----------|-------|-----|-----------|-------|-----|--|
|    |       |       | E         | Δ     | δ  | Ε         | Δ     | δ   | Ε         | Δ     | δ   |  |
|    |       | 1     | 2         | 3     | 4  | 5         | 6     | 7   | 8         | 9     | 10  |  |
| 7  | 7     | 1     | 6678.4866 |       | 2  | 6678.7531 |       | 23  |           |       |     |  |
| 7  | 7     | 0     |           |       |    | 6678.8511 |       | -18 |           |       |     |  |
| 8  | 0     | 8     | 6448.3423 | 8     | 12 | 6443.2402 | 8     | 2   | 6170.3292 | 20    | -4  |  |
| 8  | 1     | 8     | 6448.3423 | 8     | 12 | 6443.2402 | 8     | 2   | 6170.3292 | 20    | -4  |  |
| 8  | 1     | 7     |           |       |    | 6531.2922 |       | 26  | 6272.1331 |       | 25  |  |
| 8  | 2     | 7     |           |       |    | 6531.2922 |       | 26  |           |       |     |  |
| 8  | 8     | 0     | 6850.3238 |       | 7  |           |       |     |           |       |     |  |
| 9  | 0     | 9     | 6535.0415 | 14    | 0  | 6529.4718 | 6     | -11 | 6256.7421 |       | -19 |  |
| 9  | 1     | 9     | 6535.0415 | 14    | 0  | 6529.4718 | 6     | -11 | 6256.7421 |       | -19 |  |
| 9  | 1     | 8     |           |       |    | 6629.2452 | 3     | -1  |           |       |     |  |
| 9  | 2     | 8     |           |       |    | 6629.2452 | 3     | -3  |           |       |     |  |
| 9  | 8     | 1     |           |       |    | 6995.2285 |       | -6  |           |       |     |  |
| 9  | 9     | 1     | 7042.2957 |       | 6  |           |       |     |           |       |     |  |
| 10 | 0     | 10    | 6630.6775 | 8     | 6  | 6624.6060 |       | -22 | 6351.9842 |       | 19  |  |
| 10 | 1     | 10    | 6630.6775 | 8     | 6  | 6624.6060 |       | -22 | 6351.9842 |       | 19  |  |
| 10 | 1     | 9     |           |       |    | 6736.1021 |       | -13 |           |       |     |  |
| 10 | 2     | 9     |           |       |    | 6736.1021 |       | -13 |           |       |     |  |
| 11 | 0     | 11    | 6735.2380 |       | -8 |           |       |     |           |       |     |  |
| 11 | 1     | 11    | 6735.2380 |       | -8 |           |       |     |           |       |     |  |
| 12 | 0     | 12    |           |       |    | 6841.5289 |       | 16  | 6568.9036 |       | 7   |  |
| 12 | 1     | 12    |           |       |    | 6841.5289 |       | 16  | 6568.9036 |       | 7   |  |
| 13 | 0     | 13    |           |       |    | 6963.2957 |       | 10  | 6690.5674 |       | -24 |  |
| 13 | 1     | 13    |           |       |    | 6963.2957 |       | 10  | 6690.5674 |       | -24 |  |

<sup>a</sup> See footnote to Table 1.

Table 3 List of transitions belonging to the  $\nu_2+2\nu_3$  band of  $H_2^{32}S$ 

| Upper level |        | Lower level |    |       | Line position Transmittance | Transmittance | Upper energy | Mean value   | $\delta^{\rm a}$ in $10^{-4}{\rm cm}^{-1}$ |     |
|-------------|--------|-------------|----|-------|-----------------------------|---------------|--------------|--------------|--------------------------------------------|-----|
| Í           | $K'_a$ | $K'_c$      | J  | $K_a$ | $k_c$                       | in $cm^{-1}$  | in percent   | in $cm^{-1}$ | in $cm^{-1}$                               |     |
| 1           | u      | c           | 2  |       |                             | 3             | 4            | 5            | 6                                          | 7   |
| 7           | 1      | 6           | 6  | 4     | 3                           | 6381.1289     | 62.7         | 6740.4952    | 6740.4958                                  | -9  |
|             |        |             | 7  | 4     | 3                           | 6253.2606     | 75.7         | 6740.4958    |                                            |     |
|             |        |             | 8  | 6     | 3                           | 6094.0377     | 99.0         | 6740.4970    |                                            |     |
| 7           | 4      | 4           | 7  | 5     | 3                           | 6247.2596     | 94.3         | 6740.6282    | 6740.6256                                  | 3   |
|             |        |             | 7  | 3     | 5                           | 6325.1110     | 94.3         | 6740.6330    |                                            |     |
| 8           | 2      | 6           | 7  | 3     | 5                           | 6478.7821     | 99.2         | 6894.3042    | 6894.3036                                  | -26 |
|             |        |             | 8  | 5     | 3                           | 6258.8936     | 90.9         | 6894.3019    |                                            |     |
|             |        |             | 7  | 7     | 1                           | 6337.3980     | 98.3         | 6894.3046    |                                            |     |
| 8           | 3      | 6           | 7  | 4     | 3                           | 6404.9748     | 95.2         | 6892.2110    | 6892.2111                                  | 9   |
|             |        |             | 8  | 4     | 5                           | 6324.3288     | 63.6         | 6892.2105    |                                            |     |
|             |        |             | 9  | 4     | 5                           | 6154.3507     | 66.9         | 6892.2116    |                                            |     |
|             |        |             | 7  | 2     | 5                           | 6476.7342     | 79.1         | 6892.2115    |                                            |     |
|             |        |             | 9  | 2     | 7                           | 6267.7989     | 85.1         | 6892.2119    |                                            |     |
|             |        |             | 7  | 6     | 1                           | 6365.5574     | 93.8         | 6892.2108    |                                            |     |
|             |        |             | 8  | 6     | 3                           | 6245.7522     | 93.0         | 6892.2116    |                                            |     |
|             |        |             | 9  | 6     | 3                           | 6090.9264     | 98.2         | 6892.2112    |                                            |     |
| 9           | 3      | 6           | 8  | 4     | 5                           | 6497.1278     | 87.0         | 7065.0096    | 7065.0090                                  | 0   |
|             |        |             | 9  | 4     | 5                           | 6327.1461     | 84.0         | 7065.0070    |                                            |     |
|             |        |             | 10 | 4     | 7                           | 6137.9073     | 90.1         | 7065.0095    |                                            |     |
|             |        |             | 8  | 6     | 3                           | 6418.5535     | 95.3         | 7065.0129    |                                            |     |
|             |        |             | 10 | 6     | 5                           | 6250.5386     | 98.3         | 7065.0046    |                                            |     |
| 9           | 4      | 6           | 8  | 5     | 3                           | 6430.6504     | 87.5         | 7066.0586    | 7066.0572                                  | -5  |
|             |        |             | 8  | 7     | 1                           | 6384.3696     | 96.1         | 7066.0562    |                                            |     |
|             |        |             | 9  | 7     | 3                           | 6247.3586     | 91.8         | 7066.0571    |                                            |     |

<sup>a</sup> The  $\delta = E^{exp} - E^{calc}$  is the difference between the experimental value of upper energy from column 6 and corresponding value calculated with the parameters from Tables 5 and 7.

Table 5

illustration, two small parts of the recorded spectrum with the assignments are shown in Fig. 2. Some relatively weaker unassigned lines in the figures can be due to  $H_2^{33}S$ . The obtained ro-vibrational energies of the states (210), (111), (130), (031), and (050) are given in Tables 1 and 2 together with the experimental uncertainties  $\Delta$ . Since usually one upper ro-vibrational energy was determined from several transitions reaching the same upper level,  $\Delta$  can be considered as an indication of the precision of the experimental line positions. In this case, the experimental accuracy of the line positions can be estimated as 0.0010–0.0020 cm<sup>-1</sup> for unblended and not very weak lines. With the value of the quantum number J increases, the accuracy of line positions may decrease due to the decreasing in line strengths.

Table 4 Statistical information on the investigated bands of the  $H_2^{32}S$  molecule Table 3 presents the list of assigned transitions for the very weak band  $v_2 + 2v_3$ . Table 4 presents the statistical information on assigned transitions and derived levels of each band.

# 5. Determination of the ro-vibration parameters and discussion

The necessity of using the Hamiltonian in the form of Eq. (3) with a number of resonance interaction blocks leads to strong correlations between the parameters in the diagonal and nondiagonal blocks. In this case, the choice of physically suitable initial values for different kind parameters is very important. In present study, the initial values of

| Band              | Center    | Number of transitions | Number of levels | $J^{\max}$ | $K_a^{\max}$ . |
|-------------------|-----------|-----------------------|------------------|------------|----------------|
| 1                 | 2         | 3                     | 4                | 5          | 6              |
| $2v_1 + v_2$      | 6288.1456 | 579                   | 152              | 18         | 9              |
| $v_1 + v_2 + v_3$ | 6289.1741 | 709                   | 165              | 18         | 9              |
| $v_2 + 2v_3$      | 6385.1381 | 24                    | 6                | 9          | 4              |
| $v_1 + 3v_2$      | 6074.5824 | 196                   | 79               | 13         | 8              |
| $3v_2 + v_3$      | 6077.5942 | 158                   | 69               | 11         | 9              |
| $5v_2$            | 5797.2372 | 57                    | 34               | 13         | 4              |

Spectroscopic parameters of the (210), (111), and (012) vibrational states of the  $H_{3}^{22}S$  molecule (in cm<sup>-1</sup>)<sup>a</sup>

| Parameter                 | (010) <sup>b</sup> | (210)          | (111)            | (012)          |
|---------------------------|--------------------|----------------|------------------|----------------|
| 1                         | 2                  | 3              | 4                | 5              |
| E                         | 1182.576821        | 6272.881 (945) | 6250.70906 (102) | 6356.336 (239) |
| A                         | 10.7220780         | 10.37214 (806) | 10.45856 (342)   | 10.45391 (930) |
| В                         | 9.2244497          | 8.96572 (645)  | 9.04397 (398)    | 9.01957 (189)  |
| С                         | 4.6688610          | 4.59355 (267)  | 4.61507 (308)    | 4.54698 (270)  |
| $\Delta_K \times 10^3$    | 4.5579033          | 4.1116 (217)   | 4.5357 (111)     | 4.9135 (600)   |
| $\Delta_{JK} \times 10^3$ | -2.7348452         | -2.6217148     | -2.7071248       | -2.7925348     |
| $\Delta_J \times 10^3$    | 0.75614258         | 0.71789942     | 0.72273 (245)    | 0.78058540     |
| $\delta_K \times 10^3$    | -0.019544          | -0.02330       | -0.04392         | -0.06454       |
| $\delta_J \times 10^3$    | 0.3473094          | 0.336757       | 0.325390 (158)   | 0.352211       |
| $H_K \times 10^6$         | 2.6294             | 2.7530         | 2.4300           | 2.1070         |
| $H_{KJ} \times 10^6$      | 0.99673            | 0.92727        | 1.28097          | 1.63467        |
| $H_{JK} \times 10^6$      | -1.85037           | -1.82803       | -1.89524         | -1.96245       |
| $H_J \times 10^6$         | 0.374766           | 0.344374       | 0.352974         | 0.361574       |
| $h_K \times 10^6$         | 2.12233            | 1.99135        | 2.04510          | 2.09885        |
| $h_{JK} \times 10^6$      | -0.62452           | -0.63922       | -0.66345         | -0.68768       |
| $h_J \times 10^6$         | 0.186968           | 0.164964       | 0.176244         | 0.187524       |
| $L_K \times 10^9$         | -9.9918            | -6.8682        | -5.1122          | -3.3562        |
| $L_{KKJ} \times 10^9$     | 12.641             | 7.523          | 5.308            | 3.093          |
| $L_{KJ} \times 10^9$      | -6.4092            | -5.0620        | -4.5142          | -3.9664        |
| $L_{KJJ} \times 10^9$     | 1.4788             | 1.3594         | 1.5801           | 1.8008         |
| $L_J \times 10^9$         | -0.21671           | -0.21753       | -0.21753         | -0.21753       |
| $l_K \times 10^9$         | -4.3308            | -6.2644        | -4.6584          | -3.0524        |
| $l_{KJ} \times 10^9$      | -0.5267            | -0.5267        | -0.5267          | -0.5267        |
| $l_{JK} \times 10^9$      | 0.47523            | 0.47523        | 0.47523          | 0.47523        |
| $l_J \times 10^9$         | -0.10858           | -0.10858       | -0.10858         | -0.10858       |
| $P_{K} \times 10^{12}$    | 16.806             | 16.806         | 16.806           | 16.806         |
| $p_K \times 10^{12}$      | 11.616             | 11.616         | 11.616           | 11.616         |

<sup>a</sup> Values in parentheses are the  $1\sigma$  statistical confidence intervals. Values of parameters presented in columns 3–5 without confidence intervals were constrained at their initial values (see text, for details).

<sup>b</sup> Reproduced from [7].

Table 6 Spectroscopic parameters of the (130), (031), and (050) vibrational states of the  $H_2^{32}S$  molecule (in cm<sup>-1</sup>)<sup>a</sup>

| Parameter                 | (030) <sup>b</sup> | (130)          | (031)           | (050)          |
|---------------------------|--------------------|----------------|-----------------|----------------|
| 1                         | 2                  | 3              | 4               | 5              |
| Ε                         | 3513.79087         | 5992.281 (955) | 6116.0567 (108) | 5923.605 (955) |
| Α                         | 11.540152          | 11.3575 (136)  | 11.15087 (403)  | 12.3790 (156)  |
| В                         | 9.6863681          | 9.58319 (743)  | 9.58703 (340)   | 10.24670 (573) |
| С                         | 4.5478783          | 4.43859 (345)  | 4.41038 (352)   | 4.42634 (269)  |
| $\Delta_K \times 10^3$    | 6.94186            | 6.7958 (670)   | 6.8874067       | 10.7498 (595)  |
| $\Delta_{JK} \times 10^3$ | -3.97768           | -3.9211148     | -4.0065248      | -5.667792      |
| $\Delta_J \times 10^3$    | 1.037139           | 1.0180174      | 1.03759 (316)   | 1.40059        |
| $\delta_K \times 10^3$    | 0.323995           | 0.322117       | 0.301497        | 0.779997       |
| $\delta_J \times 10^3$    | 0.486891           | 0.481615       | 0.49691 (178)   | 0.672056       |
| $H_K \times 10^6$         | 8.022              | 8.0838         | 7.7608          | 17.810647      |
| $H_{KJ} \times 10^6$      | -0.7639            | -0.79863       | -0.44493        | -4.482468      |
| $H_{JK} \times 10^6$      | -2.9783            | -2.96713       | -3.03434        | -4.790861      |
| $H_J \times 10^6$         | 0.71176            | 0.696564       | 0.705164        | 1.249548       |
| $h_K \times 10^6$         | 5.1642             | 5.09871        | 5.15246         | 9.877821       |
| $h_{JK} \times 10^6$      | -1.1669            | -1.17425       | -1.19848        | -2.080000      |
| $h_J \times 10^6$         | 0.35503            | 0.344028       | 0.355308        | 0.621793       |
| $L_K \times 10^9$         | -29.45             | -27.8882       | -26.1322        | -59.426932     |
| $L_{KKJ} \times 10^9$     | 27.259             | 24.7000        | 22.4850         | 36.956026      |
| $L_{KJ} \times 10^9$      | -7.5               | -6.8264        | -6.2786         | 2.841736       |
| $L_{KJJ} \times 10^9$     | 2.5820             | 2.5223         | 2.7430          | 3.561581       |
| $L_J \times 10^9$         | -0.45511           | -0.45552       | -0.45552        | -0.819964      |
| $l_K \times 10^9$         | -10.851            | -11.8178       | -10.2118        | -15.472476     |
| $l_{KJ} \times 10^9$      | 2.555              | 2.555          | 2.555           | 11.130947      |
| $l_{JK} \times 10^9$      | 0.7                | 0.7            | 0.7             | 0.772407       |
| $l_J \times 10^9$         | -0.23              | -0.23          | -0.23           | -0.416529      |

<sup>a</sup> Values in parentheses are the  $1\sigma$  statistical confidence intervals. Values of parameters presented in columns 3–5 without confidence intervals were constrained at their initial values (see text for details).

<sup>b</sup> Reproduced from [8].

Table 7

Parameters of resonance interactions between the states of the (v = 2.5) polyad of the  $H_2^{32}S$  molecule (in cm<sup>-1</sup>)<sup>a,b</sup>

| Parameter                     | Value          | Parameter                         | Value          | Parameter                     | Value          |
|-------------------------------|----------------|-----------------------------------|----------------|-------------------------------|----------------|
| Fermi-type interac            | ction          |                                   |                |                               |                |
| $F^{1-2}$                     | 47.70          | $F_{J}^{1-2} 	imes 10^{2}$        | -0.823 (183)   |                               |                |
| $F_{xy}^{1-2} \times 10^2$    | -0.509 (185)   | $F_{xyK}^{1-2} \times 10^4$       | -0.4767 (745)  | $F_{xyJ}^{1-2} \times 10^4$   | 0.2812 (137)   |
| $F^{1-3}$                     | 107.296 (985)  | $F_{K}^{1-3}$                     | -0.33712 (665) | $F_{J}^{1-3}$                 | -0.06061 (212) |
|                               |                | $F_{xv}^{1-3}$                    | -0.02808 (214) |                               |                |
| $F_{K}^{2-3}$                 | 0.21331 (805)  | $F_{KK}^{2-3} \times 10^3$        | 0.5623 (493)   |                               |                |
| $F^{5-6}$                     | 81.60          | $F_{K}^{5-6}$                     | -0.19883 (149) | $F_{J}^{5-6}$                 | -0.11022 (251) |
|                               |                | $F_{KK}^{5-6} 	imes 10^{3}$       | 0.3134 (104)   |                               |                |
| $F_{xv}^{5-6} \times 10$      | -0.67886 (914) | $F_{xvKK}^{5-6} \times 10^{3}$    | -5.131 (672)   | $F_{xvJ}^{5-6} \times 10^3$   | 6.354 (382)    |
|                               |                | $F_{xvKK}^{5-6} \times 10^{5}$    | -0.15056 (907) |                               |                |
| $F^{3-4}$                     | 146.841 (796)  | $F_{3-4}^{\check{K}}$             | -0.4242 (105)  | $F_{J}^{3-4}$                 | -0.13007 (449) |
| $F_{KK}^{3-4} \times 10^3$    | 1.1182 (541)   | $F_{.IK}^{3-4} \times 10^3$       | -0.6152 (262)  | $F_{xv}^{3-4}$                | -0.14770 (553) |
|                               |                | $F_{xyKK}^{3-4} \times 10^5$      | -0.1894 (167)  |                               |                |
| Coriolis-type inter           | actions        |                                   |                |                               |                |
| $2(C\zeta^{y})^{1-5}$         | 0.15105 (277)  | $C_{vK}^{1-5}	imes 10^2$          | 0.3674 (222)   | $C_{_{V\!J}}^{1-5}	imes 10^2$ | 0.5862 (521)   |
| $C_{\nu KK}^{1-5} 	imes 10^4$ | -0.1762 (126)  | $C_{\nu JK}^{1-5} 	imes 10^4$     | 0.2612 (173)   | $C_{xz}^{1-5}$                | -0.23790 (256) |
| $C_{xzK}^{1-5} 	imes 10^3$    | -0.2421 (116)  | $C_{xzJ}^{1-5} 	imes 10^3$        | -0.1419 (178)  | $C_{xzJK}^{1-5}	imes 10^6$    | 1.0959 (616)   |
| $2(C\zeta^{y})^{2-5}$         | -0.150         | $C_{\nu K}^{2-5} 	imes 10^{3}$    | -5.874 (311)   | $C_{yJ}^{2-5}	imes 10^3$      | -0.6684 (660)  |
| $C_{xz}^{2-5}$                | -0.11070 (216) | $C_{xzK}^{2-5} \times 10^3$       | -0.08120 (926) | $C_{xzI}^{2-5} \times 10^{3}$ | 0.4499 (168)   |
|                               |                | $C_{xzJ}^{2-6} \times 10^3$       | -0.3021 (253)  |                               |                |
| $2(C\zeta^{y})^{3-6}$         | 0.150          | $C_{xzJ}^{3-6}$                   | -0.15734 (439) |                               |                |
| $2(C\zeta^{y})^{4-6}$         | -0.6460 (138)  | $C_{yK}^{4-6} \times 10^{3}$      | 1.8249 (935)   | $C_{yJ}^{4-6} \times 10^{3}$  | -0.1972 (186)  |
| $C_{xz}^{4-0}$                | -0.12553 (784) | $C_{xzK}^{4-6} \times 10^{5}$     | 0.2417 (145)   | $C_{xzJ}^{4-0} \times 10^{5}$ | -0.5767 (448)  |
|                               |                | $C_{xzJJ}^{-5} \times 10^{\circ}$ | 1.262 (238)    |                               |                |

<sup>a</sup> Values in parentheses are the  $1\sigma$  statistical confidence intervals.

<sup>b</sup> Notations of superscripts (v-v') at resonance interaction parameters correspond to notations in Eq. (3).

all rotational and centrifugal distortion parameters of the states (210), (111), (012), and (130), (031) have been estimated with the formula

$$P_n^{v_1v_2v_3} = P_n^{0v_20} + (P_n^{110} - P_n^{010})v_1 + (P_n^{011} - P_n^{010})v_3,$$
(7)

where  $P_n$  is one of the rotational or centrifugal distortion parameters. The ground state spectroscopic parameters have been taken from [6]. Corresponding parameters of the states (010), (030), and (100), (001) have been taken from [7,8], respectively. It should be mentioned that we used parameters of the states (010), (110), and (011) from [7,8], instead of those of the states (000), (100), and (001) from [6,10], because the set of parameters of [7,8] is more complete (compare Table 7 of [10] and Table 4 of [8]).

To estimate the initial values of rotational and centrifugal distortion parameters of the (050) state, we use the nonlinear approximation with the formula

$$P_n^{0v_20} = P_n^{000} + \alpha_n v_2 + \beta_n v_2^2 + \gamma_n v_2^3, \tag{8}$$

where the notations for  $P_n$  values are the same as in Eq. (7). The values of coefficients  $P_n^{000}$ ,  $\alpha_n$ ,  $\beta_n$ , and  $\gamma_n$  have been determined with a least-square fitting based on the values of corresponding parameters of the ground vibrational state [6], and of the states (010) [7], (020) [9], and (030) [8]. The initial values of the band centers and of the pure vibrational Darling–Dennison and Fermi interaction parameters have been taken from [3].

Upper ro-vibrational energy levels from Tables 1 and 2 were used in the fit procedure based on the Hamiltonian, Eqs. (3)–(6). All the input energy levels were used with weights proportional to  $(1/\Delta^2)$ , where  $\Delta$  is the experimental uncertainty of corresponding energy value. For those upper levels obtained from only one transition, the energy values were not used in the fit (with weight zero).

As the result, altogether 80 fitted parameters were derived (33 parameters of the diagonal blocks and 47 resonance interaction parameters) which reproduce 505 initial upper energy levels with rms deviation of 0.0019 cm<sup>-1</sup>. The obtained parameters are presented in Tables 5–7 together with their  $1\sigma$  statistical confidence intervals. Parameters presented in Tables 5–7 without confidence intervals were constrained to their initial values as discussed above. Columns 2 of Tables 5 and 6 show, for comparison, the spectroscopic parameters of the (010) and (030) vibrational states which are reproduced from [7,8], respectively. One can see satisfactory correlations in the parameters of the states discussed in the present study,

not only among themselves, but also with the corresponding parameters of the ground and (020) vibrational states. The reproductive power of the derived parameters is illustrated by the  $\delta = E^{\exp} - E^{\text{calc}}$  values given in Tables 1–3.

It should be mentioned that the H<sub>2</sub>S is one of the typical local mode molecules. The vibrational states discussed here, (210) and (111) ((20<sup>+</sup>, 1) and (20<sup>-</sup>, 1) in the local mode notations) belong to the second set of the local mode states  $(v0^+, 1)/(v0^-, 1)$ . And, in agreement with the local mode theory, the difference  $\delta = v^{(v0^-,1)} - v^{(v0^+,1)}$  decreases from the value of 10.10261 cm<sup>-1</sup> for the pair of states (10<sup>+</sup>, 1)/(10<sup>-</sup>, 1) [8], to the value 1.02849 cm<sup>-1</sup> for the states (20<sup>+</sup>, 1) and (20<sup>-</sup>, 1) discussed in present study, and then to 0.01593 cm<sup>-1</sup> for the pair of states (30<sup>+</sup>, 1)/(30<sup>-</sup>, 1) [2].

#### Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (20473079, 10274077), and the Foundation of the Chinese Academy of Science. O.N.U. and E.S.B. thank the Foundation for Educational Development and Research of USTC-SIAS for guest professorships.

#### References

- O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, O.V. Gromova, L.-Y. Hao, S.-M. Hu, J. Mol. Spectrosc. 226 (2004) 57–70.
- [2] O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, S.V. Grebneva, W.-P. Deng, O.V. Gromova, S.-M. Hu, J. Mol. Spectrosc. 228 (2004) 110–119.
- [3] A.D. Bykov, O.V. Naumenko, M.A. Smirnov, L.N. Sinitsa, L.R. Brown, J. Crisp, D. Crisp, Can. J. Phys. 72 (1994) 989–1000.
- [4] L.S. Rothman, A. Barbe, D. Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaudi, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quant. Spectrosc. Radiat. Transfer 82 (2003) 5–44.
- [5] J.K.G. Watson, J. Chem. Phys. 46 (1967) 1935-1949.
- [6] J.-M. Flaud, C. Camy-Peyret, J.W.C. Johns, Can. J. Phys. 61 (1983) 1462–1473.
- [7] O.N. Ulenikov, A.B. Malikova, M. Koivusaari, S. Alanko, R. Anttila, J. Mol. Spectrosc. 176 (1996) 229–235.
- [8] O.N. Ulenikov, G.A. Onopenko, M. Koivusaari, S. Alanko, R. Anttila, J. Mol. Spectrosc. 176 (1996) 236–250.
- [9] L.R. Brown, J.A. Crisp, D. Crisp, O.V. Naumenko, M.A. Smirnov, L.N. Sinitsa, A. Perrin, J. Mol. Spectrosc. 188 (1998) 148–174.
- [10] J.-M. Flaud, C. Camy-Peyret, J.W.C. Johns, Can. J. Phys. 62 (1984) 1889–1923.