Notes

Cavity ring down spectroscopy of 18O and 17O enriched carbon dioxide near 795 nm

H. Pana, X.-F. Lia, Y. Lua, A.-W. Liua*, V.I. Perevalovb, S.A. Tashkunb, S.-M. Hua

aHefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
bLaboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB, Russian Academy of Science, 1 Akademian Zuev sq., 634021 Tomsk, Russia

Abstract

The dyad bands of 17O and 18O enriched carbon dioxide near 795 nm have been recorded with a continuous-wave cavity ring-down spectrometer. Seven cold bands of four isotopologues: 12C18O$_2$, 16O12C18O, 16O12C17O and 12C17O$_2$ have been observed for the first time. The spectroscopic parameters G_n, B_n, and centrifugal distortion constants, have been determined.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The infrared absorption spectroscopy of carbon dioxide is of great interest for many applications, such as monitoring the atmospheric CO$_2$ concentration [1], the volcanic gases evaluation in geochemistry [2], and understanding of the biological activities in biochemistry [3]. The present work is the continuation of a series of studies [4,5] devoted to the systematic study of the infrared absorption spectrum of the overtone bands of the carbon dioxide isotopologues in our laboratory. In this paper we are concentrated on seven bands of the isotopologues containing 18O and 17O oxygen: 16O12C18O, 12C18O$_2$, 16O12C17O and 12C17O$_2$. We will use the HITRAN [6] notation for the different isotopologues: 16O12C18O: 628; 12C18O$_2$: 828; 16O12C17O: 627; 12C17O$_2$: 727.

The present paper is organized as follows. In Section 2, we present briefly the experimental procedure and the analysis methodology. Section 3 is devoted to the band-by-band analysis and the modeling of the spectra parameters. The conclusion is given in Section 4.

2. Experiment and data reduction

The spectrum of 18O and 17O enriched carbon dioxide samples in the 785–806 nm range was measured using a continuous wave cavity ring-down (cw-CRDS) spectrometer. The details of the spectrometer have been presented in Ref. [7]. The sample absorption coefficient $\alpha(\nu)$ was obtained by measuring the ring-down time $\tau(\nu)$ of the transmitted laser beam power:

$$\alpha(\nu) = \frac{1}{c} \left(\frac{1}{\tau(\nu)} - \frac{1}{\tau_0} \right)$$

(1)

where c is the speed of light and τ_0 is the ring-down time of empty cavity. The noise-equivalent minimal detectable absorption coefficient α_{min} was about 6×10^{-10} cm$^{-1}$ in the measurement.

The 18O and 17O enriched carbon dioxide samples were purchased from Icon Services. The stated isotopic concentrations for the oxygen atom are 84.3% of 18O in the first sample and 49% of 17O in the second one. 26 Torr 17O enriched carbon dioxide sample was used in the
measurement, while two pressures at 100 and 200 Torr were adopted in the measurement of the 18O enriched carbon dioxide sample. The pressure was measured by a manometer with 1000 Torr full-scale range and 0.15% accuracy. The spectrum calibration is based on the readings given by a lambdameter (Burleigh WA-1500) with 60 MHz accuracy. Taking into account the self-induced pressure shift, the accuracy of the unblended and not-very-weak lines is estimated to be better than 0.003 cm$^{-1}$. An overview of the cw-CRDS spectra is presented in Fig. 1. A small part of the 628 and 627 spectrum is presented in Fig. 2 which illustrates R branch of the 10051-00001 band.

3. Ro-vibrational analysis

A total of 406 transitions have been observed for four carbon dioxide isotopologues: 628, 627, 828 and 727. Seven vibrational bands are rotationally indentified with the help of the calculations performed within the framework of the effective operator method using the sets of effective Hamiltonian parameters published in Refs. [8–10]. The rotational analysis was performed using the standard equation for the vibration–rotation energy levels:

$$F_n(J) = G_n + B_n J(J+1) - D_n J(J+1)Q(J+1)$$

where G_n is the vibrational term value, B_n is the rotational constant, D_n and H_n are centrifugal distortion constants. The spectroscopic parameters for an upper state were fitted directly to the observed line positions of the respective band. The lower state rotational constants were constrained to their literature values [11,12]. The observed line positions together with the residuals are given in the Supplementary material of this paper. The spectroscopic parameters retrieved from the fitting are presented in Table 1. The rms values of the (obs.–calc.) deviations are generally 1×10^{-3} cm$^{-1}$ which is consistent with the experimental accuracy.

4. Conclusion

The line positions of the dyad overtone bands 10051-00001 and 10052-00001 of four carbon dioxide isotopologues

Table 1

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Abundance</th>
<th>G_m</th>
<th>B_m</th>
<th>$D_m \times 10^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>628</td>
<td>0.0039471</td>
<td>0</td>
<td>0.36814850</td>
<td>1.18647</td>
</tr>
<tr>
<td>627</td>
<td>0.000734</td>
<td>0</td>
<td>0.378613504</td>
<td>1.25449</td>
</tr>
<tr>
<td>828</td>
<td>0.000039573</td>
<td>0</td>
<td>0.34681732</td>
<td>1.05549</td>
</tr>
<tr>
<td>727</td>
<td>1.3685E-7</td>
<td>0</td>
<td>0.36719462</td>
<td>1.18053</td>
</tr>
</tbody>
</table>

Note: The lower state constants were fixed at the values of Refs. [11,12]. The uncertainties are given in parentheses in the unit of the last quoted digit.

Fig. 1. Overview of the CW-CRDS spectrum of 18O and 17O enriched carbon dioxide around 795 nm. Upper panel: 18O enriched carbon dioxide sample, 200 Torr. Lower panel: 17O enriched carbon dioxide sample: 26 Torr. Many strong lines presented in the figure are due to trace water vapor in the sample.

Fig. 2. R-branch of the 10051-00001 band of 16O12C17O (upper panel) and 16O12C18O (lower panel). The rotational assignments are presented.
have been experimentally determined for the first time. The estimated accuracy of the obtained line positions is better than 0.003 cm$^{-1}$. The results will be used to improve the theoretical modeling of high resolution spectra of these isotopologues and also the CDSD databank [13,14].

Acknowledgments

This work is jointly supported by NSFC (Grant no. 20903085), FRFCU, NKBRSF 2010CB9230 and RFBR-Russia (Grant no. 06-05-39016). The support of the Groupement de Recherche International SAMIA (Spectroscopie d’Absorption des Molécules d’Intérêt Atmosphérique) between CNRS (France), RFBR (Russia) and CAS (China) is also acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jqsrt.2012.08.017.

References

[10] Wang L, Perevalov VI, Tashkun SA, Song KF, Hu SM. Fourier transform spectroscopy of 12C18O$_2$ and 16O12C18O$_2$ in the 3800–8500 cm$^{-1}$ region and the global modeling of the absorption spectrum of 12C18O$_2$. J Mol Spectrosc 2008;247:64–75.