

An ab initio anharmonic force field of SiHCl₃

JING-JING ZHENG, SHENG-GUI HE, SHUI-MING HU* and QING-SHI ZHU

Laboratory of Bond Selective Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China

(Received 6 November 2002; accepted 13 December 2002)

An *ab initio* quartic force field of SiHCl₃ is derived using the second-order Møller–Plesset perturbation theory and Dunning's correlation consistent triple-zeta basis set. After a minor empirical adjustment for the six diagonal quadratic force constants, most fundamentals of SiHCl₃ and SiDCl₃ agree with the experimental values within 1 cm^{-1} . Additionally the observed overtones, combinations and hot band centres can also be well reproduced. Vibrational analysis based on the second-order perturbation theory is carried out with the calculated force constants. Two sets of spectroscopic constants are predicted for ²⁸SiH³⁵Cl₃ and ²⁸SiD³⁵Cl₃, respectively.

1. Introduction

Spectra of SiHCl₃ in the fundamental and from the fifth through eighth Si-H stretching overtone regions were studied in earlier years [1-3]. Recently overtone spectra of the SiH chromophore in SiHCl₃ have been investigated experimentally in the $1000-13000 \,\mathrm{cm}^{-1}$ region [4]. An ab initio calculation of the Si-H stretching-bending overtones has also been reported in [5], where potential energy and dipole moment surfaces of the SiH chromophore were given. Due to the small rotational constants, only some J-structure can be recognized [4] and the K-structure has been very hard to resolve until now. Very few rovibrational spectroscopy parameters were determined and only the experimental harmonic force field was obtained [1]. Meanwhile, having a high quality anharmonic force field is of great importance in the studies of rotationvibration spectroscopy, and thermodynamic and dynamic properties of small molecules. At this moment it is impossible to derive the experimental anharmonic force field of SiHCl₃, so in this work we investigate the anharmonic force field theoretically.

Ab initio calculation offers an alternative way to derive the force field and to predict molecular properties. An *ab initio* full dimensional potential energy surface including all the internal coordinates would be attractive for studying the intramolecular interactions of SiHCl₃. In this article, an accurate *ab initio* potential energy surface up to fourth-order force constants is determined for SiHCl₃ using the second-order Møller–Plesset (MP2) perturbation theory [6]. This method has been successfully applied to derive the anharmonic force

field of SiHF₃ [7] and CHCl₃ [8]. Due to a lack of experimental data for other isotopomers, we focus on the two isotopomers with C_{3v} symmetry: ²⁸SiH³⁵Cl₃ and ²⁸SiD³⁵Cl₃.

2. Computational details

All the electronic structure calculations were carried out at the correlated level of MP2 theory in conjunction with Dunning's correlation consistent polarized valence triple zeta basis sets (cc-pVTZ) [9, 10]. The Gaussian 98 [11] package was used in the *ab initio* calculation. Taking into account core polarization effects in the case of second-row atoms as suggested by Martin and Uzan [12], a special basis set (denoted as VTZ + 1) was employed, which is derived from the triple-zeta cc-pVTZ [9, 10] basis by including an additional high exponent d function for Si and Cl atoms whose exponent equals the highest d exponent in the corresponding cc-pV5Z basis [13]. Because the chosen basis sets are not ideally suited to the description of the inner-shell contribution to the electron correlation [7], and also to decrease the calculation expense, the frozen core approximation of Si and Cl atoms was adopted in all the *ab initio* calculations. In this case, the Si and Cl 1s2s2p-like core molecular orbitals were required to remain doubly occupied.

The central difference formulas were applied to derive all the force constants. Displacements were set up in symmetry internal coordinates and a step size of 0.01\AA or 0.5° was applied for stretching or bending coordinates, respectively. The geometry and all the force constants were calculated with cc-pVTZ + 1 for Si and Cl atoms, and cc-pVTZ for the H atom. All the MP2 energies were converged to 10^{-12} hartree. The criteria

Molecular Physics ISSN 0026-8976 print/ISSN 1362-3028 online © 2003 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/0026897031000114774

^{*}Author for correspondence. e-mail: smhu@ustc.edu.cn

for geometry optimization were that the rms displacement was converged to 4.0×10^{-6} , the rms force to 1.0×10^{-6} au (atomic units), and the predicted changes in energy to less than 10^{-12} hartree.

The symmetry internal coordinates of $SiHCl_3$ are defined as follows:

$$S_1(A_1) = r, \tag{1}$$

$$S_2(A_1) = \frac{1}{3^{1/2}}(R_1 + R_2 + R_3),$$
(2)

$$S_{3}(A_{1}) = \frac{1}{\left[3(1+K^{2})\right]^{1/2}} \times (K\alpha_{12} + K\alpha_{13} + K\alpha_{23} - \beta_{1} - \beta_{2} - \beta_{3}), \quad (3)$$

$$S_{4a}(E) = \frac{1}{6^{1/2}} (2\beta_1 - \beta_2 - \beta_3), \tag{4}$$

$$S_{5a}(E) = \frac{1}{6^{1/2}} (2R_1 - R_2 - R_3), \tag{5}$$

$$S_{6a}(E) = \frac{1}{6^{1/2}} (2\alpha_{23} - \alpha_{12} - \alpha_{13}), \tag{6}$$

$$S_{4b}(E) = \frac{1}{2^{1/2}}(\beta_2 - \beta_3), \tag{7}$$

$$S_{5b}(E) = \frac{1}{2^{1/2}}(R_2 - R_3),$$
(8)

$$S_{6b}(E) = \frac{1}{2^{1/2}} (\alpha_{13} - \alpha_{12}).$$
(9)

where r is the displacement of the SiH bond length, R_i are the displacements of SiCl_i bond lengths, α_{ii} are the displacements of Cl_iSiCl_i bond angles and β_i are the displacements of Cl_iSiH bond angles. The angle redundancy has been removed in S3 by setting $\Delta \alpha = -K \Delta \beta$ [14] with $K = -3 \sin \beta \cos \beta / \sin \alpha$. S_{ta} and S_{tb} (t=4-6) are symmetric and antisymmetric with regard to the plane containing the atoms H, Si and Cl₁. According to point group theory there are 12 $(6A_1A_1,$ 6EE) quadratic, 38 cubic ($10A_1A_1A_1$, $18A_1EE$, 10EEE) and 102 quartic (15A1A1A1A1, 36A1A1EE, 30A1EEE, 21EEEE) independent constants for the SiHCl₃ molecule. The dependent constants can be derived from relations given elsewhere [15]. The potential energy function can be expanded in these symmetry internal coordinates:

$$V = V_0 + \frac{1}{2} \sum_{i,j} F_{ij} S_i S_j + \frac{1}{6} \sum_{i,j,k} F_{ijk} S_i S_j S_k + \frac{1}{24} \sum_{i,j,k,l} F_{ijkl} S_i S_j S_k S_l$$
(10)

Then all the force constants in symmetry internal coordinates are transformed to those in normal coordinates through the L tensor [16]. Spectroscopic constants are obtained based on the second-order perturbation

theory by using the SPECTRO [17] program. Fermi resonances and Coriolis interactions are taken into account.

3. Results and discussion

3.1. Geometry and harmonic frequencies

The optimized and experimental geometry is listed in table 1. Bürger and Ruoff [1] derived the equilibrium geometry of SiHCl₃ from far infrared spectra of SiHCl₃ and SiDCl₃ in 1970. Later, the molecular structure was obtained from microwave spectra by Takeo and Matsumura [18] in 1977. The differences of the Si-H and Si-Cl bond lengths between the two sets of experimental geometries are less than 0.01 Å, but the difference for bond angle HSiCl is considerably larger, which is 1.2° . Our result agrees with that computed by the CCSD (T) (coupled cluster with all single and double substitutions (CCSD) supplemented with a quasiperturbative estimate of the contribution of the connected triple excitations) method in conjunction with cc-pVQZ+1 basis set [5]. Both computed equilibrium distances show minor deviations from experimental values, a little shorter for Si-H and a little longer for Si-Cl (as listed in table 1).

Table 2 shows all the harmonic and fundamental frequencies of SiHCl₃ and SiDCl₃. The anharmonicity correction $\omega_i - \nu_i$ values were derived from the anharmonicity constants x_{ij} and g_{ij} which have been calculated using standard formulas for perturbation theory [19]. Some interactions were considered in the calculation of the fundamental frequencies, and the details will be discussed in the next subsection. We have iteratively adjusted the six diagonal quadratic force constants such that the six computed fundamental wavenumbers of SiHCl₃ (values from the harmonic force field plus anharmonicity corrections) agree exactly with the experimental values. Also most experimental fundamental frequencies of SiDCl3 are reproduced well (within 1 cm^{-1}) with the same adjusted force field, except v_1 and v_5 . The adjusted harmonic frequency ω_1 of SiHCl₃ is 2340.4 cm^{-1} , which agrees with the

Table 1. Optimized and experimental geometry (Å or degree) for $SiHCl_3$.^{*a*}

	MP2(cc- pVTZ+1)	$\begin{array}{c} \text{CCSD (T)} \\ (\text{cc-pVQZ}+1)^b \end{array}$	Expt. ^c	Expt. ^d
r (SiH)	1.4582	1.4613	1.4655(2)	1.464
r (SiCl)	2.0302	2.0306	2.0118(9)	2.020
∠ HSiCĺ	109.4059	109.4570	108.32(25)	109.5

^{*a*}Experimental substitution structures (r_s) . The value given in parentheses is one standard error in the last significant digits.

^bFrom [5].

^cFrom [1].

^dFrom [18].

	Mode	ω_i	ω_i (adjusted)	v _i (adjusted)	$(\text{Expt.})^a$
SiHCl ₃	1(A ₁) SiH str	2366.3	2340.4	2260.3	2260.3
	2(A ₁) SiCl ₃ s-str	505.5	505.6	498.6	498.6
	$3(A_1)$ umbrella	254.8	255.4	253.7	253.7
	4(E) SiH rock	826.8	827.0	810.8	810.8
	5(E) SiCl ₃ a-str	617.5	609.8	600.1	600.1
	6(E) SiCl ₃ def	176.3	178.6	175.5	175.5
SiDCl ₃	1(A ₁) SiD str	1703.2	1684.6	1643.6	1647.1
	$2(A_1)$ SiCl ₃ s-str	502.0	501.9	495.5	495.9
	$3(A_1)$ umbrella	253.0	253.7	251.9	252.0
	4(E) SiD rock	642.4	642.6	633.1	633.8
	5(E) SiCl ₃ a-str	568.6	565.4	556.8	550.0
	6(E) SiCl ₃ def	175.4	177.7	175.2	174.5

Table 2. Computed and experimental harmonic ω_i and fundamental ν_i frequencies for SiHCl₃ and SiDCl₃. All frequencies are in cm⁻¹.

F_{ij} (aJ A ^{-m} rad ⁻ⁿ). ^a					
i j	F_{ij}	F_{ij} (adjusted)			
1 1 1 2	3.21224 0.06978	3.141 04			
1 3 2 2	-0.03429 3 601 27	3,597.07			
23	0.15049	0.88577			
4 4 4 5	0.546 99	0.544 80			
4655	-0.12611 3 09941	3 018 31			
5666	-0.22571 0.74567	0 763 80			
^a For m	stretching and m	bending modes.			
$1 \mathrm{aJ} = 10^{-18}$	J.				

Table 3. Quadratic symmetry force constants

^{*a*}From [1], except ν_1 of SiHCl₃, which is from [4].

Table 4. Cubic and quartic symmetry force constants F_{ijk} and F_{ijkl} (aJ Å^{-m} rad⁻ⁿ).^{*a*}

					9.1 9.11 (
i j k	F_{ijk}	ijk/ijkl	F_{ijk}, F_{ijkl}	ijkl	F_{ijkl}	ijkl	F _{ijkl}
111	-14.171 80	556	-0.218 82	1366	0.024 56	2555	-0.163 54
112	0.00610	566	0.34006	2244	0.114 55	2556	0.243 52
113	-0.06969	666	-1.18412	2245	0.018 70	2566	-0.29343
122	-0.23237	1111	57.200 04	2246	-0.12164	2666	0.03270
123	0.12078	1112	0.141 66	2255	9.78772	3444	-0.95848
133	-0.06040	1113	-0.01252	2256	-0.35595	3445	-0.163 99
222	-9.19231	1 1 2 2	0.00010	2266	0.658 53	3446	0.563 83
223	-0.47986	1 1 2 3	0.03747	2344	$-0.008\ 20$	3 4 5 5	-0.02862
233	-0.76170	1133	-0.08597	2345	-0.08588	3456	0.36083
333	-0.48644	1 2 2 2	-0.18532	2346	-0.44694	3466	-1.01490
144	-0.117 36	1 2 2 3	-0.11242	2355	0.01873	3555	-0.28728
145	-0.12683	1233	0.08586	2356	-0.52955	3556	0.193 24
146	0.00272	1333	0.11478	2366	0.68061	3566	-0.27062
155	-0.11248	2222	20.53473	3344	0.56373	3666	1.428 36
156	0.00687	2223	0.62448	3345	0.147 58	4444	0.751 42
166	-0.00286	2233	0.42937	3346	-0.50742	4445	0.163 93
244	-0.34292	2333	1.328 44	3355	0.057 28	4446	-2.87539
245	-0.16255	3333	0.97688	3356	-0.50022	4455	0.114 49
246	0.12444	1144	-0.11454	3366	1.691 42	4456	-0.06559
255	-8.42674	1145	-0.04375	1444	0.01641	4466	0.413 48
256	0.41060	1146	0.01433	1445	0.064 42	4555	0.299 69
266	-0.86589	1155	-0.04356	1446	-0.01643	4556	0.014 32
344	0.053 47	1156	0.012 50	1455	0.043 72	4566	0.31160
3 4 5	0.197 37	1166	-0.05720	1456	-0.00716	4666	-0.41347
346	0.48201	1244	0.10016	1466	0.01643	5555	28.73093
355	0.03647	1245	0.168 61	1555	-0.01085	5556	-1.27395
356	0.323 96	1246	0.05366	1556	-0.00003	5566	0.17189
366	-1.05521	1 2 5 5	0.098 08	1566	0.000 03	5666	-0.22964
444	-0.35229	1266	-0.00718	1666	-0.00004	6666	5.71345
445	-0.13511	1 2 5 6	0.04372	2444	-0.03289	4a6a5b6b	0.44281
446	-0.18402	1344	-0.00822	2445	0.007 11	4a4a5b5b	-1.66030
455	-0.10292	1345	-0.15385	2446	0.15576	4a4a6b6b	0.00001
456	-0.09976	1346	-0.02460	2455	-0.04998	5a5a6b6b	-0.34338
466	0.71539	1 3 5 5	-0.05623	2456	0.175 33	4a4a5b6b	0.00000
555	-5.74593	1356	-0.01433	2466	-0.43462	4a5a6b6b	0.13115

^{*a*}For *m* stretching and *n* bending modes. $1 \text{ aJ} = 10^{-18} \text{ J}.$

experimental value $2343.95(53) \text{ cm}^{-1}$ [4]. The final adjusted quadratic force constants are given in table 3.

3.2. Anharmonic analysis

The MP2/cc-pVTZ + 1 level cubic and quartic symmetry force constants are presented in table 4. The *ab initio* anharmonic constants of SiHCl₃ and SiDCl₃ are shown in table 5 and rotational, ro-vibrational constants in table 6, which are based on the second-order perturbation formulas for symmetric top molecules. Some computed band centres of overtones and combinations are listed in tables 7 and 8. Experimental values are also given for comparison.

As expected, the anharmonicity of the potential energy surface is found to be significant for the stretching modes, with negative cubic constants (F_{111} , F_{222} , F_{555} and F_{255}) and positive quartic constants (F_{1111} ,

Table 5. *Ab initio* anharmonic constants (cm⁻¹) for SiHCl₃ and SiDCl₃ in comparison with experimental data.^{*a*}

		SiHCl ₃		SiL	DCl ₃
	ij	Calc.	Obs. ^b	Calc.	Obs. ^c
x_{ij}	11	-34.269	-34.9585(92)	-17.779	-19.0(5)
	12	-0.894	-1.655(87)	-0.634	~ -6.0
	13	-0.246	0.11(13)	-0.171	~ 0.6
	14	-10.713	-13.598(27)	-0.418	~ -4
	15	0.271	-0.429(94)	-4.171	~ -7.5
	16	-0.075		-0.064	~ 0.6
	22	-0.881	-10.027	-0.842	
	23	-1.479*		-1.457*	~ 0
	24	-0.408	-5.31(14)	-2.755	
	25	-3.025		-0.995	
	26	-0.349		0.043	
	33	-0.106*		-0.112*	
	34	0.096		-0.791	
	35	-0.733		0.131	
	36	-0.078		-0.103	
	44	-3.677	-2.447(42)	-1.950	
	45	-3.022*		-1.986	
	46	-2.254*		-1.889	
	55	-1.856	-0.19(10)	-1.658	
	56	-0.487*		-0.506	
	66	0.032		0.036	
g_{ii}	44	5.827	2.816(90)	2.399	
0.5	45	-0.507*		1.758	
	46	-3.131*		1.666	
	55	1.296		1.263	
	56	-0.015*		1.216	
	66	0.041		0.023	
R_{ii}	45	-2.698		-2.433	
-)	46	-2.739		-2.137	
	56	0.164		-0.208	

^{*a*}The anharmonic constants marked with an asterisk are corrected by removing the Fermi resonance contributions from the perturbational expressions of the respective anharmonicity constants.

^bFrom [4] ^cFrom [1]. F_{2222} , F_{5555} and F_{2255}). All other anharmonic symmetry force constants involving bending modes are smaller in absolute value. Except for the stretching modes, the anharmonicity correction $\omega_4 - \nu_4$ of SiHCl₃ and SiDCl₃ are rather large (16.2 and 9.5 cm⁻¹, respectively) due to the relatively small reduced mass of SiH(D).

By using the anharmonic constants of SiHCl₃ calculated from this force field, some band centres of overtones, combinations and hot bands were calculated, which agree well with the observed band centres [1, 4]. Here we will correct some errors in the assignment given in [4]. The observed band centre 1435.0 cm^{-1} should be

Table 6. *Ab initio* and experimental spectroscopic constants for SiHCl₃ and SiDCl₃.

	SiHCl ₃		SiDCl ₃		
	Calc.	Obs. ^a	Calc.	Obs. ^a	
$B_0/{\rm cm}^{-1}$	0.081 697	0.082427	0.080 183	0.080 868	
$C_0 / {\rm cm}^{-1}$	0.043 825	0.044 270	0.043 825	0.044 270	
α_1^B/MHz	0.627		1.067		
α_2^B/MHz	3.778		4.460		
α_3^B/MHz	1.734		1.696		
α_4^B/MHz	1.080		3.316		
α_5^B/MHz	4.451		1.386		
α_6^B/MHz	-2.509		-2.368		
α_1^C/MHz	0.203		0.203		
α_2^C/MHz	2.886		2.886		
α_3^C/MHz	0.286		0.286		
α_4^C/MHz	0.227		0.227		
α_5^C/MHz	2.178		2.178		
α_6^C/MHz	0.639		0.639		
ζ_{44}^z	0.992	0.95(5)	-0.881	0.86(4)	
ζ_{55}^z	-0.643	0.78(7)	-0.719	0.67(5)	
ζ_{66}^z	-0.703	-0.87(10)	0.684	-0.66(15)	
$ \zeta_{25}^{\nu} $	0.72777		0.40 671		
$ \zeta_{36}^{y} $	0.44731		0.46817		
q_4^+/MHz	29.343		15.540		
q_5^+/MHz	3.594		9.780		
q_6^+/MHz	4.506		4.116		
$10^7 D_J/{\rm cm}^{-1}$	0.34334	0.47(1)	0.31 740		
$10^7 D_{JK}/{\rm cm}^{-1}$	-0.58747		-0.53749		
$10^7 D_K / {\rm cm}^{-1}$	0.27 641		0.25 238		
$10^{13} H_J/{\rm cm}^{-1}$	0.37934		0.33 085		
$10^{13} H_{JK}/cm^{-1}$	-1.48037		-1.28419		
$10^{13} H_{KJ}/cm^{-1}$	1.84204		1.59 579		
$10^{13} H_K / \text{cm}^{-1}$	-0.73640		-0.63783		
$10^{14}h_3/\mathrm{cm}^{-1}$	0.24875		0.21 482		

^aFrom [1].

Table 7. Band centres of the infrared spectrum of $SiHCl_3$ (in cm⁻¹).

Assignment ^a	Expt. ^b	Cal.	$\Delta(c-e)$
*v6	175.5	175.5	0.0
*v ₃	253.7	253.7	0.0
*v ₂	498.6	498.6	0.0
$*v_{4}-v_{3}$	558	557.1	-0.9
*v ₅	600.1	600.1	0.0
*v ₄	810.8	810.8	0.0
$*\nu_3 + \nu_5$	855	853.7	-1.3
$*\nu_3 + \nu_4$	1065	1064.6	-0.4
$*\nu_2 + \nu_5$	1101	1095.7	-5.3
$*\nu_2 + \nu_4$	1310	1309.0	-1.0
$v_2 + v_5 + v_6$	1263.7	1270.4	6.7
$v_2 + v_4$	1302.0	1309.0	7.0
$2v_4 - v_3$	1346.3	1348.9	2.6
$v_4 + v_5$	1405.3	1407.4	2.1
$v_1 - v_4$	1451.3	1449.5	-1.8
$2v_4$	1606.1	1602.6	-3.5
$v_3 + v_4 + v_5$	1657.5	1660.4	2.9
$v_1 - v_2$	1751.3	1761.7	10.4
$3v_5 + v_2 - v_2$	1787.3	1777.5	-9.8
$3v_5$	1799.5	1786.6	-12.9
$3v_4 - v_2$	1901.5	1900.1	-1.4
$v_1 - v_3$	2006.5	2006.6	0.1
$\nu_2 + 2\nu_4$	2094.4	2100.4	6.0
$\nu_1 + \nu_4 - \nu_4$	2248.0	2249.6	1.6
ν_1	2260.3	2260.3	0.0
$3v_4$	2406.3	2398.7	-7.6
$\nu_1 + \nu_6$	2435.5	2435.7	0.2
$\nu_1 + \nu_3$	2514.6	2513.7	-0.9
$\nu_1 + \nu_2$	2757.0	2758.0	1.0
$\nu_1 + \nu_5$	2854.0	2860.7	6.7
$\nu_1 + \nu_4$	3054.5	3060.4	5.9
$\nu_1 + 2\nu_2$	3231.4	3254.0	22.6
$\nu_1 + 2\nu_4$	3842.0	3841.5	-0.5
$2v_1 + v_4 - v_4$	4425.2	4430.6	5.4
$2\nu_1$	4450.4	4452.0	1.6

^{*a*}For the degenerate overtone and combination bands only the lowest angle momentum quantum number l_t is considered.

 b From reference [4] except that marked with an asterisk which is from [1].

the $2\nu_4^0 - \nu_6^{\pm 1}$ hot band (the calculated value is 1427.1 cm⁻¹) instead of the $3\nu_2$ band. The calculated $3\nu_2$ band centre locates at 1490.6 cm⁻¹, but it is not observed. The band at 2964.3 cm⁻¹ should not be assigned as $\nu_1 + \nu_2 + \nu_4^{\pm 1}$, since the calculated band centre of $\nu_1 + \nu_2 + \nu_4^{\pm 1}$ is 3557.7 cm⁻¹. From tables 7 and 8, most band centres can be reproduced well by these two sets of anharmonic constants. The anharmonic constants corresponding with SiH(D) chromophore vibrational modes, x_{11} , x_{14} and x_{44} agree with those fitted from experimental band centres [4]. However others have large discrepancy, even with opposite sign. Fuss and Weizbauer [20] obtained some anharmonic constants of which are also different from those of this work and of [4]. Maybe the difference comes from the limited number of

Table 8. Band centres of the infrared spectrum of $SiDCl_3$ (in cm⁻¹).

Assignment ^a	Expt. ^b	Cal.	Δ (c–e)
v ₆	174.5	175.2	0.7
<i>v</i> ₃	252.0	251.9	-0.1
ν_2	495.9	495.5	-0.4
v ₅	555.0	556.8	1.8
v_4	633.8	633.1	-0.7
$\nu_2 + \nu_3$	748.0	745.9	-2.1
$v_1 - v_4$	1015.5	1010.5	-5.0
$v_2 + v_4$	1129	1125.8	-3.2
$v_4 + v_5$	1178.5	1189.4	10.9
$2v_4$	1264	1257.5	-6.5
$v_1 - v_6$	1472.9	1468.4	-4.5
$2v_1 - v_1$	1608.7	1608.1	-0.6
$v_1 + v_2 - v_2$	1637.5	1643.0	5.5
$v_1 + v_5 - v_5$	1637.5	1639.2	1.7
v_1	1647.1	1643.6	-3.5
$v_1 + v_6$	1822.2	1818.7	-3.5
$v_1 + v_3$	1899.7	1895.4	-4.3
$v_1 + v_2$	2137	2138.5	1.5
$v_1 + v_5$	2197	2196.0	1.0
$v_1 + v_4$	2277	2276.3	-0.7
$2\nu_1$	3256.2	3251.7	-4.5

^{*a*}For the degenerate overtone and combination bands only the lowest angle momentum quantum number l_t is considered. ^{*b*}From [1].

observed band centres included in the fitting and also some misassignments.

The Coriolis coefficients, H_{22} diagonal α constants and rotational *l*-type doubling constants q_t^+ are listed in table 6. The Coriolis interactions of v_2 , v_5 and v_3 , v_6 are considered. Effective rotational constants (in which distortion due to the quartic centrifugal distortion constants is included), quartic and sextic centrifugal distortion constants are also listed in the same table. The Fermi resonances, the $(\nu_2, 2\nu_3), (\nu_4^{\pm 1}, \nu_5^{\pm 1} + \nu_6^{\pm 1}),$ $(\nu_4^{\pm 1}, \nu_3 + \nu_5^{\pm 1})$ for SiHCl₃, and the $(\nu_2, 2\nu_3)$ for SiDCl₃, have been treated explicitly so that the corresponding anharmonic constants were corrected by removing their contributions from the perturbational expressions of the respective anharmonicity constants. Since Ding et al. [4] pointed out that the Fermi resonance between the SiH stretching and bending modes is not significant, we do not treat this resonance interaction explicitly, but include it perturbationally. As a result the v_1 and $2v_4$ band centres still agree with the experimental values well without this resonance. Because very high resolution spectra of SiHCl₃ have not been obtained, we lack values for these constants.

4. Conclusion

An accurate quartic force field of $SiHCl_3$ has been obtained using the MP2 theory and cc-pVTZ + 1 basis set under the frozen core approximation. An optimized geometry is also given. From this *ab initio* and a minor empirical adjustment force field, fundamentals for SiHCl₃ and SiDCl₃ are derived based on second-order perturbation theory and the predicted band centres agree well with the experimental results. The spectroscopic constants of SiHCl₃ and SiDCl₃ are predicted, although some of them cannot agree with the values fitted from the limited available experimental results. To determine these spectroscopic constants, high resolution spectra need to be recorded.

This work was jointly supported by the National Natural Science Foundation of China (Grant No: 20103007), by the National Project for the Development of Key Fundamental Sciences in China, and by the Chinese Academy of Science.

References

- BÜRGER, H., and RUOFF, A., 1970, Spectrochim. Acta A, 26, 1449.
- [2] BERNHEIM, R. A., LAMPE, F. W., O'KEEFE, J. F., and QUALEY III, J. R., 1983, Chem. Phys. Lett., 100, 45.
- [3] CAMPARGUE, A., STOECKEL, F., and TERRILE, M.C., 1986, *Chem. Phys.*, **110**, 145.
- [4] DING, Y., HE, S.G., ZHENG, J.J., HU, S.M., WANG, X.H., and ZHU, Q.S., 2001, *Molec. Phys.*, 99, 1669.
- [5] HE, S.G., LIN, H., BÜRGER, H., THIEL, W., DING, Y., and ZHU, Q.S., 2002, J. chem. Phys., 116, 105.
- [6] Møller, C., and Plesset, M.S., 1934, Phys. Rev., 46, 618.
- [7] DEMAISON, J., MARGULÈS, L., BREIDUNG, J., THIEL, W., and BÜRGER, H., 1999, *Molec. Phys.*, 97, 1053.
- [8] SIBERT III, E.L., and REY, R., 2002, J. chem. Phys., 116, 237.
- [9] DUNNING JR, T.H., 1989, J. chem. Phys., 90, 1007.

- [10] WOOD, D.E., and DUNNING JR, T.H., 1993, J. chem. Phys., 98, 1358.
- [11] FRISCH, M. J., TRUCKS, G. W., SCHLEGEL, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, Jr., J. A., STRATMANN, R. E., BURANT, J. C., DAPPRICH, S., MILLAM, J. M., DANIELS, A. D., KUDIN, K. N., STRAIN, M. C., FARKAS, O., TOMASI, J., BARONE, V., COSSI, M., CAMMI, R., MENNUCCI, B., POMELLI, C., ADAMO, C., CLIFFORD, S., OCHTERSKI, J., PETERSSON, G. A., AYALA, P. Y., CUI, Q., MOROKUMA, K., MALICK, D. K., RABUCK, A. D., RAGHAVACHARI, K., FORESMAN, J. B., CIOSLOWSKI, J., ORTIZ, J. V., BABOUL, A. G., STEFANOV, B. B., LIU, G., LIASHENKO, A., PISKORZ, P., KOMAROMI, I., GOMPERTS, R., MARTIN, R. L., FOX, D. J., KEITH, T., AL-LAHAM, M. A., PENG, C. Y., NANAYAKKARA, A., CHALLACOMBE, M., GILL, P. M. W., JOHNSON, B., CHEN, W., WONG, M. W., ANDRES, J. L., GONZALEZ, C., HEAD-GORDON, M., REPLOGLE, E. S., and POPLE, J. A., 1998, Gaussian98 (Pittsburgh PA: Gaussian, Inc.).
- [12] MARTIN, J.M.L., and UZAN, O., 1998, Chem. Phys. Lett., 282, 16.
- [13] WOOD, D.E., and DUNNING JR, T.H., 1995, J. chem. *Phys.*, **103**, 4572.
- [14] DUNCAN, J.L., 1964, Spectrochim. Acta, 20, 1197.
- [15] THIEL, W., YAMAGUCHI, Y., and SCHAEFER III, H.F., 1988, J. molec. Spectrosc., 132, 193.
- [16] HOY, A.R., MILLS, I.M., and STREY, G., 1972, Molec. Phys., 24, 1265.
- [17] GAW, J. F., WILLETTS, A., and HANDY, N.C., 1990, Advances in Molecular Vibrations and Collision Dynamics, edited by J. M. Bowman Greenwich, CT: JAI).
- [18] TAKEO, H., and MATSUMURA, C., 1977, Bull. chem. Soc. Jpn., 50, 1633.
- [19] MILLS, I., 1972, Molecular Spectroscopy: Modern Research, Vol. 1, edited by K. Narahari Rao and C. W. Mathews (New York: Academic Press), p. 115.
- [20] FUSS, W., and WEIZBAUER, S., 1995, Ber. Bunsenges. Phys. Chem., 99, 289.