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Light-force-induced shift in laser spectroscopy of atomic helium
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A laser-power-dependent shift has been observed in various atomic beam spectroscopy measurements,
which was often treated by extrapolating the results to the zero-field limit. Here we present an experimental
and theoretical study of this effect in the measurements of the 2 3S-2 3P transition frequency of 4He. The
light-force-induced shift was attributed as a result of modulated atomic trajectories induced by the standing-wave
laser field and consequent distortions in the lineshape. Modulation of the beam spatial distributions was detected
by imaging atoms at high laser power and was also simulated by the Monte Carlo wave-function approach. The
nonlinear behavior of the light-force-shift was observed experimentally and reproduced by the simulations. The
systematic shift in the extrapolated result at the zero-field limit was analyzed. As a consequence of this effect, a
correction of +0.50(80) kHz was added to our previous result on the 2 3S1-2 3P1 transition frequency [Phys. Rev.
Lett. 119, 263002 (2017)], and the reevaluated value is 276 734 477 704.3(1.6) kHz.
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I. INTRODUCTION

Precision spectroscopy in few-electron atomic systems,
such as hydrogen and helium, is an ideal tool for tests of the
quantum-electrodynamics (QED) theory and determination
of the fundamental physical constants, such as the Rydberg
constant R∞ and the fine-structure constant α [1–6]. However,
there are still significant discrepancies among some latest
experimental and theoretical results, including that in the
spectroscopy of atomic hydrogen which leads to the so-called
“proton-size puzzle” [7], indicating that more investigations
into the experiments and calculations are needed.

Laser spectroscopy of atoms in a collimated beam has been
used in various studies to determine the transition frequencies.
For example, the frequency of the 2S-4P transition of H was
determined with an uncertainty of 2.3 kHz, which is 0.017%
of the natural linewidth [8]. The 2 3S-2 3P transition of He
was measured to 1–2 kHz precision [9,10], which is 0.1% of
the natural linewidth of the transition. In these measurements,
counterpropagating laser beams were used to eliminate the
first-order Doppler shift, which formed a coherent standing-
wave laser field when their wavefronts were properly retraced
[11]. It has been commonly assumed that the spectroscopy
lineshape should be symmetric around its resonance center if
the laser intensity is sufficiently low.

However, asymmetry has been found in fluorescence
spectroscopy by using strongly interacting standing-wave
lasers [12,13] and Lamb-dip spectroscopy [14,15]. Substantial
asymmetry contributes to systematic shifts in the observed
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resonances. A classical treatment taking into account
the mechanical effect of the standing-wave field can be
achieved by solving the optical Bloch equations by using
a position-dependent Rabi frequency simultaneously with
Newton’s equation of motion [16,17]. But the attempt to
correct for this shift using numerical calculations relies
on the theoretical model and accuracy of input parameters
such as the atomic velocity distribution, laser geometry,
and intensity. An alternative approach is to extrapolate the
observed shift as a linear function of the laser power to the
zero-field limit [6,18,19]. Since moderate laser powers are
needed to maintain a sufficient signal in most spectroscopy
measurements, it remains questionable about the validity of
the linear extrapolation, which may lead to possible offset
from the “true” resonance center.

In this paper, we present an experimental and theoretical
study of the light-force-induced shift. Spectroscopy of the
2 3S-2 3P transition in atomic 4He was used as a prototype
to investigate this effect. A nonlinear behavior of the light-
force shift against the laser power was observed. Simula-
tions of the light-force effect were also carried out by using
the Monte Carlo wave-function (MCWF) approach [20,21],
which reproduces well the nonlinear behavior. Analysis of the
experimental and simulation results allows us to reevaluate the
uncertainty due to the light-force-induced shift in our previous
spectroscopy measurements.

II. EXPERIMENTS

The experimental configuration for the 2 3S-2 3P spec-
troscopy of 4He is shown in Fig. 1(a), which is similar to
the one presented in our previous studies and will be only
briefly described here. Helium atoms were prepared in the
2 3S1 metastable state via radio-frequency discharge, and were
subsequently collimated and deflected by two-dimensional
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FIG. 1. (a) Illustration of experimental setup (not to scale).
(b) Optical pumping by the probe laser. (c) Simulated atomic beam
spatial distributions induced by red (solid line) and blue (dashed
line) detuned standing-wave laser field, respectively. The shaded area
represents slit2.

transverse cooling. Two slits with a width of 0.5 mm were
placed 1.5 m apart in the beam. The first one (slit1) was
placed after the deflection region, and the second one (slit2)
was placed before the detector, which consists of a three-
layer microchannel plate, a phosphor screen, and an electron-
multiplying charge-coupled device (CCD). A Stern–Gerlach
magnet was used to deflect atoms at the m = ±1 levels to
ensure that only atoms at the m = 0 level pass through slit2
and reach the detector.

Before entering the spectroscopy region, the atoms in
the 2 3S1 (m = 0) state were optically pumped to either the
m = ±1 states, depending on the polarization of the pump
laser beam (σ±). The 2 3S1 (m = 0) state was repopulated
[Fig. 1(b)] when the atoms interacted with the probe laser
which scanned through resonance of the 2 3S1-2 3PJ transition
(J = 1 in this paper, for instance). This spectroscopy region
was shielded with three layers of cylindrically shaped μ metal.
A homogeneous magnetic field, which defined the quantiza-
tion axis along gravity, was generated by a cosine theta coil
inside the magnetic shield.

The probe laser was a home-built external cavity diode
laser, phase locked to a narrow-linewidth fiber laser which was
frequency stabilized to a Fabry-Pérot cavity made of ultralow-
expansion glass. The probe laser beam was coupled into a
polarization-maintaining single-mode fiber, and its intensity
was stabilized by using a noise eater. To eliminate the first-
order Doppler shift, the probe laser beam was retroreflected
to form a standing-wave laser field.

Modulation of atomic trajectories induced
by standing-wave laser field

Besides the optical pumping effect depicted in Fig. 1(b),
the standing-wave laser field also introduces mechanical ef-
fects on the atoms. The laser field modulates the atomic
beam trajectories oppositely at different detunings around

the resonance center. When red detuned, the atomic beam
is transversely cooled and thus gets focused. In case of blue
detuning, the atomic beam is diverged due to the transverse
heating effect. Figure 1(c) shows the simulated spatial distri-
butions of the atomic beam, assuming a Gaussian profile for
the initial distribution. Since the slit before the detector (slit2)
is relatively narrow, changes in the spatial distributions would
lead to substantial differences in counting rates: the count
increases in the red wing and decreases in the blue wing. As
a result, this effect introduces asymmetry in the spectral line
profile.

To observe the spatial modulation effect by the standing-
wave laser field, we replaced the 0.5 mm slit2 with a broader
2-mm-wide slit. Images of the spatial distributions of the
metastable helium atoms were taken at different laser fre-
quencies. The laser intensity (one-way) was set to be 2Isat

in order to saturate this transition. The experimental proce-
dure for differential images was as follows: We took images
using a CCD camera by switching the laser frequency with
red detuned (Pred), blue detuned (Pblue), and on resonance
(Pref ), respectively. The images taken on resonance were used
as a reference, such that we obtained differential images,
δPred = Pred − Pref , and δPblue = Pblue − Pref . Each image was
an average of 100 shots. A clear contrast can be seen in Fig. 2,
indicating that the atoms got focused in the case of red detun-
ing, but got diverged for blue detuning. The results agree well
with the simulation shown in Fig. 1(c). In the spectroscopy
measurement, a narrow slit is necessary to reduce the first-
order Doppler broadening, and the “count” on the detector is a
combination of atoms that both pass through the slit and reach
the detector. The spatial modulation shown in Fig. 2 would
result in systematic distortions on the spectral line profile, and
the fitted line center would be redshifted from the resonance
center due to this distortion. Because it originates from the
mechanical effects of the laser field, this systematic shift also
manifests a laser-power-dependent feature.

For heavy atoms such as cesium, a similar effect was only
observed in an intense laser field [13], because the atom recoil
was sufficiently small. Under the experimental conditions of
helium or hydrogen, the saturation factor was chosen to be
considerably smaller. For example, in case of helium spec-
troscopy, the laser intensity applied in the 2 3S1(m = −1) →
2 3P1(m = −1) spectroscopy measurement was restricted to
I/Isat � 0.3. Each atom scattered no more than five photons
before it was optically pumped to the “dark” state 2 3S1(m =
0). Such a light force was thought to be considerably small.
However, because of the light mass of helium, the recoil
velocity when the atom absorbs or emits a photon is vrec =
h̄k/m = 0.091 m/s, which is a factor of 23% compared with
the Doppler velocity vDop = √

h̄�/m = 0.40 m/s. Therefore,
the light force is no longer negligible, and this effect will be
analyzed in the next section.

III. THEORETICAL APPROACH

To simulate atomic trajectories modulated by the standing-
wave laser field, we follow the Monte Carlo wave-function
approach developed by Dalibard et al. [20,21]. We start from
a master equation describing the dynamics of open quantum
systems, and the Monte Carlo method is used to simplify the
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FIG. 2. Differential images taken at red (left, δPred) and blue (right, δPblue) detunings, respectively, by using image taken at resonance as a
reference. Each image was averaged by 100 shots recorded by a CCD camera. The horizontal and vertical axes correspond to the x axis and
y axis, respectively.

calculations. Descriptions of the master equation is given in
the Appendix.

A. Model of simulation

We consider a three-level atomic system, which consists
of an excited state |e〉, a ground state |g〉, and a dark state
|0〉. The atoms are originally populated at |g〉, and only
those populated at |0〉 contribute to the detected signal. The
direction of the atomic beam is denoted as the z axis, while
the probe laser propagates along the x axis (see Fig. 1). Note
that the magnetic field is along the y axis, perpendicular
to the wave vector. For simplicity, the atoms have a uni-
form longitudinal velocity of vmean along the z axis. For the
transverse velocity, we consider only the degree of freedom
along the x axis, with an initial transverse velocity of vx00.
The {|e, p〉, |g, p〉} basis is used. The momentum space is
discretized with a step size of h̄k, where k = 2π/λ is the wave
vector of the probe laser, according to the quantum nature of
absorbed or emitted photon momentum. Therefore, the wave
function reads

|�(t )〉 = |e/g〉 ⊗ |p = ±nh̄k〉
= αn(t )|e, nh̄k〉 + βn(t )|g, nh̄k〉, (1)

where coefficients αn(t ) and βn(t ) correspond to components
of the excited and ground states with momentum nh̄k along
x at time t , respectively. We choose nmax = 10, which gives
sufficient description for the atomic trajectories without too
much computational cost.

The system Hamiltonian HS in the interaction picture reads

HS = P2/2m + h̄
cos(kX )(S+ + S−) − h̄�Pe, (2)

where X and P are the atomic position and momentum
operators, Pe = |e〉〈e| is the projection operator onto state
|e〉, � = ω − ω0 is the laser detuning, and 
 is the Rabi
frequency of each traveling wave forming the standing wave.
Under the evolution of the effective Hamiltonian, Heff = HS −

(ih̄�/2)Pe, the coefficients αn(t ) and βn(t ) are governed by

αn(t ) → αn(t + δt ) =
(

1 − i
δt

h̄

(nh̄k)2

2m
+i�δt − �

2
δt

)
αn(t )

− iδt


2
[βn+1(t ) + βn−1(t )],

βn(t ) → βn(t + δt ) =
(

1 − i
δt

h̄

(nh̄k)2

2m
βn(t )

)

− iδt


2
[αn+1(t ) + αn−1(t )]. (3)

As is seen in Eq. (3), the laser field couples the state |g〉 and
|e〉, along with momentum exchange by ±1 in the subscripts
of coefficients α and β. This corresponds to the photon recoils
during absorption and stimulated emissions.

As for the spontaneous emissions including recoils, we
choose a coarse discretization for the emitted photon, with
a step size of h̄k′, i.e., k′ = −k, 0, or k. Depending on the
momentum and polarization, the “quantum jump” operators
in Eq. (A6) can be simplified as

Cq(k′) = √
� p̄q(k′)e−ik′X (ε∗

q · S−), (4)

where ε0 = ez corresponds to π polarization, and ε± =
∓ 1√

2
(ex ± iey) corresponds to σ± polarization. The probabil-

ity p̄q(k′) for the nine jump operators can be calculated by
integrating over the angular patterns of light emitted by an
oscillating dipole.

B. Monte Carlo wave-function approach

Here we discuss treatment of evolutions in the laser field.
Instead of solving the density matrix, we apply an alternative
approach based on Monte Carlo evolution of wave functions.
This approach benefits by less computational cost, since a
wave function (∝Nstates = 42) is a smaller object compared
with a density matrix (∝N2

states ≈ 1600). The MCWF ap-
proach is rather straightforward following recipes developed
by Dalibard et al. [20,21].
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Consider at time t the system with a normalized wave
function |�(t )〉. After a time step δt , which must be chosen
small enough to ensure the validity of the calculations at first
order [20,21], the wave function at time t + δt is obtained by
action of the effective Hamiltonian Heff :

Heff = HS − ih̄

2

∑
m

C†
mCm, (5)

where Cm are the quantum jump operators.
This yields for sufficiently small δt , the wave function at

time t + δt evolves as

|� (1)(t + δt )〉 =
(

1 − iHeffδt

h̄

)
|�(t )〉. (6)

It can be seen that the new wave function is not normalized,
since Heff is non-Hermitian. Hence, through normalization,
the square of its norm yields

〈� (1)(t + δt )|� (1)(t + δt )〉 = 1 − δp + O(δt2). (7)

In this expression, we have introduced the probability δp,
which is defined as

δp = δt
i

h̄
〈�(t )|H − H†|�(t )〉 =

∑
m

δpm,

δpm = δt〈�(t )|C†
mCm|�(t )〉 � 0. (8)

Another possibility for evolving the wave function is to
apply the quantum jump operators Cm, which describe possi-
ble “directions” for decay in different channels. The quantum
jump evolution can be achieved by applying one of those
operators to the wave function at time t .

Using Eq. (8), we find that the total probability for making
a jump is δp. The no-jump case occurs with probability
1 − δp. The random choice between the two evolutions is
performed by picking a pseudorandom number εp uniformly
distributed in [0,1], which is then compared with δp.

If εp > δp, we simply normalize the wave function
|� (1)(t + δt )〉:

|�(t + δt )〉 = |� (1)(t + δt )〉
‖� (1)(t + δt )〉‖ . (9)

Otherwise, if εp < δp, then, among m possible quantum
jumps, a second random choice determines which jump oc-
curs, according to the probability law �m = δpm/δp. The
wave function after the quantum jump at time t + δt is given
by:

|�(t + δt )〉 = Cm|�(t )〉
‖Cm|�(t )〉‖ . (10)

The quantum jump operators, corresponding to sponta-
neous emissions in our case, can be divided into two de-
cay paths: (1) from |e〉 to |g〉, where another non-Hermitian
evolution starts; and (2) from |e〉 to |0〉, the atom enters the
dark state and runs out of interactions. The possibilities for
decaying into one of the two paths are determined by their
branching ratios.

C. Input parameters and simulation procedure

The atoms are assumed to be initially populated in the
ground state, and in a superposition of different transverse
momentum eigenstates. The initial transverse momentum
populations are assumed to be in a Gaussian distribution
e−v2

x /2σ 2
x , where σx is determined by the Doppler velocity

vDop = 0.40 m/s. The atoms start at slit1, with a width of
0.5 mm and a position step size of 0.005 mm. All the atoms are
considered to have a uniform longitudinal velocity of vmean =
700 m/s, since we observed a relatively small distribution of
50 m/s (full width at half maximum, FWHM) [9]. Power loss
in the retroreflected laser beam was considered by introducing
a factor of δI = 5%.

The evolution of atomic trajectories consists of three steps:
(1) Atoms propagate freely from slit1 to the spectroscopy
region at a distance l1. (2) Atoms interact with the standing-
wave laser field, with an total interaction time of 2w0/vmean ≈
4.5 μs, where w0 is the 1/e2 beam waist. In this step, the
MCWF method described in Sec. III B is applied to derive the
momentum distributions after interaction. (3) Atoms propa-
gate freely again, carrying a modified momentum distribution,
from the spectroscopy region to slit2 with a distance of l2.
For detection, we count atoms at the dark state |0〉 and
within the range of 0.5-mm-wide slit2. This implies that both
internal state selection and spatial selection effects contribute
to the spectroscopic signal. At a given laser intensity of I , we
scanned the laser frequency with a detuning � varying from
−2.5 � to +2.5 �, where � = 2π × 1.62 MHz is the natural
linewidth of the transition. Different step sizes ranged from
0.1 to 0.5 � were adopted. The simulated spectra were fit with
a Lorentzian profile to derive the resonance center.

Because of the stochastic nature of Monte Carlo procedure,
one has to average numerous results in order to reduce the
statistical uncertainty. Depending on the targeted precision,
the number of averaging navg for one spectra was chosen to
be from 103 to 105. As a result, typical uncertainty in the
line center from one spectra is about 2–6 kHz at low laser
intensities. At high laser intensities, fewer averaging numbers
were used since the light-force-induced lineshape distortion
becomes more substantial. The evolution time step δt is set to
be 2 ns, which corresponds to 1/50 �−1, as a compromise
between the computational cost and the accuracy. We also
tried to run part of the simulations with a much smaller step
size of δt = 1/1000 �−1 = 0.1 ns, but found no deviations
under 2 kHz statistical uncertainty for a single spectra. The
parameters we used in our Monte Carlo simulations are sum-
marized in Table I.

IV. SIMULATION RESULTS COMPARED
TO MEASUREMENTS

In this section, we present the numerical results of our
Monte Carlo simulation. Our simulated spectra reproduces the
characteristics observed in experimental spectra. By tuning
the saturation factor of the laser field, the nonlinear behavior
of the power-dependent shift is also obtained, which agrees
well with our experimental results. At low laser intensities,
the simulation gives a reasonably good linear dependence
on the laser intensity. To evaluate our standard extrapolation
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TABLE I. Monte Carlo simulation parameters.

Name Symbol Value

Number of simulations Nsim 3 × 107

Atom mass m 4 a.u.
Natural linewidth � 2π × 1.62 MHz
Excited state lifetime τ 98 ns
Wavelength λ 1083.3 nm
Recoil velocity h̄k/m 0.091 m/s
Saturation intensity Isat 167 μW/cm2

Saturation factor I/Isat 0.04-4
Number of momentum eigenstates 2nmax + 1 21
Distance from slit1 to probe l1 55 cm
Distance from probe to slit2 l2 105 cm
Initial slit width x1 0.5 mm
Initial position step δx1 0.005 mm
Detection slit width x2 0.5 mm
Initial transverse velocity spread σx 0.40 m/s
Laser beam waist w0 1.6 mm
Mean longitudinal atom velocity vmean 700 m/s
Interacting time t 4.5 μs
Interacting time step δt 2 ns
Retro-reflected beam power loss δI 5%

approach to determine the “zero-field” value of the resonance
center, the line centers derived from the simulated spectra
were extrapolated to the zero-field limit and the offset from
the resonance center was obtained.

A. Comparison of simulated and experimental spectra

By using the tool of MCWF and defined parameters as
input, we obtained the light-force-induced shift at different
laser intensities. As the laser power increases, the proba-
bility of a quantum jump into the dark state |0〉 also in-
creases, which subsequently reduces computational efforts.
Since power broadening dominates at high laser intensities, an
accuracy of a few tens of kHz is sufficient for the simulation.

Figure 3(b) shows a spectra simulated under laser inten-
sity of I = 2.3 Isat, initial transverse velocity spread σx =
0.40 m/s, and an averaging number navg of 200. It repro-
duces well the experimental spectra given in Fig. 3(a). The
characteristics in both spectra are shown clearly: counts on
the red side near the line center are enhanced, while they
decrease on the blue side. If we fit the spectrum with a simple
Lorentzian profile, the “center” derived from the fit is red-
shifted. The shifts obtained from spectra simulated at different
laser intensities are shown in Fig. 4. The observed redshifts are
increased as the saturation factor is tuned from 0.4 to 4, and
also manifests a nonlinear dependence at high laser intensities.
A comparison with the experimental data under similar laser
intensities is also shown in Fig. 4, indicating a good agreement
between the simulations and experimental results. It also
demonstrates the validity of the MCWF approach.

B. Extrapolation to the zero-field limit

At low laser intensities, the saturation factor is smaller,
ranging from 0.04 to 0.3 in our simulations, and the lineshape
distortion becomes less significant. As a result, the possibility

FIG. 3. (a) Illustration of lineshape distortion observed in exper-
iment (square), with a probe intensity of 2.3Isat . The distortion is
substantial in the high-intensity regime. (b) Simulated spectrum (tri-
angle) using Monte Carlo wave-function approach, which reproduces
the observed distortion. The solid lines represent spectra fitted using
Lorentzian profiles.

of a quantum jump decreases significantly. However, because
we are looking for a substantial light-force-induced shift on
the sub-kHz level, a much larger averaging number and more
computational efforts are required in the simulations.

Four different laser intensities, I/Isat = 0.04, 0.07, 0.14,
and 0.28, were adopted here. Typical statistical accuracy of
the simulation at each intensity was about 1 kHz, with an
average number navg of more than 105. The spectra were fit
with Lorentzian functions and the light-force-induced shift
derived from the fit is shown in Fig. 5, and is consistent with
our experimental data.

FIG. 4. Comparison of the laser-force-induced shifts obtained
from the experiment (open circles) and from the simulation (filled
circles). The laser intensity given here stands for the injected beam
intensity for probe laser (one way).
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FIG. 5. Comparison of experimental (open circles) and simu-
lated (filled circles) light-force-induced shifts obtained at low laser
intensities. One group set of simulated data is shown. The laser
intensity given here stands for the injected beam intensity for the
probe laser (one way). The solid line represents a linear fit of
simulation, with a fitting function y = 0.22(85) − 255(7)x, and a
reduced chi-squared of 0.70.

Instead of using our numerical calculations to correct for
this shift, we apply a linear extrapolation of the shifts (line
“centers”) to the zero-laser-power limit. This method was
more frequently used in various studies, since it works without
accurate knowledge of experimental parameters such as the
laser beam geometry and absolute laser intensities. However,
this approach relies on the assumption that the observed shift
has a linear dependence on the laser intensity. As we have
shown in Fig. 4, it fails at high laser intensities. To reduce this
nonlinear effect, we set a maximum intensity of I/Isat = 0.30
used in the extrapolation, therefore minimizing the nonlinear
effect while preserving the spectroscopic signal-to-noise ratio.

However, the nonlinear behavior of the power-dependent
shift might contribute to possible frequency offset in linear
fittings, even though we worked in the low-intensity regime.
To quantitatively assess this systematic shift, we ran six
independent groups of simulations, with a total number of
more than 5 × 106 MCWF simulations, and extrapolated the

FIG. 6. Weighted statistics of the linear fit intervals in simula-
tions. The shaded region represents 1σ standard deviation.

FIG. 7. Simulation results by varying the Monte Carlo input
parameters, the initial transverse velocity distribution σx and retrore-
flection beam loss δI .

frequency shifts obtained at different laser intensities to obtain
the zero-field limit. The solid line shown in Fig. 5 presents
an example of the extrapolation. The reduced chi-square for
a single linear fit ranged from 0.3 to 2. For each group of
simulations, the linear fit interval, the offset from the “true”
resonance center, was obtained. For linear fits with reduced
chi-squared larger than unity (χ2/dof > 1), the error bar of
the result was inflated by a factor of

√
χ2/dof. Statistics

of the results obtained from these six groups of simulations
is shown in Fig. 6. The weight-averaged shifts at I/Isat = 0
was determined to be −0.50 ± 0.45 kHz with a reduced chi-
squared of 0.59 (see Fig. 6).

Our simulations show that by extrapolating results ob-
tained below I/Isat = 0.3 to the zero field, the residual light-
force-induced shift is around −0.5 kHz, with an uncertainty of
also about 0.5 kHz mainly from statistics. We also carried out
simulations with different input parameters, such as the initial
transverse velocity spread σx and retroreflected beam power
loss δI . Using a σx of 0.4 ± 0.1 m/s and a δI of 5% ± 2%,
we found the derived fit intervals consistent with each other
within current statistical uncertainty. The simulated results for
various input parameters are shown in Fig. 7.

C. Methods to suppress light-force-induced effect

As discussed above, the light-force-induced shift actually
comes from the modification of the spatial distributions of
the atoms and eventually changes the ratio passing through
the second slit. Since a wider slit would be less sensitive
to the spatial distribution of the atoms, we can in principle
reduce this effect by using a wider slit. Simulations under
different slit widths were carried out and the results are
shown in Fig. 8. It turns out that the light-force shift can be
suppressed by a factor of three, as the slit width x2 varies
from 0.5 to 2 mm. This effect can be dramatically suppressed
by an order of magnitude by replacing slit2 with a slit of
5 mm width. In practical experiments, however, it comes
with the price of larger Doppler broadening and increasing
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FIG. 8. Demonstration of suppressing light-force-shift by sim-
ulations using different x2 of 0.5 mm (circles), 2.0 mm (squares),
and 5.0 mm (triangles). The horizontal axis stands for single-beam
intensity for probe laser.

background noise since the detector receives more hot atoms
and scattering lights when a wider slit is used. Moreover, the
size of the detector also limits the effective width of the slit.

As an alternative method to reduce the light-force effect
due to the standing-wave field, instead of using a retrore-
flecting probe laser, one can rapidly switch between two
counterpropagating traveling-wave laser beams. Since each
time the atoms interact with only one laser beam, the optical
molasses effect would be eliminated. Therefore, the light-
force shift can be considerably suppressed while preserving
cancellation of the first-order Doppler shift. In that case, a
new challenge arises for a dedicated control of the wavefronts
of the laser beams, since imperfect overlap of the wavefronts
might result in residual first-order Doppler shift. Possible
systematic effects from the phase difference between the two
lasers should be considered.

A more appropriate method would be to run the experi-
ments under ultralow laser power (<100 nW, I/Isat < 0.01),
which would reduce the light-force shift by another order of
magnitude. This method comes with the price of sacrificing
the signal-to-noise ratio, since the excitation rate is propor-
tional to the laser power. This problem might be overcome
with our next generation atomic beam setup, which has a
metastable atomic helium beam flux at the level of 1011

atoms/(sr s), two orders of magnitude larger than that used
in our previous studies. Therefore, we expect to preserve the
spectroscopic signal-to-noise ratio while reducing the light-
force induced shift by an order of magnitude.

D. Consequences on previous measurements
of 2 3S-2 3P transitions of 4He

Here we discuss the consequence of the light-force-
induced shift on our previous measurements of the 2 3S-2 3P
transitions of 4He [6,9,19]. In the 2 3S1-2 3P1 measurement
[9], the typical uncertainty for one-day-averaged data ranged

from 2 to 5 kHz. Under such precision, we were unable to
find significant nonlinear behavior between the line center
and the laser power. However, according to our simulations,
along with the power-dependent shift and the nonlinear be-
havior in case of high laser powers, we realized that the
uncertainty for the light-force effect was underestimated.
Note that the maximum laser intensity we used in the ex-
trapolation was about 0.25Isat, being close to that used in
the simulations given above. Taking into account the results
shown in Fig. 6 and variations from different input parameters
(σx and δI), we conservatively assigned a systematic cor-
rection of +0.50(80) kHz for the light-force-induced effect.
Therefore, the reevaluated 2 3S1-2 3P1 transition frequency was
276 734 477 704.3(1.6) kHz.

We are aware of a recent microwave study on the 2 3P1-2 3P2

fine-structure interval by Kato et al. [22], which differs from
our previous results [6,19] by about −1 kHz (4.9σ ). Here
we discuss possible contributions from the light-force effect
in this discrepancy. Because the light-force effect largely
cancels in the frequency difference of two optical transitions,
the observed power dependence for the 2 3P1-2 3P2 interval
is about −0.8 kHz/μW [19], which is only 1/20 of the
power dependence for the 2 3S1-2 3P1 transition. Since the
correction due to the light-force effect was +0.50(80) kHz for
2 3S1-2 3P1 transition, we estimate that it should be no more
than +25(40) Hz for the 2 3P1-2 3P2 interval. Such a correc-
tion, however, cannot explain the −1 kHz (4.9σ ) discrepancy
between the results from microwave measurement [22] and
laser spectroscopy [6,19].

V. CONCLUSION

The light-force-induced frequency shift in the laser spec-
troscopy of an atomic beam was investigated experimen-
tally and theoretically. Substantial modification of the tra-
jectories of helium atoms in a standing-wave laser field
was observed by a position-resolving detector, which had
led to considerable distortions on the spectral lineshape. A
master equation describing the dynamics of open quantum
systems was presented, and the Monte Carlo wave-function
approach was applied to simulate atomic trajectories with a
quantum-mechanical treatment for the external motions. The
simulated spectra reproduced not only the characteristics of
the distortions in observed lineshape, but also the nonlinear
dependence of the fitted line centers on the laser power. This
effect was considerably large even with relatively low laser
power for light atoms such as helium. Taking into account
the light-force-induced shift at our experimental conditions,
we assigned a correction of +0.50(80) kHz to the 2 3S1-2 3P1

transition frequency. Methods to suppress the light-force shift
were also discussed, which will be applied in our new setup
under construction to improve the accuracy of the atomic
helium spectroscopy. A more accurate determination of the
2 3S-2 3P transition frequency of 4He and 3He may help to re-
solve the present disagreements in the 3He-4He nuclear charge
radius difference derived from different transitions [9,23–25].
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APPENDIX: MASTER EQUATION

In the quantized atomic center-of-mass (CM) motion de-
scription, the full Hamiltonian for the atom-laser system plus
the vacuum field is

H = HA + HR + VA-L + VA-R, (A1)

where HA = h̄ω0Pe + P2/2m is the atomic Hamiltonian in-
cluding both internal states and external motion, HR is the
vacuum radiation field Hamiltonian, and VA-L and VA-R are
the atom-laser and atom-radiation field coupling terms, re-
spectively. Note that, in the atomic Hamiltonian, Pe = |e〉〈e|
is a projection operator onto the excited state, and P is the
atomic CM momentum operator. The effects of atom-laser and
atom-radiation-field coupling are assumed to be independent.

We can view Eq. (A1) in terms of “system-reservoir”
interactions. The “small” system consists of the atom, laser,
and their interaction. The system Hamiltonian HS is

HS = HA + VA-L. (A2)

The reservoir in our case is the vacuum radiation field, which
is supposed to be sufficiently large and into which energy is
effectively and irreversibly dissipated.

With the Born–Markov approximation and other approxi-
mations, the master equation takes the Lindblad form

d (ρS )

dt
= − i

h̄
[HS, ρS] + L̂relax[ρS], (A3)

where ρS is the reduced density operator for the system in
which the degrees of freedom of the reservoir have been
traced over, ρS = TrR[ρ]. The remaining term, L̂relax[ρ], is
the relaxation superoperator acting on the reduced density
operator:

L̂relax[ρS] =
∑

m

[
CmρSC†

m − 1

2
(C†

mCmρS + ρSC†
mCm)

]
,

(A4)

where Cm are the quantum jump operators acting in the space
of the small system.

When taking the spontaneous emission including recoil
into account, the relaxation superoperator can be written as
[21,26]

L̂relax(ρS ) = −(�/2)(PeρS + ρSPe)

+ (3�/8π )
∫

d2

∑
ε⊥k′

exp(−ik′ · R)(ε∗ · S−)

× ρS (ε · S+)exp(ik′ · R), (A5)

where S+ = |e〉〈g| and S− = |g〉〈e| are the rasing and lower-
ing operators, respectively. The integral runs over the direction
of the emitted photon, with a wave vector k′ pointing in
the direction of the solid angle 
, and polarization ε are
orthogonal to the wave vector.

The superoperator [Eq. (A4)] suggests to choose the jump
operators as follows:

C
,ε =
√

3�

8π
e−ik′ ·R(ε∗ · S−). (A6)
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