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I. EXPERIMENTAL METHODS

We picked CO2 as the subject of our investigation and the infrared transitions of CO2 in this range have been
well documented in databases. The parameters and experimental conditions for all the experimental data presented
in Fig. 4 in the Main Text are summarized in Supplemental Table I. The Doppler broadened absorption spectra of
CO2 near 6414 cm−1 simulated under the experimental conditions is shown in Supplemental Fig. 1. The detuning
from the nearest transition to our target line is approximately 1.6 GHz, which is more than 3000 times the measured
Lamb dip’s width of 0.5 MHz. Note that all the ro-vibrational transitions of CO2 in the infrared, including those
“strong” lines, are actually far weaker than distant electronic transitions: Einstein A-coefficients for all these infrared
transitions are well below 1 s−1 (weaker than strong electronic transitions by 8 orders of magnitude or even more).
As a result, we excluded the possibility of asymmetry due to perturbations from nearby infrared transitions.

Saturated absorption spectroscopy measurements in this work were implemented with two independent setups with
different methods: cavity ring-down spectroscopy (CRDS) and wavelength-modulated cavity-enhanced absorption
spectroscopy (WM-CEAS). Details of the CRDS instrument are given in Supplemental Fig. 2. Two exemplary spectra
of 13C16O2 lines at 6243.476 cm−1 and 6270.020 cm−1 are shown in Supplemental Fig. 3, showing symmetric and
asymmetric lineshapes for two transitions with high and low Einstein A-coefficients, respectively. The configuration
of the WM-CEAS instrument is described in Supplemental Fig. 4. Typical results of 12C16O2 lines recorded by the
WM-CEAS method are shown in Supplemental Fig. 5.
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Supplemental Figure 1. Doppler broadened absorption spectrum of CO2 under the experimental conditions simulated with the
line list given in the HITRAN database.

Supplemental Table I. The parameters and Fano factors for experimental results of different transitions observed in this work.

Molecule Line parametersa Powerb qc

Position(cm−1) Intensity (cm/molecule) A (s−1) (W)
13CO2 6270.0204 5.64E-26 2.31E-5 140 0.383(54)

6271.5180 6.67E-26 2.80E-5 140 0.374(03)
6273.0087 7.51E-26 3.31E-5 140 0.187(19)
6274.4927 8.09E-26 3.84E-5 140 0.175(25)
6243.5668 1.09E-25 7.25E-3 140 -0.010(5)
6243.5436 6.03E-26 2.42E-3 140 0.058(11)
6243.5381 4.17E-26 1.21E-3 140 0.003(12)
6243.4758 3.17E-26 7.26E-4 140 0.030(18)
6243.4863 2.53E-26 4.83E-4 140 0.030(18)
6253.8955 2.01E-23 8.17E-3 90 0.008(3)

40 -0.002(2)
15 0.001(1)
5 0.003(1)

12CO2 6413.9526 1.03E-26 1.03E-5 805 0.343(15)
1570 0.434(15)

6479.5776 1.08E-24 8.42E-4 1030 -0.011(4)

a Line positions and intensities as well as the Einstein A-coefficients A were taken from the HITRAN database [1].
b Laser power inside the high-finesse cavity.
c Fano coefficient derived from fitting the spectra.
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Supplemental Figure 2. Schematic configuration of the experimental setup for cavity ring-down spectroscopy (CRDS).
Abbreviations: AOM: acousto-optical modulator, PD: photodiode detector, PI: proportion integration amplifier, PZT:
piezoelectric actuator, G-T: Glan-Taylor prism. A 1594 nm external-cavity diode laser (Toptica CTL-1550) was locked to
a temperature-stabilized high-finesse cavity (HFC) using the PDH method. The HFC is composed of a pair of high-reflectivity
mirrors (R ≈ 0.99995 in 1.54 - 1.7 µm) separated by a distance of 108.0 cm. The HFC length was stabilized through a PZT
driven by a phase-lock circuit based on the beat signal between the laser and an optical frequency comb. The comb was
referenced to a GPS-disciplined rubidium clock (GPS Reference-2000) with a stated relative frequency stability of 1× 10−11 at
1 s. Part of the probe laser beam passed an AOM and then coupled into the cavity. The AOM was driven by a radio frequency
(RF) source and the frequency was set exactly equal to the free-spectral-range of the HFC (138.86 MHz). A rectangular wave
of 500 Hz was applied on the RF source, which repeatedly produced ring-down events. The decay time τ , which relates to the
cavity loss including the absorption of the sample gas, was retrieved by fitting the ring-down signal with an exponential decay
function.
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Supplemental Figure 3. The recorded spectra of two ro-vibrational transitions of 13C16O2 by cavity ring-down spectroscopy
(CRDS). 13C-enriched carbon dioxide sample with stated 13CO2 abundance >99% was used, with a sample gas pressure of
2 Pa at room temperature. (a) The Q(4) line in the 31112 - 01101 band at 6243.4758 cm−1 with an Einstein A-coefficient of
7.26×10−4 s−1. (b) The R(16) line in the 41101 - 00001 band at 6270.0204 cm−1 with an Einstein A-coefficient of 2.31× 10−5

s−1. Scattered points are experimental data. Blue and red lines are fitting results by Lorentzian and Fano profiles, respectively.
The fitting residuals are shown in the lower panels (c) and (d).
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Supplemental Figure 4. Configuration of the experimental setup for wavelength-modulated cavity-enhanced absorption
spectroscopy (WM-CEAS). Abbreviations: AOM: acousto-optical modulator; EOM: electro-optical modulator; FC: fiber
coupler; TEC: temperature-controller; PD: photodiode detector; PI: proportion integration amplifier; PZT: piezoelectric
actuator; PC: personal computer. An 1559 nm external-cavity diode laser (Toptica DL Pro), amplified by a fiber-amplifier
(Koheras Boostik HPA), was locked to a longitudinal mode of a 44.6 cm HFC by the Pound-Drever-Hall method. A TEC unit
was used to stabilize the temperature of the EOM to reduce the residual amplitude modulation. A phase-lock circuit (after
PD1) was used to lock the beat frequency between the laser and an optical frequency comb. It was the same comb used in
the CRDS measurement. A photodetector (PD2) was used to monitor the laser power before the HFC and the signal was sent
to a locking servo to stabilize the laser power by changing the driving signal applied on the AOM. A direct CEAS scan could
be implemented by tuning the beat frequency, and the 1f -demodulated WM-CEAS signal (after PD4) was obtained when a
dither signal from a lock-in amplifier (SRS 830) was applied on the PZT attached to one of the high-reflective mirrors.
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Supplemental Figure 5. Typical experimental spectra for two ro-vibrational transitions of the 12C16O2 molecule by wavelength-
modulated cavity-enhanced absorption spectroscopy (WM-CEAS). Spectra were recorded at room temperature (296 K) and a
sample gas pressure of 2 Pa. (a) The WM-CEAS spectrum of the relatively strong transition, P(28) in the (30011)← (00001)
band, at 6479.5776 cm−1 which has an Einstein A-coefficient of 8.42×10−4 s−1. (b) The WM-CEAS spectrum of the relatively
weak transition, R(32) in the (41101)← (00001) band, at 6413.9526 cm−1 with an Einstein A-coefficient of 1.03×10−5 s−1. The
same dither signal and demodulation circuit were applied in the measurements of both lines. Scattered points are experimental
data. Blue and red lines are the fitting results with derivative Lorentzian and derivative Fano profiles, respectively. The fitting
residuals are shown in the lower panels (c) and (d).
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II. ANALYTICAL DERIVATION

In this section, we provide detailed derivations supporting the discussions presented in the main text. All the
symbols involved in this study are summarized in Table II and their corresponding definitions are provided as well.
In the following section, detailed derivations of the two-level and three-level molecules that interact with the probe
light are presented. The essential details for the analytical derivation of the asymmetric Doppler-free absorption
spectrum are derived under the approximation of two lowest-order sidebands due to the AC Stark shift modulation.
Additionally, the numerical methods to calculate the system absorption spectrum with the full model are stated in
Sec.(III), where more numerical results are presented.

A. Hamiltonian of the full-system

For the model considered in our theoretical studies, N three-level molecules (or atoms) are coupled to a standing-
wave probe light field, as shown in Fig. 1(a) in the main text. The system Hamiltonian considering the Doppler effect
reads (h̄=1)

H =
∑
j

Hj , (1)

with

Hj =ω12σ
j
22 + ω13σ

j
33 +

(
Ω12,j(t)

2
eiωptσj

12 +
Ω23,j(t)

2
eiωptσj

23 + h.c.

)
(2)

describing the j-th molecule. Here, h.c. denotes the Hermitian conjugate, σab corresponds to the jumping operator
|a⟩⟨b| between energy levels |a⟩ and |b⟩, and ωab is the frequency difference between them. The molecule-light coupling
is given by the Rabi frequency

Ωab,j(t) = 2dab × ξ × 2cos[kp(vjt+ zj,0)]. (3)

Here, dab is the electric dipole moment between energy levels |a⟩ and |b⟩, ξ is the standing-wave amplitude, kp is the
wavevector of the probe field, zj,0 is the initial location of the molecule in the axial direction, and vj is the velocity
for the j-th molecule along the direction of the probe laser beam. For the j-th molecule, in the rotating frame of
ωpσ

j
22 + 2ωpσ

j
33, the Hamiltonian can be simplified to

Hj = −∆12σ
j
22 −∆23σ

j
33 +

(
Ω12,j(t)

2
σj
12 +

Ω23,j(t)

2
σj
23 + h.c.

)
, (4)

where ∆12 = ωp − ω12 and ∆23 = 2ωp − ω13 are the detunings of the transitions with respect to the probe laser. For
a single molecule, its quantum state can be described by a density matrix ρ, and the evolution of its density matrix
ρab(|a⟩⟨b|) follows the Master equation [2]:

dρ

dt
= −i[H, ρ] +

∑
i

γi(LiρL
†
i −

1

2
L†
iLiρ−

1

2
ρL†

iLi) (5)

where Li is a dissipative jump operator and γi is the corresponding decoherence rate. In this work, we consider the
spontaneous emission of the energy levels, thus Li ∈ [σ12, σ13, σ23].

B. Two-level limit (Ω23(t) = 0)

In most experiments, the probe laser is always near-resonant with the target transition. Although there are many
transitions in the molecule, other excess transitions have detunings that are orders of magnitude larger than the
interaction strengths in the system and hence are neglected in practicality. For instance, for excess energy level |3⟩,
we have |ωp−ω23| ≫ Ω12,Ω23, thus the far-off resonance transition is greatly suppressed. For simplicity, this transition
is ignored in conventional studies of light-matter interactions by setting Ω23(t) = 0. Then, we can approximate the
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Supplemental Table II. Table of all symbols presented in this work.

Symbol Description Remark
ωp frequency of the probe field
ωab transition frequency between two levels |a⟩ and |b⟩
γab decay rate from |b⟩ to |a⟩
P excitation probability to energy level |2⟩
I intensity of probe field
τ transit time
∆B transit-time broadening ∆B = 1/τ

∆ab detuning between the probe field and the transition from |a⟩ to |b⟩ ∆ab = ωp − ωab

Ωab Rabi frequency of transition from |a⟩ to |b⟩ probing by the probe field
γ3 decay rate of energy level |3⟩
δ modulation amplitude on energy level |2⟩
kp wave vector of the probe field
j noting the j-th molecule
vj longitudinal velocity for the j-th molecule
vt transverse velocity
c speed of light
ϵ0 permittivity of vacuum
h̄ Planck’s constant
zj instant location of the j-th molecule zj = vjt+ zj,0
zj,0 initial location of the j-th molecule
ζj variate of Bessel function, related to δ, kp ang vj ζj = δ/4kpvj

J±n(ζj) Bessel function of order n and variate ζj
q Fano factor
ωs frequency shift of the Fano profile from fitting
Γ linewidth of the Fano profile from fitting

A,B fitting parameters of the Fano function
H Hamiltonian
ρab density matrix element
σab transition operator from |b⟩ to |a⟩ i.e. |a⟩⟨b|
dab dipole moment of transition from |a⟩ to |b⟩
⟨v⟩ ensemble average of the longitudinal velocity vj
⟨τ⟩ ensemble average of transit time τ
m mass of the molecule
kB Boltzmann constant
r beam waist width of the standing-wave field
ξ amplitude of the standing-wave field

molecule with many transitions to a two-level model, and the corresponding Hamiltonian becomes

Hj = −∆12σ
j
22 +

(
Ω12,j(t)

2
σj
12 + h.c.

)
. (6)
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1. Absorption spectrum

In optical spectroscopy, the absorption line is acquired by measuring the transmission of the probe laser or the
induced fluorescence by scanning the laser frequency. Theoretically, we should solve the dynamics of the density
matrix element ρ(t) to produce the absorption spectrum. For an ensemble, the real and imaginary parts of the
susceptibility are contributed by the real and imaginary parts of the nondiagonal density matrix elements, which
correspond to the dispersion and absorption of the medium respectively. Based on the Hamiltonian Eq. (6) and the
master equation Eq. (5), the evolution of the system follows

dρj12(t)

dt
=

(
−i∆12 −

γ12
2

)
ρj12 + i

Ω12,j(t)
∗

2
(ρj11 − ρj22). (7)

Here, γ12 is the spontaneous emission rate from |2⟩ to |1⟩. Considering that the molecular gas is at room-temperature
and energy level |2⟩ is long-lived state, we can make an approximation ρ22 ≃ 0, ρ11 ≃ 1. With this approximation,
the saturation effect of the two-level system is removed, and then we can resolve the system absorption spectrum to
the linear limit.

Therefore, we obtain ρ12(t) based on the initial condition ρ12(0) = 0 as

ρj12(t) ≃d12ξ
(

eikvjt

kv − iγ12/2 + ∆12
+

e−ikvjt

−kv − iγ12/2 + ∆12

)
+

d12ξe
(−i∆12− γ12

2 )t
(

−1

kv − iγ12/2 + ∆12
+

−1

−kv − iγ12/2 + ∆12

)
. (8)

Obviously, the imaginary part of ρ12(t) is a function being symmetric with respect to the detuning (∆12) since it is
the result of a sum over the Lorentz function. Thus a typical symmetric absorption spectrum is acquired in previous
studies when ignoring the influence of far-off resonance coupling. Then, the probability of exciting the molecule to
level |2⟩ is calculated as

P =

∫ t

0

Ω∗
12(t

′)Im [ρ12(t
′)] dt′. (9)

Here, the integration of time is counting from the uniform distribution of molecules in the standing-wave field. As
a result, the absorption spectrum of the ensemble of the two-level system can be obtained by averaging over the
ensemble of molecules, and a conventional symmetric spectral profile is expected. Notably, the saturation effect is
excluded in Eq. (8) and Eq. (9), because we have assumed ρ22 ≃ 0, ρ11 ≃ 1 at first.

2. Saturated Absorption Spectrum (SAS)

In this section, we will recall the absorption spectrum without taking the linear approximation and the saturation
effect is included. Considering that the spontaneous emission rate of |2⟩ is very small, for the ultraweak transitions
considered in this work, we can treat each molecule as a closed quantum system [2] because the spontaneous emission
is negligible when the molecule passes through the probe laser beam. Then, we can solve the evolution of the states
more conveniently in a closed system. As a consequence, the probability P of the probe field exciting the molecule to
a long-lived energy level |2⟩ is calculated based on the Hamiltonian and Schrodinger equation.

In the rotating-frame, Eq. (6) can also be written as

Hj = d12ξ
[
e−i(−∆12−kpvj)t+ikpzj,0 + e−i(−∆12+kpvj)t−ikpzj,0

]
σj
12 + h.c. (10)

Moreover, considering that the standing-wave field amplitude follows a Gaussian distribution in the direction
perpendicular to the cavity-axis, when the j-th molecule passes through the standing-wave field, the coupling
Rabi frequency follows a Gaussian distribution over time. Then, the Hamiltonian can be rewritten as

Hj = d12ξe
− t2

2τ2 [e−i(−∆12−kpvj)t+ikpzj,0 + e−i(−∆12+kpvj)t−ikpzj,0 ]σj
12 + h.c. (11)

Here τ is the transit time, which is related to the beam waist width of the standing-wave field and transverse velocity
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of molecules. We define the state of the j-th molecule as

|ψj(t)⟩ = a(t)|1⟩+ b(t)|2⟩, (12)

whose evolution follows the Schrodinger equation

ih̄
∂|ψj(t)⟩
∂t

= Hj |ψj(t)⟩ (13)

Given the initial state |1⟩, with the approximation that d12ξτ ≪ 1, the solution of |ψj(t)⟩ could be represented as

|ψj(t)⟩ = cos [θj(t)] |1⟩ − isin [θj(t)] |2⟩, (14)

with the interaction angle induced by the Rabi frequency of the probe field as

θj(t) =

∫ ∞

−∞
d12ξe

− t2

2τ2

[
e−i(−∆12−kpvj)t+ikpzj,0 + e−i(−∆12+kpvj)t−ikpzj,0

]
dt

=d12ξ
√
2πτ

[
e−

1
2 (−∆12−kpvj)

2τ2+ikpzj,0 + e−
1
2 (−∆12+kpvj)

2τ2−ikpzj,0
]
. (15)

Thus the probability Pj of the probe field exciting the j-th molecule to long-lived energy level |2⟩ is presented
approximatively as

Pj ≈ |sin2 [θj(t)] | ≈ |θ2j (t)| −
1

3
|θ4j (t)|. (16)

In our proposed model, molecules follow the Maxwell-Boltzmann distribution f(vj) shown in Eq. (51), thus P should
be the results of average over the longitudinal velocity vj , i.e.

P =

∫ ∞

−∞
dvjf(vj)

∫ 2π/kp

0

dzj,0
2π/kp

Pj . (17)

By applying the relations for the averaging of the molecule’s initial location∫ 2π/kp

0

dzj,0
2π/kp

× e2ikpzj,0 = 0, (18)∫ 2π/kp

0

dzj,0
2π/kp

× 1 = 1, (19)

to the second-order term

|θ2j (t)| =
(
d12ξ

√
2πτ

)2 (
e−(∆12−kpvj)

2τ2

+ e−(∆12+kpvj)
2τ2

+ 2Re[e−(∆2
12+k2

pv
2
j )τ

2+2ikpzj,0 ]
)
, (20)

we can solve ∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

∣∣θ2j (t)∣∣
=
(
d12ξ

√
2πτ

)2
∫ ∞

−∞
dvjf (vj)

(
e−(∆12−kpvj)

2τ2

+ e−(∆12+kpvj)
2τ2

)
. (21)

Considering that only the molecules with longitudinal velocity satisfying the relation ∆12 ± kpvj ≈ 0 dominate the
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contribution to the absorption spectrum, we make the approximate that∫ ∞

−∞
dvjf (vj)

(
e−(∆12−kpvj)

2τ2

+ e−(∆12+kpvj)
2τ2

)
(22)

≈ f (vj = 0)

∫ ∞

−∞
dvj

(
e−(∆12−kpvj)

2τ2

+ e−(∆12+kpvj)
2τ2

)
= f (vj = 0)

√
2π

kpτ
,

and then we can obtain ∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

∣∣θ2j (t)∣∣ ≈ (
d12ξ

√
2πτ

)2 2
√
π

kpτ
f (vj = 0)

= 4π3/2 f (vj = 0)

kp
(d12ξ)

2
τ. (23)

Similarly, for the fourth-order term, we have∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

(∣∣θ4j (t)∣∣)
=
(
d12ξ

√
2πτ

)4
∫ ∞

−∞
dvjf (vj)

×
∫ 2π/kp

0

dzj,0
2π/kp

(
e−(∆12−kpvj)

2τ2

+ e−(∆12+kpvj)
2τ2

+ 2Re[e−(∆2
12+k2

pv
2
j )τ

2+2ikpzj,0 ]
)2

.

According to the relations in Eq. (19) and∫ 2π/kp

0

dzj,0
2π/kp

× cos2 (2kpzj,0) =
1

2
, (24)

we obtain ∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

(∣∣θ4j (t)∣∣)
=
(
d12ξ

√
2πτ

)4
∫ ∞

−∞
dvjf (vj)

{
e−2(∆12−kpvj)

2τ2

+ e−2(∆12+kpvj)
2τ2

+ 4e−2(∆2
12+k2

pv
2
j )τ

2
}

≈
(
d12ξ

√
2πτ

)4 f (vj = 0)
√

π
2

kpτ

(
2 + 4e−2∆2

12τ
2
)

=4
√
2π5/2 f (vj = 0)

kp
(d12ξ)

4
τ3

(
1 + 2e−2∆2

12τ
2
)
. (25)

Therefore, we can solve the absorption spectrum around vj ≈ 0 as

P ≈ 4π3/2 f (vj = 0)

kp
(d12ξ)

2
τ − 4

√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3

(
1 + 2e−2∆2

12τ
2
)
. (26)

Obviously, the saturation effect induces a reduction in the population on |2⟩ when increasing the drive amplitude ξ.
The first term corresponds to the linear absorption component in which the excitation probability is proportional to
the power of the probe laser I ∝ ξ2, and the second term indicates the saturation effect which is proportional to I2.
In particular, there is an additional saturation when the probe detuning ∆12 is very small, which is the well known
SAS that the molecules with velocity around vj ≈ 0 experience a stronger drive amplitude of the standing wave and
thus the saturation effect is more significant. Therefore, we obtain a symmetric Gaussian-like SAS profile around the
center ∆12 ≈ 0 for two-level systems by ignoring the influence of far-off resonance coupling.
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Supplemental Figure 6. Energy level structure of the full system with more than one excess far-off resonance coupling levels
noted as |n⟩ shown on the left and energy level structure of the equivalent model with only one excess far-off resonance coupling
levels noted as |3′⟩ on the right. The equivalent far-off resonance coupling level |3′⟩ can induce the same AC Stark shift on |2⟩
as the all levels

∑
n|n⟩.

C. Three-level model (Ω23(t) ̸= 0)

1. Condition that two-level approximation is not valid

For a long-lived two-level molecule interacting with a standing-wave field of amplitude ξ, the population on the
long-lived energy level |2⟩ is proportional to P ∝ d2ξ2τ2, where d12 is the electric dipole moment between |1⟩ and
|2⟩. τ is the transit time, which depends on the beam waist width of the probe light and transverse velocity of the
molecule. Considering d212 ∝ γ12, ξ2 ∝ I and τ = 1/∆B , we can obtain P ∝ Iγ12/∆

2
B , where I is the intensity of

the optical field. To observe the Doppler-free absorption spectrum, the condition P ∼ O(10−4) should be satisfied.
Although the narrow-linewidth transition (|1⟩ → |2⟩) is near-resonant, other excess transitions inevitably exist (as
shown in Supplemental Fig. 6). For simplicity, we consider only one additional far-off resonance excited state |3⟩ and
the Rabi frequency of coupling with the probe field is Ω23 ∝

√
Iγ23, where γ23 is the decay rate from |3⟩ to |2⟩. For

the detuning between the probe light and the excess transition |∆23| = |ωp − ω23| ≫ Ω23, γ23, we could neglect the
population on |3⟩ (∼ Ω2

23/∆
2
23) but keep the energy shift on |2⟩ due to the AC Stark effect (δ ∼ Ω2

23/∆23). Then we
could estimate the modulation on frequency of |2⟩ approximately as

δ ∝ γ23
γ12

P ∆2
B

∆23
(27)

When the transit-time broadening ∆B ≫ γ12, the excessive effects can’t be ignored ever if |δ|/∆B is not negligible. If
P ≃ 10−4, ∆B/2π ≃ 106 Hz, ∆23/2π ≃ −1015 Hz, γ23/2π ≃ 108 Hz, when γ12/2π < 10−4 Hz, the amplitude of AC
Stark shift is comparable to the transit-time broadening, thus the far-off resonance coupling can’t be ignored.

In fact, there may be more than one excess far-off resonance level such as |n⟩, (n = 3, 4, 5, ...) as shown in the left
of Supplemental Fig. 6. The AC Stark shift is contributed by all excess far-off resonance transitions noted as σ1n and
σ2n. Thus the total energy shift on |2⟩ is

∑′
n[(d2n · ξcos(kvjt))2/∆2n− (d1n · ξcos(kvjt))2/∆1n], where d2n (d1n) is the

electric dipole moment between energy levels |2⟩ (|1⟩) and |n⟩. ξ is the standing-wave amplitude. ∆2n = ωp − ω2n,
∆1n = ωp − ω1n. To simplify, an equivalent far-off resonance coupling level |3′⟩ is proposed, which can induce the
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same AC Stark shift amplitude, i.e.:

δ ≃
∑
n

[
(d2n · ξ)2

∆2n
− (d1n · ξ)2

∆1n
] =

(d23′ · ξ)2

∆23′
− (d13′ · ξ)2

∆13′
(28)

as shown on the right of Supplemental Fig. 6. Especially in the carbon dioxide system, the levels from a series states
1Πu (104 ∼ 110 nm) and 1Σ+

u (110 ∼ 114 nm) could possibly be involved in the far-off resonance coupling, according
to the VUV absorption spectrum of CO2 [3] and state-to-state photodissociation dynamics studies [4–6]. The full
system with many excess far-off resonance transitions can also be simplified as a two-level model based on the large
detuning condition. The influence from all excess far-off resonance energy levels is shown as an effective periodic
energy shift on |2⟩, as shown in Fig. 1b in the main text.

2. Effective two-level model and the Hamiltonian

When the far-off resonance coupling between σj
23 and the standing-wave can not be ignored, the three-level model is

acquired, as shown in Fig. 1b of the main text. Considering |∆23| ≫ Ω23,j(t), we apply the fast-varying approximation
that ρ13, ρ31, ρ23, ρ32 can arrive to the steady-state immediately, i.e. dρ13/dt = 0, dρ31/dt = 0, dρ23/dt = 0,
dρ32/dt = 0. Substituting the steady-state solution of ρ13, ρ31, ρ23, ρ32 into the time dependent evolutionary differential
equations of ρ11, ρ12, ρ21, ρ22, and considering γ12, γ13, Ω12,j(t), Ω23,j(t), |∆12,j | ≪ |∆23,j |, we can obtain the simplified
equation

dQ
dt

= M · Q + a (29)

Here Q = {ρ11, ρ12, ρ21, ρ22}T , a is a constant vector for a = {a1, a2, a3, a4}T and M is a coefficient matrix:

M ≃


−γ13 iΩ12(t)

2
−iΩ12(t)

2 −γ13 + γ12
iΩ12(t)

2 −γ12

2 − i[∆12 − δ
2 (1 + cos(2kvjt))] 0 −iΩ12(t)

2
−iΩ12(t)

2 0 −γ12

2 + i[∆12 − δ
2 (1 + cos(2kvjt))]

iΩ12(t)
2

0 −iΩ12(t)
2

iΩ12(t)
2 −γ12 − γ23

 (30)

where δ×( 12 +
1
2cos(2kvjt)) =

Ω2
23,j(t)

4∆23
is the AC Stark shift on |2⟩ from the excess far-off resonance transition |2⟩ → |3⟩

, which is ignored in the two-level limit system because of Ω23(t) ≃ 0. Then an effective two-level model is acquired
based on the large detuning condition and the influence of excess far-off resonance shown as the energy shift on |2⟩
due to the AC Stark effect.

For the periodically modulated two-level scheme interacting with a standing-wave field, the effective Hamiltonian
of the j-th molecule can be given by

Hj =

[
−∆12 +

δ

2
(1 + cos(2kvjt))

]
σj
22 +

[
Ω12,j(t)

2
σj
12 + h.c.

]
. (31)

D. Principle of the proposed nonlinear Fano-like resonance

Next, we briefly explain the principle of the proposed nonlinear Fano-like resonance and the reason for the
asymmetrical absorption line-shape based on the Hamiltonian of the modulated two-level model as shown in Eq. (31).
First, the periodic energy shift on |2⟩ in the time domain can be converted to a series of modulation sidebands
in the frequency domain through Jacobi-Anger expansion. In the rotating frame of δ

2cos(2kpvjt + 2kpzj,0)σ
j
22, the

Hamiltonian Eq. (31) becomes

Hj =

(
−∆12 +

δ

2

)
σj
22 +

[
Ω12,j(t)

2
e
−i

δ·sin(2kpvjt+2kpzj,0)

4kpvj σj
12 + h.c.

]
. (32)
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Supplemental Figure 7. Optical comb with a frequency difference of 2kpvj and sidebands of different amplitudes. Optical comb
probes a static molecule that induces the same spectrum for a moving molecule in a standing-wave field.

According to the Jacobi-Anger expansion

e−iζsinθ =

∞∑
n=−∞

Jn(−ζ)einθ, (33)

the Hamiltonian can be expanded as

Hj =

(
−∆12 +

δ

2

)
σj
22 +

∞∑
n=−∞

[
Ω12,j(t)

2
Jn (−ζj) ei2nkpvjt+i2nkpzj,0σj

12 + h.c.

]
, (34)

with ζj = δ
4kpvj

. Substituting the moving induced time-dependent Rabi frequency

Ω12,j(t) = 2d12ξ(e
ikpvjt+ikpzj,0 + e−ikpvjt−ikpzj,0), (35)

which contributed a varying phase factor and was also related to the Doppler-effect, into Eq. (34), we obtain

Hj =

(
−∆12 +

δ

2

)
σj
22 +

[ ∞∑
n=−∞

d12ξJn(−ζj)eikp(2n+1)(vjt+zj,0)σj
12 +

∞∑
m=−∞

d12ξJn(−ζj)eikp(2m−1)(vjt+zj,0)σj
12 + h.c.

]

=

(
−∆12 +

δ

2

)
σj
22 +

∞∑
n=−∞

[
d12ξ[Jn(−ζj) + Jn+1(−ζj)]eikp(2n+1)(vjt+zj,0)σj

12 + h.c.
]
. (36)

Eventually, the time-dependent driving Hamiltonian for the moving molecules in a standing-wave probe field can be
rewritten as a static molecule driven by multiple sidebands, i.e. a comb of drive lasers with a frequency difference
of 2kpvj . The amplitude of the comb tooth with the frequency of 2(n + 1)kpvj(n ∈ Z) is contributed by the sum
of Jn(−ζj) + Jn+1(−ζj) as shown in Supplemental Fig. 7. To the first-order approximation for |ζj | ≪ 1, the two
sidebands with amplitude of J±1(−ζj) ≃ ∓ ζj

2 contribute to the probe with π phase difference and eventually lead to
anti-symmetric absorption spectrum.
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E. Analytic derivation of asymmetric spectral profile

1. Doppler-free Lamb-dip spectrum

In the following section, we further explain the asymmetric line-shape of the Lamb-dip spectrum through the
asymptotic solution of the excitation probability P. The P value can be determined by solving the density matrix via
the master equation, however, it is extremely challenging to solve Eq. (36) with all sidebands involved. Most of the
molecules contributing to the absorption spectrum, generally satisfy the limitation of | δ

4kpvj
| ≪ 1. Hence we apply the

approximation that only the two lowest-order sidebands are considered since Jn(ζ) ∝ ζn. Therefore, the simplified
Hamiltonian is

Hj =

(
−∆12 +

δ

2

)
σj
22 +

Ω12,j(t)

2

[
J0 (−ζj) + J1 (−ζj) ei2kpvjt+i2kpzj,0 + J−1(−ζj)e−i2kpvjt−i2kpzj,0

]
σj
12 + h.c. (37)

For the Doppler-free Lamb-dip spectrum, similar to the treatments of the two-level limit, we can solve the system
absorption in the limit of the closed system. The asymptotic Hamiltonian Eq. (37) can be rewritten as

Hj =d12ξe
− t2

2τ2

[
J0(−ζj)(e−i(−∆12+

δ
2−kpvj)t+ikpzj,0 + e−i(−∆12+

δ
2+kpvj)t−ikpzj,0)+

J1(−ζj)(e−i(−∆12+
δ
2−kpvj)t+ikpzj,0 − e−i(−∆12+

δ
2+kpvj)t−ikpzj,0)

]
σj
12 + h.c. (38)

Thus, the interaction angle induced by the Rabi frequency of the probe field is

θj(t) =

∫ ∞

−∞
dtd12ξe

− t2

2τ2 [J0(−ζj)(e−i(−∆12+
δ
2−kpvj)t+ikpz0 + e−i(−∆12+

δ
2+kpvj)t−ikpz0)]

+

∫ ∞

−∞
dtd12ξe

− t2

2τ2 [J1(−ζj)(e−i(−∆12+
δ
2−kpvj)t+ikpz0 − e−i(−∆12+

δ
2+kpvj)t−ikpz0)]

=d12ξ
√
2πτJ0(−ζj)

[
e−

1
2 (−∆12+

δ
2−kpvj)

2τ2+ikpz0 + e−
1
2 (−∆12+

δ
2+kpvj)

2τ2−ikpz0
]

+ d12ξ
√
2πτJ1(−ζj)

[
e−

1
2 (−∆12+

δ
2−kpvj)

2τ2+ikpz0 − e−
1
2 (−∆12+

δ
2+kpvj)

2τ2−ikpz0
]
. (39)

Since∣∣θ2j (t)∣∣ =(
d12ξ

√
2πτJ0(−ζj)

)2
(
e−(−∆12+

δ
2−kpvj)

2τ2

+ e−(−∆12+
δ
2+kpvj)

2τ2

+ 2e
−
[
(−∆12+

δ
2 )

2
+(kpvj)

2
]
τ2

cos (2kpz0)

)
+
(
d12ξ

√
2πτJ1(−ζj)

)2
(
e−(−∆12+

δ
2−kpvj)

2τ2

+ e−(−∆12+
δ
2+kpvj)

2τ2

− 2e
−
[
(−∆12+

δ
2 )

2
+(kpvj)

2
]
τ2

cos (2kpz0)

)
+
(
d12ξ

√
2πτ

)2

J0(−ζj)J1(−ζj)2
(
e−(−∆12+

δ
2−kpvj)

2τ2

− e−(−∆12+
δ
2+kpvj)

2τ2
)
, (40)

applying the relations Eq. (19) and Eq. (24), and noting that the difference between the two exponential function
gives

e−(−∆12+
δ
2−kpvj)

2τ2

− e−(−∆12+
δ
2+kpvj)

2τ2

=e−∆2
12τ

2−k2
pv

2
j τ

2
[
e2(−∆12+

δ
2 )kpvjτ

2

− e−2(−∆12+
δ
2 )kpvjτ

2
]

≈e−∆2
12τ

2−k2
pv

2
j τ

2

[
4

(
−∆12 +

δ

2

)
kpvjτ

2

]
, (41)
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the absorption due to the second-order terms of θj is∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

(∣∣θ2j (t)∣∣)
≈
(
d12ξ

√
2πτ

)2 f (vj = 0)

kp

[
J2
0 (−ζj)2

√
π

τ
+ J2

1 (−ζj)2
√
π

τ
+ 2J0(−ζj)J1(−ζj)e−∆2

12τ
2

√
π

τ
4

(
−∆12 +

δ

2

)
kpvjτ

2

]
.

(42)

Moreover, since J1(−ζj) ≪ J0(−ζj), we have∫ ∞

−∞
dvjf (vj)

∫ 2π/kp

0

dzj,0
2π/kp

(∣∣θ2j (t)∣∣)
≈4π3/2 f (vj = 0)

kp
J2
0 (−ζj) (d12ξ)

2
τ + 16π3/2 f (vj = 0)

kp
J0(−ζj)J1(−ζj)kpvj (d12ξ)2 τ3

(
−∆12 +

δ

2

)
e−(∆12− δ

2 )
2
τ2

.

(43)

It is surprising to find that the second term shows a spectral feature ∝ e−(∆12− δ
2 )

2

around ∆12 ≈ 0, indicating a
anti-symmetric absorption spectrum. Eventually, we solved the difference of the absorption spectrum to a background
as

∆P = 16π3/2 f (vj = 0)

kp
J0(−ζj)J1(−ζj)kpvj (d12ξ)2 τ3 × (−∆̃12)e

−∆̃2
12τ

2

− 8
√
2π5/2

3

f (vj = 0)

kp
J4
0 (−ζj) (d12ξ)

4
τ3e−2∆̃2

12τ
2

≈ 16π3/2 f (vj = 0)

kp
J1(−ζj)kpvj (d12ξ)2 τ3 × (−∆̃12)e

−∆̃2
12τ

2

− 8
√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3e−2∆̃2

12τ
2

= −8
√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3

[
e−2∆̃2

12τ
2

− 3
√
2

8π

δ

(d12ξ)
2 × ∆̃12e

−∆̃2
12τ

2

]

= −8
√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3

[
e−2∆̃2

12τ
2

+
3
√
2

16π

δ

(d12ξτ)
2 × ∂e−∆̃2

12τ
2

∂∆̃12

]
(44)

where we take J±1(−ζj) ≃ ∓ζj/2 for |ζj | ≪ 1, and ∆̃12 = ∆12 − δ/2. Obviously, the asymmetry comes from the
second term in Eq.(44). Moreover, d12ξ represents the Rabi frequency of the coupling between the weak transition
and probe field, which can be replaced as

d12ξ =

√
γ12

3λ312
4h̄π2c

I

n
(45)

Here h̄ is the Planck constant, c is the speed of light, n is the refractive index, and I is the intensity of the standing-wave
laser field. Thus Eq.(44) can be rewritten as

∆P =− 8
√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3

[
e−2∆̃2

12τ
2

+
3
√
2

16π

δ

(d12ξτ)
2 × ∂e−∆̃2

12τ
2

∂∆̃12

]

=− 8
√
2π5/2

3

f (vj = 0)

kp
(d12ξ)

4
τ3

[
e−2∆̃2

12τ
2

+

√
2

32π2

δ

γ12τ2
h̄ω3

12

c2I
× ∂e−∆̃2

12τ
2

∂∆̃12

]
(46)

The analytical expression of ∆P given in Eq.(46) further shows that the π phase difference of two sidebands
J±1(− δ

4kpvj
) leads to an anti-symmetric polarizability of the molecules, which contributes to the asymmetric absorption

spectrum. Moreover, the dependence of the asymmetric degree on the modulation δ and decay rate γ12 are shown in
Fig. 3(a) and 3(d) of the main text respectively, and we find that the numerical results agree well with Eq.(46).
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2. Estimation of the Fano factor

To quantify the asymmetric degree of the calculated absorption spectra, the Doppler-free absorption profiles are
fitted with the well-known Fano function

P = A
(q2 − 1)

1 + (
ωp−ω12+ωs

Γ )2
+ 2Aq

ωp−ω12+ωs

Γ

1 + (
ωp−ω12+ωs

Γ )2
+B. (47)

In the Fano function, the parameter A is the amplitude of the spectrum profile, B is the baseline amplitude, q shows
the asymmetry degree, ωp − ω12 + ωs and Γ correspond to the frequency detuning and the width of the Fano profile
respectively. Therefore, ωs shows the frequency shift in the asymmetrical absorption spectrum.

The conventional Fano profile arises from the interference between two transition pathways, one towards a discrete
excited state and the other to a continuum of states. In contrast, the asymmetry in this work is due to a nonlinear
Fano-like resonance not with a continuum but with many distant discrete strong transitions. In addition, the Fano
factor is limited to |q| ≤ 1 for our mechanism.

By comparing our asymptotic expression of the Doppler-free absorption spectrum with the usual Fano function, we
can find that the asymmetry is determined by the ratio between the symmetric term and the anti-symmetric term in
Eq. (46). Therefore, we calculated the asymmetric degree as the ratio,

q̃ ≃
√
2h̄ω3

12

32π2c2
δ∆B

γ12I
. (48)

Here ∆B = 1/τ is the transit-time broadening. We can find the dependence of the asymmetric degree q̃ shown in
Eq. (48) with the parameters δ, γ12 and ∆B , agrees well with our numerical calculated results shown in Fig. 3 in
the main text, especially when |q| ≪ 1. Considering the two factors from previous results: (1) the Fano factor q
approximates the asymptotic results q̃ when |q| ≪ 1; (2) |q| should not exceed 1 since the asymmetry arises from the
anti-symmetry of the Gaussian absorption spectrum, we made the conjecture of the Fano factor from the q̃ parameter
as

q =
q̃

1 + |q̃|
. (49)

Then, we obtain q ≈ q̃ for |q|, |q̃| ≪ 1 and also q ≈ −1 when q̃ ≪ −1 or q ≈ 1 when q̃ ≫ 1. The equation is further
numerically tested, as plotted by the blue line in Supplemental Fig. 11. More details are presented in Sec.(III B).

F. Theoretical discussion of the CO2 experiments

Weak target lines (noted as |2⟩ in our model) experimentally investigated in experiments of CO2 are listed in
Supplemental Table 1, from which we can calculate that λ12 ≃ 1.6 µm and ω12/2π ≃ 1.9 × 1014 Hz. Electronic
transitions (noted as |3⟩ in our model) of CO2 are located at approximately 108.85 nm with Einstein A-coefficients
around O(109) s−1[3]. Thus we can calculate that ω23/2π ≃ 2.57 × 1015 Hz, γ23/2π ≃ 1.59 MHz, and ∆23/2π ≃
2.38× 1015 Hz. For CO2 passing through a field with a waist width of r = 0.5 mm at room temperature (297 K), we
estimate that the transit-time broadening is ∆B/2π ≃ 0.11 MHz. Provided that the Born-Oppenheimer approximation
holds for the electronic states of CO2, it is reasonable to assume that the electronic excited states are the same for
all isotopologues. Thus the above parameters of electronic transitions can be applied to 13CO2 and 12CO2.

Similar to the example given in the main text following Eq.(1), when the modulation amplitude of δ is comparable
with ∆B (roughly δ ∼ 0.1∆B), we can estimate that the NFR effect and the resulting asymmetric line profile can be
observable. Thus substituting P ∼ O

(
10−4

)
, ∆B , γ23 and ∆23 mentioned above into Eq. (1), we can estimate that

the NFR effect can be observed when γ12/2π <∼ 10−5 Hz. Compared with the experimental results shown in Fig. 4(c)
in the main text, we find that the asymmetric line-shape almost disappears q ∼ 0 for γ12/2π > 104 Hz, which agrees
well with our theoretical prediction.

We can estimate whether the asymmetry will appear in the spectrum not only according to Eq. (1) but also
according to Eq. (4). According to Eq.(4), an asymmetric line be observed in case q̃ becomes significant (q̃ >∼ 0.1).
Moreover, we can see the influence of each parameter on the degree of asymmetry through Eq. (4), and even estimate
a q value combination the rule of thumb q = q̃/(1+ q̃). According to Eq.(4), obviously, the “benchmark of asymmetry
q = q̃/(1 + q̃)” increases with δ/γ12 and ∆B (the first term of q̃) but is irrelevant to intensity (the second term of q̃).
For the specific estimated values of q, taking ∆B/2π = 0.1 MHz at room temperature for CO2, the q value of CO2 is
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Supplemental Figure 8. Comparison between theoretical prediction results and experimental results. The theoretical results
are obtained with Eq. (4) and the rule of thumb q = q̃/(1 + q̃).

estimated as 0.203, 0.174, 0.151, 0.133, 0.012, 0.008, 0.005, 0.002, 0.001, and 0.001 for different experimental values
of γ12/2π in Fig. 4(c), respectively. A more intuitive comparison can be found in Supplemental Figure 8. We find
that the theoretical predictions basically match the experimental results except for the first two data points. For the
difference of approximately 0.2 between the theoretical prediction and the experimental results for the first two data
points, according to the comparison between the analytic and numerical results as shown in Supplemental Figure 11,
we think it is within the reasonable range of error. With the parameters of Fig.4(d), γ12/2π = 1.6 × 10−6 Hz, the q
value independent of the light intensity is estimated to be -0.37. Comparing the estimated values of Figs. 4c & 4d
with the experimental results, we find that they are basically consistent, which firmly supports our model.

III. NUMERICAL CALCULATION OF THE ABSORPTION SPECTRUM

To directly verify the mechanism of the proposed nonlinear Fano-like resonance and the dependence of the
asymmetric degree on parameters, such as δ and γ12, we numerically calculated the absorption to the long-lived
energy level |2⟩, which also corresponds to the probability P of the molecule excited to |2⟩ when the molecule travels
through the probe field. In the main text, the numerical results are presented in Figs. 2, 3, and 4. Here, we provide
a detailed description of our numerical calculation method.

A. Method for Numerical calculation

For moving molecules at room temperature, the mean excitation probability P to the long-lived energy level |2⟩ is
calculated as

P =
i

2

∫ ∞

−∞
f(v)dv

∫ ∞

0

g(vt)dvt

∫ r
vt

0

[Ω12(v, t
′
)ρ21(v, t

′
)− Ω∗

12(v, t
′
)ρ12(v, t

′
)]dt

′
, (50)

which averages over the ensemble of molecules by considering velocities along (v) and perpendicular (vt) to the
direction of the probe beam. The density matrix elements ρ12 and ρ21 can be acquired based on the Hamiltonian Eq.
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(31) shown in Sec.(II C 2). We have

f(v) =

√
m

2πkBT
e
− mv2

2kBT , (51)

and

g(vt) =
mvt
kBT

e
− mv2

t
2kBT , (52)

which are the one-dimensional and two-dimensional Maxwell-Boltzmann distribution functions, respectively. Here, m
denotes the mass of a single molecule, kB is the Boltzmann constant, and T is the temperature. For a beam waist
width of r, the transit time of the molecule is τ = r

vt
, and the temporal integration relies on the fact that the position

of molecules is uniformly distributed in the beam, which equivalently gives a uniform distribution of instances in the
time domain. The density matrix element ρ12(t) can be obtained numerically by solving the differential equations of
density matrix elements based on the Hamiltonian and master equation, as described in the previous section. The
integrals are numerically implemented by discretizing the velocities and time into steps, i.e. continuous integrals are
replaced by discrete sums as

P =
i

2

∞∑
v=−∞

f(v)dv

∞∑
vt=0

g(vt)dvt

r
vt∑

t′=0

[Ω12(v, t
′
)ρ21(v, t

′
)− Ω∗

12(v, t
′
)ρ12(v, t

′
)]dt

′
(53)

Supplemental Fig. 9 explains the details of the numerical simulations. Shown in Supplemental Fig. 9(a) is the
excitation probability versus the probe frequency detuning ∆12 = ωp − ω12 for molecules at a given longitudinal
velocity v and a given transit time τ . Due to the Doppler effect, the P is nonzero when the probe laser matches the
velocity of the molecule, and the spectrum shows a broadening due to the transit time. For a given v, when averaging
over the distribution of vt, i.e. the τ , the spectrum shows a smoother broadening, as shown in Supplemental Fig. 9(b).
If τ is fixed and taking average over v, we observe a full absorption spectrum, showing dips at the center ∆12 ≈ 0
due to the saturation absorption effect. However, for different τ , the spectrum shows different asymmetric spectral
profiles. When solving the full model by averages over all three variables, we arrive at the final spectrum. Shown in
Supplemental Fig. 9(d) is a typical spectrum, with a fitting Fano factor of −0.35.

Absorption spectra for a single molecule with different modulation amplitudes δ are calculated with the ensemble
average of longitudinal speed ⟨v⟩ and transit time ⟨τ⟩, and the results are shown in Supplemental Fig. 10. In
Supplemental Fig. 10(a)-(c), we can find that the asymmetric degree, which is quantified by the Fano factor q,
increases with |δ|, and the dependence of the asymmetric degree on the modulation amplitude is also shown in
Fig. 3(a) in the main text. For the numerical calculation in the main text, we only considered the situation that the
AC Stark shifts on |2⟩ is larger than that on |1⟩, thus δ < 0 is taken in our numerical calculation. However, situation
that δ > 0 is also possible, which relates to the transition dipole moments. Absorption spectra for a single molecule
with δ > 0 are shown in Supplemental Figs. 10(a)-(c). We can find that the same modulation amplitude |δ| leads
to the same asymmetric degree and the sign of δ determines the sign of asymmetric degree q. In the Doppler-free
absorption spectrum, the asymmetric degree depends on not only the modulation amplitude δ, but also the decay
rate γ12 and the transit-time broadening, which has been systematically studied in the main text. Further discussions
about the dependence on parameters are provided in the next section.

B. Comparison of the analytic results of the Fano factor(q) with the numerical results

We can acquire the dependence of the asymmetric degree on the parameters δ, γ12 and ∆B , according to Eq. (48)
and (49). Here, the relation between the asymmetric degree and δ/γ12 is further investigated, and the numerical
results are summarized in Supplemental Fig. 11. The results are also shown in Fig. 3(e) in the main text and we can
find that the asymmetric degree q increases when δ increases and γ12 decreases. From the projection of Fig. 3(e) in
the main text, the contour lines with the asymmetric degree q are approximately coincident with the yellow lines,
which are plotted by setting δ/γ12 constant. The numerically fitted q shows a typical saturation-like behavior when
increasing the dimensionless parameter δ/γ12, thus we fit the curve by an empirical saturation formula

q =
δ/γ12

109.4 + |δ/γ12|
. (54)
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Supplemental Figure 9. Numerically solved absorption spectra. (a) The spectrum for a given longitudinal velocity v and transit
time τ . (b) The spectrum for a given v, but average over the ensemble with different transit time τ . (c) The spectrum for a
given transit time τ , but average over the ensemble with different longitudinal speed. (d) A typical spectrum by the full model
corresponding to an ensemble average of all three integrals. In the main text, all the numerical results are implemented with
the full model. Moreover, to further verify the proposed model, we take another set of parameters that Ω12/2π=0.07 MHz,
γ12/2π = 0.4 × 10−11 MHz, δ/2π = −0.07 MHz, the relative molecular mass is 45, the temperature is 295 K and the beam
waist width of the standing-wave field is 0.5 mm.

As shown by the red line in Supplemental Fig. 11, with the black circles representing the data points, the empirical
formula fits the numerical results very well. When δ/γ12 ∼ O(109.4), asymmetry can be shown in the absorption
spectrum and the asymmetric degree q increases with increasing δ and decreasing γ12. Thus we can estimate the
asymmetric degree q with given δ and γ12 to estimate the influence of excess transitions in far-off resonance without
complex numerical calculations. Moreover, the blue line calculated with the empirical formula [Eq. (48) and (49)]
is slightly underneath the numerical results, which implies that the estimated asymmetric degree q with Eq. (48)
and (49) are smaller than the real asymmetric degree. This is because we have ignored the terms of high-order
sidebands (Jn(−ζj), n ≥ 2), which also contribute to the asymmetry of the spectrum. Without any fitting parameter,
the excellent agreement between the conjectured formula and numerical results confirms our physical mechanism and
asymptotic derivations, and also provides an experimentally feasible criterion for evaluating the asymmetric spectral
profile of the proposed nonlinear Fano-like resonance.

C. Simulation for hydrogen deuteride(HD)

In this section, we show detailed information for the calculations about the asymmetric Doppler-free absorption
profile of HD, to support that the proposed mechanism can be used to explain the asymmetric profile observed in
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Supplemental Figure 10. Asymmetric Doppler-free absorption spectra for different δ. (a)-(f) The spectra of the mean excitation
probability of a single molecule P for different modulation amplitude δ. Other parameters are the same as those in Supplementar
Fig. 9.

Supplemental Figure 11. The dependence of the Fano factor on the dimensionless parameter δ/γ12. Circles are the Fano
factors q, which are acquired by fitting the numerically solved absorption spectra with the Fano function, and the same
numerical results are also shown in Fig. 3(e) in the main text. The red line is the fitting curve by the empirical saturation
formula q = δ/γ12/(10

9.4 + |δ/γ12|). The blue line shows the calculation of the expected Fano factor by the conjecture formula
q = q̃/(1 + |q̃|) [Eq. (49)] without any fitting parameter.

the cavity-enhanced saturated absorption spectroscopy of HD [7, 8]. We choose the parameters according to the
experiments, in which the R(1) transition of HD [9, 10] (|1⟩ → |2⟩) is the target transition to be measured, as shown
in Supplementarl Fig. 12(a)). In the experiments, the transition width is γ12/2π = 3.4× 10−6 Hz, and the transition
is probed by a standing-wave field of wavelength λ ≈ 1380 nm, and we choose a beam waist width of 0.5 mm and an
intracavity power of 210 W. To account for the potential far-off-resonance that induces the nonlinear Fano effect, we
introduce a distant electronic state denoted |3⟩ with a spontaneous emission rate of γ13/2π = γ23/2π = 280 MHz to
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Supplemental Figure 12. Energy level structure and simulation results for HD. (a) Energy structure for relevant energy levels
of HD. The parameters are: γ13/2π = γ23/2π = 280 MHz, γ12/2π = 3.4 × 10−6 Hz. (b) Simulated Doppler-free absorption
spectrum for HD with an intracavity standing-wave power of 210 W and a beam waist width of 0.5mm. (c) Projection of
Fig. 3(e) in the main text.

|1(2)⟩, which is selected according to [9, 10]. Note that there might be other relevant energy levels that contribute
to the nonlinear Fano effect in experiments, we select only the electronic transition that is mostly close to the target
transition. In this model, the probe field couples with the narrow transition on resonance with Rabi frequency
Ω12/2π = 0.03 MHz, and simultaneously far off-resonantly couples with the electric state transition (|1⟩ → |3⟩ and
|2⟩ → |3⟩) (see Supplementarl Fig. 12(a)), with Rabi frequency of Ω13/2π = 9143 MHz, Ω23/2π = 10672 MHz
and detuning of ∆13/2π = −2.0 × 1015 Hz, ∆23/2π = −1.8 × 1015 Hz, respectively. Thus the effective modulation
amplitude on |2⟩ from the two far off-resonant couplings is calculated as

δ/2π = (
Ω2

23

∆23
− Ω2

12

∆12
)/2π = −0.022 MHz. (55)

Note that the AC Stark shift on the ground and excited states have opposite sign. By the full-model simulation of
the Floquet Hamiltonian of the modulating molecules, the Doppler-free absorption spectrum of the R(1) transition
in HD is simulated with the above parameters and the result is shown in Supplemental Fig. 12(b). Moreover, the
parameter of the R(1) transition in HD is involved in the three-dimensional image shown in Fig. 3(e) of the main text
and can also be directly shown in Supplemental Fig. 12(c). In conclusion, the proposed nonlinear Fano-like resonance
can induce asymmetric Doppler-free absorption spectra of HD with a simulated Fano factor |q| > 0.05, which agrees
with the observed spectra in experiments [7, 8, 11, 12]. Thus, the proposed mechanism could explain the puzzling
profile observed in the cavity-enhanced absorption spectroscopy of HD [7, 8, 11, 12].

D. Frequency shift due to NFR for CO2

As we mentioned in the main text, the proposed mechanism of NFR will induce a systematic error of line center
for the spectral measurement of narrow transitions. In our numerical calculation, the fitting parameter ωs implies the
fitting frequency shift with respect to the influence of the mechanism of NFR, thus we can use the fitted frequency
shift ωs to estimate the systematic error induced by NFR. For the simulation of CO2, the fitted frequency shift ωs

with δ/2π of −0.07± 0.02 MHz is shown in Supplemental Fig. 13. Considering that the accurate position of the line
center relates to the line profile, we only estimate systematic errors of line center introduced by the proposed NFR
model instead of an accurate line center. Therefore the frequency shifts ωs for these lines are not given in the main
text. From Supplemental Fig. 13(a), we can find that ωs oscillates up and down with the change of γ12 when the light
intensity is fixed. The dependence between the fitting center ωs and γ12 requires further study. When γ12 is fixed, ωs

increases with the standing wave field intensity I as shown in Supplemental Fig. 13(b), which is consistent with our
numerical calculation of Fig. 3(a) in the main text. The result could be well understood, because an enhanced light
intensity leads to a higher modulation amplitude, which in turn leads to a greater central frequency shift.
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Supplemental Figure 13. (a) Dependence of ωs/2π on γ12/2π of 13CO2 with a standing-wave field intensity of I = 1.83 ×
108 W/m2. c(b) Dependence of ωs/2π on the standing-wave field intensity I of 12CO2 with γ12/2π = 1.63× 10−6 Hz.
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