Outlines of Quantum Physics

@ Wave-Particle Duality
@ Wave-Particle Duality
@ Bohr's Theory — Success
@ Bohr's Theory — Problems
@ Wave-Particle Duality: Revisit
@ Probability interpretation of the Wave Function
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Duality Duality Bohr

Wave-particle duality
TRR g

Classical Physics

Phenomena

Mechanics, Heat
Optics, Electromagnetism

Newton's Law

Particles
Maxwell's Eq.

Fields and Waves

Our interpretation of the experimental material rests essentially upon the

classical concepts ...

B ERIANSRE, BEARMERELETESZ X,
— N. Bohr, 1927.
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Wave-particle duality — Photon
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Wave-particle duality — Photon

o FBHK Electromagnetic wave,
James Clerk Maxwell: Maxwell's Equations, 1860;
Heinrich Hertz, 1888
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o (K857 Blackbody radiation,
Max Planckpypig1s: Planck’s constant, 1900
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Wave-particle duality — Photon

o FBHK Electromagnetic wave,
James Clerk Maxwell: Maxwell's Equations, 1860;
Heinrich Hertz, 1888
o (K857 Blackbody radiation,
Max Planckpypig1s: Planck’s constant, 1900
o YELEBZHM Photoelectric effect,
Albert Einsteinypigo1: photons, 1905
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Wave-particle duality — Photon

o FBHK Electromagnetic wave,
James Clerk Maxwell: Maxwell's Equations, 1860;
Heinrich Hertz, 1888

o (K857 Blackbody radiation,
Max Planckpypig1s: Planck’s constant, 1900

o JYEEIZUM Photoelectric effect,
Albert Einsteinypigo1: photons, 1905

All these fifty years of conscious brooding have brought me no nearer to
the answer to the question, “What are light quanta?” Nowadays every
Tom, Dick and Harry thinks he knows it, but he is mistaken.
XAETERNEE, [REFERENSE HARCEF? " XNIUEN
BER. 1%, 8PABUANBCHEXNEER, BELERRST.
— Albert Einstein, to Michael Besso, 1954
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Wave-particle duality — Electron

Electron in an Atom
@ Electron: Cathode rays fAtK51%% Joseph John Thomson, 1897

J. J. Thomsoan1906 ‘,
1856-1940
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Wave-particle duality — Electron

Electron in an Atom
o Electron: fBtEI%k Cathode rays, Joseph Thomson, 1897
o Atoms: 1TE4EHY Planetary model, Ernest Rutherford, 1911

THOMSON MODEL RUTHERFORD MODEL
- Pt
( ; é E @
T e—m
[©] -
® o ®
- -
7 o
, 7
E. Ruthel’forchlgog
1871-1937 OBSERVED RESULT
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First Solvay Conference, 1911

Walther Nernst, Marcel Brillouin, Ernest Solvay, Hendrik Lorentz,
Emil Warburg, Jean Baptiste Perrin, Wilhelm Wien, Marie Curie, and
Henri Poincaré

Robert Goldschmidt, Max Planck, Heinrich Rubens, Arnold Sommerfeld,
Frederick Lindemann, Maurice de Broglie, Martin Knudsen,

Friedrich Hasenorl, Georges Hostelet, Edouard Herzen,

James Hopwood Jeans, Ernest Rutherford, Heike Kamerlingh Onnes,
Albert Einstein, Paul Langevin

Photograph by Benjamin Couprie, 1911
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Spectrum of Atomic Hydrogen

@ Spectroscopy <
Fingerprints of atoms &
molecules ...

Ba-lﬂ Paiu Br-lﬂ Pfiu Hu-a
‘
visible
100 nm 1000 nm 10 000 nm
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Spectrum of Atomic Hydrogen

@ Spectroscopy <
Fingerprints of atoms &
molecules ...

@ Atomic Hydrogen

Pa-a - Pf-a  Hu-a

Ba-a Br-
) | | l
L1 ‘

visible
100 nm 1000 nm 10 000 nm
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Spectrum of Atomic Hydrogen

@ Spectroscopy <
Fingerprints of atoms &
molecules ...

@ Atomic Hydrogen

@ Johann Jakob Balmer, i N U
1885 ,
1~ onom Il RN
n=3,4,5,6

100 nm 1000 nm 10 000 nm
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Spectrum of Atomic Hydrogen

Ba-a F

I T
@ Spectroscopy <
Fingerprints of atoms &

Bra

Pf-a  Hu-a
| | ‘

100 nm 1000 nm 10 000 nm

molecules ...
@ Atomic Hydrogen

@ Johann Jakob Balmer,
1885 ,
A = 364.56 = (nm),
n=3,45,6

@ Johannes Rydberg, 1888

— 1 _ R 1 1 n=1 — [ | 410 | Balmerseries
v=1x =Rz~ )

R =109677cm~! "2

Paschen series

4 x 107/364.56 = 109721
Ry = 109677.5834... A
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Bohr's Theory — Success

Electron in an Atom
o Electron: fAtEd%k Cathode rays, Joseph Thomson, 1897
o Atoms: {TEERY Planetary model, Ernest Rutherford, 1911
@ Spectrum of H: Balmer series, Johann Jakob Balmer, 1885
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Bohr's Theory — Success

Electron in an Atom
o Electron: [B#Ed%k Cathode rays, Joseph Thomson, 1897
o Atoms: {TEERY Planetary model, Ernest Rutherford, 1911
@ Spectrum of H: Balmer series, Johann Jakob Balmer, 1885
@ Quantization energy to H atom, Niels Bohr, 1913

N BOhrNP1922 1885-1962
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Bohr's Theory — Success

Electron in an Atom
o Electron: [B#Ed%k Cathode rays, Joseph Thomson, 1897
o Atoms: {TEERY Planetary model, Ernest Rutherford, 1911
@ Spectrum of H: Balmer series, Johann Jakob Balmer, 1885
@ Quantization energy to H atom, Niels Bohr, 1913

Bohr's Assumption

@ There are certain allowed orbits for which
the electron has a fixed energy.

@ The electron loses energy only when it
jumps between the allowed orbits

@ and the atoms emits this energy as light of
a given wavelength.

= | v

N BOhI’NP1922 1885-1962
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Bohr's Theory — Success
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Bohr's Theory — Success

@ balance between
centripetal acceleration
and Column attraction
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Bohr's Theory — Success

@ balance between
centripetal acceleration
and Column attraction
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Bohr's Theory — Success

@ balance between
centripetal acceleration

and Column attraction

2
4
o E= %meVQ—ie/rTrEO
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Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o E— _ & /4nco @ balance between
- P} . .
r centripetal acceleration

and Column attraction

2
4
o E= %meVQ—ie/rTrEO
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Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o E— _ & /4nco @ balance between
- 2r

centripetal acceleration
and Column attraction

2
4
o E= %meVQ—ie/rTrEO

@ Assumption: mevr = nh
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Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o E— _ & /4nco @ balance between
- 2 . .
r » centripetal acceleration
_ 2 _ e /4meo 1 .

@ r=agh”, E=—=—5— 2 and Column attraction
| 1 2 /4
v=R(z — =2) ° E:%meVQ—ie/:reo

2
0 = & ane)m.’ @ Assumption: mevr = nh
2 2
4
heRy = (EL47c0) me

SM Hu Quantum Physics



Duality Duality Bohr Problems Duality2 Probability

Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o F— _ € /4neg @ balance between
- 2 . .
r » centripetal acceleration
_ 2 _ e /4meo 1 .
@ r=agh”, E=—=—5— 2 and Column attraction
75— R(L _ 1 2 /4
v=R(z —72) ° E:%meﬁ—ie/rmo
2

0 = & ane)m.’ @ Assumption: mevr = nh
2 2
e” /Admeg) m,

hcRo, = (&/4mco) me 2ﬁ20) < o m= mlzfl-l\;\,/l
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Bohr's Theory — Success

n'IeV2 — 62
° r  4megr?
o F— _ & /ire @ balance between
- 2 . .
r » centripetal acceleration
_ 2 _ e /4meo 1 .

@ r=agh”, E=—=—5— 2 and Column attraction
~ ol 1 2 4
v=R(z — =2) ° E:%meVQ—ie/:reO

_ h? .
0 = (& /dneg)ms’ @ Assumption: mevr = nh
2 2
e” /Admeg) m,
hcRo, = (&/4mco) me 2ﬁ20) < o m= mlzfl-l\;\,/l
— M _ o Mme
® Rm = Rooim = Roo(1 = )
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Bohr's Theory — Success

mev2 _ &2
° r  4megr?
2
e E=-° /;1:“0
_ 2 _ e /Admeg 1
@ r=agn*, E= /230‘)"—2,
~ 1 1
— R(L — ),
_ h?
40 = (&/aneg)me’
2 2
4
heRy = (EL47c0) me
o Ry=Ru-M_~R (1-
M = 00 met-M — Moo

%)

M

@ balance between
centripetal acceleration
and Column attraction

2
o E= %mev2 _ & /ireo
-
@ Assumption: mevr = nh
_ mM
¢ M= tntm

Bohr's success
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Bohr's Theory — Success

mev2 _ &2
° r  4megr?
2
e E=-° /;1:“0
_ 2 _ e /Admeg 1
@ r=agn*, E= /230‘)"—2,
~ 1 1
— R(L — ),
_ h?
40 = (&/aneg)me’
2 2
4
heRy = (EL47c0) me
o Ry=Ru-M_~R (1-
M = 00 met-M — Moo

%)

M

@ balance between
centripetal acceleration
and Column attraction

2
o E= %mev2 _ & /ireo
-
@ Assumption: mevr = nh
_ mM
¢ M= tntm

Bohr's success

o All series, spectrum of atomic hydrogen
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Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o F— _ & /ire @ balance between
- 2 . .
r centripetal acceleration
o 2 o e’ /dmeg 1 .
@ r=agh”, E=—=—5— 2 and Column attraction
~ 1 1 2
= R(% = ), o E= img? - £l
52 2'7e r
0 = & ane)m.’ @ Assumption: mevr = nh
2 2
e” /4 m
hcRo, = (&/4mco) me 27:20) < o m= mlzfl-l\;\,/l
M ~ me
® Rm = Rooim = Roo(1 = )

Bohr's success

o All series, spectrum of atomic hydrogen

e Hydrogen-like atoms, He™ Pickering series (1897)
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Bohr's Theory — Success

mev2 _ &2
* === 4megr?
2
e E=-° /;1:“0 °
4
e r=agn? E= ¢ /23:)“0 €,
- 1 1
=Rz —72) °
— i
a0 = (e2/4dmeo)me’ )
2 2
4
hcRo, = (&/47c0)"me °
— M_ me
® Rm = Rooim = Roo(1 = )

Bohr's success

o All series, spectrum of atomic hydrogen
@ Hydrogen-like atoms, He™ Pickering series (1
e Discovery of 2H (D), mp : my =2 :1 (1932)

balance between
centripetal acceleration
and Column attraction

Eelm.2— &% /amey
- e

2 r
Assumption: mevr = nh
_ mM
m= me+M

897)
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Bohr's Theory — Success

mev2 _ &2
° r 7 4meor?
o F— _ /4 @ balance between
- 2 . .
r » centripetal acceleration
_ 2 _ e TEeg 1 .
o r=ayn”, E= -, and Column attraction
~ 1 1 2 /4
= R( - =), ° E:%meVQ—ie/:reO
0 = & ane)m.’ @ Assumption: mevr = nh
2 2
e” /4 m
hcRo, = (&/4mco) me /27:20) < o m= mlzfl-l\;\,/l
M ~ me
ORM:ROOW—ROO(l_ M)

Bohr's success

o All series, spectrum of atomic hydrogen

e Hydrogen-like atoms, He™ Pickering series (1897)
e Discovery of 2H (D), mp : my =2 :1 (1932)

@ Evidence of internal energy levels in other atoms, Frank-Hertz 1914
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Bohr's Theory — Success

mev2 _ &2
° r  4megr?
o F— _&/4reo o balance between
2 centripetal acceleration
_ 2 _ e /4Amep 1 R
° r=aon”, E=——5—1=, and Column attraction
~ 1 1 2 4
V=R — 72) oE:%mGVQ—w
_ i r
0 = (& /dneg)ms’ @ Assumption: mevr = nh
2 2
e“ /4 m,
hcRo, = (&/4mco) me 27:20) < o m= mlzfl-l\;\,/l

"] RM = Rooime,\ﬁM >~ Roo(l — %)

Bohr's success

o All series, spectrum of atomic hydrogen

e Hydrogen-like atoms, He™ Pickering series (1897)
e Discovery of 2H (D), mp : my =2 :1 (1932)

@ Evidence of internal energy levels in other atoms, Frank-Hertz 1914

@ X-ray spectra of elements, Henry G. J. Moseley 1914
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Moseley and the Atomic Number

Wavelength X 108cm
2 109 08 07 06

T
|

Henry Moseley (1887-1915)
Vfx Z
K- to L-shell transitions,

—0 2 —0 2
i %: OO{(Z 12K) _ (222L) }

10 12 14 16 18 &=
Square root of frequency X 108
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”

@ Circular orbit: m.v x 2wr= nh
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”

@ Circular orbit: m.v x 2wr= nh

2 i v «a

otakingr:naoandagzm,é——f
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”

@ Circular orbit: m.v x 2wr= nh

. 2
o taking r= n?ap and ag = m, =>{=<
e /Aney

@ fine-structure constant o = B oo
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”

@ Circular orbit: m.v x 2wr= nh

2 i v «a

otakingr:naoandagzm,ég—n

2
. 4
@ fine-structure constant o = e/ﬁ% ~ ﬁ

@ Electrons in elliptical orbits with relativistic corrections,

E=—hcR[5 + fj—j(f — 3)], Sommerfeld, 1916
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms

@ Cannot explain the fine structure of H

Sommerfeld, relativistic Effects

"The integral of the momentum associated with a coordinate around one
period of the motion associated with that coordinate is an integral
multiple of Planck’s constant. — For any physical system where the
classical motion is periodic.”

@ Circular orbit: m.v x 2wr= nh

2 i v «a

otakingr:naoandagzm,ég—n

& /Amey ., 1
hc  — 137
@ Electrons in elliptical orbits with relativistic corrections,

E=—hcR[5 + fj—j(f — 3)], Sommerfeld, 1916

o "YIEFhRESKERIRE"

@ fine-structure constant o =

SM Hu Quantum Physics



Duality

Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

@ An electric dipole moment —eD
oscillating at angular frequency w
radiates a power P,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4

) ) _ e D'w” _ _ dE

@ An electric dipole moment —eD o P=fHa=—"5
oscillating at angular frequency w

radiates a power P,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
i . _ eD'w* _ _dE
@ An electric dipole moment —eD o P= TTred — —dt
oscillating at angular frequency w
radiates a power P,

o Total energy E of an electron in
harmonic motion,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
@ An electric dipole moment —eD o P= 1627?6:)0‘3 = —77’;:
oscillating at angular frequency w o E= mw?D?/2
- €

radiates a power P,

o Total energy E of an electron in
harmonic motion,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
@ An electric dipole moment —eD o P= 1627?6:)0‘3 = —77’;:
oscillating at angular frequency w o E= mw?D?/2
- €

radiates a power P,

o Total energy E of an electron in
harmonic motion,

@ This energy decreases at a rate
equal to the power radiated,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

o I _ €D _ _dE
@ An electric dipole moment —eD o P= Toree® — —dt
os;:!llatlng at angllJDIar frequency w o E= mw?D?/2
radi wer
adiates a power P, G dE_ P g E
o Total energy E of an electron in dt 6meomec®

harmonic motion,

@ This energy decreases at a rate
equal to the power radiated,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
@ An electric dipole moment —eD o P=£Llw _ _dE

. - 12megc3 dt
os;:!llatlng at angllJDIar frequency w o E= mw?D?/2
radiates a power P, G dE_ P g E

o Total energy E of an electron in dt 6meomec®

harmonic motion,

@ This energy decreases at a rate
equal to the power radiated,

@ Classical radiative lifetime 7,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
i i _ e D'w” _ _ dE
@ An electric dipole moment —eD e P= el = — g
os;:!llatlng at angllJDIar frequency w o E= mw?D?/2
radiates a power
p 1 o 9E _ _ 202 E— _E
o Total energy E of an electron in dt 6meqgmec?
- - 2 2
harmonic motion, o L _euw
T 67megmecd

@ This energy decreases at a rate
equal to the power radiated,

@ Classical radiative lifetime 7,
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, 4
i . _ eD'w* _ _dE
@ An electric dipole moment —eD o P= oree® = —at
os;:!llatlng at angllJDIar frequency w o E= mw?D?/2
radi wer
adiates a power P, G dE_ P g E
o Total energy E of an electron in dt 6meomec®
. . 2 2
harmonic motion, 0o L= _<cw
i 6T eq MeCs

@ This energy decreases at a rate
equal to the power radiated,

@ Classical radiative lifetime 7,

@ No stable periodical orbital is
allowed!
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, .4
@ An electric dipole moment —eD o P= f27Er)e:)c3 = —77’;:
oscillating at angular frequency w o E= mw?D?/2

radiates a power P,

° dE _ w? E= _E
@ Total energy E of an electron in dt 6meomec®
2 . 1 _ w?
harmonic motion, ® = Greomd®
@ This energy decreases at a rate @ Na D line (3s-3p):
equal to the power radiated, A = 589nm, 7 = 16ns.

@ Classical radiative lifetime 7,

@ No stable periodical orbital is
allowed!
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, .4
® An electric dipole moment —eD o P=52u, — &£
osc!llatlng at angllJDIar frequency w o E= mw?D?/2
radiates a power P, G dE_ P g E
@ Total energy E of an electron in dt 6meomec®
2 . 1 _ w?
harmonic motion, ® = Greomd®
@ This energy decreases at a rate @ Na D line (3s-3p):
equal to the power radiated, A = 589nm, 7 = 16ns.
o Classical radiative lifetime 7, o Measured lifetime of 3p
@ No stable periodical orbital is level: 16.25 ns
allowed!
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Bohr's Theory — Problems

@ Cannot explain spectra of other multi-electron atoms
@ Cannot explain the fine structure of H

@ Conflict between “stationary state” and Maxwell’s theory

Radiative Decay

212, .4
@ An electric dipole moment —eD o P=52u, — &£
os;:!llatlng at angllJDIar frequency w o E= mw?D?/2
radiates a power P, W dE_ _ P p_ E
@ Total energy E of an electron in dt 6meomec®
2 . 1 _ w?
harmonic motion, ® = Greomd®
@ This energy decreases at a rate @ Na D line (3s-3p):
equal to the power radiated, A = 589nm, 7 = 16ns.
o Classical radiative lifetime 7, o Measured lifetime of 3p
@ No stable periodical orbital is level: 16.25 ns
allowed! @ Just coincidence?
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Bohr's Theory — Problems

o TREMRFEEMZHEFIRF,

o TNEEFRESIRTICERIBHLE;

e Bohr fY “TEBE" 5 Maxwell EBHIEISETZE;
How can a hydrogen atom be stable?
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Bohr's Theory — Problems

o TREMRFEEMZHEFIRF,

o TNEEFRESIRTICERIBHLE;

e Bohr fY “TEBE" 5 Maxwell EBHIEISETZE;
How can a hydrogen atom be stable?

@ Quantization? Why?
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Bohr's Theory — Problems

o TREMRFEEMZHEFIRF,

o TNEEFRESIRTICERIBHLE;
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1927 Solvay Conference on Quantum Mechanics

A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder,
E. Schroinger, E. Verschaffelt, W. Pauli, W. Heisenberg,
R.H. Fowler, L. Brillouin,

P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac,
A.H. Compton, L. de Broglie, M. Born, N. Bohr,

I. Langmuir, M. Planck, M. Curie, H.A. Lorentz, A. Einstein,
P. Langevin, Ch. E. Guye, C.T.R. Wilson, O.W. Richardson

Photograph by Benjamin Couprie, Institut International de Physique Solvay, Brussels, Belgium
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Conclusive Evidence for Wave-Particle Duality

Compton scattering

Arthur Holly Comptonppig27, 1923
Walther Botheppigs4 & Hans Geiger, 1925
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@ Light can behave as a stream of particles whose energy is

proportional to the frequency.
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Conclusive Evidence for Wave-Particle Duality

Compton scattering

Arthur Holly Comptonppig27, 1923
Walther Botheppigs4 & Hans Geiger, 1925

ns

A

}\. "w_j\\ 0

f\’f\‘/\\f\\x_ [

o N —)\= miec(l — cosd)
Compton wavelength: -1-—0.0243A

@ Light can behave as a stream of particles whose energy is
proportional to the frequency.

@ Experimental verification of momentum conservation in individual
Compton scattering processes, falsifying the Bohr-Kramers-Slater
(BKS) theory.
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Conclusive Evidence for Wave-Particle Duality

Diffraction of elec

Clinton Davisson & Lester Germer,

1927
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Bragg
condition
for constructive

Scattering interference

spacing angle @ ni = 2dsin &

Accelerated

electrons

54V
Scattered electrons
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Louis de Broglienp1929
1892-1987
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de Broglie's matter waves

Plane wave:
e;(—p’-—rLEt)/h

Determination of the stable motion of electrons
in the atom introduces integers, and up to this
point the only phenomena involving integers in
physics were those of interference and of
normal modes of vibration. This fact suggested
to me the idea that electrons too could not be
considered simply as particles, but that
frequency (wave properties) must be assigned
to them also.

— Louis de Broglie, 1929, Nobel Prize Speech
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Wave-particle duality

TR SR

BEFNFIER
o ENME: HBFENME (Coherent superposition),
EHAEEEYEERTEND .
o MIFME: BRI, AAJD14 (Corpuscularity),
EERFATUERN “HE"

“Well, an electron is also a ... wave.”

BExMERE

Complementarity
Principle

— Niels Bohr
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IR RSN =S A J
(7) TSR

Probability Interpretation of the Wave Function

Max Born, 1926
U(7),
U(7)2Ar: At PERERIFHINLE,
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Probability Interpretation of the Wave Function

Max Born, 1926

(7),
W(7)2Ar: At RERFRIFHILE,
2, AR “ABEZ.
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ENN/RIE Principle of Superposition

U =qcV; + ¥y J

DU Uy DRISERINEE a1 F0 220 Uy — a1, Uy — ao,
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ENN/RIE Principle of Superposi

U = Cl\Ill == CQ\IIQ J
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ENN/RIE Principle of Superposi

U = Cl\Ill A CQ\IIQ J
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Questions

SM Hu Quantum Physics

How do we know the energy “levels” of the hydrogen atom?
How can a hydrogen atom be “stable”?

What does a “transition” mean?

The electron is also a ... “wave"?

What is the math for a free electron?



	Wave-Particle Duality
	Wave-Particle Duality
	Bohr's Theory — Success
	Bohr's Theory — Problems
	Wave-Particle Duality: Revisit
	Probability interpretation of the Wave Function
	参考与习题


