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Abstract Let T be a star and (f) be the set of non-wandering points of
a continuous map f : T — T. For two distinct prime numbers p and g,
we prove: (1) Q(fP) U Q(f?) = Q(f) for each f € C(T,T) if and only if
pq > End(T), (2) Q(fP) NQ(f?) = Q(fP?) for each f € C(T,T) if and only if
p+q > End(T), where End(T) is the number of the ends of T. Using (1)-(2)
and the results in [3], we obtain a complete description of non-wandering sets
of the powers of maps of 3-star and 4-star.

1 Introduction

In the study of the dynamics of a continuous map f : X — X of a compact metric
space X into itself, a central role is played by the various recursive properties of the
points of X ([1][4][5]). One of the important such properties is non-wanderingness. It is
easy to show that the non-wandering set £2(f) is a non-empty closed invariant subset
of X, but generally Q(f) = Q(f"), n € N does not hold. So, it is important to know
the interrelations of Q(f™), n € N.

Coven and Nitecki discussed non-wandering sets of the powers of continuous maps
of a compact interval in [2]. For a continuous map f : I — I of the interval, they
proved:

(1) If there is some n > 2 such that x € Q(f) \ Q(f™), then Orb(z, f) is finite and the
topological entropy h(f) > 0.

(2) Q(f) = Q(f™) whenever n is odd.

Wen Huang and Xiangdong Ye generalized the above results from a compact interval
to a tree [3], and the method they used is different from [2]. More precisely, they showed:

1. Let f: T — T be a continuous map of a tree T'. If there is some n > 2 such that
x € Q(f)\ Q(f™), then Orb(z, f) is finite and the topological entropy h(f) > 0.

2. Let T be a tree and k,n € N. Then Q(f*) = Q(f*") for each f € C(T,T) if and
only if n is (T, k)—admissible (see [3] for the details).
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In [2] the authors used their results to give a nice description of non-wandering sets
of the powers of continuous maps of the interval. More precisely, they showed:

a. For any continuous map f of the interval, all the possible sets Q(f™), n € N appear
in the nested sequence

Q) 2292, (%

b. Any pre-assigned sequence of equalities and strict containments in (x) can be
realized by some continuous map of the interval.

In this paper, we study the interrelations of non-wandering sets of the powers of
maps of a star and obtain the following results:

Theorem 1 Let T be a star and p, ¢ be two distinct prime numbers, then Q(f?) U
Q(f7) = Q(f) for each f € C(T,T) if and only if pg > End(T).

Theorem 2 Let T be a star and p,q be two distinct prime numbers, then Q(f?) N
Q(f1) = Q(fP9) for each f € C(T,T) if and only if p+ g > End(T).

Combining Theorems 1-2 and the results in [3] we have

Theorem 3 Assume that T is a 3-star or a 4-star.

1.1. For any continuous map f of T, all the possible sets Q(f™), n € N appear in the
following graph (we call it graph A in the sequel, and use — and | to indicate
D).
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l | L L L
AP = ALY = AT - o) - et -

1.2. For any continuous map f of T,
a. Q2N QT = Q) \ Q3T for each i € {0} UN,
b. Q(f2)\ Q(F32) = Q(f) \ Q(f?), for each i € N.

2. Any pre-assigned sequence of equalities and strict containments in the first line and
the first column of the graph A can be realized by some continuous map of 7.

We remark that for n—star (n > 5) other graphs should be introduced.

2 Definitions and Elementary Properties

By a graph we mean a connected compact one-dimensional polyhedron. A tree is a
graph without any subset which is homeomorphic to the unit circle. For a given tree
T, a subtree of T is a subset of T which is a tree itself. For x € T the number of
connected components of T'\ {z} is called the valence of T', and if the number is n then
we write Val(x) = n. A point of T of valence 1 is called an end of T, and a point of
valence different from 2 is called a wvertex of T. The set of ends of T', the set of vertices
of T" and the number of the ends of T' will be denoted by E(T'), V(T') and End(T)
respectively. The closure of each connected component of 7'\ V(T') is called an edge.



A star is either a tree having only one vertex with valence larger than 2 or an arc. Set
Int(T) =T\ E(T). Let A be a subset of T' containing at least two points. By [A] we
denote the convex hull of A in 7. If A = {a,b} then we use [a,b] to denote [A]. We
define (a,b) = [a,b] \ {a, b}, and similarly we define [a,b) and (a, b].

Let T be a tree, the collection of all continuous maps from T into itself will be
denoted by C(T,T). For f € C(T,T) and x € T, {x, f(z), f*(z),...} is called the orbit
of x and is denoted by Orb(z, f). x is periodic if f"(x) = x for some n € N. Let P(f)
denote the set of periodic points of f. x € T is non-wandering if for every neighborhood
U of z, f*(U)NU # () for some n € N. The set of non-wandering points of f is denoted

by Q(f).

To prove our results we need the following lemmas. The first two lemmas are routing
generalization of the corresponding results for the interval maps (see [5]) and Lemmas
3-4 are easy to prove.

Lemma 1 Let T be a tree, and f € C(T,T) and U be a connected subset of T. If
there is n € N with f*(U)NU # 0, then K = UU f(U)U f2(U) U... has finitely many
connected components.

Proof. As f is continuous and U is connected, f*(U),k € N are all connected. Since
M U)NU #0, for any i € {0,1,--- ,n—1}, fH™O)N AU £ 0,5 =0,1,2,---.
Hence for any i € {0,1,--- ,n—1}, K; = f{(U)U f(U)U f*+2(U)U- - - is connected.
So K = KygUK;UU...UK,_1 has finitely many connected components. []

Lemma 2 Let f: T — T be a continuous map of a tree 7. Then x € Q(f) if and
only if for each € > 0 and each L € N, there is some y € T and some integer m > L
with d(z,y) < e and f™(y) = z. Equivalently, x € Q(f) if and only if there are y; — =
and n; — oo such that f"(y;) = x for each i € N.

Proof. The sufficiency is easy and now we show the necessity. Let € Q(f). Without
loss of generality we assume that x is not a periodic point.

As xz € Q(f), by the definition there are y; — = and m; € N such that f™i(y;) —
z. Since z is not periodic it is easy to check m; — oo. Assume the contrary that there
is e > 0 and L € N such that for any y € T with d(z,y) < € and any m > L we have
f™(y) #x. Let U ={y € T :d(x,y) < €1}, where €1 < € is small enough so that U is
a connected neighborhood of z. Hence we have z ¢ K = fLHYU)uU fL+2(U)U--- and
r ¢ fI(K) = fLtYU) U fLH9+2(U) U -+, j € N. On the other hand, there is some
N > 0such that for any ¢ > N, y; € U. For any fixed integer j > 0, choose M > N such
that m; > L + j for any i > M. Hence {f™M+17 (ypr1), f™M+27 (ypra0), -+ C K.
Let a; € K be a limit point of this sequence. Then z = f/(a;) € f/(K). So we have
for any j >0, z € f/(K) \ f/(K).

As z is a non-wandering point, there is some n > 0 with f*(U)NU # (). Hence
frHU) N fA(U) # 0, and by Lemma 1 K has finitely many connected components.
Since a; € K\ K and K \ K is a finite set, there are jo > j; > 0 such that a;, = a;, = a.
So fit(a) = f2(a) = x. Thus f2771(x) = f2701(f1(a)) = f2(a) = z, ie. xis a
periodic point. This contradicts with our assumption. [

Lemma 3 Let f: T — T be a continuous map of a tree T, and .S be a subtree of T'.

Then there is y € S such that either y is a fixed point of f or y € (V(T)NS)U E(S)
such that [y, f(y)] NS = {y}. Clearly, if z € T such that f(x), f(y) are belonging to



the different connected components of 7'\ S, then f([y,z]) D [y, f(z)].

The point y above is called a p-fized point (for S).
Proof. Let rg be the retraction mapping. As rgo f|S : S — S is continuous and S
has the fixed point property, there is a fixed point y of rgo f|S. y is the point we need
as T is uniquely arc-wise connected. [l

Lemma 4 Let a,c € N and b € Z. If (a,c)|b, then there exist u,u’ € N with

u,u’ < ey Such that c|(au+0b) and c|(—au’ + b), where (z,y) is the greatest common

divisor of integers x and y and x|y means % €.
Proof. As (+%5,7%) = 1 and (a,c)|b, there is u € N with u < ﬁ such that

(a,)” (ac) )

(5w + ﬁ) Thus ¢|(au + b). By the same reasoning there is v’ € N with with

(a,c) '\ (a,c)
u < ey Such that cl(—au' +b). O

The next two lemmas are the results in [3].
Lemma 5 Let f: T — T be a continuous map of a tree T'. If there is n > 2 such
that z € Q(f) \ Q(f™), then Orb(zx, f) is finite.

Lemma 6 Let f: T — T be a continuous map of a tree T and p > 3 be a prime
number. Then Q(pr) = Q(prl) whenever p* > End(T).

3 Examples
In this section we will give two examples which also serve as the necessities of
Theorem 1 and Theorem 2.

Example 1. Let T be a star and End(T) = pq, where p, g are distinct prime numbers,
then there is f € C(T,T) such that Q(fP) U Q(f?) # Q(f).

Proof. Let T be a pg—star with E(T") = {e1,e2,...,¢ep,} and y be the unique vertex
with valence large than 1. Take x,b,¢ € (e1,y) with e < < b < ¢ < y for some
orientation of [e1,y]. Construct a continuous f : T'— T such that

1) f(61> =G f(l‘) =Y f(b) =Y, f(C) = €2, f(ez) = f(6i+1)a2 <1 < pq_]-a
f(epg) =z, and f(y) =y (see Figure 1).

2) f is piece-wise linear with respect to z,b,c,y, e1,. .., epq.

If B is a neighborhood of x which is small enough, then we readily have that
[Pty (B)YN B # () and fP9*"(B)N B = (), 2 < r < pq for some n € N. That is,
z € Q(f)\ (QUP)uQ(f). O
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Example 2 Let T be a star and End(T) = p+ q + 1, where p, ¢ are distinct prime
numbers, then there is f € C(T,T) such that Q(fP) N Q(f9) # Q(fP9).

Proof. Assume T is a (p+ ¢+ 1)—star with E(T) = {e1,ea,...,eprq+1} and y is the
unique vertex with valence large than 1. Suppose that x, p1, p2, p3, p4, ps and pg are the

midpoints of [e1,y], [e2,yl, [ep+1, 4], [P2, Y], [ep+2, Y], [eptq+1,y] and [ps, y] respectively.
Moreover, we take {a;}, {a;}, {b;},{b/} C (e1,z) such that for some orientation of [e;, z]

e1<ay<ap <by<b <ay<ay<by<by<..<ux

and lima; = x. Let by = €.
We construct a continuous f : T — T as follows (see Figure 2 and Figure 3).

1) f(z) =y, f(p1) = es, f(p2) =y, f(p3) = p1, flei) = fleir1),2 <i < p, flepy1) =
z, f(pa) = epts, f(ps) = y, f(pe) = pa, flei) = flei1),p+2 < i < p+g,
fleprqr1) =z, and f(y) = y.

2) Set f(a;) = f(bi) = y, where i« € N and j € {0} UN. Let f(a}) € [y,e2] and
f()) € [y, epta], © € N such that p1 < f(a}) < f(ah) < ... <yand ps < f(b)) <
f(bh) < ... <y for some orientations of [p,y] and [pa, y].

3) f is piece-wise linear with respect to the points mentioned above.

If B is a neighborhood of & which is small enough, for each n € N we have:

(L) fP+Y(B) O [z, p1],

2)f"*7(B) O [y, er1], 2 <7 <p,
(3) " (B) > [z, pal,

(4)f"(B) D [y, epyrr], 2 <7 < 4q.



By (1) and (2), we have 2 € Q(f!) for each [ which satisfies (I, p) = 1 and = & Q(fP¥)
for each k € N. By (3) and (4), we have = € Q(f!) for each [ which satisfies (I,¢) = 1
and x & Q(f) for each k € N.

Especially, we have x € (Q(fP) N Q(f?)) \ Q(f??). O
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4 Proofs of the main results

Before we start to prove our theorems, we study some properties under the condition
that f € C(T,T),x € Q(fP) \ Q(fP9), where T is a tree and p, ¢ are natural numbers.
We will introduce some notations which will be used in our proofs.

Let f be a continuous map of a tree T and = € Q(fP) \ Q(fP?). By Lemma 2
there are u; — x and n; — oo such that fP"(u;) = x for each ¢ € N and there is
a neighborhood B of x with fP%%(B) N B = () for each k € N. Let K be the smallest
connected subset of T" which contains UX, f!(B). Set P = Orb(z, f) N P(f). Let y be
a p-fixed point for [P] and Iy be the least integer with y € f(B).

Set E(K) = {e1,...,¢;} with | = End(K), and we call [y,e;] a segment, where
1 <i <. A segment [y,e,] is of u—type, if for every natural number M there is some
j € Nwith Card({f!(u;)]1 <i<pnj; —1} N[y, ew]) > M.

Set Ay (z) = {florautv(2)|0 < w < a — 1}, where a,u € N and z € B. If there is
some b with 1 < b < a such that for every m € N, there are j and t1,to,...,t,, such
that Card(As, (uj) N[y, ew]) > b where k = 1,2,...,m, then [y, e,] is called a u—type
segment which contains at least b points mod a. Let [y, e,] be u—type segment which
contains at least b points mod a. Without difficulty, by the above definition we have
that there are fixed 0 < a1 < as < ... < ap < a — 1 such that for every m € N, there



are j and t1,19,...,%,, such that
{fl°+“t’“+ai(uj)|0 <i<b} Cly,en], k=1,2,...,m.

In the sequel, we take this as the definition of u—type segment which contains
at least b points mod a, and briefly we call [y, e,] a (u;aq, @9, ...,ap; mod a)—type
segment. It is easily seen that if ¢ > b, then there exists at least one u—type segment
which contains at least b points mod a.

Giving the notations, we will show the following propositions. The proof of Propo-
sition 1 is similar to that of the Theorem 3.1 of [3]. For completeness, we include a
proof.

Proposition 1 Let [y, e,] be (u; a1, ag,. .., ap;mod pgn)—type segment, where n is
a fixed natural number and 0 < oy < g < ... < oy < pgn — 1, then (o — a4, pq) fp
foreach 1 <i < j <b.

In particular, if (p,q) = 1 and ¢ is a prime number, then ¢|(e; — ;) for each
1<i<y<b.
Proof. Assume the contrary. That is, there are 1 < iy < jo < b such that («oj, —
Qg pq)|p. Set a = aj, — vy, then (a,pg)|pn;. By Lemma 4 there are natural numbers
u,u’ < (p’;?a) with pq|(au + pnj) and pg|(—au’ + pn;).

Take m = pg + 1 in the above definition, and let j and ¢; < t3 < ... < t,, be the
corresponding natural numbers. Let a; = lo + t;pgn + o, and b; = lo + t;ipgn + -

We claim:

y < fom(ug) < Fom(ug) < o< P2 (ug) < FO2(ug) < P (ug) < FO(uy),

if we define an orientation of [y, e,,] such that y < e,,.
Proof of the claim Let co;_ 1 = ar and coy = by, 1 <t < m. Then ¢; < o <
... < Ccom- Assume that there are 1 < [; < Iy < 2m with (I3 —[1,2) = 1 such that

f(uz) € [y, f2 (uj)]. Then
Fm Ny, £2 (ug)] D 2 [y, £ (ug)]) D [y, £92 (ug)].
Hence fo(¢2=c) ([y, £ (u;)] D [y, £ (u;)], with b = u or u’. As

v Ty, £ () © P )y, £ ()
C P +b(e1,—cry) (f%(B)) = fpnfrb(cz2 —ciy) (B)

and pg|(pn; + b(c, — ¢1,)), a contradiction.
Hence we have

y < fom(ug) < Fom(ug) < o< P2 (ug) < FO2(ug) < P (ug) < FO(uy).

This ends the proof of the claim.
Hence by the claim we have

£y, £ (ug)]) D lys 2 (u)] D [y, £ ()]
for each 1 < s < pq. Thus

= [a:,y] C fpnj—au+1([y’fau+1 (Uj)]) C fpn]-—au+1+a1+(b1—a1)+...+(bu—au)(B)‘



As
pq|(pnj — ays1 + a1+ (b1 —a1) + ... + (by — ay)),

a contradiction. O

By Proposition 1, we can get Proposition 2 readily.
Proposition 2 If (p,q) = 1 and ¢ is a prime number, then each u—type segment
contains at most p points mod pg. So the number of u—type segment of K is not less
than q.

Now we are ready to prove our theorems.

Theorem 1 Let T be a star and p,q be two distinct prime numbers, then Q(f?) U
Q(f1) = Q(f) for each f € C(T,T) if and only if pg > End(T).

Proof. To show the necessity, it is enough to show that whenever End(T) > pq, there
is some f such that Q(fP)UQ(f?) # Q(f). This is done in Example 1 of the last section.

Now suppose pq > End(T) and Q(fP) U Q(f?) # Q(f). Then there is x € Q(f) \
(QfP)UQ(f?)). By Lemma 2, there are v; — = and n; — oo such that f™ (v;) = x
for each i € N and there is an open connected neighborhood B of z with fP*(B)NB = ()
and f%(B) N B = {) for each k € N. We may assume that v; € B for each i € N. Set
K =UX,f(B) and E(K) = {e1,..., e} with | = End(K).

First suppose K is connected. Set P = Orb(z, f) N P(f), and let y be a p-fixed
point for [P]. As pq > End(T), there is a v—type segment [y, e,,] which contains at
least 2 points mod pg. As x € Q(f) \ Q(fP) and = € Q\ Q(f9), [y, €] is their common
v—type segment. Assume that [y, e,] is of (v; «, 5; mod pg)—type.

By Proposition 1, (8 —a,p) = pand (8 —a,q) = ¢, 1 <a < <pg—1. So
pql(B—a). As 1 < a— 3 <pg—1 and p,q are distinct prime numbers, pg /(5 — @), a
contradiction.

Now suppose K is not connected, then by Lemma 1 K has finitely many connected
components Ki,..., K, with f(K;) C K», ..., f(K,) C K;.

Let g = f" and assume x € K;. Then g(K;) C K7 and = € Q(g) \ (Q2(g”) U 2(g9)).
As pq > End(T) > End(K;) and K] is connected, a contradiction arrives again if we
replace f by f" and use what we just proved.

Hence we get Q(f) \ (Q(fP)UQ(f?)) =0, ie. QfP)UQ(f9) =Q(f). O

The same method can be used to show
Theorem 1’ Let T be a star and pi,ps,...,pr be distinct prime numbers, then
QPYUQP)U...UQ(fPr) = Q(f) for each f € C(T,T) if and only if p1pa...px >
End(T).

Theorem 2 Let T be a star and p,q be two distinct prime numbers, then Q(f?) N
Q(f7) = Q(fP?) for each f € C(T,T) if and only if p+ ¢ > End(T).

Proof. To show the necessity, it is enough to show that whenever End(7") > p+q¢+1,
there is some f such that Q(fP) N Q(f?) # Q(fP?). This is done in Example 2 of the
last section.

Now suppose p + ¢ > End(7) and Q(fP) N Q(f9) # Q(fP?). Then there is = €
Q7)) NQ(f7)) \ Q(fP?). By Lemma 2, there are u; — x and n; — oo such that
fP"(u;) = =, and v; — x and m; — oo such that f?"(v;) = z for each i € N.
Moreover, there is an open connected neighborhood B of  with fPe (B)Nn B =0 for



each k € N. We may assume that u;,v; € B for each i € N. Set K = U, f(B) and
E(K) = {e1,...,¢;} with [ = End(K).
First suppose K is connected. We divide the proof into several steps.

Step 1. Set P = Orb(z, f) N P(f) and let y be a p-fixed point for [P]. For each fixed
natural number N, [z,y] ¢ fN([z,9]).

Proof of Step 1: Let Iy € N such that y € f0(B), then there are ny, my, with png > lo
and gmy > lp as n; — oo and m; — oo. Hence fP™(B) D [fP"(ug),y] = [z,y].
Similarly we have f9(B) D [z, y].

Assume the contrary. That is, there is N such that [z,y] € fN([z,y]). As [z,9] C
F¥N ([, 9]) for each k € N, we may assume N > pq + lg. Since p, q are distinct prime
numbers, we have either (p, N) =1 or (p, N) =1 or (pg, N) = pg. We discuss them
respectively.

Case a: (p,N) = 1. As (p,q) = 1, we have (p,qN) = 1. By Lemma 4, there is
t € N such that p|(gmy, + ¢Nt). Hence x € [z,y] C fN9([x,y]) C fIFaNY(B). As
pq|(gmi + gNt), a contradiction.

Case b: (¢, N) = 1. The proof is similar to Case a.

Case c: pq|N. As [x,y] C fN([z,9]), there is z € (z,%) such that fV(2) = z. As
pq > p+q > End(T) > 1, there are lg < i # j < lg+ pg — 1 such that f'(z) and f7(z)
are in the same segment [y, e,,]. We may assume f(z) € [y, f/(2)]. Then we have

[yl € Ny F(2)]) € Ny, F(2)]) € Y (ly, 2)) € YT ([ ).

Let t = N +j —i. As pq /t, we have either (¢,p) = 1 or (¢,q) = 1. Thus, we get
contradiction as in Case a or Case b. This ends proof of Step 1.

Step 2. For each uj, vy, we have f(u;), f"(vr) € (z,y) and f™(u;), f™(vg) & [P]\ P
for each m, n € N.
Proof of Step 2: Assume there are u; and n € N such that f"(u;) € [z,y],1 < n <
pnj — 1, then we have fN([z,3]) = 75" ([z,y]) D 7~ ([f*(uj),y)) D [z, y], where
N = pnj —n. This contradicts with Step 1.

Assume there are u; and n € N such that f"(u;) € [P]\ P, then there is z € P such
that f"(u;) € [y,2]. Set z = f%(z),a € N, then we have [y, 2] C f*([z,y]). Hence

[,y € FP (" (ug) w)) © ST ([ey)) © ST ([ ) = Y ([ 9)),

where N = pn; — n + a. This contradicts with the Step 1 again.
For vy, we can prove in the same way. This ends the proof of Step 2.

Step 3. There is a segment [y, e,,] that is not only a u—type segment which contains
at least b; points mod pq but also a v—type segment which contains at least by points
mod pq, where by,bs € N and by + by > 3.

Proof of Step 3: By Proposition 2 the number of u—type segments is not less than g
and the number of v—type segments is not less than p. As p + ¢ > End(K), there are
segments which are not only u—type but also v—type. Set the number of such segments
be s. We assume that each segment which is not only u—type but also v—type only
contains one point mod pq. Set the number of u—type (v—type) but not v—type (resp.
u—type) segments be s; (resp. s3), then s1 + so + s < End(K) — 1 by Step 2.



(pg— (pg—s)

(pq—s) 5) g i
o >4 Assume the contrary. That is, o =P

We claim either “=— > p or
( 1

and %_S) < g. Hence ¢ — % < s1,p — 3 < 5. Hence

s s ==
p+q—};—6§31—|—s2gEnd(K)—8—1<p+q_3'

Hence we have pg < p + ¢, a contradiction.
So we have either % > por (pa=s) -, q. It contradicts with Proposition 2. This

ends the proof of Step 3. ’

Step 4. Now we will give a contradiction.

Let [y,ew] be the segment in Step 3 and by > 2,by > 1. Assume [y, e, is
(u; @, B;mod pq) and (v;y;mod pg)—type and we define an orientation of [y, e,] such
that y < ey.

We claim that we can choose ki, ka, ..., kn;j1,72,.--,Jn, and 8} <t < ... <
thy ot <tj, <...<tj,, where h = pg + 1 such that

Jh>
y < fbh(vkh) < fbh—l(vkh_l) <...< fbl(vkl) < ey

and o (ug,), f%(uz,) € [fP (vkyyy), £2 (vr,)], where ag = lo + patj, + a,al = lo +
pat;, + B and by = lg + pqtzs + «v. To show the claim, first we choose k; arbitrarily

and then we choose j; such that % (u;,), f% (uj,) are on the left of £ (vy,). We then
choose ko such that f°2(vg,) is on the left of the three points above and jo such that
£2(uj,), f%(uj,) are on the left of f°2(vy,). Repeating the above argument, we can get
what we have claimed (the reason why we can do in such way depends on the results
of Step 1 and Step 2).

By Proposition 1 (8 — a,p) = 1. Let a = 8 — «, then (a, pg)|gmy,. By Lemma 4
there is t € {1,2,...,pq} such that pg|(gmy, + at). As

[y f2 ()] fys £ (ugm)] © 70 [y, £ (wg,y)])
C Ut [y, S (o))

for each 2 < s < h, we have

[z,y] < fUn 00 ([y, fO0 (vg,)])
C fquhfbh+(a/h_1*ahfl)([y’ fbhfl (,Ukhfl)])
c ...
C  famen (@ man—a) e mand) ([ et (y, L))

C T —bp+bp_¢+(a),_y—an—1)+..+(a),_,—an_¢) (B).

As pq|(gmy, — by + bp—t + (a),_y — an—1) + ...+ (a},_, — an—t)), a contradiction.

Now suppose K is not connected, then by Lemma 1 K has finitely many connected
components Ki,..., K, with f(Ky) C K», ..., f(K,) C Kj.

Let ¢ = f"|k, and assume x € Kj. It is easy to see z € (2(g”) N Q2(g9)) \ Q2(g"?).
As p+q > End(T) > End(K1), we can replace f by g and use what we just proved.
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To sum up, we have proved Q(fP) N Q(f9) = Q(fP9). O

Theorem 2’ Let T be a star and p; < pa < ... < pg be distinct prime numbers,
then Q(fP1) N Q(fP2) N ... NQfPr) = Q(fP1P2Pr) for each f € C(T,T) if and only if
p1 +p2 > End(T).
Proof. To show the necessity, it is enough to show that whenever End(T") > p1+p2+1,
there is some f such that Q(fP*) NQ(fP2) N...NQ(fPk) # Q(fPP2Pk). This is done
in Example 2 of the last section.

Now suppose p1+p2 > End(T). Then p1+p; > End(T),2 < i < k, and by Theorem
2 we have Q(fP) N Q(fP2) N...NQ(fPr) = Q(fPP2) N Q(fPP3) N ... NQ(fPPE). As
p2+p; > End(T),3 < i <k, and apply Theorem 2 to fP' we have Q(fP1P2)NQ(fP1P3)N
LNQfPPE) = Q(fPpp3 )N Q(fPP2P4) N N Q( fP1P2PR). Then we apply Theorem 2 to
fPP2 Inductively, after finite steps we have Q(fP1)NQ(fP2)N...NQ(fPF) = Q(fPrP2--Pr),
O

Proof of Theorem 3: Let T be a 3-star or 4-star and f € C(T,T). By the previous
lemmas and theorems we have:

N2 2072,
H2(?) =) =..., (Lemma 6)

1

2

4

(1) 0
2) Q
(3) Q
(4) Q2 UQ(S?) = (f), (Theorem 1)
(5)

5

(
(
(7)) = Q(fP*""), where A > 0 and p > 5 is a prime number, (Lemma 6)
(
(f3)NQ(f°) = Q(f°). (Theorem 2)

1

(1.1) For each n € N let n = 2¥3'm, where k,t € Z,,m € N and (m,6) = 1, then
by (1), (2) and (3) we have
Q(f2"), ift=0
Q(f") = QO 2k3tmy _ )
() = Q=) Q(f23). ift>0
(1.2) For any continuous map f of T, by (4) and (5) we have

QUH\NQUS) = )\ )
QUH\NQUS) = )\ )

Replacing f by f2i, i € N we get (a) and (b) respectively.

(2) We now show in the graph A any pre-assigned sequence of equalities and strict
containments in the first line and the first column can be realized.

If Q(f) = Q(f?), then any pre-assigned sequence of equalities and strict contain-
ments in the first line can be realized for an interval map [2], and obviously can be
realized for a 3—star map.

If Q(f) # Q(f3), we construct f as follows: Let T be a 3-star with E(T) =
{e1,e2,e3} and let y be the unique vertex with valence larger than 1. Take a,b € (e1,y)
such that a € (e1,b). Set Ty = [b,ea,e3] and T = [e1,a]. By [3] we can construct
fi € C(Ty,T1) such that Q(f1) # Q(f). By [2] we can construct fo € C(T%,Ts) such
that any pre-assigned sequence of equalities and strict containments in the first line
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can be realized by fa. Now define f: T — T such that f|p, = f1, flm, = fo and f is
linear in [a, b]. Then f is the continuous map we need.
It is easy to obtain maps of 4-star by a small modification. [
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