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ANNALS OF MATHEMATICS 

Vol. 45, No. 4, October, 1944 

A SIMPLE INTRINSIC PROOF OF THE GAUSS-BONNET FORMULA 
FOR CLOSED RIEMANNIAN MANIFOLDS 

BY SHIING-SHEN CHERN 

(Received November 26, 1943) 

Introduction 

C. B. Allendoerfer' and WV. Fenchel2 have independently given a generaliza- 
tion of the classical formula of Gauss-Bonnet to a closed orientable Riemannian 
manifold which can be imbedded in a euclidean space. Recently, Allendoerfer 
and Andre Weil3 extended the formula to a closed Riemannian polyhedron and 
proved in particular its validity in the case of a general closed Riemannian 
manifold. In their proof use is still made of the imbedding of a Riemannian 
cell in a euclidean space. The object of this paper is to offer a direct intrinsic 
proof of the formula by making use of the theory of vector fields in differentiable 
manifolds. 

The underlying idea of the present proof is very simple, so that a brief summary 
might be helpful. Let R' be a closed orientable Riemannian manifold of an 
even dimension n. According to details to be given below, we define in R' an 
intrinsic exterior differential form U of degree n, which is of course equal to a 
scalar invariant of R' multiplied by the volume element. The formula of Gauss- 
Bonnet in question asserts that the integral of this differential form over R' is 
equal to the Euler-Poincar6 characteristic x of R'. To prove this we pass from 
the manifold R' to the manifold M2,-' of 2n - 1 dimensions formed by the unit 
vectors of R" .4 In M2,-' we show that U is equal to the exterior derivative of a 
differential form II of degree n - 1. By defining a continuous field of unit vec- 
tors over R' with isolated singular points, we get, as its image in M2'-', a sub- 
manifold V' of dimension n, and the integral of U over R' is equal to the same 
integral over Vn. The application of the theorem of Stokes shows that the 
latter is equal to the integral of II over the boundary of Vn. Now, the boundary 
of Vn corresponds exactly to the singular points of the vector field defined in 
R n, the sum of whose indices is, by a well-known theorem, equal to X. With 
such an interpretation the integral of HI over the boundary of Vn can be evaluated 
and is easily proved to be equal to x. 

The method canm of course be applied to derive other formulas of the same 
type and, with suitable modifications, to deduce the Gauss-Bonnet formula for 
a Riemannian polyhedron. We publish this proof, because it is in the present 
case that the main ideas of our method are most clear. Further results will be 
given in a forthcoming paper. 

?1. R6sume of some fundamental formulas in Riemannian Geometry 
Let Rn be a closed orientable differentiable manifold' of an even dimension 

n = 2p and class r > 4. In R? suppose a Riemannian metric be defined, with 
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748 SHIING-SHEN CHERN 

the fundamental tensor gij , whose components we suppose to be of class 3. Since 
we are to deal with multiple integrals, it seems convenient to follow Cartan's 
treatment of Riemannian Geometry,6 with the theory of exterior differential 
forms, instead of the ordinary tensor analysis, playing the dominant r6le. The 
differential forms which occur below are exterior differential forms. 

According to Cartan we attach to each point P of R' a set of n mutually per- 
pendicular unit vectors el, ***, en, with a certain orientation. Such a figure 
Pe, ... en is called a frame. A vector b of the tangent space of R' at P can be 
referred to the frame at P, thus 

(1) b = up,, 
where the index i runs from 1 to n and repeated indices imply summation. The 
law of infinitesimal displacement of tangent spaces, as defined by the parallelism 
of Levi-Civita, is given by equations of the form 

(dP = wiej 
(2) 

( dei = wijjej, W;j + Woj = 0 
where wi, wi, are Pfaffian forms. These Pfaffian forms satisfy the following 
"equations of structure": 

{dw = Wj ff 

dcij = - Wik Wjk + Ui Q2ij + Qif = O. 

In (3) Uij are exterior quadratic differential forms and give the curvature proper- 
ties of the space. 

The forms Uij satisfy a system of equations obtained by applying to (3) the 
theorem that the exterior derivatives of the left-hand members are zero. The 
equations are 

+j CRjkw2= = 0 (4) { 
4Qi=O 

dQ4j - Wjkik + =i0Qjk = ,2 

and are called the Bianchi identities. 
For the following it is useful to know how the Qii behave when the frame el ... 

en undergoes a proper orthogonal transformation. In a neighborhood of P in 
which the same system of coordinates is valid let el ... en be changed to e* * 
e*n according to the proper orthogonal transformation: 

(5) e* = a,,ej 
or 

(5') e, = aie* 
where (ais) is a proper orthogonal matrix, whose elements aij are functions of 
the coordinates. Suppose U~4 be formed from the frames Pel ... en in the 
same way as 12ij are formed from Pei ... en. Then we easily find 

(6) Q.;= aiajlk. 
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GAUSS-BONNET FORMULA 749 

From (6) we deduce an immediate consequence. Let en... ,, be a symbol 
which is equal to + 1 or -1 according as it, ,i, form an even or odd per- 
mutation of 1, - - *, n, and is otherwise zero. Since our space R' is of even di- 
mension n = 2p, we can construct the sum 

(7) 
i= (-1%)"i 22. 7'p! 

E.l*iSP 
tlS2 58;4 

. *2p-liS2p 

where each index runs from 1 to n. Using (6), we see that Q remains invariant 
under a change of frame (5) and is therefore intrinsic. This intrinsic differential 
form U is of degree n and is thus a multiple of co ... con,. As the latter product 
(being the volume element of the space) is also intrinsic, we can write 

(8) U = Lot ... co", 

where the coefficient I is a scalar invariant of the Riemannian manifold. 
With all these preparations we shall write the formula of Gauss-Bonnet in the 

following form 

(9) f i = 

x being the Euler-Poincar6 characteristic of R'. 

?2. The space of unit vectors and a formula for f 

From the Riemannian manifold R' we pass now to the manifold M2-' of di- 
mension 2n - 1 formed by its unit vectors. M2'-l is a closed differentiable 
manifold of class r - 1. As its local coordinates we may of course take the 
local coordinates of R' and the components ui of the vector b in (1), subjected 
to the condition 

(1') uu;= 1. 

If Oi are the components of dt with respect to the frame el * *- e*, we have 

(10) do = Ojej 

where 

(11) 0, = du, + uwi 

and 

(12) u,0A = 0. 

From (11) we get, by differentiation, 

(13) dAO = 0,;w + ujs,. 

As to the effect of a change of frame (5) on the components u,, 0,, it is evidently 
given by the equations 
(14) u, = aqui, O = a;iij. 
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750 SHIING-SHEN CHERN 

We now construct the following two sets of differential forms: 

(15) Ck= iI. i2pUil 0i2 . 2p-2kQi2p-2k+1i2p-2k+2 Qi2p-li2p 

k = 0, 1, * ,- 19 
(16) *k = I.i..i2p 2is2 ia .i2p-2kQi2p-2k+1i2p-2k+2 Qi2p-1i2p 

k = O,1, **,p-1. 

The forms Alk are of degree 2p - I and ok of degree 2p, and we remark that 
I', differs from O only by a numerical factor. Using (6) and (14), we see that 
4k and *k are intrinsic and are therefore defined over the entire Riemannian 
manifold R'. 

We shall prove the following recurrent relation: 

(17) dk = -+ (k + k k = O,.1, ***, p-1, 

where we define I-1 = 0. Using the property of skew-symmetry of the symbol 
ei... i2p in its indices, we can write 

d'Jk = ((i) d0t . . . 
Oi2p-2kf2i2p-2k+1i2p-2k+2 %2p-li2p 

+ (2p - 2k - 0)CM Uild di3 . ., Oi2p-2k* i2p-2k+1i2p-2k+2 
.. 

2p-1i2p 

ke(i) Uil Oh2 .i2p-2k dfTi2p.2k+li2p.2k+2, 2p-2k+i82p-2k+4 .i2p-1i2p X 

where e(X) is an abbreviation of ei,... 2p. For the derivatives dui, do,, d~ij 
we can substitute their expressions from (11), (13), and (4). The resulting ex- 
pression for dtk will then consist of terms of two kinds, those involving ahij and 
those not. We collect the terms not involving coxi, which are 

(18) *k-1 + (2p - 2k - 1)1(E)UjU),Qi2 iO3 . . . 
0i2p-2k2i2p-2k+1i2p-2k+2 ...2p-li2p 

This expression is obviously intrinsic. Its difference with dJtk is an expression 
which contains a factor wij in each of its terms. 

WVe shall show that this difference is zero. In fact, let P be an arbitrary but 
fixed point of R'. In a neighborhood of P we can choose a family of frameE 
e ... en such that at P, 

Wij = 0. 

(This process is "equivalent" to the use of geodesic coordinates in tensor nota- 
tion.) Hence, for this particular family of frames, the expressions (18) and 
dtk are equal at P. It follows that they are identical, since both expressions are 
intrinsic and the point P is arbitrary. 

To transform the expression (18) we shall introduce the abbreviations 

(Pk = E(() Utl lUs1 2 058 .i2p-2k i2p-2k+1i2p-2k+2 Qi 2p- i2p 

(19) 2 k = ((i) Ui1 U, f2i3i2 Gi3 . . .i2p- 2k 2p-2k+1i2p-2k+2 
. 

i2p-iS2p 

Tk = E(i) U1 ~li2 i. Oi-2 2k~i2p 2k+1i2p-2k+2 ..i2p1i2p X 
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GAUSS-BONNET FORMULA 751 

which are forms of degree 2p. Owing to the relations (1 ) and (12) there are 
some simple relations between these forms and w'k. In fact, we can write 

Pk = e(i)(l _ 
- 2l - . .).ili2-i3 

. 
i2p-2k;inp-2k+1i2p-2k+2 

. 
Qi p-1i2 

= 4Jk - Pk - 2 - k - 1) Tk - 2kPk 

which gives 

(20) Ok =2(k + 1)Pk + 2(p-k- 1)T 

Again, we have 

Ok = C(O) Uil Uisi2( Oil - Ui2 uGi2 -i4 -i * Ui2pat2p) O4 
. . . 

0i2p 2k Oi2p-2k+1i2p-2k+2 Qi2p 1 i 2p 

= Tk - (2k + 1) 2k, 

and hence 

(21) Tk = 2(k + 1):2k. 

The expression (18) for dblk therefore becomes 

d4Dk = 'Ik-1+ (2p -2k -1){Pk+ 2(p- k -1)k}, k = 0, 1, ,p-1. 

Using (20) and (21), we get the desired formula (17). 
From (17) we can solve Ak in terms of d4o, dbl. * -t, kb. The result is 

easily found to be 

(22) 'Pk k 2m+'(k +1) k... (k-m +1)dk 
m=0 (2p-2k-1)(2p- 2k+ 1) .. (2p-2k + 2m -1) 

k=0,1,***,p-1. 

In particular, it follows, that Q is the exterior derivative ef a form H: 

2 1 (23) Q 
= (-1)P' 22s irsp! '4- = dil 

where 

(24) H P-Z-1)m14' 
(24) p- E -l 1.3 ... (2p - 2m - 1)m!2P+m 

?3. Proof of the Gauss-Bonnet formula 
Basing on the formula (24) we shall give a proof of the formula (9), under the 

assumption that Rn is a closed orientable Riemannian manifold. 
We define in Rn a continuous field of unit vectors with a point 0 of Rn as 

the only singular point.7 By a well-known theorem the index of the field at 0 
is equal to x, the Euler-Poincare characteristic of R . This vector field defines 
in M2n-1 a submanifold Vn, which has as boundary xZ, where Z is the (n - 1)- 
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752 SHIING-SHEN CHERN 

dimensional cycle formed by all the unit vectors through 0. The integral of 
0 over R' is evidently equal to the same over Vn. Applying Stokes's theorem, 
we get therefore 

(25) f = | =n n 1.3 ..x (2p - 1) 2PLrP 

From the definition of ch we have 
n 

(26) c1o = (2p - 1)! E (l) ... Oi * .ui 6i+j ... 02p . 
i=1 

The last sum is evidently the volume element of the (2p - 1)-dimensional unit 
sphere. Therefore 

fI o = (2p -1)! (p2i)!* 

Substituting this into (25), we get the formula (9). 

INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J. AND 
TSING HUA UNIVERSITY, KUNMING, CHINA. 
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