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ANNALS OF MATHEMATICS 
Vol. 46, No. 4, October, 1945 

ON THE CURVATURA INTEGRA IN A RIEMANNIAN MANIFOLD 

BY SHIING-SHEN CHERN 

(Received May 23, 1945) 

Introduction 
In a previous paper [1] we have given an intrinsic proof of the formula of 

Allendoerfer-Weil which generalizes to Riemannian manifolds of n dimensions 
the classical formula of Gauss-Bonnet for n = 2. The main idea of the proof is 
to draw into consideration the manifold of unit tangent vectors which is intrinsi- 
cally associated to the Riemannian manifold. Denoting by R' the Riemannian 
manifold of dimension n and by M2"' the manifold of dimension 2n - 1 of its 
unit tangent vectors, our proof has led, in the case that n is even, to an intrinsic 
differential form of degree n - 1 (which we denoted by II) in M2"'. We shall 
introduce in this paper a differential form of the same nature for both even and 
odd dimensional Riemannian manifolds. We find that this differential form 
bears a close relation to the "Curvatura Integra" of a submanifold in a Rieman- 
nian manifold, because it will be proved that its integral over a closed submani- 
fold of R' is equal to the Euler-Poincare characteristic of the submanif old. The 
method can be carried over to deduce relations between relative topological 
invariants of a submanifold of the manifold and differential invariants derived 
from the imbedding, and some remarks are to be added to this effect. 

?1. Definition of the Intrinsic Differential Form in M"2-' 

Let R' be an orientable Riemannian manifold of dimension n and class > 3. 
For a r6sum6 of the fundamental formulas in Riemannian Geometry we refer 
to ?1 of the paper quoted above. 

Let M2-' be the manifold of the unit tangent vectors of R'. To a unit tan- 
gent vector we attach a frame Pei ... en such that it is the vector er, through P. 
The frame Pe, ... en is determined up to the transformation 
(1) e* = E awes 

where (aad) is a proper orthogonal matrix of order n - 1 and where, as well as 
throughout the whole section, we shall fix the ranges of the indices a, A to be 
from 1 to n -1. Since the manifold of frames over RA is locally a topological 
product, we can, to a region in M2"- the points of which have their local coordi- 
nates expressed as differentiable functions of certain parameters, attach the 
frames Pe, ... en which depend differentiably (with the same class) on the same 
parameters. From the family of frames we construct the forms wi, wij = 

-w ji Qij according to the equations 

dP = E ;e, 

(2) dei = wijej 

Qij = dwij -E WikWkj, 
k 
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it being agreed that the indices i, j, k range from 1 to n. From the forms wi, 
wdj, GQjj we construct by exterior multiplication differential forms of higher 
degree. If we change the frames Pei ... en into the frames Pei* e,(e. = en) 
according to the equations (1), where aa, are differentiable functions of the local 
parameters, and denote by c*, w* , Qua the forms constructed from Pei*- * en 
as the same forms without asterisks are constructed from the frames Pe1 ... en 
we shall have 

* 
Wan Laa#W (n 

n-1 

a= E aap aftrP p 

(3) 
Oan = Zaa Q~n 

Q nn = Onn . 

A differential form constructed from the frames Pe, ... en will be a differential 
form in l2n1', if it remains invariant under the transformations (1), (3). 

To apply this remark, let us put 

d>}k = a Ea... an-1 ala2 ... Qa2k-1a2k( Oa2k+ln 
... Wan- in 

4'k = 2(k + 1) Z.. Ea 1. an.i Qaja2 
... Qa2k-1a2k Qa2k+ln Wa2k+2n . .. . 

an I 

where eel ' a1.-1 is the Kronecker index which is equal to +1 or -1 according 
as ai, a, n-, constitute an even or odd permutation of 1, , n - 1, and 
is otherwise zero, and where the summation is extended over all the indices ca, 

** ..1 a,~. These forms are defined for k = 0,1, *X [2]-1, where [2] de- 

notes the largest integer = 2 Furthermore, when n is odd, 4)[ln] is also de- 

fined. It will be convenient to define by convention 

(5) T-= 1 T[n] = 0. 

Under the transformations (1), (3) each of the forms in (4) is multiplied by the 
value of the determinant I aaO I, which is +1. Hence they are differential forms 
in M2n-1. We remark that 4bk is of degree n - 1 and "k is of degree n. When 
n is even, they reduce to the forms of the same notation introduced in our 
previous paper. 

The exterior derivative dAk is a differential form in M2n-1, and is equal to 

d4?k = 1 E Z al..an-1 diaia2 Qa3a4 ... Qa2k-la2k (a2k+ln ...anln 

+ (n - 2k - 1) Z Eal- -an-l ,Q2aa2 ... Qa2kja2k dW)a2k+ln Wa2k+2n ... W9an-1n - 

In substituting the expressions for diala2, dWa2k+ln into this equation, the terms 
involving wcas will cancel each other, because dAk is a differential form in M2n-1. 
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Hence we immediately get 

(6) dAk = k-1 + n 2k - 1 
2(k +1) 

Solving for Ik, we get 

(7) Tk = dOk, k = 02 12 ... 2 

where 

(8) k =~2 ()k- (2k + 2) ..(2X + 2) (8) Ok =E (- 1) ( X ) 1) b X- (n- 2X - 1). (r-2k-1) 

If n is even, say = 2p, then we have 

dop-1 = Up-1 

where 

TP-1 = n E6 A..l . an-l Qaja2 
. 

an-i= E 
... inoili2 

. 
in-lin n 

If n is odd, say = 2q + 1, then 
doq. =Tg-1 

But in this case we have also 

d4gq = T1q- 

so that 

d (0q2-1 = 0. 

We define* 

E ( ) 1 Xif n =2p is even, 
(9) H '7rP Xo0 1.3 ... (2p -2X 1) .2P+? X 1 

j22s+ re q1 0 (-1) (L) A, if n = 2q + 1 is odd, 

or, for a formula covering both cases, 

2~n 7rin-1 
E -1)] 

X(o x 1A,(n - 2X + 1)) 

* Our present form Q differs, in the case of even n, from the corresponding one in our 
previous paper by a sign. There are several reasons which indicate that the present choice 
is the appropriate one. 
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and 

(10) '2 1 2 ... in2li2 Q",i-,i., if n = 2p is even 

0 ,if n is odd. 

Our foregoing relations can then be summarized in the formula 

(11) -dH = U. 

We remark that H is a differential form of degree n - 1 in M2"'. 
Over a simplicial chain of dimension n - 1 in M2n-' whose simplexes are 

covered by coordinate neighborhoods of M2n-1 the integral Qf H is defined. 

?2. Remarks on the Formula of Allendoerfer-Weil 

As we have shown before, the formula (11) leads immediately to a proof of 
the formula of Allendoerfer-Weil. We shall, however, add here a few remarks. 

Let 0 be a point of Rn, and let Oe? ... eo be a frame with origin at 0. A point 
P of Rn sufficiently near to 0 is determined by the direction cosines Xi (referred 
to Oe' * eo) of the tangent of the geodesic joining 0 to P and the geodesic dis- 
tance s = OP. The coordinates x' of P defined by 

(12) x= sX 

are called the normal coordinates. In a neighborhood of 0 defined by s < R we 
shall employ s, Xi to be the local coordinates, where 

(13) ? (xi)2 = 1. 

As the components of a vector t through P we shall take the components referred 
to Oeo ... eo of the vector at 0 obtained by transporting b parallelly along the 
geodesic OP. 

In the neighborhood s < R of 0 let a field of unit vectors b be given, whose 
components are differentiable functions of the normal coordinates xi, except 
possibly at 0. The forms 4k, k _ 1, being at least of degree two in dxt, there 
exists a constant M such that 

>11k < Ms. k > 1, 

where S is the geodesic hypersphere of radius s about 0. Let I be the index of 
the vector field at 0, which is possibly a singular point. By Kronecker's formula 
we have 

(14) Il= .. / n-ln 
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where ?n-l denotes the area of the unit hypersphere of dimension n - 1 and is 
given by 

(15) On-1 = r(_n) 

It follows that there exists a constant M1 such that 

I- (-I)nIf, < M s 

or that 

(16) I= (-1)n iMA I, 

Let the Riemannian manifold Rf be closed. It is well-known and is also easy 
to prove directly that it is possible to define in Ri a continuous vector field with 
a finite number of singular points. Draw about each singular point a small 
geodesic hypersphere. The vector field at points not belonging to the interior 
of these geodesic hyperspheres defines a chain in M2n-1 over which Q can be 
integrated. From (11) and (16) we get, by applying the formula of Stokes, 

(17) IRQ = (-1)nI, 
Rn 

where I is the sum of indices of the vector field. Hence the sum of indices of 
the singular points of a vector field is independent of the choice of the field, pro- 
vided that their number is finite. By the construction of a particular vector 
field, as was done by Stiefel and Whitney [2], we get the formula 

(18) I Q = (-1)nI = (-])n x(R n) 
Rn 

where X(R') is the Euler-Poincare characteristic of Rfl In particular, it follows 
that X(R') = 0 if n is odd. 

The same idea can be applied to derive the formula of Allendoerfer-Weil for 
differentiable polyhedra. Let pn be a differentiable polyhedron whose boundary 
;OP' is a differentiable submanifold imbedded in Rn. Let OaPn be orientable and 
therefore two-sided. To each point of aPn we attach the inner unit normal 
vector to aPn, the totality of which defines a submanifold of dimension n - 1 in 
M2n-1. The integral of H over this submanifold we shall denote simply by f H. Then the formula of Allendoerfer-Weil for a differentiable polyhedron 

pni 
pin iS 

(19) f Q = II + x'(P n), 
wn E o n 

where Xt(P') is the inner Euler-Poincare' characteristic of P'. 
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To prove the formula (19), we notice that the field of unit normal vectors on 
ZP' can be extended continuously into the whole polyhedron P', with the 
possible exception of a finite number of singular points. Application of the 
formula of Stokes gives then 

fQ = -f II + (_ 1)nJ. en den 

where J is the sum of indices at these singular points. That J = (-)1n x'(Pn) 
follows from a well-known theorem in topology [3]. It would also be possible to 
deduce this theorem if we carry out the construction of Stiefel-Whitney for 
polyhedra and verify in an elementary way that J = (-1),X'(Pn) for a par- 
ticular vector field. 

?3. A New Integral Formula 
Let Rm be a closed orientable differentiable (of class _ 3) submanifold of 

dimension m ? n - 2 imbedded in Rn. The unit normal vectors to Rm at a 
point of Rm depend on n m - 1 parameters and their totality defines a sub- 

manifold of dimension n 1 in M27'. Denote by H the integral of H over 

this submanifold. Our formula to be proved is then 

(20) I = x(R), 

where the right-hand member stands for the Euler-Poincare characteristic of 
Rm, which is zero if m is odd. 

As a preparation to the proof we need the formulas for the differential geometry 
of Rm imbedded in R'. At a point P of Rm we choose the frames Pe, en 
such that el, -.. , em are the tangent vectors to Rm. We noxv restrict ourselves 
on the submanifold Rm and agree on the following ranges of indices 

1 ? a, m, m + 1 < r, s < n, 1 < A B < n-. 

By our choice of the frames we have 

W.r = 0, 

and hence, by exterior differentiation, 

Z ra Wva = 0 

which allows us to put 

(21) ra Arao CO# 

with 

(22) AraO Arla. 
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Consequently, the fundamental formulas for the Riemannian Geometry on R', 
as induced by the Riemannian metric of R', are 

dcaa =E <Xs 

(23) m 

dwca = C E WCoat W + fad 
Y=1 

where 

(24) fad f AB + E Whar cars 

To evaluate the integral on the left-hand side of (20) we introduce a differ- 
entiable family of frames Pal ... an in a neighborhood of Rm, satisfying the 
condition that aa = ea and that exactly one of the frames has the origin P. 
The relation between the vectors a.+1, X * a, and eml, 41 , en is then given 
by the equations 
(25) er = EUrs as, 

where Urs are the elements of a proper orthogonal matrix. In particular, the 
quantities Unr = Ur may be regarded as local coordinates of the vector en with 
respect to this family of frames. We now get all the normal vectors to R" at P 
by letting Ur vary over all values such that Er (Ur)2 = 1. The forms Wna, X cnr 
which occur in H can be calculated according to the formulas 

cna = den ea = E UrOra, 

(26)n 
(nr = = > dusaUrs + E UaUrt Oft, 

8 s, t =m+l 

where the product of vectors is the scalar product and where we define 

(27) Oij = dai*aj. 
It is evident that 

<Dk = 0 2k > m. 

For k < m/2 we have by definition 

ok = E 'EAl--An-1 QAA2 'QA2k-lA2k WA2k+ln WAn,1n- 

Each term of this sum is of degree m in the differentials of the local coordinates 
on Rm and of degree n - m - 1 in the differentials du, . It follows that the non- 
vanishing terms are the terms where the indices m + 1, * , n - 1 occur among 
A2k+1 X , A,-1 . We can therefore write 

4k = (-1 (n - 2k - 1)! a1 ... -amQala2 .Qa2k-la2k Wna2k+ . . . 
(-I) (m -2k)! 

Wnam Wn,m+1 ... W**nn-1 

= (1l) n-rn- (n 2k -) X E 1 . amQala2 ...Qa2k-1a2k(2 UrOa2k+lr) ... 
(m - 2k)! 

EUt Oamr) An-rn-i, 
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where An-mi is the surface element of a unit hypersphere of dimension n - 
mr-1. 

The integration of (Pk over Rm is then carried out by iteration. In fact, we 
shall keep a point of Rm fixed and integrate over all the unit normal vectors 
through that point. This leads us to the consideration of integrals of the form 

f UXm+j *u An--1 

over the unit hypersphere of dimension n - m - 1. It is clear that the integral 
is not zero, only when all the exponents Xmi, , Xn are even. But for the 
integrals obtained from bk we have E X, = m -2k. It follows that, if mn is 
odd, we shall have 

AF k = 0 0 _ k _ m- 
Rn 2 

and hence 

AIII= 0 
Rn 

This proves the formula (20) for the case that m is odd. 
More interesting is naturally the case that m is even, which we are going to 

suppose from now on. It was proved that [4] 

Um+1 ... U" An-m-1 

(28) 2Xmj.) 2)Onm-i 
(nr-m)(n-m + 2) ... (n- m + 2Xm+l + + 2Xn 2) ' 

where the symbol in the numerator is defined by 

(29) 0) = 1, 2X) = 1.3... (2X-1). 

To evaluate the integral of tk over Rm we have to expand the product 

(E Uroa2k+lr)** (E UrOa m.r) r r 

We introduce the notation 

(30) A(k; Xm+, ... Xn) Z 'E fal cn2-c 
. 

.2k-I a2k* 

where the last symbol stands for a product of 0's, whose first indices are a2k+1, 
... *am respectively and whose second indices are respectively 2Xm+i(m + 1)'s, 
2Xm+2(m + 2)'s, and finally 2Xn n's. Let it be remembered that A(k; Xm+i a** 
Xn) is a differential form of degree m in Rm. Expanding 4k and using (28), we 
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shall get 

fnrn = ( _ l~n-l (n - 2k - 1)!On-im- 
(31) 2im-k21(n -m) (n -m + 2) ... (n -2k -2) 

(31) 

E 1 , A t(L. Xm4l ,Xm*1 Xn), 
)m+1+ +)In=1m-k Xm+i 

.. 
n XiRm 

where the summation is extended over all Xr > 0 whose sum is - k. 
2 

It is now to be remarked that for the curvature forms Qf2 of the Riemannian 
metric on Rm we have to substitute #Oar for c,, in the expressions (24). Q being 
the form on Rm whose integral over Rm is equal to the Euler-Poincar6 character- 
istic X(Rm) by the Allendoerfer-Weil formula, we have 

Q=-Im 21 ) ! Ea, am(ma(a2 -1 >j 2 ar A1a 2r) 

... (Oam- am - Oam-ir cmtr) 

or, by expansion, 

(32) = m m E ( k E A(k; Xm+l( ) * Xn)1 2 7r k0 k! Xm+l+ --+In=2m-k Xm+ *! ... Xn - 

By a straightforward calculation which we shall omit here, we get from (9), (31), 
(32), and (18) the desired formula (20). 

So far we have assumed that m <n - 2, that is, that Rm is not a hypersurface 
of R'. In case m = n - 1 the unit normal vectors of R'n- = Rm in Rn are, 
under our present assumptions concerning orientability, divided into two dis- 
joint families. It is possible to maintain the formula (20) by making suitable 

conventions. In fact, we suppose that the integrals f II over the families 

of inward and outward unit normal vectors are taken over the oppositely oriented 
manifold Rn'-. Then we have 

IT 1 ) nA IITX 
/Rn-l)- =Rn-1)+ H 

where the integrals at the left and right hand sides are over the families of inward 
and outward normals respectively. If n is even, we have 

fo IT =Rf1 11 + f + = 0. Rn -l Rn-l)- Rfnunl)+ 
If n is odd, we have 

f II = 2f IT = X(RR H Rn-1 (Rn-l)- 
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Both cases can be considered as included in the formula (20). In particular, 
if n is odd and if R"-' is the boundary aPn of a polyhedron Pn , wve have also, 
by (19), 

H =I X (P ). R n-1 )- 

Comparing the two equations, we get 

- X (GPn) =2x (pn), 

which asserts that the inner Euler-Poincar6 characteristic of a polyhedron in an 
odd-dimensional manifold is --2 times the Euler-Poincar6 characteristic of its 
boundary, a well-known result in the topology of odd-dimensional manifolds. 

It is interesting to remark in passing that, so far as the writer is aware, the 
formula (20) seems not known even for the Euclidean space. 

?4. Fields of Normal Vectors 

We consider the case that R2n is an even-dimensional orientable Riemannian 
manifold of class _ 3 and Rn a closed orientable submanifold of the same class 
imbedded in R2n. By considering normal vector fields over R , Whitney [5] has 
defined a topological invariant of Rn in R2 , which is the sum of indices at the 
singular points of a normal vector field (with a finite number of singular points) 
over R . Let us denote by 'P this invariant of Whitney. 

To prepare for the study of this invariant we make use of the discussions at 
the beginning of ?3. To each point P of R n we attach the frames Pe, * e2n 
such that el, ***, en are tangent vectors to Rfn at P. Then we have, in par- 
ticular, 
(33) dwij = a, Wik&kj + Oi j, 

where 

(34) Oij = Qij - Wia Wja 
Q =l 

the indices i, j running from n + 1 to 2n. The differential forms Oij are exterior 
quadratic differential forms depending on the imbedding of Rn in R2m. They 
give what is essentially known as the Gaussian torsion of Rf in J2n. We put, 
similar to (10), 

I ~~~1 
(31)p5 0 2prp -en-lin l if n = 2p is even, 

L0, if n is odd. 

With these preparations we are able to state the following theorenm: 
1. If Rn is a closed orientable submanifold imbedded in an orientable Itiemannian 

manifold R2nX the Thitney invariant t is given by 

(36) A= L . 
Rn 
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2. It is always possible to define a continuous normal vector field over a closed 
orientable odd-dimensional differentiable submanifold (of class ? 3) imbedded in 
an orientable differentiable manifold of twice its dimension. 

The first theorem can be proved in the same way as the formula of Allendoerfer- 
Weil. We shall give a proof of the second theorem. 

For this purpose we take a simplicial decomposition of our submanifold RIn 
and denote its simplexes by o-, i = 1, * , m. We assume the decomposition 
to be so fine that each o- lies in a coordinate neighborhood of R'. According to 
a known property on the decomposition of a pseudo-manifold [6], the simplexes 
vX can be arranged in an order, say 0_, I *, , ff such that k, k < m, contains 
at least an (n - 1)-dimensional side which is not incident to 1, , o'nL. 

We then define a continuous normal vector field by induction on k. It is ob- 
viously possible to define a continuous normal vector field over 1. Suppose 
that such a field is defined over a, + * * + kfl. The simplex Sk has in common 
with o + + Sk-li at most simplexes of dimension n - 1 and there exists, 
when k < m, at least one boundary simplex of dimension n - 1 of Sk which does 
not belong to _ n + + -n . It follows that the subset of 0_ at which the 
vector field is defined is contractible to a point in Sk . By a well-known exten- 
sion theorem [7], the vector field can be extended throughout Sk, k < m. In 
the final step k = m the extension of the vector field throughout ?m will lead 
possibly to a singular point in in. Hence it is possible to define a continuous 
normal vector field over Rn with exactly one singular point, the index at which 
is equal to the Whitney invariant 41. If n is odd, we have, by (36), 4 = 0, and 
the singular point can be removed. This proves our theorem. 

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY, AND 

TSING IIUA UNIVERSITY, KUNMING, CHINA. 
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