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This book is an elementary account of the geometry of curves and surfaces.
It is written for students who have completed standard courses in calculus
and linear algebra, and its aim is to introduce some of the main ideas of dif-
ferential geometry.

The language of the book is established in Chapter 1 by a review of the
core content of differential calculus, emphasizing linearity. Chapter 2
describes the method of moving frames, which is introduced, as in elemen-
tary calculus, to study curves in space. (This method turns out to apply with
equal efficiency to surfaces.) Chapter 3 investigates the rigid motions of space,
in terms of which congruence of curves and surfaces is defined in the same
way as congruence of triangles in the plane.

Chapter 4 requires special comment. One weakness of classical differential
geometry is its lack of any adequate definition of surface. In this chapter we
decide just what a surface is, and show that every surface has a differential
and integral calculus of its own, strictly analogous to the familiar calculus of
the plane. This exposition provides an introduction to the notion of differ-
entiable manifold, which is the foundation for those branches of mathemat-
ics and its applications that are based on the calculus.

The next two chapters are devoted to the geometry of surfaces in 3-space.
Chapter 5 measures the shape of a surface and derives basic geometric invari-
ants, notably Gaussian curvature. Intuitive and computational aspects are
stressed to give geometrical meaning to the theory in Chapter 6.

In the final two chapters, although our methods are unchanged, there is a
radical shift of viewpoint. Roughly speaking, we study the geometry of a
surface as seen by its inhabitants, with no assumption that the surface can be
found in ordinary three-dimensional space. Chapter 7 is dominated by cur-
vature and culminates in the Gauss-Bonnet theorem and its geometric and
topological consequences. In particular, we use the Gauss-Bonnet theorem to



prove the Poincaré-Hopf theorem, which relates the singularities of a vector
field on M to the topology of M.

Chapter 8 studies the local and global properties of geodesics. Full devel-
opment of the global properties requires the notion of covering surface. With
it, we can give a comprehensive survey of the surfaces of constant Gaussian
curvature and prove the theorems of Bonnet and Hadamard on, respectively,
positive and nonnegative curvature.

No branch of mathematics makes a more direct appeal to the intuition
than geometry. I have sought to emphasize this by a large number of illus-
trations that form an integral part of the text.

Each chapter of the book is divided into sections, and in each section a
single sequence of numbers designates collectively the theorems, lemmas,
examples, and so on. Each section ends with a set of exercises; these range
from routine checks of comprehension to moderately challenging problems.

In this revision, the structure of the text, including the numbering of its
contents, remains the same, but there are many changes around this frame-
work. The most significant are, first, correction of all known errors; second,
a better way of referencing exercises (the most common reference); third,
general improvement of the exercises. These improvements include deletion
of a few unreasonably difficult exercises, simplification of others, and fuller
answers to odd-numbered ones.

In teaching from earlier versions of this book, I have usually covered the
background material in Chapter 1 rather rapidly and not devoted any class-
room time to Chapter 3. A short course in the geometry of curves and sur-
faces in 3-space might consist of Chapter 2 (omit Sec. 8), Chapter 4 (omit
Sec. 8), Chapter 5, Chapter 6 (covering Secs. 6–9 lightly), and a leap to Section
6 of Chapter 7: the Gauss-Bonnet theorem. This is essentially the content of
a traditional undergraduate course in differential geometry, with clarification
of the notions of surface and mapping.

Such a course, however, neglects the shift of viewpoint mentioned earlier,
in which the geometric concept of surface evolved from a shape in 3-space to
an independent entity—a two-dimensional Riemannian manifold.

This development is important from a practical viewpoint since it makes
surface theory applicable throughout the range of scientific applications
where 2-parameter objects appear that meet the requisite conditions—for
example, in the four-dimensional manifolds of general relativity.

Such a surface is logically simpler than a surface in 3-space since it is con-
structed (at the start of Chapter 7) by discarding effects of Euclidean space.
However, readers can neglect this transition and—as suggested for the Gauss-
Bonnet theorem—proceed directly to most of the topics considered in the
final two chapters, for example, properties of geodesics (length-minimization
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and completeness), singularities of vector fields, and the theorems of Bonnet
and Hadamard.

For readers with access to a computer containing either the Mathematica
or Maple computation system, I have included some forty computer exer-
cises. These offer an opportunity to amplify the text in various ways.

Previous computer experience is not required. The Appendix contains a
summary of the syntaxes of the most recent versions of Mathematica and
Maple, together with a list of explicit computer commands covering the basic
geometry of curves and surfaces. Further commands appear in the answers
to exercises.

It is important to go, step by step, through the hand calculation of the
Gaussian curvature of a parametrized surface, but once this is understood,
repetition becomes tedious. A surface in R3 given only by a formula is seldom
easy to sketch. But using computer commands, a picture of a surface can be
drawn and its curvature computed, often in no more than a few seconds.
Analogous remarks hold for space curves.

Among other applications appearing in the exercises, the most valuable,
since unreachable for humans, is the numerical solution of differential equa-
tions—and the plotting of these solutions.

This book would not have been possible without generous contributions
by Allen B. Altman and Joseph E. Borzellino.

Barrett O’Neill
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Introduction

1

This book presupposes a reasonable knowledge of elementary calculus and
linear algebra. It is a working knowledge of the fundamentals that is actu-
ally required. The reader will, for example, frequently be called upon to use
the chain rule for differentiation, but its proof need not concern us.

Calculus deals mostly with real-valued functions of one or more variables,
linear algebra with functions (linear transformations) from one vector space
to another. We shall need functions of these and other types, so we give here
general definitions that cover all types.

A set S is a collection of objects that are called the elements of S. A set A
is a subset of S provided each element of A is also an element of S.

A function f from a set D to a set R is a rule that assigns to each element
x of D a unique element f(x) of R. The element f (x) is called the value of f
at x. The set D is called the domain of f ; the set R is sometimes called the
range of f. If we wish to emphasize the domain and range of a function f,
the notation f : D Æ R is used. Note that the function is denoted by a single
letter, say f, while f(x) is merely a value of f.

Many different terms are used for functions—mappings, transformations,
correspondences, operators, and so on. A function can be described in
various ways, the simplest case being an explicit formula such as

which we may also write as x Æ 3x2 + 1.
If both f1 and f2 are functions from D to R, then f1 = f2 means that 

f1(x) = f2(x) for all x in D. This is not a definition, but a logical consequence
of the definition of function.

Let f : D Æ R and g: E Æ S be functions. In general, the image of f is 
the subset of R consisting of all elements of the form f(x); it is usually
denoted by f(D). If this image happens to be a subset of the domain E of g,

f x x( ) = +3 12 ,

▼

▲



it is possible to combine these two functions to get the composite function
g( f ): D Æ S. By definition, g( f ) is the function whose value at each element
x of D is the element g( f (x)) of S.

If f: D Æ R is a function and A is a subset of D, then the restriction of f
to A is the function f |A: A Æ R defined by the same rule as f, but applied
only to elements of A. This seems a rather minor change, but the function
f |A may have properties quite different from f itself.

Here are two vital properties that a function may possess. A function 
f : D Æ R is one-to-one provided that if x and y are any elements of D such
that x π y, then f(x) π f(y). A function f: D Æ R is onto (or carries D onto
R) provided that for every element y of R there is at least one element x of
D such that f(x) = y. In short, the image of f is the entire set R. For example,
consider the following functions, each of which has the real numbers as both
domain and range:

(1) The function x Æ x3 is both one-to-one and onto.
(2) The exponential function x Æ ex is one-to-one, but not onto.
(3) The function x Æ x3 + x2 is onto, but not one-to-one.
(4) The sine function x Æ sin x is neither one-to-one nor onto.

If a function f : D Æ R is both one-to-one and onto, then for each element
y of R there is one and only one element x such that f(x) = y. By defining 
f -1(y) = x for all x and y so related, we obtain a function f -1: R Æ D called
the inverse of f. Note that the function f -1 is also one-to-one and onto, and
that its inverse function is the original function f.

Here is a short list of the main notations used throughout the book, in
order of their appearance in Chapter 1:

p, q  . . . . . . . . . . . . . . . . . . . . . points (Section 1.1)
f, g  . . . . . . . . . . . . . . . . . . . . . real-valued functions (Section 1.1)
v, w  . . . . . . . . . . . . . . . . . . . . . tangent vectors (Section 1.2)
V, W  . . . . . . . . . . . . . . . . . . . . vector fields (Section 1.2)
a, b  . . . . . . . . . . . . . . . . . . . . . curves (Section 1.4)
f, y  . . . . . . . . . . . . . . . . . . . . . differential forms (Section 1.5)
F, G . . . . . . . . . . . . . . . . . . . . . mappings (Section 1.7)

In Chapter 1 we define these concepts for Euclidean 3-space. (Extension to
arbitrary dimensions is virtually automatic.) In Chapter 4 we show how these
concepts can be adapted to a surface.

A few references are given to the brief bibliography at the end of the book;
these are indicated by initials in square brackets.

2 Introduction



▼

▲
Chapter 1

Calculus on Euclidean Space

3

As mentioned in the Preface, the purpose of this initial chapter is to estab-
lish the mathematical language used throughout the book. Much of what we
do is simply a review of that part of elementary calculus dealing with differ-
entiation of functions of three variables and with curves in space. Our defi-
nitions have been formulated so that they will apply smoothly to the later
study of surfaces.

1.1 Euclidean Space

Three-dimensional space is often used in mathematics without being formally
defined. Looking at the corner of a room, one can picture the familiar process
by which rectangular coordinate axes are introduced and three numbers are
measured to describe the position of each point. A precise definition that
realizes this intuitive picture may be obtained by this device: instead of saying
that three numbers describe the position of a point, we define them to be a
point.

1.1 Definition Euclidean 3-space R3 is the set of all ordered triples of real
numbers. Such a triple p = ( p1, p2, p3) is called a point of R3.

In linear algebra, it is shown that R3 is, in a natural way, a vector space
over the real numbers. In fact, if p = ( p1, p2, p3) and q = (q1, q2, q3) are points
of R3, their sum is the point

p q+ = + + +( )p q p q p q1 1 2 2 3 3, , .



The scalar multiple of a point p = ( p1, p2, p3) by a number a is the point

It is easy to check that these two operations satisfy the axioms for a vector
space. The point 0 = (0, 0, 0) is called the origin of R3.

Differential calculus deals with another aspect of R3 starting with the
notion of differentiable real-valued functions on R3. We recall some 
fundamentals.

1.2 Definition Let x, y, and z be the real-valued functions on R3 such
that for each point p = ( p1, p2, p3)

These functions x, y, z are called the natural coordinate functions of R3. We
shall also use index notation for these functions, writing

Thus the value of the function xi on a point p is the number pi, and so we
have the identity p = ( p1, p2, p3) = (x1(p), x2(p), x3(p)) for each point p of R3.
Elementary calculus does not always make a sharp distinction between the
numbers p1, p2, p3 and the functions x1, x2, x3. Indeed the analogous distinc-
tion on the real line may seem pedantic, but for higher-dimensional spaces
such as R3, its absence leads to serious ambiguities. (Essentially the same dis-
tinction is being made when we denote a function on R3 by a single letter f,
reserving f (p) for its value at the point p.)

We assume that the reader is familiar with partial differentiation and its
basic properties, in particular the chain rule for differentiation of a compos-
ite function. We shall work mostly with first-order partial derivatives ∂f /∂x,
∂f /∂y, ∂f /∂z and second-order partial derivatives ∂2f /∂x2, ∂2f /∂x∂y, . . . In a
few situations, third- and even fourth-order derivatives may occur, but to
avoid worrying about exactly how many derivatives we can take in any given
context, we establish the following definition.

1.3 Definition A real-valued function f on R3 is differentiable (or infi-
nitely differentiable, or smooth, or of class C •) provided all partial derivatives
of f, of all orders, exist and are continuous.

Differentiable real-valued functions f and g may be added and multiplied
in a familiar way to yield functions that are again differentiable and real-

x x x y x z1 2 3= = =, , .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .

a ap ap app = ( )1 2 3, , .

4 1. Calculus on Euclidean Space



valued. We simply add and multiply their values at each point—the formu-
las read

The phrase “differentiable real-valued function” is unpleasantly long. Hence
we make the convention that unless the context indicates otherwise, “func-
tion” shall mean “real-valued function,” and (unless the issue is explicitly
raised) the functions we deal with will be assumed to be differentiable. We do
not intend to overwork this convention; for the sake of emphasis the words
“differentiable” and “real-valued” will still appear fairly frequently.

Differentiation is always a local operation: To compute the value of the
function ∂f/∂x at a point p of R3, it is sufficient to know the values of f at all
points q of R3 that are sufficiently near p. Thus, Definition 1.3 is unduly
restrictive; the domain of f need not be the whole of R3, but need only be an
open set of R3. By an open set O of R3 we mean a subset of R3 such that if a
point p is in O, then so is every other point of R3 that is sufficiently near p.
(A more precise definition is given in Chapter 2.) For example, the set of all
points p = ( p1, p2, p3) in R3 such that p1 > 0 is an open set, and the function 
yz logx defined on this set is certainly differentiable, even though its domain
is not the whole of R3. Generally speaking, the results in this chapter remain
valid if R3 is replaced by an arbitrary open set O of R3.

We are dealing with three-dimensional Euclidean space only because this is
the dimension we use most often in later work. It would be just as easy to
work with Euclidean n-space Rn, for which the points are n-tuples p = ( p1,
. . . , pn) and which has n natural coordinate functions x1, . . . , xn. All the
results in this chapter are valid for Euclidean spaces of arbitrary dimensions,
although we shall rarely take advantage of this except in the case of
the Euclidean plane R2. In particular, the results are valid for the real line
R1 = R. Many of the concepts introduced are designed to deal with higher
dimensions, however, and are thus apt to be overelaborate when reduced to
dimension 1.

Exercises

1. Let f = x2y and g = y sinz be functions on R3. Express the following
functions in terms of x, y, z:

(a) fg2. (b)

(c) (d)
∂
∂y

fsin .( )∂
∂ ∂

2 fg
y z
( )

.

∂
∂

∂
∂

f
x

g
g
y

f+ .

f g f g fg f g+( )( ) = ( ) + ( ) ( )( ) = ( ) ( )p p p p p p, .

1.1 Euclidean Space 5



2. Find the value of the function f = x2y - y2z at each point:
(a) (1, 1, 1). (b) (3, -1, ).
(c) (a, 1, 1 - a). (d) (t, t2, t3).

3. Express ∂f/∂x in terms of x, y, and z if
(a) f = x sin (xy) + ycos (xz).
(b) f = sin g, g = eh, h = x2 + y2 + z2.

4. If g1, g2, g3, and h are real-valued functions on R3, then

is the function such that

Express ∂f /∂x in terms of x, y, and z, if h = x2 - yz and
(a) f = h(x + y, y2, x + z). (b) f = h(ez, ex+y, ex).
(c) f = h(x, -x, x).

1.2 Tangent Vectors

Intuitively, a vector in R3 is an oriented line segment, or “arrow.” Vectors are
used widely in physics and engineering to describe forces, velocities, angular
momenta, and many other concepts. To obtain a definition that is both prac-
tical and precise, we shall describe an “arrow” in R3 by giving its starting
point p and the change, or vector v, necessary to reach its end point p + v.
Strictly speaking, v is just a point of R3.

2.1 Definition‡ A tangent vector vp to R3 consists of two points of R3: its
vector part v and its point of application p.

We shall always picture vp as the arrow from the point p to the point p + v.
For example, if p = (1, 1, 3) and v = (2, 3, 2), then vp runs from (1, 1, 3) to
(3, 4, 5) as in Fig. 1.1.

We emphasize that tangent vectors are equal, vp = wq, if and only if they
have the same vector part, v = w, and the same point of application, p = q.

f h g g gp p p p p( ) = ( ) ( ) ( )( )1 2 3, , for all .†

f h g g g= ( )1 2 3, ,

1
2

6 1. Calculus on Euclidean Space

† A consequence is the identity f = f(x, y, z).
‡ The term “tangent” in this definition will acquire a more direct geometric meaning in Chapter 4.



Tangent vectors vp and vq with the same vector part, but different points of
application, are said to be parallel (Fig. 1.2). It is essential to recognize that
vp and vq are different tangent vectors if p π q. In physics the concept of
moment of a force shows this clearly enough: The same force v applied at
different points p and q of a rigid body can produce quite different rotational
effects.

2.2 Definition Let p be a point of R3. The set Tp(R3) consisting of all
tangent vectors that have p as point of application is called the tangent space
of R3 at p (Fig. 1.3).

We emphasize that R3 has a different tangent space at each and every one
of its points.

1.2 Tangent Vectors 7
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Since all the tangent vectors in a given tangent space have the same point
of application, we can borrow the vector addition and scalar multiplication
of R3 to turn Tp(R3) into a vector space. Explicitly, we define vp + wp to be 
(v + w)p. and if c is a number we define c(vp) to be (cv)p. This is just the usual
“parallelogram law” for addition of vectors, and scalar multiplication by 
c merely stretches a tangent vector by the factor c—reversing its direction if
c < 0 (Fig. 1.4).

These operations on the tangent space Tp(R3) make it a vector space iso-
morphic to R3 itself. Indeed, it follows immediately from the definitions above
that for a fixed point p, the function v Æ vp is a linear isomorphism from R3

to Tp(R3)—that is, a linear transformation that is one-to-one and onto.
A standard concept in physics and engineering is that of a force field. The

gravitational force field of the earth, for example, assigns to each point of
space a force (vector) directed at the center of the earth.

2.3 Definition A vector field V on R3 is a function that assigns to each
point p of R3 a tangent vector V (p) to R3 at p.

Roughly speaking, a vector field is just a big collection of arrows, one at
each point of R3.

There is a natural algebra of vector fields. To describe it, we first reexam-
ine the familiar notion of addition of real-valued functions f and g. It is pos-
sible to add f and g because it is possible to add their values at each point.
The same is true of vector fields V and W. At each point p, the values V(p)
and W(p) are in the same vector space—the tangent space Tp(R3)—hence we
can add V(p) and W(p). Consequently, we can add V and W by adding their

8 1. Calculus on Euclidean Space
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values at each point. The formula for this addition is thus the same as for
addition of functions,

This scheme occurs over and over again. We shall call it the pointwise princi-
ple: If a certain operation can be performed on the values of two functions
at each point, then that operation can be extended to the functions them-
selves; simply apply it to their values at each point.

For example, we invoke the pointwise principle to extend the operation of
scalar multiplication (on the tangent spaces of R3). If f is a real-valued func-
tion on R3 and V is a vector field on R3, then f V is defined to be the vector
field on R3 such that

Our aim now is to determine in a concrete way just what vector fields look
like. For this purpose we introduce three special vector fields that will serve
as a “basis” for all vector fields.

2.4 Definition Let U1, U2, and U3 be the vector fields on R3 such that

for each point p of R3 (Fig. 1.5). We call U1, U2, U3—collectively—the natural
frame field on R3.

Thus, Ui (i = 1, 2, 3) is the unit vector field in the positive xi direction.

2.5 Lemma If V is a vector field on R3, there are three uniquely deter-
mined real-valued functions, v1, v2, v3 on R3 such that

U

U

U

p

p

p

1

2

3

1 0 0

0 1 0

0 0 1

p

p

p

( ) = ( )
( ) = ( )
( ) = ( )

, ,

, ,

, ,

fV f V( )( ) = ( ) ( )p p p p  for all .

V W V W+( )( ) = ( ) + ( )p p p .

1.2 Tangent Vectors 9
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The functions v1, v2, v3 are called the Euclidean coordinate functions of V.

Proof. By definition, the vector field V assigns to each point p a tangent
vector V(p) at p. Thus, the vector part of V(p) depends on p, so we write
it (v1(p), v2(p), v3(p)). (This defines v1, v2, and v3 as real-valued functions on
R3.) Hence

for each point p (Fig. 1.6). By our (pointwise principle) definitions, this
means that the vector fields V and viUi have the same (tangent vector)
value at each point. Hence V = viUi. �

This last sentence uses two of our standard conventions: viUi means sum
over i = 1, 2, 3; the symbol (�) indicates the end of a proof.

The tangent-vector identity (a1, a2, a3)p = aiUi(p) appearing in this proof
will be used very often.

Computations involving vector fields may always be expressed in terms of
their Euclidean coordinate functions. For example, addition and multiplica-
tion by a function, are expressed in terms of coordinates by

vU wU v w U

f vU fv U

i i i i i i i

i i i i

Â Â Â
Â Â

+ = +( )

( ) = ( )
,

.

Â

Â
Â

Â

V v v v

v v v

v U v U v U

p

p p p

p p p p

p p p

p p p p p p

( ) = ( ) ( ) ( )( )
= ( )( ) + ( )( ) + ( )( )
= ( ) ( ) + ( ) ( ) + ( ) ( )

1 2 3

1 2 3

1 1 2 2 3 3

1 0 0 0 1 0 0 0 1

, ,

, , , , , ,

V vU vU vU= + +1 1 2 2 3 3.
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Since this is differential calculus, we shall naturally require that the various
objects we deal with be differentiable. A vector field V is differentiable pro-
vided its Euclidean coordinate functions are differentiable (in the sense of
Definition 1.3). From now on, we shall understand “vector field” to mean
“differentiable vector field.”

Exercises

1. Let v = (-2, 1, -1) and w = (0, 1, 3).
(a) At an arbitrary point p, express the tangent vector 3vp - 2wp as a linear
combination of U1(p), U2(p), U3(p).
(b) For p = (1, 1, 0), make an accurate sketch showing the four tangent
vectors vp, wp, -2vp, and vp + wp.

2. Let V = xU1 + yU2 and W = 2x2U2 - U3. Compute the vector field 
W - xV, and find its value at the point p = (-1, 0, 2).

3. In each case, express the given vector field V in the standard form viUi.
(a) 2z2U1 = 7V + xyU3.
(b) V(p) = ( p1, p3 - p1, 0)p for all p.
(c) V = 2(xU1 + yU2) - x(U1 - y2U3).
(d) At each point p, V(p) is the vector from the point ( p1, p2, p3) to the
point (1 + p1, p2p3, p2).
(e) At each point p, V(p) is the vector from p to the origin.

4. If V = y2U1 - x2U3 and W = x2U1 - zU2, find functions f and g such
that the vector field f V + gW can be expressed in terms of U2 and U3 only.

5. Let V1 = U1 - xU3, V2 = U2, and V3 = xU1 + U3.
(a) Prove that the vectors V1(p), V2(p), V3(p) are linearly independent at
each point of R3.
(b) Express the vector field xU1 + yU2 + zU3 as a linear combination of
V1, V2, V3.

1.3 Directional Derivatives

Associated with each tangent vector vp to R3 is the straight line t Æ p + tv
(see Example 4.2). If f is a differentiable function on R3, then t Æ f(p + tv)
is an ordinary differentiable function on the real line. Evidently the deriva-
tive of this function at t = 0 tells the initial rate of change of f as p moves
in the v direction

Â

1.3 Directional Derivatives 11



3.1 Definition Let f be a differentiable real-valued function on R3, and
let vp be a tangent vector to R3. Then the number

is called the derivative of f with respect to vp.
This definition appears in elementary calculus with the additional restric-

tion that vp be a unit vector. Even though we do not impose this restriction,
we shall nevertheless refer to vp[ f ] as a directional derivative.

For example, we compute vp[ f ] for the function f = x2yz, with p = (1, 1, 0)
and v = (1, 0, -3). Then

describes the line through p in the v direction. Evaluating f along this line,
we get

Now,

hence at t = 0, we find vp[ f ] = -3. Thus, in particular, the function f is 
initially decreasing as p moves in the v direction.

The following lemma shows how to compute vp[ f ] in general, in terms of
the partial derivatives of f at the point p.

3.2 Lemma If vp = (v1, v2, v3)p is a tangent vector to R3, then

Proof. Let p = ( p1, p2, p3); then

We use the chain rule to compute the derivative at t = 0 of the function

Since

d
dt

p tv vi i i+( ) = ,

f t f p tv p tv p tvp v+( ) = + + +( )1 1 2 2 3 3, , .

p v+ = + + +( )t p tv p tv p tv1 1 2 2 3 3, , .

v pp i
i

f v
f

x
[ ] =

∂
∂

( )Â .

d
dt

f t t tp v+( )( ) = - - -3 12 9 2;

f t t t t t tp v+( ) = +( ) ◊ ◊ -( ) = - - -1 1 3 3 6 32 2 3.

p v+ = ( ) + -( ) = + -( )t t t t1 1 0 1 0 3 1 1 3, , , , , ,

v p vp tf
d
dt

f t[ ] = +( )( ) =0
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we obtain

�

Using this lemma, we recompute vp[ f ] for the example above. Since 
f = x2yz, we have

Thus, at the point p = (1, 1, 0),

Then by the lemma,

as before.
The main properties of this notion of derivative are as follows.

3.3 Theorem Let f and g be functions on R3, vp and wp tangent vectors,
a and b numbers. Then

(1) (avp + bwp)[ f ] = avp[ f ] + bwp[ f ].
(2) vp[af + bg] = avp[ f ] + bvp[g].
(3) vp[ fg] = vp[ f ] .g(p) + f(p) .vp[g].

Proof. All three properties may be deduced easily from the preceding
lemma. For example, we prove (3). By the lemma, if v = (v1, v2, v3), then

But

Hence

�
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The first two properties in the preceding theorem may be summarized by
saying that vp[ f ] is linear in vp and in f. The third property, as its proof makes
clear, is essentially just the usual Leibniz rule for differentiation of a product.
No matter what form differentiation may take, it will always have suitable linear
and Leibnizian properties.

We now use the pointwise principle to define the operation of a vector field
V on a function f. The result is the real-valued function V[ f ] whose value at
each point p is the number V(p)[ f ], that is, the derivative of f with respect to
the tangent vector V(p) at p. This process should be no surprise, since for a
function f on the real line, one begins by defining the derivative of f at a
point—then the derivative function df/dx is the function whose value at each
point is the derivative at that point. Evidently, the definition of V[ f ] is strictly
analogous. In particular, if U1, U2, U3 is the natural frame field on R3, then
Ui [ f ] = ∂f/∂xi. This is an immediate consequence of Lemma 3.2. For
example, U1(p) = (1, 0, 0)p; hence

which is precisely the definition of (∂f/∂x1)(p). This is true for all points 
p = (p1, p2, p3); hence U1[ f ] = ∂f/∂x1.

We shall use this notion of directional derivative more in the case of vector
fields than for individual tangent vectors.

3.4 Corollary If V and W are vector fields on R3 and f, g, h are real-
valued functions, then

(1) ( fV + gW)[h] = fV [h] + gW [h].
(2) V [af + bg] = aV [ f ] + bV [g], for all real numbers a and b.
(3) V [ fg] = V[ f ] .g + f .V [g].

Proof. The pointwise principle guarantees that to derive these properties
from Theorem 3.3 we need only be careful about the placement of paren-
theses. For example, we prove the third formula. By definition, the value
of the function V[ fg] at p is V (p)[ fg]. But by Theorem 3.3 this is

�

If the use of parentheses here seems extravagant, we remind the reader that
a meticulous proof of Leibniz’s formula

V f g f V g V f g f V g

V f g f V g

p p p p p p p p

p

( )[ ]◊ ( ) + ( )◊ ( )[ ] = [ ]( )◊ ( ) + ( )◊ [ ]( )
= [ ]◊ + ◊ [ ]( )( ).

U f
d
dt

f p t p p t1 1 2 3 0p( )[ ] = +( )( ) =, , ,
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must involve the same shifting of parentheses.
Note that the linearity of V[ f ] in V and f is for functions as “scalars” in

the first formula in Corollary 3.4 but only for numbers as “scalars” in the
second. This stems from the fact that fV signifies merely multiplication, but
V[ f ] is differentiation.

The identity Ui [ f ] = ∂f/∂xi makes it a simple matter to carry out explicit
computations. For example, if V = xU1 - y2U3 and f = x2y + z3, then

3.5 Remark Since the subscript notation vp for a tangent vector is some-
what cumbersome, from now on we shall frequently omit the point of appli-
cation p from the notation. This can cause no confusion, since v and w will
always denote tangent vectors, and p and q points of R3. In many situations
(for example, Definition 3.1) the point of application is crucial, and will be
indicated by using either the old notation vp or the phrase “a tangent vector
v to R3 at p.”

Exercises

1. Let vp be the tangent vector to R3 with v = (2, -1, 3) and p = (2, 0, -1).
Working directly from the definition, compute the directional derivative vp[ f ],
where

(a) f = y2z. (b) f = x7.
(c) f = ex cos y.

2. Compute the derivatives in Exercise 1 using Lemma 3.2.

3. Let V = y2U1 - xU3, and let f = xy, g = z3. Compute the functions
(a) V[ f ]. (b) V[g].
(c) V[ fg]. (d) fV[g] - gV[ f ].
(e) V[ f 2 + g2]. (f) V[V[ f ]].

4. Prove the identity V = V [xi ]Ui, where x1, x2, x3 are the natural coor-
dinate functions. (Hint: Evaluate V = viUi on xj.)

5. If V [ f ] = W[ f ] for every function f on R3, prove that V = W.

Â
Â

V f xU x y xU z y U x y y U z

x xy y z x y y z

[ ] = [ ] + [ ] - [ ] - [ ]
= ( ) + - - ( ) = -

1
2
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3 2

3
2 2

3
3

2 2 2 2 22 0 0 3 2 3 .

d
dx

fg
df
dx

g f
dg
dx

( ) = ◊ + ◊
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1.4 Curves in R3

Let I be an open interval in the real line R. We shall interpret this liberally
to include not only the usual finite open interval a < t < b (a, b real numbers),
but also the infinite types a < t (a half-line to +•), t < b (a half-line to -•),
and also the whole real line.

One can picture a curve in R3 as a trip taken by a moving point a. At each
“time” t in some open interval, a is located at the point

in R3. In rigorous terms then, a is a function from I to R3, and the real-valued
functions a1, a2, a3 are its Euclidean coordinate functions. Thus we write 
a = (a1, a, a3), meaning, of course, that

We define the function a to be differentiable provided its (real-valued) co-
ordinate functions are differentiable in the usual sense.

4.1 Definition A curve in R3 is a differentiable function a : I Æ R3 from
an open interval I into R3.

We shall give several examples of curves, which will be used in Chapter 2
to experiment with results on the geometry of curves.

4.2 Example (1) Straight line. A line is the simplest type of curve in
Euclidean space; its coordinate functions are linear (in the sense t Æ at + b,
not in the homogeneous sense t Æ at). Explicitly, the curve a: R Æ R3 such
that

is the straight line through the point p = a(0) in the q direction.

(2) Helix. (Fig. 1.7). The curve t Æ (acos t,a sin t,0) travels around a circle
of radius a > 0 in the xy plane of R3. If we allow this curve to rise (or fall)
at a constant rate, we obtain a helix a: R Æ R3, given by the formula

where a > 0, b π 0.

a t a t a t bt( ) = ( )cos , sin ,

a t t p tq p tq p tq( ) = + = + + +( ) π( )p q q1 1 2 2 3 3 0, ,

a a a at t t t t I( ) = ( ) ( ) ( )( )1 2 3, ., for all in

a a a at t t t( ) = ( ) ( ) ( )( )1 2 3, ,
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(3) The curve

has a noteworthy property: Let C be the cylinder in R3 over the circle in the
xy plane with center at (1, 0, 0) and radius 1. Then a perpetually travels the
route sliced from C by the sphere with radius 2 and center at the origin.
A segment of this route is shown in Fig. 1.8.

(4) The curve a: R Æ R3 such that

shares with the helix in (2) the property of rising constantly. However, it lies
over the hyperbola xy = 1 in the xy plane instead of over a circle.

(5) The 3-curve a: R Æ R3 is defined by

If the coordinate functions of a curve are simple enough, its shape in R3 can
be found, at least approximately, by plotting a few points. We could get a rea-
sonable picture of curve a for 0 � t � 1 by computing a(t) for t = 0, 1/10, 1/2,
9/10, 1.

If we visualize a curve a in R3 as a moving point, then at every time t there
is a tangent vector at the point a(t) that gives the instantaneous velocity of
a at that time. ◆

a t t t t t t( ) = - +( )3 3 33 2 3, , .

a t e e tt t( ) = ( )-, , 2

Â

a t t t
t

t( ) = +Ê
Ë

ˆ
¯1 2

2
cos sin sin, , for all
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4.3 Definition Let a: I Æ R3 be a curve in R3 with a = (a1, a2, a3). For
each number t in I, the velocity vector of a at t is the tangent vector

at the point a(t) in R3 (Fig. 1.9).

This definition can be interpreted geometrically as follows. The derivative
at t of a real-valued function f on R is given by

This formula still makes sense if f is replaced by a curve a = (a1, a2, a3). In
fact,

This is the vector from a(t) to a(t + Dt), scalar multiplied by 1/Dt (Fig. 1.10).
Now, as Dt gets smaller, a(t + Dt) approaches a(t), and in the limit as 

Dt Æ 0, we get a vector tangent to the curve a at the point a(t), namely,

As the figure suggests, the point of application of this vector must be the
point a(t). Thus the standard limit operation for derivatives gives rise to our
definition of the velocity of a curve.

d
dt

t
d
dt

t
d
dt

t
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Ë
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Æ
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Ë
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An application of the identity

to the velocity vector a ¢(t) at t yields the alternative formula

For example, the velocity of the straight line a(t) = p + tq is

The fact that a is straight is reflected in the fact that all its velocity vectors
are parallel; only the point of application changes as t changes.

For the helix

the velocity is

The fact that the helix rises constantly is shown by the constancy of the z
coordinate of a ¢(t).

Given any curve, it is easy to construct new curves that follow the same
route.

4.4 Definition Let a: I Æ R3 be a curve. If h: J Æ I is a differentiable
function on an open interval J, then the composite function

is a curve called a reparametrization of a by h.

For each s Œ J, the new curve b is at the point b(s) = a(h(s)) reached by
a at h(s) in I (Fig. 1.11). Thus b represents a different trip over at least part
of the route of a.

b a= ( ) Æh J: R3

¢( ) = -( ) ( )a at a t a t b
t

sin cos ., ,

a t a t a t bt( ) = ( )cos sin ,, ,

¢( ) = ( ) =( ) ( )a a at q q q
t t1 2 3, , q .

¢( ) = ( ) ( )( )Âa
a

at
d
dt

t U ti
i .

v v v vU
p i i1 2 3, ,( ) = ( )Â p
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To compute the coordinates of b, simply substitute t = h(s) into the co-
ordinates a1(t), a2(t), a3(t) of a. For example, suppose

If h(s) = s2 on J: 0 < s < 2, then the reparametrized curve is

The following lemma relates the velocities of a curve and of a repara-
metrization.

4.5 Lemma If b is the reparametrization of a by h, then

Proof. If a = (a1, a2, a3), then

Using the “prime” notation for derivatives, the chain rule for a composi-
tion of real-valued functions f and g reads (g( f ))¢ = g¢( f ) . f ¢. Thus, in the
case at hand,

By the definition of velocity, this yields

�

According to this lemma, to obtain the velocity of a reparametrization 
of a by h, first reparametrize a ¢ by h, then scalar multiply by the derivative
of h.

Since velocities are tangent vectors, we can take the derivative of a func-
tion with respect to a velocity.

¢( ) = ( )¢( )
= ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( )( )
= ¢( ) ¢ ( )( )

b a

a a a

a

s h s

h s h s h s h s h s h s

h s h s

1 2 3, ,

.

a ai ih s h s h s( )¢( ) = ¢ ( )( )◊ ¢( ).

b a a a as h s h s h s h s( ) = ( )( ) = ( )( ) ( )( ) ( )( )( 1 2 3, , .

¢( ) = ( )( ) ¢ ( )( )b as dh ds s h s .

b a as h s s s s s( ) = ( )( ) = ( ) = -( )2 3 21, , .

a t t t t t on I t( ) = -( ) < <, , 1 0 4: .
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4.6 Lemma Let a be a curve in R3 and let f be a differentiable function
on R3. Then

Proof. Since

we conclude from Lemma 3.2 that

But the composite function f(a) may be written f(a1, a2, a3), and the
chain rule then gives exactly the same result for the derivative of f(a). �

By definition, a ¢(t)[ f ] is the rate of change of f along the line through a(t)
in the a ¢(t) direction. (If a ¢(t) π 0, this is the tangent line to a at a(t); see
Exercise 9.) The lemma shows that this rate of change is the same as that of
f along the curve a itself.

Since a curve a: I Æ R3 is a function, it makes sense to say that a is one-
to-one; that is, a(t) = a(t1) only if t = t1. Another special property of curves
is periodicity: A curve a: R Æ R3 is periodic if there is a number p > 0 such
that a(t + p) = a(t) for all t—and the smallest such number p is then called
the period of a.

From the viewpoint of calculus, the most important condition on a curve
a is that it be regular, that is, have all velocity vectors different from zero.
Such a curve can have no corners or cusps.

The following remarks about curves (offered without proof ) describe
another familiar way to formulate the concept of “curve.” If f is a differen-
tiable real-valued function on R2, let

be the set of all points p in R2 such that f(p) = a. Now, if the partial deriv-
atives ∂f/∂x and ∂f/∂y are never simultaneously zero at any point of C, then
C consists of one or more separate “components,” which we shall call
Curves.† For example, C: x2 + y2 = r2 is the circle of radius r centered at the

C f a: =

¢( )[ ] =
∂
∂

( )( ) ( )Âa a
a

t f
f

x
t

d
dt

t
i

i .

¢ = Ê
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ˆ
¯a

a a a

a

d
dt

d
dt

d
dt

1 2 3, , ,

¢( )[ ] =
( )( ) ( )a
a

t f
d f

dt
t .
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origin of R2, and the hyperbola C: x2 - y2 = r2 splits into two Curves
(“branches”) C1 and C2 as shown in Fig. 1.12.

Every Curve C is the route of many regular curves, called parametrizations
of C. For example, the curve

is a well-known periodic parametrization of the circle given above, and for 
r > 0 the one-to-one curve

parametrizes the branch x > 0 of the hyperbola.

Exercises

1. Compute the velocity vector of the curve in Example 4.2(3) for arbitrary
t and for t = 0, t = p/2, t = p, visualizing those on Fig. 1.8.

2. Find the unique curve such that a(0) = (1, 0, 5) and a¢(t) = (t2, t, et).

3. Find the coordinate functions of the curve b = a(h), where a is the curve
in Example 4.2(3) and h(s) = cos-1 (s) on J: 0 < s < 1.

4. Reparametrize the curve a in Example 4.2(4) using h(s) = log s on 
J: s > 0. Check the equation in Lemma 4.5 in this case by calculating each
side separately.

5. Find the equation of the straight line through the points (1, -3, -1) 
and (6, 2, 1). Does this line meet the line through the points (-1, 1, 0) and 
(-5, -1, -1)?

6. Deduce from Lemma 4.6 that in the definition of directional derivative
(Def. 3.1) the straight line t Æ p + tv can be replaced by any curve a with
initial velocity vp, that is, such that a(0) = p and a ¢(0) = vp.

b t r t r t( ) = ( )cosh sinh,

a t r t r t( ) = ( )cos sin,
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7. (Continuation.)
(a) Show that the curves with coordinate functions

all have the same initial velocity vp.
(b) If f = x2 - y2 + z2, compute vp[ f ] by calculating d( f(a))/dt at t = 0,
using each of three curves in (a).

8. Sketch the following Curves in R2, and find parametrizations for each.
(a) C: 4x2 + y2 = 1, (b) C: 3x + 4y = 1,
(c) C: y = ex.

9. For a fixed t, the tangent line to a regular curve a at the point a(t) is the
straight line u Æ a(t) + ua ¢(t), where we delete the point of application of
a ¢(t). Find the tangent line to the helix a(t) = (2cos t, 2 sin t, t) at the points
a(0) and a(p/4).

1.5 1-Forms

If f is a real-valued function on R3, then in elementary calculus the differen-
tial of f is usually defined as

It is not always made clear exactly what this formal expression means. In this
section we give a rigorous treatment using the notion of 1-form, and forms
tend to appear at crucial moments in later work.

5.1 Definition A 1-form f on R3 is a real-valued function on the set of
all tangent vectors to R3 such that f is linear at each point, that is,

for any numbers a, b and tangent vectors v, w at the same point of R3.

We emphasize that for every tangent vector v, a 1-form f defines a real
number f(v); and for each point p in R3, the resulting function fp: Tp(R3) Æ R
is linear. Thus at each point p, fp is an element of the dual space of Tp(R3). In
this sense the notion of 1-form is dual to that of vector field.

The sum of 1-forms f and y is defined in the usual pointwise fashion:

f f fa b a bv w v w+( ) = ( ) + ( )

df
f
x

dx
f
y

dy
f
z

dz=
∂
∂

+
∂
∂

+
∂
∂

.

t t t t t t t t t, , , , , , , ,1 2+( ) ( ) ( )sin cos sinh cosh
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Similarly, if f is a real-valued function on R3 and f is a 1-form, then ff is
the 1-form such that

for all tangent vectors vp.
There is also a natural way to evaluate a 1-form f on a vector field V to

obtain a real-valued function f(V): At each point p the value of f(V) is the
number f(V(p)). Thus a 1-form may also be viewed as a machine that con-
verts vector fields into real-valued functions. If f(V) is differentiable when-
ever V is, we say that f is differentiable. As with vector fields, we shall always
assume that the 1-forms we deal with are differentiable.

A routine check of definitions shows that f(V) is linear in both f and V;
that is,

and

where f and g are functions.
Using the notion of directional derivative, we now define a most impor-

tant way to convert functions into 1-forms.

5.2 Definition If f is a differentiable real-valued function on R3, the dif-
ferential df of f is the 1-form such that

In fact, df is a 1-form, since by definition it is a real-valued function on
tangent vectors, and by (1) of Theorem 3.3 it is linear at each point p. Clearly,
df knows all rates of change of f in all directions on R3, so it is not surpris-
ing that differentials are fundamental to the calculus on R3.

Our task now is to show that these rather abstract definitions lead to famil-
iar results when expressed in terms of coordinates.

5.3 Example 1-Forms on R3. (1) The differentials dx1, dx2, dx3 of the
natural coordinate functions. Using Lemma 3.2 we find

dx x v
x
x

v vi p p i j
i

j
j ij i

jj

v v p( ) = [ ] =
∂
∂

( ) = =ÂÂ d ,

df fp p pv v v( ) = [ ] for all tangent vectors .

f g V f V g Vf y f y+( )( ) = ( ) + ( ),

f f ffV gW f V g W+( ) = ( ) + ( )

f fp pf f( )( ) = ( ) ( )v p v

f y f y+( )( ) = ( ) + ( )v v v vfor all tangent vectors .
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where dij is the Kronecker delta (0 if i π j, 1 if i = j). Thus the value of dxi

on an arbitrary tangent vector vp is the ith coordinate vi of its vector part—and
does not depend on the point of application p.

(2) The 1-form y = f1dx1 + f2dx2 + f3dx3. Since dxi is a 1-form, our def-
initions show that y is also a 1-form for any functions f1, f2, f3. The value
of y on an arbitrary tangent vector vp is

The first of these examples shows that the 1-forms dx1, dx2, dx3 are the ana-
logues for tangent vectors of the natural coordinate functions x1, x2, x3 for
points. Alternatively, we can view dx1, dx2, dx3 as the “duals” of the natural
unit vector fields U1, U2, U3. In fact, it follows immediately from (1) above
that the function dxi (Uj ) has the constant value dij.

We now show that every 1-form can be written in the concrete manner
given in (2) above.

5.4 Lemma If f is a 1-form on R3, then f = fidxi , where fi = f (Ui).
These functions f1, f2, f3 are called the Euclidean coordinate functions of f.

Proof. By definition, a 1-form is a function on tangent vectors; thus f
and fidxi are equal if and only if they have the same value on every
tangent vector vp = viUi(p). In (2) of Example 5.3 we saw that

On the other hand,

since fi = f(Ui). Thus f and fidxi do have the same value on every
tangent vector. �

This lemma shows that a 1-form on R3 is nothing more than an expression
f dx + g dy + h dz, and such expressions are now rigorously defined as func-
tions on tangent vectors. Let us now show that the definition of differential
of a function (Definition 5.2) agrees with the informal definition given at the
start of this section.

5.5 Corollary If f is a differentiable function on R3, then

df
f

x
dx

i
i=

∂
∂Â .

Â

f f fv p p pp i i i i i ivU v U v f( ) = ( )( ) = ( )( ) = ( )Â Â Â

f dx f vi i p i iÂ Â( )( ) = ( )v p .

Â
Â

Â

y v v p v pp i i p i i p i if dx f dx f v( ) = ( )( ) = ( ) ( ) = ( )Â Â Â ,
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Proof. The value of (∂f/∂xi)dxi on an arbitrary tangent vector vp is
(∂f/∂xi) (p)vi. By Lemma 3.2, df(vp) = vp[ f ] is the same. Thus the 1-forms

df and (∂f/∂xi) dxi are equal. �

Using either this result or the definition of d, it is immediate that

Finally, we determine the effect of d on products of functions and on com-
positions of functions.

5.6 Lemma Let fg be the product of differentiable functions f and g on
R3. Then

Proof. Using Corollary 5.5, we obtain

�

5.7 Lemma Let f: R3 Æ R and h: R Æ R be differentiable functions, so
the composite function h( f ): R3 Æ R is also differentiable. Then

Proof. (The prime here is just the ordinary derivative, so h¢( f ) is again a
composite function, from R3 to R.) The usual chain rule for a composite
function such as h( f ) reads

Hence

�

To compute df for a given function f it is almost always simpler to use these
properties of d rather than substitute in the formula of Corollary 5.5. Then

d h f
h f
x

dx h f
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x
dx h f df
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from df we immediately get the partial derivatives of f, and, in fact, all its
directional derivatives. For example, suppose

Then by Lemmas 5.6 and 5.7,

Now use the rules above to evaluate this expression on a tangent vector vp.
The result is

Exercises

1. Let v = (1, 2, -3) and p = (0, -2, 1). Evaluate the following 1-forms
on the tangent vector vp.

(a) y2 dx. (b) z dy - y dz.
(c) (z2 - 1)dx - dy + x2 dz.

2. If f = fidxi and V = viUi, show that the 1-form f evaluated on the
vector field V is the function f(V) = fivi.

3. Evaluate the 1-form f = x2 dx - y2 dz on the vector fields
V = xU1 + yU2 + zU3,
W = xy (U1 - U3) + yz (U1 - U2), and (1/x)V + (1/y)W.

4. Express the following differentials in terms of df:
(a) d( f 5). (b) , where f > 0.
(c) d(log(1 + f 2)).

5. Express the differentials of the following functions in the standard form
fi dxi.
(a) (x2 + y2 + z2)1/2. (b) tan-1(y/x).

6. In each case compute the differential of f and find the directional deriv-
ative vp[ f ], for vp as in Exercise 1.

(a) f = xy2 - yz2. (b) f = xeyz.
(c) f = sin(xy) cos(xz).

Â

d f( )

Â
ÂÂ

v vp pf df p p v p p p v p v[ ] = ( ) = + + -( ) + +( )2 2 1 11 2 1 1
2

2 3 2 2
2

3.

df x dx y x dy y dy z y dz

xy dx x yz dy y dz
f x f y f z

= ( ) + -( ) + ( ) + +( )
= + + -( ) + +( )

∂ ∂ ∂ ∂ ∂ ∂

2 1 2 2

2 2 1 2

2 2

2 2

{ 1 244 344 124 34
.

f x y y z= -( ) + +( )2 21 2 .
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7. Which of the following are 1-forms? In each case f is the function on
tangent vectors such that the value of f on (v1, v2, v3)p is

(a) v1 - v3. (b) p1 - p3.
(c) v1p3 + v2p1. (d) vp[x2 + y2].
(e) 0. (f) (p1)2.

In case f is a 1-form, express it as fi dxi.

8. Prove Lemma 5.6 directly from the definition of d.

9. A 1-form f is zero at a point p provided f(vp) = 0 for all tangent vectors
at p. A point at which its differential df is zero is called a critical point of the
function f. Prove that p is a critical point of f if and only if

Find all critical points of f = (1 - x2)y + (1 - y2)z.

(Hint: Find the partial derivatives of f by computing df.)

10. (Continuation.) Prove that the local maxima and local minima of f are
critical points of f. (f has a local maximum at p if f(q) � f(p) for all q near
p.)

11. It is sometimes asserted that df is the linear approximation of Df.
(a) Explain the sense in which (df )(vp) is a linear approximation of
f (p + v) - f(p).
(b) Compute exact and approximate values of f(0.9, 1.6, 1.2) - f(1, 1.5, 1),
where f = x2y/z.

1.6 Differential Forms

The 1-forms on R3 are part of a larger system called the differential forms on
R3. We shall not give as rigorous an account of differential forms as we did
of 1-forms since our use of the full system on R3 is limited. However, the
properties established here are valid whenever differential forms are used.

Roughly speaking, a differential form on R3 is an expression obtained by
adding and multiplying real-valued functions and the differentials dx1, dx2,
dx3 of the natural coordinate functions of R3. These two operations obey the
usual associative and distributive laws; however, the multiplication is not
commutative. Instead, it obeys the

alternation rule: dx dx dx dx i ji j j i= - £ £( )1 3, .

∂
∂

( ) =
∂
∂

( ) =
∂
∂

( ) =
f
x

f
y

f
z

p p p 0.

Â
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This rule appears—although rather inconspicuously—in elementary calculus
(see Exercise 9).

A consequence of the alternation rule is the fact that “repeats are zero,”
that is, dxi dxi = 0, since if i = j the alternation rule reads

If each summand of a differential form contains p dxi’s (p = 0, 1, 2, 3), the
form is called a p-form, and is said to have degree p. Thus, shifting to dx, dy,
dz, we find

A 0-form is just a differentiable function f.
A 1-form is an expression f dx + g dy + h dz, just as in the preceding section.
A 2-form is an expression f dx dy + g dx dz + h dy dz.
A 3-form is an expression f dx dy dz.
We already know how to add 1-forms: simply add corresponding coeffi-

cient functions. Thus, in index notation,

The corresponding rule holds for 2-forms or 3-forms.
On three-dimensional Euclidean space, all p-forms with p > 3 are zero. This

is a consequence of the alternation rule, for a product of more than three
dxi’s must contain some dxi twice, but repeats are zero, as noted above. For
example, dx dy dx dz = -dx dx dy dz = 0, since dx dx = 0. As a reminder
that the alternation rule is to be used, we denote this multiplication of forms
by a wedge Ÿ. (However, we do not bother with the wedge when only prod-
ucts of dx, dy, dz are involved.)

6.1 Example Computation of wedge products.

(1) Let

Then

But dx dx = 0 and dy dx = -dx dy. Thus

In general, the product of two 1-forms is a 2-form.

f yŸ = + -yz dx dy x dx dz xy dy dz2 .

f yŸ = -( ) Ÿ +( )
= + - -

x dx y dy z dx x dz

xz dx dx x dx dz yz dy dx yx dy dz2 .

f y= - = +x dx y dy z dx x dzand .

f dx g dx f g dxi i i i i i iÂ Â Â+ = +( ) .

dx dx dx dxi i i i= - .
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(2) Let f and y be the 1-forms given above and let q = z dy. Then

Since dy dx dy and dy dy dz each contain repeats, both are zero. Thus

(3) Let f be as above, and let h be the 2-form y dx dz + x dy dz. Omitting
forms containing repeats, we find

It should be clear from these examples that the wedge product of a p-form
and a q-form is a ( p + q)-form. Thus such a product is automatically zero
whenever p + q > 3.

6.2 Lemma If f and y are 1-forms, then

Proof. Write

Then by the alternation rule,

�

In the language of differential forms, the operator d of Definition 5.2 con-
verts a 0-form f into a 1-form df. It is easy to generalize to an operator (also
denoted by d ) that converts a p-form h into a ( p + 1)-form dh: One simply
applies d (of Definition 5.2) to the coefficient functions of h. For example,
here is the case p = 1.

6.3 Definition If f = fi dxi is a 1-form on R3, the exterior derivative
of f is the 2-form df = dfi Ÿ dxi.

If we expand the preceding definition using Corollary 5.5, we obtain the
following interesting formula for the exterior derivative of

f
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There is no need to memorize this formula; it is more reliable simply to apply
the definition in each case. For example, suppose

Then

It is easy to check that the general exterior derivative enjoys the same lin-
earity property as the particular case in Definition 5.2; that is,

where f and y are arbitrary forms and a and b are numbers.
The exterior derivative and the wedge product work together nicely:

6.4 Theorem Let f and g be functions, f and y 1-forms. Then

(1) d( fg) = df g + f dg.
(2) d( ff) = df Ÿ f + f df.
(3) d(f Ÿ y) = df Ÿ y - f Ÿ dy.†

Proof. The first formula is just Lemma 5.6. We include it to show the
family resemblance of all three formulas. The proof of (2) is a simpler
version of that of (3), so we outline a proof of the latter—watching to see
where the minus sign comes from.

It suffices to prove the formula when f = f du, y = g dv, where u and v
are any of the coordinate functions x1, x2, x3. In fact, every 1-form is a sum
of such terms, so the general case will follow by the linearity of d and the
algebra of wedge products.

For example, let us try the typical case f = f dx, y = g dy. Since repeats
kill, there is no use writing down terms that are bound to be eliminated.
Hence

(*)d d fg dx dy
fg
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Now,

But

since dx dz dy = -dx dy dz. Thus we must subtract this last equation from
its predecessor to get (*). �

One way to remember the minus sign in equation (3) of the theorem is to
treat d as if it were a 1-form. To reach y, d must change places with f, hence
the minus sign is consistent with the alternation rule in Lemma 6.2.

Differential forms, and the associated notions of wedge product and exte-
rior derivative, provide the means of expressing quite complicated relations
among the partial derivatives in a highly efficient way. The wedge product
saves much useless labor by discarding, right at the start, terms that will even-
tually disappear. But the exterior derivative d is the key. Exercise 8 shows, for
example, how it replaces all three of the differentiation operations of classi-
cal vector analysis.

Exercises

1. Let f = yz dx + dz, y = sin z dx + cos z dy, x = dy + z dz. Find the
standard expressions (in terms of dxdy, . . .) for

(a) f Ÿ y, y Ÿ x, x Ÿ f. (b) df, dy, dx.

2. Let f = dx/y and y = z dy. Check the Leibnizian formula (3) of
Theorem 6.4 in this case by computing each term separately.

3. For any function f show that d(df ) = 0. Deduce that d( f dg) = df Ÿ dg.

4. Simplify the following forms:
(a) d( f dg + g df ). (b) d(( f - g) (df + dg)).
(c) d( f dg Ÿ g df ). (d) d(gf df) + d( f dg).

5. For any three 1-forms fi = j fijdxj (1 � i � 3), prove

f f f1 2 3
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6. If r, J, z are the cylindrical coordinate functions on R3, then x = rcosJ,
y = r sin J, z = z. Compute the volume element dx dy dz of R3 in cylindrical
coordinates. (That is, express dx dy dz in terms of the functions r, J, z, and
their differentials.)

7. For a 2-form

the exterior derivative dh is defined to be the 3-form obtained by 
replacing f, g, and h by their differentials. Prove that for any 1-form f,
d(df) = 0.

Exercises 3 and 7 show that d 2 = 0, that is, for any form x, d(dx) = 0. (If
x is a 2-form, then d(dx) = 0, since its degree exceeds 3.)

8. Classical vector analysis avoids the use of differential forms on R3 by con-
verting 1-forms and 2-forms into vector fields by means of the following one-
to-one correspondences:

Vector analysis uses three basic operations based on partial differentiation:
Gradient of a function f:

Curl of a vector field V = fiUi:

Divergence of a vector field V = fiUi:

Prove that all three operations may be expressed by exterior derivatives as
follows:

(a)

(b)

(c) If , then divh h´ = ( )
( )1

V d V dx dy dz.

If , then curlf f´ ´
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9. Let f and g be real-valued functions on R2. Prove that

This formula appears in elementary calculus; show that it implies the alter-
nation rule.

1.7 Mappings

In this section we discuss functions from Rn to Rm. If n = 3 and m = 1, then
such a function is just a real-valued function on R3. If n = 1 and m = 3, it
is a curve in R3. Although our results will necessarily be stated for arbitrary
m and n, we are primarily interested in only three other cases:

The fundamental observation about a function F: Rn Æ Rm is that it can
be completely described by m real-valued functions on Rn. (We saw this
already in Section 4 for n = 1, m = 3.)

7.1 Definition Given a function F: Rn Æ Rm, let f1, f2, . . . , fm, denote
the real-valued functions on Rn such that

for all points p in Rn. These functions are called the Euclidean coordinate func-
tions of F, and we write F = (f1, f2, . . . , fm).

The function F is differentiable provided its coordinate functions are dif-
ferentiable in the usual sense. A differentiable function F: Rn Æ Rm is called
a mapping from Rn to Rm.

Note that the coordinate functions of F are the composite functions 
fi = xi(F ), where x1, . . . , xm are the coordinate functions of Rm.

Mappings may be described in many different ways. For example, suppose
F: R3 Æ R3 is the mapping F = (x2, yz, xy). Thus

Now, p = (p1, p2, p3), and by definition of the coordinate functions,

F x y z x yp p p p p p p( ) = ( ) ( ) ( ) ( ) ( )( )2, , for all .
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Hence we obtain the following pointwise formula for F:

Thus, for example,

In principle, one could deduce the theory of curves from the general theory
of mappings. But curves are reasonably simple, while a mapping, even in the
case R2 Æ R2, can be quite complicated. Hence we reverse this process and
use curves, at every stage, to gain an understanding of mappings.

7.2 Definition If a: I Æ Rn is a curve in Rn and F: Rn Æ Rm is a mapping,
then the composite function b = F(a): I Æ Rm is a curve in Rm called the
image of a under F (Fig. 1.13).

7.3 Example Mappings. (1) Consider the mapping F: R3 Æ R3 such 
that

In pointwise terms then,

Only when a mapping is quite simple can one hope to get a good idea of its
behavior by merely computing its values at some finite number of points. But
this function is quite simple —it is a linear transformation from R3 to R3.

F p p p p p p p p p p p1 2 3 1 2 1 2 3 1 2 32, , , , for all , ,( ) = - +( ) .

F x y x y z= - +( ), , 2 .

F F1 2 0 1 0 2 3 1 3 9 3 3, , , , and , ,-( ) = -( ) -( ) = -( ), , .

F p p p p p p p p p p p1 2 3 1
2

2 3 1 2 1 2 3, , , , for all , ,( ) = ( ) .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .
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Thus by a well-known theorem of linear algebra, F is completely determined
by its values at three (linearly independent) points, say the unit points

(2) The mapping F: R2 Æ R2 such that F(u, v) = (u2 - v2, 2uv). (Here u and
v are the coordinate functions of R2.) To analyze this mapping, we examine
its effect on the curve a(t) = (rcos t, r sin t), where 0 � t � 2p. This curve
takes one counterclockwise trip around the circle of radius r with center at
the origin. The image curve is

with 0 � t � 2p. Using the trigonometric identities

we find for b = F(a) the formula

with 0 � t � 2p. This curve takes two counterclockwise trips around the circle
of radius r2 centered at the origin (Fig. 1.14).

Thus the effect of F is to wrap the plane R2 smoothly around itself twice—
leaving the origin fixed, since F(0, 0) = (0, 0). In this process, each circle of
radius r is wrapped twice around the circle of radius r2.

Generally speaking, differential calculus deals with approximation of
smooth objects by linear objects. The best-known case is the approximation
of a differentiable real-valued function f near x by the linear function Dx Æ
f ¢(x) Dx, which gives the tangent line at x to the graph of f. Our goal now is
to define an analogous linear approximation for a mapping F: Rn Æ Rm near
a point p of Rn.

b t r t r t( ) = ( )2 22 2cos sin, ,

cos cos sin sin sin cos2 2 22 2t t t t t t= - =, ,
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F r t r t
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Since Rn is filled by the radial lines a(t) = p + tv starting at p, Rm is filled
by their image curves b(t) = F(p + tv) starting at F(p) (Fig. 1.15). So 
we approximate F near p by the map F* that sends each initial velocity 
a¢(0) = vp to the initial velocity b¢(0).

7.4 Definition Let F: Rn Æ Rm be a mapping. If v is a tangent vector to
Rn at p, let F*(v) be the initial velocity of the curve t Æ F(p + tv). The result-
ing function F* sends tangent vectors to Rn to tangent vectors to Rm, and is
called the tangent map of F.

The tangent map can be described explicitly as follows.

7.5 Proposition Let F = (f1, f2, . . . , fm) be a mapping from Rn to Rm.
If v is a tangent vector to Rn at p, then

Proof. For definiteness, take m = 3. Then

By definition, F*(v) = b¢(0). To get b¢(0), we take the derivatives, at t = 0,
of the coordinate functions of b (Definition 4.3). But

Thus

F f f f*( ) = [ ] [ ] [ ]( ) ( )v v v v1 2 3 0, , ,b

d
dt

f t fi t ip v v+( )( ) = [ ]=0 .

b t F t f t f t f t( ) = +( ) = +( ) +( ) +( )( )p v p v p v p v1 2 3, , .

F f f Fm*( ) = [ ] [ ]( ) ( )v v v p1 , . . . , .at
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and b(0) = F(p). �

Fix a point p of Rn. The definition of tangent map shows that F* sends
tangent vectors at p to tangent vectors at F(p). Thus for each p in Rn, the
function F* gives rise to a function

called the tangent map of F at p. (Compare the analogous situation in 
elementary calculus where a function f: R Æ R has a derivative function 
f ¢: R Æ R that at each point t of R gives the derivative of f at t.)

7.6 Corollary If F: Rn Æ Rm is a mapping, then at each point p of Rn the
tangent map F*p: Tp(Rn) Æ TF(p)(Rm) is a linear transformation.

Proof. We must show that for tangent vectors v and w at p and numbers
a, b,

This follows immediately from the preceding proposition by using the lin-
earity in assertion (1) of Theorem 3.3. �

In fact, the tangent map F*p at p is the linear transformation that best
approximates F near p. This idea is fully developed in advanced calculus,
where it is used to prove Theorem 7.10.

Another consequence of the proposition is that mappings preserve veloci-
ties of curves. Explicitly:

7.7 Corollary Let F: Rn Æ Rm be a mapping. If b = F(a) is the image of
a curve a in Rn, then b¢ = F*(a ¢).

Proof. Again, set m = 3. If F = (f1, f2, f3), then

Hence Theorem 7.5 gives

But by Lemma 4.6,

F f f f* ¢( ) = ¢[ ] ¢[ ] ¢[ ]( )a a a a1 2 3, .,

b a a a a= ( ) = ( ) ( ) ( )( )F f f f1 2 3, , .

F a b aF bF* +( ) = *( ) + *( )v w v w .

F T Tp p
n

F p
m

* ( ) Æ ( )( ): R R
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Hence

�

Let {Uj} (1 £ j £ n) and {Ūi} (1 £ i £ m) be the natural frame fields of Rn

and Rm, respectively (Def. 2.4). Then:

7.8 Corollary If F = (f1, . . . , fm) is a mapping from Rn to Rm, then

Proof. This follows directly from Proposition 7.5, since .

�

The matrix appearing in the preceding formula,

is called the Jacobian matrix of F at p. (When m = n = 1; it reduces to a
single number: the derivative of F at p.)

Just as the derivative of a function is used to gain information about the
function, the tangent map F* can be used in the study of a mapping F.

7.9 Definition A mapping F: Rn Æ Rm is regular provided that at every
point p of Rn the tangent map F*p is one-to-one.

Since tangent maps are linear transformations, standard results of linear
algebra show that the following conditions are equivalent:

(1) F*p is one-to-one.
(2) F*(vp) = 0 implies vp = 0.
(3) The Jacobian matrix of F at p has rank n, the dimension of the domain

Rn of F.

∂
∂
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The following noteworthy property of linear transformations T: V Æ W
will be useful in dealing with tangent maps. If the vector spaces V and W
have the same dimension, then T is one-to-one if and only if it is onto, so
either property is equivalent to T being a linear isomorphism.

A mapping that has a (differentiable) inverse mapping is called a diffeo-
morphism. The results of this section all remain valid when Euclidean spaces
Rn are replaced by open sets of Euclidean spaces, so we can speak of a dif-
feomorphism from one open set to another.

We state without proof one of the fundamental results of advanced cal-
culus.

7.10 Theorem Let F: Rn Æ Rn be a mapping between Euclidean spaces
of the same dimension. If F*p is one-to-one at a point p, there is an open set
U containing p such that F restricted to U is a diffeomorphism of U onto an
open set V.

This is called the inverse function theorem since it asserts that the restricted
mapping U ÆV has a differentiable inverse mapping V Æ U. Exercise 6 gives
a suggestion of its importance.

Exercises

In the first four exercises F denotes the mapping F(u, v) = (u2 - v2, 2uv) in
Example 7.3.

1. Find all points p such that
(a) F(p) = (0, 0). (b) F(p) = (8, 6).
(c) F(p) = p.

2. (a) Sketch the horizontal line v = 1 and its image under F (a parabola).
(b) Do the same for the vertical u = 1.
(c) Describe the image of the unit square 0 � u, v � 1 under F.

3. Let v = (v1, v2) be a tangent vector to R2 at p = (p1, p2). Apply Defini-
tion 7.4 directly to express F*(v) in terms of the coordinates of v and p.

4. Find a formula for the Jacobian matrix of F at all points, and deduce
that F*p is a linear isomorphism at every point of R2 except the origin.

5. If F: Rn Æ Rm is a linear transformation, prove that F*(vp) = F(v)F(p).

6. (a) Give an example to demonstrate that a one-to-one and onto
mapping need not be a diffeomorphism. (Hint: Take m = n = 1.)
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(b) Prove that if a one-to-one and onto mapping F: Rn Æ Rn is regular,
then it is a diffeomorphism.

7. Prove that a mapping F: Rn Æ Rm preserves directional derivatives in this
sense: If vp is a tangent vector to Rn and g is a differentiable function on Rm,
then F*(vp)[g] = vp[g(F )].

8. In the definition of tangent map (Def. 7.4), the straight line t Æ p + tv
can be replaced by any curve a with initial velocity vp.

9. Let F: Rn Æ Rm and G: Rm Æ Rp be mappings. Prove:
(a) Their composition GF: Rn Æ Rp is a (differentiable) mapping. (Take 
m = p = 2 for simplicity.)
(b) (GF )* = G*F*. (Hint: Use the preceding exercise.)
This concise formula is the general chain rule. Unless dimensions are small,
it becomes formidable when expressed in terms of Jacobian matrices.
(c) If F is a diffeomorphism, then so is its inverse mapping F -1.

10. Show (in two ways) that the map F: R2 Æ R2 such that F(u, v) =
(veu, 2u) is a diffeomorphism:

(a) Prove that it is one-to-one, onto, and regular;
(b) Find a formula for its inverse F -1: R2 Æ R2 and observe that F -1 is dif-
ferentiable. Verify the formula by checking that both F F -1 and F -1 F are
identity maps.

1.8 Summary

Starting from the familiar notion of real-valued functions and using linear
algebra at every stage, we have constructed a variety of mathematical objects.
The basic notion of tangent vector led to vector fields, which dualized 
to 1-forms—which in turn led to arbitrary differential forms. The notions 
of curve and differentiable function were generalized to that of a mapping 
F: Rn Æ Rm.

Then, starting from the usual notion of the derivative of a real-valued func-
tion, we proceeded to construct appropriate differentiation operations for
these objects: the directional derivative of a function, the exterior derivative
of a form, the velocity of a curve, the tangent map of a mapping. These oper-
ations all reduced to (ordinary or partial) derivatives of real-valued coordi-
nate functions, but it is noteworthy that in most cases the definitions of these
operations did not involve coordinates. (This could be achieved in all cases.)
Generally speaking, these differentiation operations all exhibited in one form
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or another the characteristic linear and Leibnizian properties of ordinary 
differentiation.

Most of these concepts are probably already familiar to the reader, at 
least in special cases. But we now have careful definitions and a catalogue of
basic properties that will enable us to begin the exploration of differential
geometry.
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Roughly speaking, geometry begins with the measurement of distances and
angles. We shall see that the geometry of Euclidean space can be derived from
the dot product, the natural inner product on Euclidean space.

Much of this chapter is devoted to the geometry of curves in R3. We
emphasize this topic not only because of its intrinsic importance, but also
because the basic method used to investigate curves has proved effective
throughout differential geometry. A curve in R3 is studied by assigning at each
point a certain frame—that is, set of three orthogonal unit vectors. The rate
of change of these vectors along the curve is then expressed in terms of the
vectors themselves by the celebrated Frenet formulas (Theorem 3.2). In a real
sense, the theory of curves in R3 is merely a corollary of these fundamental
formulas.

Later on we shall use this “method of moving frames” to study a surface
in R3. The general idea is to think of a surface as a kind of two-dimensional
curve and follow the Frenet approach as closely as possible. To carry out this
scheme we shall need the generalization (Theorem 7.2) of the Frenet formu-
las devised by E. Cartan. It was Cartan who, in the early 1900s, first realized
the full power of this method not only in differential geometry but also in a
variety of related fields.

2.1 Dot Product

We begin by reviewing some basic facts about the natural inner product on
the vector space R3.



1.1 Definition The dot product of points p = ( p1, p2, p3) and q = (q1, q2,
q3) in R3 is the number

The dot product is an inner product since it has the following three 
properties:

(1) Bilinearity:

(2) Symmetry: p • q = q • p.
(3) Positive definiteness: p • p � 0, and p • p = 0 if and only if p = 0.
(Here p, q, and r are arbitrary points of R3, and a and b are numbers.)

The norm of a point p = ( p1, p2, p3) is the number

The norm is thus a real-valued function on R3; it has the fundamental 
properties � p + q � � � p � + � q � and � ap � = | a | � p �, where | a | is the
absolute value of the number a.

In terms of the norm we get a compact version of the usual distance
formula in R3.

1.2 Definition If p and q are points of R3, the Euclidean distance from 
p to q is the number

In fact, since

expansion of the norm gives the well-known formula (Fig. 2.1)

Euclidean distance may be used to give a more precise definition of open
sets (Chapter 1, Section 1). First, if p is a point of R3 and e > 0 is a number,
the e neighborhood Ne of p in R3 is the set of all points q of R3 such that d(p,
q) < e. Then a subset O of R3 is open provided that each point of O has an e
neighborhood that is entirely contained in O. In short, all points near enough
to a point of an open set are also in the set. This definition is valid with R3

replaced by Rn—or indeed any set furnished with a reasonable distance function.

d p q p q p qp q,( ) = -( ) + -( ) + -( )( )1 1
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We saw in Chapter 1 that for each point p of R3 there is a canonical iso-
morphism v Æ vp from R3 onto the tangent space Tp(R3) at p. These isomor-
phisms lie at the heart of Euclidean geometry—using them, the dot product
on R3 itself may be transferred to each of its tangent spaces.

1.3 Definition The dot product of tangent vectors vp and wp at the same
point of R3 is the number vp • wp = v • w.

For example, (1, 0, -1)p • (3, -3, 7)p = 1(3) + 0(-3) + (-1)7 = -4. Evidently
this definition provides a dot product on each tangent space Tp(R3) with the
same properties as the original dot product on R3. In particular, each tangent
vector vp to R3 has norm (or length) � vp � = � v �.

A fundamental result of linear algebra is the Schwarz inequality | v • w |
� � v � � w �. This permits us to define the cosine of the angle J between v
and w by the equation (Fig. 2.2).

Thus the dot product of two vectors is the product of their lengths times the
cosine of the angle between them. (The angle J is not uniquely determined
unless further restrictions are imposed, say 0 � J � p.)

In particular, if J = p/2, then v • w = 0. Thus we shall define two vectors
to be orthogonal provided their dot product is zero. A vector of length 1 is
called a unit vector.

1.4 Definition A set e1, e2, e3 of three mutually orthogonal unit vectors
tangent to R3 at p is called a frame at the point p.

Thus e1, e2, e3 is a frame if and only if

e e e e e e

e e e e e e

1 1 2 2 3 3

1 2 1 3 2 3

1

0

• • •

• • • .

= = =

= = =

,

v w v w• cos .= J
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By the symmetry of the dot product, the second row of equations is, of
course, the same as

Using index notation, all nine equations may be concisely expressed as 
ei • ej = dij for 1 � i j � 3, where dij is the Kronecker delta (0 if i π j, 1 if
i = j). For example, at each point p of R3, the vectors U1(p), U2(p), U3(p) of
Definition 2.4 in Chapter 1 constitute a frame at p.

1.5 Theorem Let e1, e2, e3 be a frame at a point p of R3. If v is any tangent
vector to R3 at p, then (Fig. 2.3)

Proof. First we show that the vectors e1, e2, e3 are linearly independent.
Suppose aiei = 0. Then

where all sums are over i = 1, 2, 3. Thus

as required. Now, the tangent space Tp(R3) has dimension 3, since it is lin-
early isomorphic to R3. Thus by a well-known theorem of linear algebra,
the three independent vectors e1, e2, e3 form a basis for Tp(R3). Hence for
each vector v there are three (unique) numbers c1, c2, c3 such that

But

v e e e• •j i i j i ij jc c c= ( ) = =Â Â d ,

v e= Â ci i .

a a a1 2 3 0= = = ,

0 = ( ) = = =Â Â Âa a a ai i j i i j i ij je e e e• • d ,

Â

v v e e v e e v e e= ( ) + ( ) + ( )• • • .1 1 2 2 3 3

e e e e e e2 1 3 1 3 2 0• • • .= = =

46 2. Frame Fields

FIG. 2.3



and thus

◆

This result (valid in any inner-product space) is one of the great labor-
saving devices in mathematics. For to find the coordinates of a vector v with
respect to an arbitrary basis, one must in general solve a set of nonhomoge-
neous linear equations, a task that even in dimension 3 is not always entirely
trivial. But the theorem shows that to find the coordinates of v with respect
to a frame (that is, an orthonormal basis) it suffices merely to compute the
three dot products v • e1, v • e2, v • e3. We call this process orthonormal expan-
sion of v in terms of the frame e1, e2, e3. In the special case of the natural
frame U1(p), U2(p), U3(p), the identity

is an orthonormal expansion, and the dot product is defined in terms of these
Euclidean coordinates by If we use instead an arbitrary frame
e1, e2, e3, then each vector v has new coordinates ai = v • ei relative to this
frame, but the dot product is still given by the same simple formula

since

When applied to more complicated geometric situations, the advantage of
using frames becomes enormous, and this is why they appear so frequently
throughout this book.

The notion of frame is very close to that of orthogonal matrix.

1.6 Definition Let e1, e2, e3 be a frame at a point p of R3. The 3 ¥ 3 matrix
A whose rows are the Euclidean coordinates of these three vectors is called
the attitude matrix of the frame.

Explicitly, if
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then

Thus A does describe the “attitude” of the frame in R3, although not its point
of application.

Evidently the rows of A are orthonormal, since

By definition, this means that A is an orthogonal matrix.
In terms of matrix multiplication, these equations may be written 

A tA = I, where I is the 3 ¥ 3 identity matrix and tA is the transpose of A:

It follows by a standard theorem of linear algebra that tAA = I, so that 
tA = A-1, the inverse of A.

There is another product on R3, closely related to the wedge product of 1-
forms and second in importance only to the dot product. We shall transfer it
immediately to each tangent space of R3.

1.7 Definition If v and w are tangent vectors to R3 at the same point p,
then the cross product of v and w is the tangent vector

This formal determinant is to be expanded along its first row. For example,
if v = (1, 0, -1)p and w = (2, 2, -7)p, then

Familiar properties of determinants show that the cross product v ¥ w is
linear in v and in w, and satisfies the alternation rule
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Hence, in particular, v ¥ v = 0. The geometric usefulness of the cross product
is based mostly on this fact:

1.8 Lemma The cross product v ¥ w is orthogonal to both v and w, and
has length such that

Proof. Let Then the dot product v • (v ¥ w) is just
But by the definition of cross product, the Euclidean coordinates

c1, c2, c3 of v ¥ w are such that

This determinant is zero, since two of its rows are the same; thus v ¥ w is
orthogonal to v, and similarly, to w.

Rather than use tricks to prove the length formula, we give a brute-force
computation. Now,

On the other hand,

and expanding these squares gives the same result as above. ◆

A more intuitive description of the length of a cross product is

where 0 � J � p is the smaller of the two angles from v to w. The direction
of v ¥ w on the line orthogonal to v and w is given, for practical purposes,
by this “right-hand rule”: If the fingers of the right hand point in the 
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direction of the shortest rotation of v to w, then the thumb points in the
direction of v ¥ w (Fig. 2.4).

Combining the dot and cross product, we get the triple scalar product,
which assigns to any three vectors u, v, w the number u • v ¥ w (Exercise 4).
Parentheses are unnecessary: u • (v ¥ w) is the only possible meaning.

Exercises

1. Let v = (1, 2, -1) and w = (-1, 0, 3) be tangent vectors at a point of R3.
Compute:

(a) v • w. (b) v ¥ w.
(c) v/� v �, w/� w �. (d) � v ¥ w �.
(e) the cosine of the angle between v and w.

2. Prove that Euclidean distance has the properties
(a) d(p, q) � 0; d(p, q) = 0 if and only if p = q,
(b) d(p, q) = d(q, p),
(c) d(p, q) + d(q, r) � d(p, r), for any points p, q, r in R3.

3. Prove that the tangent vectors

constitute a frame. Express v = (6, 1, -1) as a linear combination of these
vectors. (Check the result by direct computation.)

4. Let u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3). Prove that

(a) u v w• .¥ =
u u u

v v v

w w w
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(b) u • v ¥ w π 0 if and only if u, v, and w are linearly independent.
(c) If any two vectors in u • v ¥ w are reversed, the product changes sign.
(d) u • v ¥ w = u ¥ v • w.

5. Prove that v ¥ w π 0 if and only if v and w are linearly independent, and
show that � v ¥ w � is the area of the parallelogram with sides v and w.

6. If e1, e2, e3 is a frame, show that

Deduce that any 3¥3 orthogonal matrix has determinant ±1.

7. If u is a unit vector, then the component of v in the u direction is

Show that v has a unique expression v = v1 + v2, where v1 • v2 = 0 and v1 is
the component of v in the u direction.

8. Prove: The volume of the parallelepiped with sides u, v, w is ±u • v ¥ w
(Fig. 2.5). (Hint: Use the indicated unit vector e = v ¥ w/� v ¥ w �.)

9. Prove, using e-neighborhoods, that each of the following subsets of R3

is open:
(a) All points p such that � p � < 1.
(b) All p such that p3 > 0. (Hint: | pi - qi | � d(p, q).)

10. In each case, let S be the set of all points p that satisfy the given con-
dition. Describe S, and decide whether it is open.

(a) p1
2 + p2

2 + p3
2 = 1. (b) p3 π 0.

(c) p1 = p2 π p3. (d) p1
2 + p2

2 < 9.

11. If f is a differentiable function on R3, show that the gradient

— =
∂
∂Âf

f
x
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(Ex. 8 of Sec. 1.6) has the following properties:
(a) v [ f ] = (df )(v) = v • (—f )(p) for any tangent vector at p.

(b) The norm of (—f ) (p) is the maximum
of the directional derivatives u[ f ] for all unit vectors at p. Furthermore, if
(—f )(p) π 0, the unit vector for which the maximum occurs is

The notations grad f, curl V, and div V (in the exercise referred to) are
often replaced by —f, — ¥ V, and — • V, respectively.

12. Angle functions. Let f and g be differentiable real-valued functions on
an interval I. Suppose that f 2 + g2 = 1 and that J0 is a number such that 
f(0) = cosJ0, g(0) = sinJ0. If J is the function such that

prove that

Hint: We want ( f - cosJ)2 + (g - sinJ)2 = 0, so show that its derivative is
zero.

The point of this exercise is that J is a differentiable function, unambigu-
ously defined on the whole interval I.

2.2 Curves

We begin the geometric study of curves by reviewing some familiar defini-
tions. Let a: I Æ R3 be a curve. In Chapter 1, Section 4, we defined the veloc-
ity vector a ¢(t) of a at t. Now we define the speed of a at t to be the length
v(t) = � a ¢(t) � of the velocity vector. Thus speed is a real-valued function on
the interval I. In terms of Euclidean coordinates a = (a1, a2, a3), we have

Hence the speed function v of a is given by the usual formula

In physics, the distance traveled by a moving point is determined by inte-
grating its speed with respect to time. Thus we define the arc length of a from
t = a to t = b to be the number
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Substituting the formula for � a¢ � given above, we get the usual formula
for arc length. This length involves only the restriction of a (defined on 
some open interval) to the closed interval [a, b]: a � t � b. Such a restriction
s: [a, b] Æ R3 is called a curve segment, and its length is denoted by 
L(s). Note that the velocity of s is well defined at the endpoints a and b of
[a, b].

Sometimes one is interested only in the route followed by a curve 
and not in the particular speed at which it traverses its route. One way 
to ignore the speed of a curve a is to reparametrize to a curve b that has 
unit speed � b¢ � = 1. Then b represents a “standard trip” along the route 
of a.

2.1 Theorem If a is a regular curve in R3, then there exists a reparame-
trization b of a such that b has unit speed.

Proof. Fix a number a in the domain I of a: I Æ R3, and consider the
arc length function

(The resulting reparametrization is said to be based at t = a.) Thus the
derivative of the function s = s(t) is the speed function v = � a ¢ � of
a. Since a is regular, by definition a ¢ is never zero; hence > 0. By 
a standard theorem of calculus, the function s has an inverse function 
t = t(s), whose derivative at s = s(t) is the reciprocal of at 
t = t(s). In particular, > 0.

Now let b be the reparametrization b(s) = a(t(s)) of a. We assert that
b has unit speed. In fact, by Lemma 4.5 of Chapter 1,

Hence, by the preceding remarks, the speed of b is

◆

We shall use the notation of this proof frequently in later work. The unit-
speed curve b is sometimes said to have arc-length parametrization, since the
arc length of b from s = a to s = b (a < b) is just b - a.
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For example, consider the helix a in Example 4.2 of Chapter 1. Since 
a(t) = (acos t, asin t, bt), the velocity a ¢ is given by the formula

Hence

Thus a has constant speed c = � a ¢ � = (a2 + b2)1/2. If we measure arc length
from t = 0, then

Hence, t(s) = s/c. Substituting in the formula for a, we get the unit-speed 
reparametrization

It is easy to check directly that � b¢(s) � = 1 for all s.
A reparametrization a(h) of a curve a is orientation-preserving if h¢ ≥ 0 and

orientation-reversing if h¢ £ 0. In the latter case, a(h) still follows the route of
a but in the opposite direction. By definition, a unit-speed reparametrization
is always orientation-preserving since > 0 for a regular curve.

In the theory of curves we will frequently reparametrize regular curves to
obtain unit speed; however, it is rarely possible to do this in practice. The
problem is basic calculus: Even when the coordinate functions of the curve
are rather simple, the speed function cannot usually be integrated explicitly—
at least in terms of familiar functions.

The general notion of vector field (Definition 2.3 of Chapter 1) can be
adapted to curves as follows.

2.2 Definition A vector field Y on curve a: I Æ R3 is a function 
that assigns to each number t in I a tangent vector Y(t) to R3 at the point
a(t).

We have already met such vector fields: For any curve a, its velocity a ¢ evi-
dently satisfies this definition. Note that unlike a ¢, arbitrary vector fields on
a need not be tangent to a, but may point in any direction (Fig. 2.6).

The properties of vector fields on curves are analogous to those of vector
fields on R3. For example, if Y is a vector field on a: I Æ R3, then for each t
in I we can write
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We have thus defined real-valued functions y1, y2, y3 on I, called the Euclid-
ean coordinate functions of Y. These will always be assumed to be differen-
tiable. Note that the composite function t Æ Ui (a(t)) is a vector field on a.
Where it seems safe to do so, we shall often write merely Ui instead of Ui(a(t)).

The operations of addition, scalar multiplication, dot product, and cross
product of vector fields (on the same curve) are all defined in the usual point-
wise fashion. Thus if

and f(t) = (t + 1)/t, we obtain the vector fields

and the real-valued function

To differentiate a vector field on a one simply differentiates its Euclidean
coordinate functions, thus obtaining a new vector field on a. Explicitly, if

then Thus, for Y as above, we get
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In particular, the derivative a≤ of the velocity a ¢ of a is called the accelera-
tion of a. Thus if a = (a1, a2, a3), the acceleration a≤ is the vector field

on a. By contrast with velocity, acceleration is generally not tangent to the
curve.

As we mentioned earlier, in whatever form it appears, differentiation always
has suitable linearity and Leibnizian properties. In the case of vector fields
on a curve, it is easy to prove the linearity property

(a and b numbers) and the Leibnizian properties

If the function Y • Z is constant, the last formula shows that

This observation will be used frequently in later work. In particular, if Y has
constant length � Y �, then Y and Y ¢ are orthogonal at each point, since 
� Y �2 = Y • Y constant implies 2Y • Y ¢ = 0.

Recall that tangent vectors are parallel if they have the same vector parts.
We say that a vector field Y on a curve is parallel provided all its (tangent vector)
values are parallel. In this case, if the common vector part is (c1, c2, c3), then

Thus parallelism for a vector field is equivalent to the constancy of its 
Euclidean coordinate functions.

Vanishing of derivatives is always important in calculus; here are three
simple cases.

2.3 Lemma (1) A curve a is constant if and only if its velocity is zero,
a ¢ = 0.

(2) A nonconstant curve a is a straight line if and only if its acceleration
is zero, a≤ = 0.

(3) A vector field Y on a curve is parallel if and only if its derivative is
zero, Y ¢ = 0.

Proof. In each case it suffices to look at the Euclidean coordinate func-
tions. For example, we shall prove (2). If a = (a1, a2, a3), then

Y t c c c cU t
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Thus a≤ = 0 if and only if each . By elementary calculus, this
is equivalent to the existence of constants pi and qi such that

Thus a(t) = p + tq, and a is a straight line as defined in Example 4.2 of
Chapter 1. (Note that nonconstancy implies q π 0.) ◆

Exercises

1. For the curve a(t) = (2t, t2, t3/3),
(a) find the velocity, speed, and acceleration for arbitrary t, and at t = 1;
(b) find the arc length function s = s(t) (based at t = 0), and determine
the arc length of a from t = -1 to t = +1.

2. Show that a curve has constant speed if and only if its acceleration is
everywhere orthogonal to its velocity.

3. Show that the curve a(t) = (cosh t, sinh t, t) has arc length function
sinh t, and find a unit-speed reparametrization of a.

4. Consider the curve a(t) = (2t, t2, log t) on I: t > 0. Show that this curve
passes through the points p = (2, 1, 0) and q = (4, 4, log2), and find its arc
length between these points.

5. Suppose that b1 and b2 are unit-speed reparametrizations of the same
curve a. Show that there is a number s0 such that b2(s) = b1(s + s0) for all s.
What is the geometric significance of s0?

6. Let Y be a vector field on the helix a(t) = (cos t, sin t, t). In each of the 
following cases, express Y in the form yiUi:

(a) Y(t) is the vector from a(t) to the origin of R3.
(b) Y(t) = a ¢(t) - a≤(t).
(c) Y(t) has unit length and is orthogonal to both a ¢(t) and a ≤(t).
(d) Y(t) is the vector from a(t) to a(t + p).

7. A reparametrization a(h): [c, d ] Æ R3 of a curve segment a: [a, b] Æ R3

is monotone provided either

(i) h¢ ≥ 0, h(c) = a, h(d) = b or (ii) h¢ � 0, h(c) = b, h(d) = a.

Prove that monotone reparametrization does not change arc length.
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8. Let Y be a vector field on a curve a. If a(h) is a reparametrization of a,
show that the reparametrization Y(h) is a vector field on a(h), and prove the
chain rule Y(h)¢ = h¢Y ¢(h).

9. (Numerical integration.) The curve segments

defined on 0 � t � p, run from the origin 0 to (0, p2, 0). Which is shorter?
(See Integration in the Appendix.)

10. Let a, b: I Æ R3 be curves such that a ¢(t) and b¢(t) are parallel (same
Euclidean coordinates) at each t. Prove that a and b are parallel in the sense
that there is a point p in R3 such that b(t) = a(t) + p for all t.

11. Prove that a straight line is the shortest distance between two points in
R3. Use the following scheme; let a: [a, b] Æ R3 be an arbitrary curve segment
from p = a(a) to q = a(b). Let u = (q - p)/� q - p �.

(a) If s is a straight line segment from p to q, say

show that L(s) = d(p, q).
(b) From � a ¢ � � a ¢ • u, deduce L(a) � d(p, q), where L(a) is the length
of a and d is Euclidean distance.
(c) Furthermore, show that if L(a) = d(p, q), then (but for parametriza-
tion) a is a straight line segment. (Hint: write a ¢ = (a ¢ • u)u + Y, where 
Y • u = 0.)

2.3 The Frenet Formulas

We now derive mathematical measurements of the turning and twisting of a
curve in R3. Throughout this section we deal only with unit-speed curves; in
the next we extend the results to arbitrary regular curves.

Let b: I Æ R3 be a unit-speed curve, so � b ¢ (s) � = 1 for each s in I.
Then T = b¢ is called the unit tangent vector field on b. Since T has constant
length 1, its derivative T ¢ = b≤ measures the way the curve is turning in R3.
We call T ¢ the curvature vector field of b. Differentiation of T • T = 1 gives
2T ¢ • T = 0, so T ¢ is always orthogonal to T, that is, normal to b.

The length of the curvature vector field T ¢ gives a numerical measurement
of the turning of b. The real-valued function k such that k(s) = � T ¢ (s) � for

s t t t t( ) = -( ) + ( )1 0 1p q � � ,

a bt t t t t t t t t t t( ) = ( ) ( ) = +( )( )sin cos sin sin cos,  ,  , , , ,2 2 2 22 1
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all s in I is called the curvature function of b. Thus k � 0, and the larger k
is, the sharper the turning of b.

To carry this analysis further, we impose the restriction that k is never zero
so k > 0. The unit-vector field N = T ¢/k on b then tells the direction in which b
is turning at each point. N is called the principal normal vector field of b (Fig.
2.7). The vector field B = T ¥ N on b is called the binormal vector field of b.

3.1 Lemma Let b be a unit-speed curve in R3 with k > 0. Then the three
vector fields T, N, and B on b are unit vector fields that are mutually orthog-
onal at each point. We call T, N, B the Frenet frame field on b.

Proof. By definition � T � = 1. Since k = � T ¢ � > 0,

We saw above that T and N are orthogonal—that is, T • N = 0. Then by
applying Lemma 1.8 at each point, we conclude that � B � = 1, and B is
orthogonal to both T and N. ◆

In summary, we have T = b¢, N = T ¢/k, and B = T ¥ N, satisfying T • T =
N • N = B • B = 1, with all other dot products zero.

The key to the successful study of the geometry of a curve b is to use its
Frenet frame field T, N, B whenever possible, instead of the natural frame
field U1, U2, U3. The Frenet frame field of b is full of information about b,
whereas the natural frame field contains none at all.

The first and most important use of this idea is to express the derivatives
T ¢, N¢, B¢ in terms of T, N, B. Since T = b¢, we have T ¢ = b≤ = kN. Next
consider B¢. We claim that B¢ is, at each point, a scalar multiple of N. To
prove this, it suffices by orthonormal expansion to show that B¢ • B = 0 and
B¢ • T = 0. The former holds since B is a unit vector. To prove the latter, dif-
ferentiate B • T = 0, obtaining B¢ • T + B • T ¢ = 0; then

¢ = - ¢ = - =B T B T B N• • • .k 0

N T= ( ) ¢ =1 1k .
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Thus we can now define the torsion function t of the curve b to be the real-
valued function on the interval I such that B¢ = -tN. (The minus sign is tra-
ditional.) By contrast with curvature, there is no restriction on the values of
t—it may be positive, negative, or zero at various points of I. We shall
presently show that t does measure the torsion, or twisting, of the curve b.

3.2 Theorem (Frenet formulas). If b: I Æ R3 is a unit-speed curve with
curvature k > 0 and torsion t, then

Proof. As we saw above, the first and third formulas are essentially just
the definitions of curvature and torsion. To prove the second, we use ortho-
normal expansion to express N¢ in terms of T, N, B:

These coefficients are easily found. Differentiating N • T = 0, we get 
N¢ • T + N • T ¢ = 0; hence

As usual, N¢ • N = 0, since N is a unit vector field. Finally,

◆

3.3 Example We compute the Frenet frame T, N, B and the curvature
and torsion functions of the unit-speed helix

where c = (a2 + b2)1/2 and a > 0. Now
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Thus

Since T ¢ = kN, we get

Note that regardless of what values a and b have, N always points straight in
toward the axis of the cylinder on which b lies (Fig. 2.8).

Applying the definition of cross product to B = T ¥ N gives

It remains to compute torsion. Now,

and by definition, B¢ = -tN. Comparing the formulas for B¢ and N, we con-
clude that

So the torsion of the helix is also constant.
Note that when the parameter b is zero, the helix reduces to a circle of

radius a. The curvature of this circle is k = 1/a (so the smaller the radius, the
larger the curvature), and the torsion is identically zero.

This example is a very special one—in general (as the examples in the exer-
cises show) neither the curvature nor the torsion functions of a curve need
be constant.
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3.4 Remark We have emphasized all along the distinction between a
tangent vector and a point of R3. However, Euclidean space has, as we have
seen, the remarkable property that given a point p, there is a natural one-to-
one correspondence between points (v1, v2, v3) and tangent vectors (v1, v2, v3)p

at p. Thus one can transform points into tangent vectors (and vice versa) by
means of this canonical isomorphism. In the next two sections particularly,
it will often be convenient to switch quietly from one to the other without
change of notation. Since corresponding objects have the same Euclidean coor-
dinates, this switching can have no effect on scalar multiplication, addition,
dot products, differentiation, or any other operation defined in terms of
Euclidean coordinates.

Thus a vector field Y = ( y1, y2, y3)b on a curve b becomes itself a curve ( y1,
y2, y3) in R3. In particular, if Y is parallel, its Euclidean coordinate functions
are constant, so Y is identified with a single point of R3.

A plane in R3 can be described as the union of all the perpendiculars to 
a given line at a given point. In vector language then, the plane through p
orthogonal to q π 0 consists of all points r in R3 such that (r - p) • q = 0. By
the remark above, we may picture q as a tangent vector at p as shown in 
Fig. 2.9.

We can now give an informative approximation of a given curve near an
arbitrary point on the curve. The goal is to show how curvature and torsion
influence the shape of the curve. To derive this approximation we use a Taylor
approximation of the curve—and express this in terms of the Frenet frame
at the selected point.

For simplicity, we shall consider the unit-speed curve b = (b1, b2, b3) near
the point b(0). For s small, each coordinate bi(s) is closely approximated by
the initial terms of its Taylor series:

b b
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Hence

But b¢(0) = T0, and b≤(0) = k0N0, where the subscript indicates evaluation at
s = 0, and we assume k0 π 0. Now

Thus by the Frenet formula for N¢, we get

Finally, substitute these derivatives into the approximation of b(s) given
above, and keep only the dominant term in each component (that is, the one
containing the smallest power of s). The result is

Denoting the right side by b̂(s), we obtain a curve b̂ called the Frenet approxi-
mation of b near s = 0. We emphasize that b has a different Frenet approx-
imation near each of its points; if 0 is replaced by an arbitrary number s0,
then s is replaced by s - s0, as usual in Taylor expansions.

Let us now examine the Frenet approximation given above. The first term
in the expression for b̂ is just the point b(0). The first two terms give the
tangent line s Æ b(0) + sT0 of b at b(0)—the best linear approximation of b
near b(0). The first three terms give the parabola

which is the best quadratic approximation of b near b(0). Note that this
parabola lies in the plane through b(0) orthogonal to B0, the osculating plane
of b at b(0). This parabola has the same shape as the parabola y = k0x2/2 in
the xy plane, and is completely determined by the curvature k0 of b at s = 0.

Finally, the torsion t0, which appears in the last and smallest term of b̂ ,
controls the motion of b orthogonal to its osculating plane at b(0), as shown
in Fig. 2.10.

On the basis of this discussion, it is a reasonable guess that if a unit-speed
curve has curvature identically zero, then it is a straight line. In fact, this follows
immediately from (2) of Lemma 2.3, since k = � T ¢ � = � b≤ �, so that k = 0 
if and only if b≤ = 0. Thus curvature does measure deviation from 
straightness.
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A plane curve in R3 is a curve that lies in a single plane of R3. Evidently a
plane curve does not twist in as interesting a way as even the simple helix in
Example 3.3. The discussion above shows that for s small the curve b tends
to stay in its osculating plane at b(0); it is t0 π 0 that causes b to twist out of
the osculating plane. Thus if the torsion of b is identically zero, we may well
suspect that b never leaves this plane.

3.5 Corollary Let b be a unit-speed curve in R3 with k > 0. Then b is a
plane curve if and only if t = 0.

Proof. Suppose b is a plane curve. Then by the remarks above, there exist
points p and q such that (b(s) - p) • q = 0 for all s. Differentiation yields

Thus q is always orthogonal to T = b¢ and N = b≤/k. But B is also orthog-
onal to T and N, so, since B has unit length, B = ±q/�q�. Thus B¢ = 0, and
by definition t = 0 (Fig. 2.11).

Conversely, suppose t = 0. Thus B¢ = 0; that is, B is parallel and may
thus be identified (by Remark 3.4) with a point of R3. We assert that b lies
in the plane through b(0) orthogonal to B. To prove this, consider the real-
valued function

f s s B s( ) = ( ) - ( )( )b b 0 • .for all

¢( ) = ¢¢( ) =b bs s s• • .q q 0 for all
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Then

But obviously, f(0) = 0, so f is identically zero. Thus

which shows that b lies entirely in this plane orthogonal to the (parallel)
binormal of b. ◆

We saw at the end of Example 3.3 that a circle of radius a has curvature
1/a and torsion zero. Furthermore, the formula given there for the principal
normal shows that for a circle, N always points toward its center. This sug-
gests how to prove the following converse.

3.6 Lemma If b is a unit-speed curve with constant curvature k > 0 and
torsion zero, then b is part of a circle of radius 1/k.

Proof. Since t = 0, b is a plane curve. What we must now show is that
every point of b is at distance 1/k from some fixed point—which will thus
be the center of the circle. Consider the curve g = b + (1/k)N. Using the
hypothesis on b, and (as usual) a Frenet formula, we find

Hence the curve g is constant; that is, b(s) + (1/k)N(s) has the same value,
say c, for all s (see Fig. 2.12). But the distance from c to b(s) is
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In principle, every geometric problem about curves can be solved by means
of the Frenet formulas. In simple cases it may be just enough to record the
data of the problem in convenient form, differentiate, and use the Frenet for-
mulas. For example, suppose b is a unit-speed curve that lies entirely in the
sphere of radius a centered at the origin of R3. To stay in the sphere, b
must curve; in fact it is a reasonable guess that the minimum possible curva-
ture occurs when b is on a great circle of . Such a circle has radius a, so
we conjecture that a spherical curve b has curvature k � 1/a, where a is the
radius of its sphere.

To prove this, observe that since every point of has distance a from the
origin, we have b • b = a2. Differentiation yields 2b¢ • b = 0, that is, b • T =
0. Another differentiation gives b¢ • T + b • T ¢ = 0, and by using a Frenet
formula we get T • T + kb • N = 0; hence

By the Schwarz inequality,

and since k � 0 we obtain the required result:

Continuation of this procedure leads to a necessary and sufficient condition
(expressed in terms of curvature and torsion) for a curve to be spherical, that
is, lie on some sphere in R3 (Exercise 10).

Exercises

1. Compute the Frenet apparatus k, t, T, N, B of the unit-speed curve 
b(s) = (4/5 coss, 1 - sins, -3/5 coss). Show that this curve is a circle; find its
center and radius.

2. Consider the curve

defined on I: -1 < s < 1. Show that b has unit speed, and compute its Frenet
apparatus.

b s
s s s( ) =

+( ) -( )Ê
ËÁ

ˆ
¯̃

1
3

1
3 2

3 2 3 2

, ,

k k
b

= =
1 1
•

.
N a

�

b b• N N a� = ,

kb • .N = -1

Â

Â

Â
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3. For the helix in Example 3.3, check the Frenet formulas by direct sub-
stitution of the computed values of k, t, T, N, B.

4. Prove that

(A formal proof uses properties of the cross product established in the Exer-
cises of Section 1—but one can recall these formulas by using the right-hand
rule given at the end of that section.)

5. If A is the vector field tT + kB on a unit-speed curve b, show that the
Frenet formulas become

6. A unit-speed parametrization of a circle may be written

where ei • ej = dij.
If b is a unit-speed curve with k(0) > 0, prove that there is one and only

one circle g that approximates b near b(0) in the sense that

Show that g lies in the osculating plane of b at b(0) and find its center c and
radius r (see Fig. 2.13). The circle g is called the osculating circle and c the
center of curvature of b at b(0). (The same results hold when 0 is replaced by
any number s.)

g b g b g b0 0 0 0 0 0( ) = ( ) ¢( ) = ¢( ) ¢¢( ) = ¢¢( ), , and .

g s r
s
r

r
s
r

( ) = + +c e ecos sin1 2,

¢ = ¥

¢ = ¥

¢ = ¥

T A T

N A N

B A B

,

,

.

T N B B N

N B T T B

B T N N T

 

.

= ¥ = - ¥

= ¥ = - ¥

= ¥ = - ¥

,

,
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7. If a and a reparametrization = a(h) are both unit-speed curves, show
that

(a) h(s) = ± s + s0 for some number s0;
(b) = ±T(h),

= N(h), = k (h), t = t (h),
= ±B(h),

where the sign (±) is the same as that in (a), and we assume k > 0. Thus even
in the orientation-reversing case, the principal normals N and still point
in the same direction.

8. Curves in the plane. For a unit-speed curve b(s) = (x(s), y(s)) in R2, the
unit tangent is T = b¢ = (x¢, y¢) as usual, but the unit normal N is defined by
rotating T through +90°, so N = (-y¢, x¢). Thus T ¢ and N are collinear, and
the plane curvature k̃ of b is defined by the Frenet equation T ¢ = k̃N.

(a) Prove that k̃ = T ¢ • N and N¢ = -k̃T.
(b) The slope angle j(s) of b is the differentiable function such that

(The existence of j derives from Ex. 12 of Sec. 1.) Show that k̃ = j¢.
(c) Find the curvature k̃ of the following plane curves.

(i) (rcos , rsin ), counterclockwise circle.

(ii) (rcos(- ), rsin(- )), clockwise circle.

(d) Show that if k̃ does not change sign, then |k̃ | is the usual R3 curvature
k. (For such comparisons we can always regard R2 as, say, the xy plane 
in R3.)

9. Let b̃ be the Frenet approximation of a unit-speed curve b with t π 0
near s = 0.

If, say, the B0 component of b is removed, the resulting curve is the orthog-
onal projection of b̃ in the T0N0 plane. It is the view of b ª b̃ that one gets
by looking toward b(0) = b̃ (0) directly along the vector B0.

Sketch the general shape of the orthogonal projections of b̃ near s = 0 in
each of the planes T0N0 (osculating plane), T0B0 (rectifying plane), and N0B0

(normal plane). These views of b ª b̃ can be confirmed experimentally using
a bent piece of wire. For computer views, see Exercise 15 of Section 4.

10. Spherical curves. Let a be a unit-speed curve with k > 0, t π 0.
(a) If a lies on a sphere of center c and radius r, show that

a r r s- = - - ¢c N B,

t
r

t
r

t
r

t
r

T U Ux y= ( ) = +cos sin cos sin .j j j j,

N

B
tkN

T

a
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where r = 1/k and s = 1/t . Thus r2 = r2 + (r¢s)2.

(b) Conversely, if r2 + (r¢s)2 has constant value r2 and r¢ π 0, show that
a lies on a sphere of radius r.
(Hint: For (b), show that the “center curve” g = a + rN + r¢sB—suggested
by (a)—is constant.)

11. Let b, : I Æ R3 be unit-speed curves with nonvanishing curvature and
torsion. If T = , then b and are parallel (Ex. 10 of Sec. 2). If
B = , prove that is parallel to either b or the curve s Æ -b(s).

2.4 Arbitrary-Speed Curves

It is a simple matter to adapt the results of the previous section to the study
of a regular curve a: I Æ R3 that does not necessarily have unit speed. We
merely transfer to a the Frenet apparatus of a unit-speed reparametrization

of a. Explicitly, if s is an arc length function for a as in Theorem 2.1, then

or, in functional notation, a = (s), as suggested by Fig. 2.14. Now if
> 0, t , , , and are defined for as in Section 3, we define for a the

curvature function: k = (s),
torsion function: t = (s),
unit tangent vector field: T = (s),
principal normal vector field: N = (s),
binormal vector field: B = (s).

In general k and are different functions, defined on different intervals.
But they give exactly the same description of the turning of the common route
of a and , since at any point a(t) = (s(t)) the numbers k(t) and (s(t)) arekaa

k

B
N

T
t

k

aBNTtk
a

a at s t t( ) = ( )( ) for all ,

a

bB
bT

b
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by definition the same. Similarly with the rest of the Frenet apparatus; since
only a change of parametrization is involved, its fundamental geometric
meaning is the same as before. In particular, T, N, B is again a frame field 
on a linked to the shape of a as indicated in the discussion of Frenet 
approximations.

For purely theoretical work, this simple transference is often all that is
needed. Data about a converts into data about the unit-speed reparame-
trization ; results about convert to results about a. For example, if a is
a regular curve with t = 0, then by the definition above has = 0; by 
Corollary 3.5, is a plane curve, so obviously a is too.

However, for explicit numerical computations—and occasionally for the
theory as well—this transference is impractical, since it is rarely possible to
find explicit formulas for . (For example, try to find a unit-speed parame-
trization for the curve a(t) = (t, t2, t3).)

The Frenet formulas are valid only for unit-speed curves; they tell the rate
of change of the frame field T, N, B with respect to arc length. However, the
speed v of the curve is the proper correction factor in the general case.

4.1 Lemma If a is a regular curve in R3 with k > 0, then

Proof. Let be a unit-speed reparametrization of a. Then by definition,
T = (s), where s is an arc length function for a. The chain rule as applied
to differentiation of vector fields (Exercise 7 of Section 2) gives

By the usual Frenet equations, . Substituting the function s in this
equation yields

by the definition of k and N in the arbitrary-speed case. Since ds/dt is the
speed function v of a, these two equations combine to yield T¢ = kvN. The
formulas for N¢ and B¢ are derived in the same way. ◆

There is a commonly used notation for the calculus that completely ignores
change of parametrization. For example, the same letter would designate
both a curve a and its unit-speed parametrization , and similarly with thea

¢( ) = ( ) ( ) =T s s N s Nk k

¢ =T Nk

¢ = ¢( )T T s
ds
dt

.

T
a

¢ =
¢ = - +
¢ = -

T vN

N vT vB

B vN

k
k t

t

,

, 

.

a

a
ta

aa
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Frenet apparatus of these two curves. Differences in derivatives are handled
by writing, say, dT/dt for T ¢, but dT/ds for either or its reparametrization

(s). If these conventions were used, the proof above would combine the
chain rule dT/dt = (dT/ds) (ds/dt) and the Frenet formula dT/ds = kN to give
dT/dt = kvN.

Only for a constant-speed curve is acceleration always orthogonal to veloc-
ity, since b¢ • b¢ constant is equivalent to (b¢ • b¢)¢ = 2b¢ • b≤ = 0. In the general
case, we analyze velocity and acceleration by expressing them in terms of the
Frenet frame field.

4.2 Lemma If a is a regular curve with speed function v, then the veloc-
ity and acceleration of a are given by (Fig. 2.15.)

Proof. Since a = (s), where s is the arc length function of a, we find,
using Lemma 4.5 of Chapter 1, that

Then a second differentiation yields

where we use Lemma 4.1. ◆

The formula a ¢ = vT is to be expected since a ¢ and T are each tangent 
to the curve and T has a unit length, while � a ¢ � = v. The formula for 
acceleration is more interesting. By definition, a≤ is the rate of change of the

¢¢ = + ¢ = +a k
dv
dt

T vT
dv
dt

T v N2 ,

¢ = ¢( ) = ( ) =a a s
ds
dt

vT s vT.

a

¢ = ¢¢ = +a a kvT
dv
dt

T v N, 2 .

¢T
¢T
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velocity a ¢, and in general both the length and the direction of a ¢ are chang-
ing. The tangential component (dv/dt)T of a≤ measures the rate of change of
the length of a ¢ (that is, of the speed of a). The normal component kv2N mea-
sures the rate of change of the direction of a ¢. Newton’s laws of motion show
that these components may be experienced as forces. For example, in a car
that is speeding up or slowing down on a straight road, the only force one
feels is due to (dv/dt)T. If one takes an unbanked curve at speed v, the result-
ing sideways force is due to kv2N. Here k measures how sharply the road turns;
the effect of speed is given by v2, so 60 miles per hour is four times as unset-
tling as 30.

We now find effectively computable expressions for the Frenet apparatus.

4.3 Theorem Let a be a regular curve in R3. Then

Proof. Since v = � a ¢ � > 0, the formula T = a ¢/�a ¢� is equivalent to 
a ¢ = vT. From the preceding lemma we get

since T ¥ T = 0. Taking norms we find

because � B � = 1, k � 0, and v > 0. Indeed, this equation shows that for
regular curves, � a ¢ ¥ a≤ � > 0 is equivalent to the usual condition k > 0.
(Thus for k > 0, a ¢ and a≤ are linearly independent and determine the oscu-
lating plane at each point, as do T and N.) Then

Since N = B ¥ T is true for any Frenet frame field (Exercise 4 of Section
3), only the formula for torsion remains to be proved.

To find the dot product (a ¢ ¥ a≤) • a� we express everything in terms of
T, N, B. We already know that a ¢ ¥ a≤ = kv3B. Thus, since 0 = T • B =
N • B, we need only find the B component of a�. But

B
v

=
¢ ¥ ¢¢

=
¢ ¥ ¢¢
¢ ¥ ¢¢

a a
k

a a
a a3

.

¢ ¥ ¢¢ = =a a k kv B v3 3
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ˆ
¯

= ¥ + ¥ =
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where we use Lemma 4.1. Consequently, (a ¢ ¥ a≤) • a � = k2v6t, and since 
� a ¢ ¥ a≤ � = kv3, we have the required formula for t. ◆

The triple scalar product in this formula for t could (by Exercise 4 of
Section 1) also be written a ¢ • a≤ ¥ a�. But we need a ¢ ¥ a≤ anyway, so it is
more efficient to find (a ¢ ¥ a≤) • a�.

4.4 Example We compute the Frenet apparatus of the 3-curve

The derivatives are

Now,

so

Applying the definition of cross product yields

Dotting this vector with itself, we get

Hence

The expressions above for a ¢ ¥ a≤ and a� yield

¢ ¥ ¢¢( ) ¢¢¢ =a a a• • • .6 18 2

¢( ) ¥ ¢¢( ) = +( )a at t t18 2 1 2 .
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It remains only to substitute this data into the formulas in Theorem 4.3, with
N being computed by another cross product. The final results are

Alternatively, we could use the identity in Lemma 1.8 to compute � a ¢ ¥
a≤ � and express

as a determinant by Exercise 4 of Section 1.
To summarize, we now have the Frenet apparatus for an arbitrary regular

curve a, namely, its curvature, torsion, and Frenet frame field. This appara-
tus satisfies the extended Frenet formulas with speed factor v and can be com-
puted by Theorem 4.3. If v = 1, that is, if a is a unit-speed curve, the results
of Section 3 are recovered.

Let us consider some applications of the Frenet formulas. There are a
number of natural ways in which a given curve b gives rise to a new curve 
b̃ whose geometric properties illuminate some aspect of the behavior of b.

For example, the spherical image of a unit-speed curve b is the curve 
s ª T with the same Euclidean coordinates as T = b¢. Geometrically, s is
gotten by moving each T(s) to the origin of R3, as suggested in Fig. 2.16.
Thus s lies on the unit sphere S, and the motion of s represents the turning
of b.
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For instance, if b is the helix in Example 3.3, the formula there for T shows
that

So the spherical image of a helix lies on the circle cut from by the plane 
z = b/c.

Although the original curve b has unit speed, we cannot expect that s
does also. In fact, s = T implies s ¢ = T ¢ = kN, so the speed of s equals the
curvature k of b. Thus to compute the curvature of s, we must use the
extended Frenet formulas in Theorem 4.3. From

we get

By Theorem 4.3 the curvature of the spherical image s is

and thus depends only on the ratio of torsion to curvature for the original
curve b.

Here is a closely related application in which this ratio t/k turns out to be
decisive.

4.5 Definition A regular curve a in R3 is a cylindrical helix provided the
unit tangent T of a has constant angle J with some fixed unit vector u; that
is, T(t) • u = cosJ for all t.

This condition is not altered by reparametrization, so for theoretical pur-
poses we need only deal with a cylindrical helix b that has unit speed. So
suppose b is a unit-speed curve with T • u = cosJ. If we pick a reference
point, say b(0), on b, then the real-valued function

tells how far b(s) has “risen” in the u direction since leaving b(0) (Fig. 2.17).
But

h s s( ) = ( ) - ( )( )b b 0 • u
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so b is rising at a constant rate relative to arc length, and h(s) = s cosJ. If we
shift to an arbitrary parametrization, this formula becomes

where s is the arc length function.
By drawing a line through each point of b in the u direction, we construct

a cylinder C on which b moves in such a way as to cut each such line at con-
stant angle J, as in Fig. 2.18. In the special case when this cylinder is circu-
lar, b is evidently a helix of the type defined in Example 3.3.

It turns out to be quite easy to identify cylindrical helices.

4.6 Theorem A regular curve a with k > 0 is a cylindrical helix if and
only if the ratio t/k is constant.

Proof. It suffices to consider the case where a has unit speed. If a is a
cylindrical helix with T • u = cosJ, then

Since k > 0, we conclude that N • u = 0. Thus for each s, u lies in the plane
determined by T(s) and B(s). Orthonormal expansion yields

u = +cos sin .J JT B

0 = ( )¢ = ¢ =T T N• • • .u u uk

h t s t( ) = ( ) cos J,

dh
ds

T= ¢ = =b J• • cosu u ,
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As usual we differentiate and apply Frenet formulas to obtain

Hence t sinJ = kcosJ, so that t/k has constant value cotJ.
Conversely, suppose that t/k is constant. Choose an angle J such that

cotJ = t/k. If

we find

This parallel vector field U then determines (as in Remark 3.4) a unit vector
u such that T • u = cosJ, so a is a cylindrical helix. ◆

In Exercise 9 this information about cylindrical helices is used to show that
circular helices are characterized by constancy of curvature and torsion (see
also Corollary 5.5 of Chapter 3).

Simple hypotheses on a regular curve in R3 thus have the following effects
(¤ means “if and only if”):

Exercises

Computer commands that produce the Frenet apparatus, k, t, T, N, B, of a
curve are given in the Appendix. Their use is optional in the following 
exercises.

1. For the curve a(t) = (2t, t2, t3/3),
(a) Compute the Frenet apparatus.
(b) Sketch the curve for -4 � t � 4, showing T, N, B at t = 2.
(c) Find the limiting values of T, N, and B as t Æ -• and t Æ •.

2. Express the curvature and torsion of the curve a(t) = (cosh t, sinh t, t)
in terms of arc length s measured from t = 0.

k
t
k t
k t
t k

= ¤
= ¤

> = ¤
> > ¤

π ¤

0

0

0 0

0 0

0

straight line,

plane curve,

const and circle,

const and const circular helix,

const cylindrical helix.

¢ = -( ) =U Nk J t Jcos sin .0

U T B= +cos sinJ J ,

0 = -( )k J t Jcos sin .N
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3. The curve a(t) = (tcos t, tsin t, t) lies on a double cone and passes
through the vertex at t = 0.

(a) Find the Frenet apparatus of a at t = 0.
(b) Sketch the curve for -2p � t � 2p, showing T, N, B at t = 0.

4. Show that the curvature of a regular curve in R3 is given by

5. If a is a curve with constant speed c > 0, show that

where for N, B, t, we assume a≤ never zero, that is, k > 0.

6. (a) If a is a cylindrical helix, prove that its unit vector u (Thm. 4.5) is

and the coefficients here are cosJ and sinJ (for J as in Def. 4.5).
(b) Check (a) for the cylindrical helix in Example 4.2 of Chapter 1.

7. Let a: I Æ R3 be a cylindrical helix with unit vector u. For t0 Œ I, the
curve

is called a cross-sectional curve of the cylinder on which a lies. Prove:
(a) g lies in the plane through a(t0) orthogonal to u.
(b) The curvature of g is k/sin2 J, where k is the curvature of a.

8. Verify that the following curves are cylindrical helices and, for each, find
the unit vector u, angle J, and cross-sectional curve s.

(a) The curve in Exercise 1. (b) The curve in Example 4.4.
(c) The curve in Exercise 2.

9. If a is a curve with k > 0 and t both constant, show that a is a circular
helix.

10. (a) Prove that a curve is a cylindrical helix if and only if its spherical
image is part of a circle.

(b) Sketch the spherical image of the cylindrical helix in Exercise 1. Is it
a complete circle? Find its center.
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11. If a is a curve with k > 0, its central curve a* = a + (1/k)N consists of
all centers of curvature of a (Ex. 6 of Sec. 3). For nonzero numbers a and
b, let bab be the helix in Example 3.3.

(a) Show that the central curve of bab is the helix bâb, where â = -b2/a.
(b) Deduce that the central curve of bâb is the original helix bab.
(c) (Computer graphics.) Plot three complete turns of the mutually central

helices b2,1 and b-1/2,1 in the same figure.

12. If a(t) = (x(t), y(t)) is a regular curve in R2, show that its plane curva-
ture (Ex. 8 of Sec. 3) is given by

where J is the rotation operator J(a, b) = (-b, a).

13. (Continuation.) For a plane curve a with k̃ π 0, the central curve 
a* = a + (1/k̃ )N is called the evolute of a. Thus a* gives a direct pointwise
description of the turning of a.

(a) Show that

(b) Find a formula for the line segment lt from a(t) to a*(t). This segment
is the radius (line) of the approximating circle to a near a(t) (Ex. 6 of
Sec. 3)
(c) Prove that lt is normal to a at a(t) and tangent to a* at a*(t). (Hint:
It can be assumed that a has unit speed.)

14. (Continuation, Computer graphics.) In each case, plot the given plane
curve and its evolute on the same figure, showing some of the construction
lines lt.

(a) The ellipse a(t) = (2cos t, sin t).
(b) The cycloid a(t) = (t + sin t, 1 + cos t) for -2p £ t £ 2p. (Here the evolute
bears an unexpected relation to the original curve.)

15. (Computer continuation of Ex. 9 of Sec. 3.)
(a) Write the commands that, given a regular curve a with k(0) > 0, plot—
on a small interval -e � t � e —the orthogonal projection of a into the
osculating, rectifying, and normal planes at a(0). Show the projections as
curves in R2.
(b) Test (a) on the curves (3), (4), (5) in Example 4.2 of Chapter 1 and
those in Example 4.3 of Chapter 3. Compare results.

a a
a a

a a
a* = +

¢ ¢
¢¢ ¢( ) ¢( )•

•
.

J
J

˜
•

k
a a

=
¢¢ ¢( )

=
¢ ¢¢ - ¢¢ ¢
¢ + ¢( )

J
v

x y x y

x y3 2 2 3 2 ,
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The following exercise shows that the condition k > 0 cannot be
avoided in a detailed study of the geometry of curves in R3 for even if
k is zero at only a single point, the geometric character of the curve
can change radically at that point. (This difficulty does not arise for
curves in the plane.)

16. It is shown in advanced calculus that the function

is infinitely differentiable (has continuous derivatives of all orders). Thus

is a well-defined differentiable curve.
(a) Sketch a on an interval -a � t � a.
(b) Show that the curvature of a is zero only at t = 0.
(c) What are the osculating planes of a for t < 0 and t > 0?

In the following exercise, a global geometric invariant of curves is gotten by
integrating a local invariant.

17. The total curvature of a unit-speed curve a: I Æ R3 is . If a is

merely regular, the formula becomes . Find the total curvature of

the following curves:
(a) The curve in Example 4.4.
(b) The helix in Example 3.3.
(c) The curve in Exercise 2.
(d) The ellipse a(t) = (acos t, bsin t) on 0 � t � 2p.

18. One definition of convexity for a smoothly closed plane curve is that
its curvature k is positive (hence its plane curvature k̃ is either always posi-
tive or always negative). Prove that a convex closed plane curve has total cur-
vature 2p. (Hint: Consider its spherical image.)

A theorem of Fenchel asserts that every regular closed curve a in R3 has
total curvature �2p. Surprisingly, this has an easy proof in terms of surface
theory (see Sec. 8 of Ch. 6).

19. (Computer.)
(a) Plot the curve

Even looking at this curve from different viewpoints may not make its cross-
ing pattern clear, but Exercise 21 of Section 5.4 will show that t is a trefoil knot.

t pt t t t t t t( ) = + -( )4 2 2 4 2 2 3 0 2cos cos sin sin sin ., , on � �

k t v t dt
I

( ) ( )Ú
k s ds

I
( )Ú

a t t f t f t( ) = ( ) -( )( ), ,

f t
t

e tt
( ) =

£
>

Ï
Ì
Ó -

0 0

01 2

if ,

if .
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(Intuitively, a simple closed curve in R3 is a knot provided it cannot be contin-
uously deformed—always remaining simply closed—until it becomes a circle.)

The Fary-Milnor theorem asserts that every knot has total curvature
strictly greater than 4p. Show:

(b) The plane curve obtained from t by removing the z-component sin3t
has total curvature exactly 4p. (This curve is not simply closed, and hence
is not a knot.)
(c) t can be deformed to a knot that has (numerically estimated) total 
curvature less than 4.01p.

20. (Computer.)
(a) Write a command that, given an arbitrary regular curve, returns the
test function in Exercise 10 of Section 3 whose constancy implies that the
curve lies on a sphere. (Plotting this function provides a good test for con-
stancy and does not require simplifying it.) (Hint: To allow for arbitrary
parametrization, replace derivatives f ¢(s) by f ¢(t)v(t), where v(t) = ds/dt.)
(b) In each case, decide whether the curve lies on a sphere, and if so, find
its radius and center:

(i) a(t) = (2sin t, sin2t, 2sin2 t);
(ii) b(t) = (cos2 t, sin2t, 2sin t);

(iii) g (t) = (cos t, 1 + sin t, 2sin ).

21. Prove that the cubic curve g (t) = (at, bt2, ct3), abc π 0, is a cylindrical
helix if and only if 3ac = ±2b2. (Computer optional.)

2.5 Covariant Derivatives

In Chapter 1 the definition of a new object (curve, differential form, map-
ping, . . .) was usually followed by an appropriate notion of derivative of that
object. To see how to define the derivative of a vector field on a Euclidean
space, we mimic the definition of the derivative v[ f ] of a function f relative to
a tangent vector v at a point p (Definition 3.1 of Chapter 1). In fact, replacing
f by a vector field W on R3 gives a vector field t Æ W(p + tv) on the curve 
t Æ p + tv. The derivative of such a vector field was defined in Section 2. Then
the derivative of W with respect to v will be the derivative of t Æ W(p + tv) at
t = 0.

5.1 Definition Let W be a vector field on R3, and let v be a tangent vector
field to R3 at the point p. Then the covariant derivative of W with respect to
v is the tangent vector

at the point p.
— = +( )¢( )vW W tp v 0

t
2
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Evidently —vW measures the initial rate of change of W(p) as p moves in the
v direction. (The term “covariant” derives from the generalization of this
notion discussed in Chapter 7.)

For example, suppose W = x2U1 + yzU3, and

Then

so

where strictly speaking U1 and U3 are also evaluated at p + tv. Thus,

5.2 Lemma If W = wiUi is a vector field on R3, and v is a tangent
vector at p, then

Proof. We have

for the restriction of W to the curve t Æ p + tv. To differentiate such a
vector field (at t = 0), one simply differentiates its Euclidean coordinates
(at t = 0). But by the definition of directional derivative (Definition 3.1 of
Chapter 1), the derivative of wi(p + tv) at t = 0 is precisely v[wi]. Thus

◆

In short, to apply —v to a vector field, apply v to its Euclidean coordinates.
Thus the following linearity and Leibnizian properties of covariant deriva-
tive follow easily from the corresponding properties (Theorem 3.3 of Chapter
1) of directional derivatives.

5.3 Theorem Let v and w be tangent vectors to R3 at p, and let Y and Z
be vector fields on R3. Then for numbers a, b and functions f,

(1) —av+bwY = a—vY + b—wY.
(2) —v(aY + bZ) = a—vY + b—vZ.
(3) —v(fY) = v[f]Y(p) + f(p)—vY.
(4) v[Y • Z] = —vY • Z(p) + Y(p) • —vZ.

— = +( )¢( ) = [ ] ( )Âv i iW W t w Up v v p0 .

W t w t U ti ip v p v p v+( ) = +( ) +( )Â

— = [ ] ( )Âv i iW w Uv p .

Â

— = +( )¢( ) = - ( ) + ( )vW W t U Up v p p0 4 21 3 .

W t t U tUp v+( ) = -( ) +2 22
1 3,

p v+ = -( )t t t2 1 2, ,,

v p= -( ) = ( )1 0 2 2 1 0, , at , , .
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Proof. For example, let us prove (4). If

then

Hence by Theorem 3.3 of Chapter 1,

But by the preceding lemma,

Thus the two sums displayed above are precisely —vY • Z(p) and Y(p) • —vZ.
◆

Using the pointwise principle (Chapter 1, Section 2), we can take the
covariant derivative of a vector field W with respect to a vector field V, rather
than a single tangent vector v. The result is the vector field —VW whose value
at each point p is —V(p)W. Thus —VW consists of all the covariant derivatives
of W with respect to the vectors of V. It follows immediately from the lemma
above that if W = wiUi, then

Coordinate computations are easy using the basic identity Ui[ f ] = ∂f/∂xi.
For example, suppose V = (y - x)U1 + xyU3 and (as in the example above)
W = x2U1 + yzU3. Then

Hence

For the covariant derivative —VW as expressed entirely in terms of
vector fields, the properties in the preceding theorem take the following 
form.

5.4 Corollary Let V, W, Y, and Z be vector fields on R3. Then
(1) —fV+gWY = f —VY + g—WY, for all functions f and g.
(2) —V(aY + bZ) = a—VY + b—VZ, for all numbers a and b.

— = -( ) +VW x y x U xy U2 1
2

3.

V x y x U x x y x

V yz xyU yz xy

2
1

2

3
2

2[ ] = -( ) [ ] = -( )
[ ] = [ ] =

,

.

— = [ ]ÂV i iW V w U .

Â

— = [ ] ( ) — = [ ] ( )Â Âv i i v i iY y U Z z Uv p v pand .

v v v p p vY Z y z y z y zi i i i i i• .[ ] = [ ] = [ ] ( ) + ( ) [ ]Â Â Â

Y Z y zi i• .= Â

Y yU Z zUi i i i= =Â Âand ,
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(3) —V(fY) = V[ f ]Y + f —VY, for all functions f.
(4) V [Y • Z] = —VY • Z + Y • —VZ.

We shall omit the proof, which is an exercise in the use of parentheses based
on the (pointwise principle) definition (—VY )(p) = —V(p)Y.

Note that —VY does not behave symmetrically with respect to V and Y. This
is to be expected, since it is Y that is being differentiated, while the role of V
is merely algebraic. In particular, —fVY is f —VY, but —V( fY) is not f —VY: There
is an extra term arising from the differentiation of f by V.

Exercises

1. Consider the tangent vector v = (1, -1, 2) at the point p = (1, 3, -1).
Compute —vW directly from the definition, where

(a) W = x2U1 + yU2. (b) W = xU1 + x2U2 - z2U3.

2. Let V = -yU1 + xU3 and W = cosxU1 + sinxU2. Express the follow-
ing covariant derivatives in terms of U1, U2, U3:

(a) —VW. (b) —VV.
(c) —V (z2W ). (d) —W (V ).
(e) —V (—vW ). (f) —V (xV - zW ).

3. If W is a vector field with constant length �W �, prove that for any vector
field V, the covariant derivative —VW is everywhere orthogonal to W.

4. Let X be the special vector field xiUi, where x1, x2, x3 are the natural
coordinate functions of R3. Prove that —VX = V for every vector field V.

5. Let W be a vector field defined on a region containing a regular curve a.
Then t Æ W(a(t)) is a vector field on a called the restriction of W to a and
denoted by Wa.

(a) Prove that —a¢(t)W = (Wa)¢ (t).
(b) Deduce that the straight line in Definition 5.1 may be replaced by any
curve with initial velocity v. Thus the derivative Y¢ of a vector field Y on
a curve a is (almost) —a ¢Y.

2.6 Frame Fields

When the Frenet formulas were discovered (by Frenet in 1847, and indepen-
dently by Serret in 1851), the theory of surfaces in R3 was already a richly
developed branch of geometry. The success of the Frenet approach to curves

Â
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led Darboux (around 1880) to adapt this “method of moving frames” to the
study of surfaces. Then, as we mentioned earlier, it was Cartan who brought
the method to full generality. His essential idea was very simple: To each point
of the object under study (a curve, a surface, Euclidean space itself, . . .)
assign a frame; then using orthonormal expansion express the rate of change
of the frame in terms of the frame itself. This, of course, is just what the
Frenet formulas do in the case of a curve.

In the next three sections we shall carry out this scheme for the Euclidean
space R3. We shall see that geometry of curves and surfaces in R3 is not merely
an analogue, but actually a corollary, of these basic results. Since the main
application (to surface theory) comes only in Chapter 6, these sections may
be postponed, and read later as a preliminary to that chapter.

By means of the pointwise principle (Chapter 1, Section 2) we can 
automatically extend operations on individual tangent vectors to operations
on vector fields. For example, if V and W are vector fields on R3, then the
dot product V • W of V and W is the (differentiable) real-valued function 
on R whose value at each point p is V(p) • W(p). The norm �V� of V is the
real-valued function on R3 whose value at p is �V(p)�. Thus �V � = (V • V )1/2.
By contrast with V • W, the norm function �V � need not be differentiable at
points for which V(p) = 0, since the square-root function is badly behaved 
at 0.

In Chapter 1 we called the three vector fields U1, U2, U3 the natural frame
field on R3. Here is a simple but crucial generalization.

6.1 Definition Vector fields E1, E2, E3 on R3 constitute a frame field on
R3 provided

where dij is the Kronecker delta.

Thus at each point p the vectors E1(p), E2(p), E3(p) do in fact form a frame
(Definition 1.4) since they have unit length and are mutually orthogonal.

In elementary calculus, frame fields are usually derived from coordinate
systems, as in the following cases.

6.2 Example (1) The cylindrical frame field (Fig. 2.19). Let r, J, z be the
usual cylindrical coordinate functions on R3. We shall pick a unit vector field
in the direction in which each coordinate increases (when the other two are
held constant). For r, this is evidently

E U U1 1 2= +cos sinJ J ,

E E i ji j ij• = £ £( )d 1 3, ,
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pointing straight out from the z axis. Then

points in the direction of increasing J as in Fig. 2.19. Finally, the direction
of increase of z is, of course, straight up, so

It is easy to check that Ei • Ej = dij, so this is a frame field (defined on all
of R3 except the z axis). We call it the cylindrical frame field on R3.

(2) The spherical frame field on R3 (Fig. 2.20). In a similar way, a frame
field F1, F2, F3 can be derived from the spherical coordinate functions r, J, j
on R3. As indicated in the figure, we shall measure j up from the xy plane
rather than (as is usually done) down from the z axis.

Let E1, E2, E3 be the cylindrical frame field. For spherical coordinates, the
unit vector field F2 in the direction of increasing J is the same as above, so
F2 = E2. The unit vector field F1, in the direction of increasing r, points
straight out from the origin; hence it can be expressed as

(Fig. 2.21). Similarly, the vector field for increasing j is

F E E1 1 3= +cos sinj j

E U3 3= .

E U U2 1 2= - +sin cosJ J
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Thus the formulas for E1, E2, E3 in (1) yield

By repeated use of the identity sin2 + cos2 = 1, we check that F1, F2, F3 is
a frame field—the spherical frame field on R3. (Its actual domain of defini-
tion is R3 minus the z axis, as in the cylindrical case.)

The following useful result is an immediate consequence of orthonormal
expansion.

6.3 Lemma Let E1, E2, E3 be a frame field on R3.
(1) If V is a vector field on R3, then V = fiEi, where the functions 

fi = V • Ei are called the coordinate functions of V with respect to E1,
E2, E3.

(2) If V = fiEi and W = giEi, then V • W = figi. In particular,
� V � = ( fi

2)1/2.

Thus a given vector field V has a different set of coordinate functions with
respect to each choice of a frame field E1, E2, E3. The Euclidean coordinate
functions (Lemma 2.5 of Chapter 1), of course, come from the natural frame
field U1, U2, U3. In Chapter 1, we used this natural frame field exclusively, but
now we shall gradually shift to arbitrary frame fields. The reason is clear: In 
studying curves and surfaces in R3, we shall then be able to choose a frame
field specifically adapted to the problem at hand. Not only does this simplify
computations, but it gives a clearer understanding of geometry than if we
had insisted on using the same frame field in every situation.

Exercises

1. If V and W are vector fields on R3 that are linearly independent at each
point, show that

is a frame field, where W̃ = W - (W • E1)E1.

E
V
V

E
W

W
E E E1 2 3 1 2= = = ¥, ,

˜

˜

Â
ÂÂÂ

Â

F U U U

F U U

F U U U

1 1 2 3

2 1 2

3 1 2 3

= +( ) +

= - +

= - +( ) +

cos cos sin sin

sin cos

sin cos sin cos .

j J J j

J J

j J J j

,

,

F E E3 1 3= - +sin cos .j j
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2. Express each of the following vector fields (i) in terms of the cylindrical
frame field (with coefficients in terms of r, J, z) and (ii) in terms of the spher-
ical frame field (with coefficients in terms of r, J, j):

(a) U1. (b) cosJU1 + sinJU2 + U3.
(c) xU1 + yU2 + zU3.

3. Find a frame field E1, E2, E3 such that

2.7 Connection Forms

Once more we state the essential point: The power of the Frenet formulas
stems not from the fact that they tell what the derivatives T ¢, N¢, B¢ are, but
from the fact that they express these derivatives in terms of T, N, B—and
thereby define curvature and torsion. We shall now do the same thing with
an arbitrary frame field E1, E2, E3 on R3; namely, express the covariant deriv-
atives of these vector fields in terms of the vector fields themselves. We begin
with the covariant derivative with respect to an arbitrary tangent vector v at
a point p. Then

where by orthonormal expansion the coefficients of these equations are

These coefficients cij, depend on the particular tangent vector v, so a better
notation for them is

Thus for each choice of i and j, wij is a real-valued function defined on all
tangent vectors. But we have met that kind of function before.

7.1 Lemma Let E1, E2, E3 be a frame field on R3. For each tangent vector
v to R3 at the point p, let

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

c E E i jij v i j= — ( )• .p for ,1 3� �

— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )

v

v

v

E c E c E c E

E c E c E c E

E c E c E c E

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

p p p

p p p

p p p

,

,

,

E x U x z U x z U1 1 2 3= + +cos sin cos sin sin .
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Then each wij is a 1-form, and wij = -wji. These 1-forms are called the con-
nection forms of the frame field E1, E2, E3.

Proof. By definition, wij is a real-valued function on tangent vectors, so
to verify that wij is a 1-form (Def. 5.1 of Ch. 1), it suffices to check the lin-
earity condition. Using Theorem 5.3, we get

To prove that wij = -wji we must show that wij(v) = -wji(v) for every
tangent vector v. By definition of frame field, Ei • Ej = dij, and since each
Kronecker delta has constant value 0 or 1, the Leibnizian formula (4) of
Theorem 5.3 yields

By the symmetry of the dot product, the two vectors in this last term may
be reversed, so we have found that 0 = wij(v) + wji(v). ◆

The geometric significance of the connection forms is no mystery. The def-
inition wij(v) = —vEi • Ej(p) shows that wij(v) is the initial rate at which Ei

rotates toward Ej as p moves in the v direction. Thus the 1-forms wij contain
this information for all tangent vectors to R3.

The following basic result is little more than a rephrasing of the definition
of connection forms.

7.2 Theorem Let wij (1 � i, j � 3) be the connection forms of a frame
field E1, E2, E3 on R3. Then for any vector field V on R3,

We call these the connection equations of the frame field E1, E2, E3.

Proof. For fixed i, both sides of this equation are vector fields. Thus we
must show that at each point p,

— = ( )( ) ( )( ) ÂV p i ij j
j

E V Ew p p .

— = ( ) ( )ÂV i ij j
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But as we have already seen, the very definition of connection form makes
this equation a consequence of orthonormal expansion. ◆

When i = j, the skew-symmetry condition wij = -wji becomes wii = -wii;
thus

Hence this condition has the effect of reducing the nine 1-forms wij for 
1 � i, j � 3 to essentially only three, say w12, w13, w23. It is perhaps best to
regard the connection forms wij as the entries of a skew-symmetric matrix of
1-forms,

Thus in expanded form, the connection equations (Theorem 7.2) become

(*)

showing an obvious relation to the Frenet formulas

The absence from the Frenet formulas of terms corresponding to w13(V)E3

and -w13(V)E1 is a consequence of the special way the Frenet frame field is
fitted to its curve. Having gotten T(~E1), we chose N(~E2) so that the deriv-
ative T ¢ would be a scalar multiple of N alone and not involve B(~E3).

Another difference between the Frenet formulas and the equations above
stems from the fact that R3 has three dimensions, while a curve has but one.
The coefficients—curvature k and torsion t—in the Frenet formulas measure
the rate of change of the frame field T, N, B only along its curve, that is, in
the direction of T alone. But the coefficients in the connection equations must
be able to make this measurement for E1, E2, E3 with respect to arbitrary
vector fields in R3. This is why the connection forms are 1-forms and not just
functions.

These formal differences aside, a more fundamental distinction stands out.
It is because a Frenet frame field is specially fitted to its curve that the Frenet
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formulas give information about that curve. Since the frame field E1, E2, E3

used above is completely arbitrary, the connection equations give no direct
information about R3, but only information about the “rate of rotation” of
that particular frame field. This is not a weakness, but a strength, since as
indicated earlier, if we can fit a frame field to a geometric problem arising in
R3, then the connection equations will give direct information about that
problem. Thus, these equations play a fundamental role in all the differential
geometry of R3. For example, the Frenet formulas can be deduced from them
(Exercise 8).

Given an arbitrary frame field E1, E2, E3 on R3, it is fairly easy to find an
explicit formula for its connection forms. First use orthonormal expansion
to express the vector fields E1, E2, E3 in terms of the natural frame field U1,
U2, U3 on R3:

Here each aij = Ei • Uj is a real-valued function on R3. The matrix

with these functions as entries is called the attitude matrix of the frame field
E1, E2, E3. In fact, at each point p, the numerical matrix

is exactly the attitude matrix of the frame E1(p), E2(p), E3(p) as in Definition
1.6. Since attitude matrices are orthogonal, the transpose tA of A is equal to
its inverse A-1.

Define the differential of A = (aij) to be dA = (daij), so dA is a matrix
whose entries are 1-forms. We can now give a simple expression for the con-
nection forms in terms of the attitude matrix.

7.3 Theorem If A = (aij) is the attitude matrix and w = (wij) the matrix
of connection forms of a frame field E1, E2, E3, then

or equivalently,

w = ( )dA At matrix multiplication ,
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Since the proof is routine, it may be more informative to illustrate the result
by an example. For the cylindrical frame field in Example 6.2, we found the
attitude matrix

Thus

Since w12 = dJ is the only nonzero connection form (except, of course,
w21 = -w12), the connection equations (*) reduce to

These equations have immediate geometrical significance. Because V is
arbitrary, the third equation says that the vector field E3 is parallel. We knew
this already since in the cylindrical frame field, E3 is just U3.

The first two equations tell us that the covariant derivatives of E1 and E2

with respect to a vector field V depend only on the rate of change of the angle
J in the V direction.

For example, the definition of J shows that V [J] = 0 whenever V is a
vector field that at each point is tangent to a plane through the z axis. Thus
for a vector field of this type the connection equations above predict that 
—VE1 = —VE2 = 0. In fact, it is clear from Fig. 2.19 that E1 and E2 do remain
parallel on any plane through the z axis.
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Exercises

1. For any function f, show that the vector fields

form a frame field, and find its connection forms.

2. Find the connection forms of the natural frame field U1, U2, U3.

3. For any function f, show that

is the attitude matrix of a frame field, and compute its connection forms.

4. Prove that the connection forms of the spherical frame field are

5. If E1, E2, E3 is a frame field and W = fiEi, prove the covariant deriva-
tive formula:

6. Let E1, E2, E3 be the cylindrical frame field. If V is a vector field such
that V[r] = r and V[J] = 1, compute —V (r cosJE1 + r sinJE3).

7. (Computer.) (a) Write a computer command that, given the attitude
matrix A of a frame field on R3, returns the matrix w = dA tA of its 
connection forms. (Hint: For Maple, use the differential operator d from 
the package difforms. For Mathematica, use the total differential Dt.) (b) 
Test part (a) on the cylindrical frame field and on the spherical frame field
(Ex. 4).

8. Let b be a unit-speed curve in R3 with k > 0, and suppose that E1, E2, E3

is a frame field on R3 such that the restriction of these vector fields to b gives
the Frenet-frame field T, N, B of b. Prove that

w k w w t12 13 230T T T( ) = ( ) = ( ) =, , .
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Then deduce the Frenet formulas from the connection equations. (Hint:
Ex. 5 of Sec. 5.)

2.8 The Structural Equations

We have seen that 1-forms—the connection forms—give the simplest descrip-
tion of the rate of rotation of a frame field. Furthermore, the frame field
itself can be described in terms of 1-forms.

8.1 Definition If E1, E2, E3 is a frame field on R3, then the dual 1-forms
q1, q2, q3 of the frame field are the 1-forms such that

for each tangent vector v to R3 at p.

Note that qi is linear on the tangent vectors at each point; hence it is a 1-
form. In particular, qi(Ej) = dij, so readers familiar with the notion of dual
vector spaces will recognize that at each point, q1, q2, q3 gives the dual basis
of E1, E2, E3.

In the case of the natural frame field U1, U2, U3, the dual forms are just
dx1, dx2, dx3. In fact, from Example 5.3 of Chapter 1 we get

for each tangent vector v; hence dxi = qi.
Using dual forms, the orthonormal expansion formula in Lemma 6.3 may

be written V = qi(V )Ei. In the characteristic fashion of duality, this
formula becomes the following lemma.

8.2 Lemma Let q1, q2, q3 be the dual 1-forms of a frame field E1, E2, E3.
Then any 1-form f on R3 has a unique expression

Proof. Two 1-forms are the same if they have the same value on any
vector field V. But

◆

f q f q

f q f

E V E V

V E V

i i i i

i i

( )( )( ) = ( ) ( )

= ( )( ) = ( )
Â Â

Â .

f f q= ( )Â Ei i .

Â

dx v Ui i iv v p( ) = = ( )•

q i iEv v p( ) = ( )•
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Thus f is expressed in terms of dual forms of E1, E2, E3 by evaluating it
on E1, E2, E3. This useful fact is the generalization to arbitrary frame fields
of Lemma 5.4 of Chapter 1.

We compared a frame field E1, E2, E3 to the natural frame field by means
of its attitude matrix A = (aij), for which

The dual formulation is just

with the same coefficients. In fact, by the preceding lemma,

But

These formulas for Ei and qi show plainly that q1, q2, q3 is merely the dual
description of the frame field E1, E2, E3.

In calculus, when a new function appears on the scene, it is natural to ask
what its derivative is. Similarly with 1-forms—having associated with each
frame field its dual forms and connection forms, it is reasonable to ask what
their exterior derivatives are. The answer is given by two neat sets of equa-
tions discovered by Cartan.

8.3 Theorem (Cartan structural equations.) Let E1, E2, E3 be a frame
field on R3 with dual forms q1, q2, q3 and connection forms wij (1 � i, j � 3).
The exterior derivatives of these forms satisfy

(1) the first structural equations:

(2) the second structural equations:

Because qi is the dual of Ei, the first structural equations may be easily rec-
ognized as the dual of the connection equations. Only later experience will
show that the second structural equations mean that R3 is flat—roughly
speaking, in the same sense that the plane R2 is flat.

d i jij ik kj
k

w w w= Ÿ ( )Â 1 3� �, .

d ii ij j
j

q w q= Ÿ ( )Â 1 3� � ;

q di j i j ik k j ik kj ijU E U a U U a a( ) = = ( ) = =Â Â• • .

q qi i j jU dx= ( )Â .

q i ij ja dx= Â

E a U ii ij j= £ £( )Â 1 3 .
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The most efficient proof of the structural equations requires some prelim-
inary remarks. In the Cartan approach, the fundamental objects are not indi-
vidual forms, but rather matrices whose entries are forms. We have already
seen that the simplest description of the connection forms wij of a frame field
is as a single skew-symmetric matrix w with entries wij. Then, for example, w
is expressed in terms of the attitude matrix A of the frame field by the matrix
equation w = dA tA. (Here, as always, to apply d to a matrix, apply it to each
entry of the matrix.)

Similarly, the dual forms of a frame field can be described by a single n ¥ 1
matrix q with entries qi. If x is the n ¥ 1 matrix whose entries are the natural
coordinates xi of R3, then

so the formula qi = aij dxj above can be written as

For such matrices of forms, matrix multiplication is defined as usual, but
of course when entries are multiplied it is by the wedge product.

The proof of Theorem 8.3 is now quite simple. Recall that since the atti-
tude matrix A is orthogonal, tAA is the identity matrix I, which can be inserted
in any matrix formula without effect.

Proof of the First Structural Equation. Since d 2 = 0, we evidently
have d(dx) = 0, so

Expressed in terms of entries, this is indeed the version in (1) of Theorem
8.3.

Proof of the Second Structural Equation. For functions f and g.

Thus, using the transpose rule t(AB) = tB tA, we get

where the last step uses the skew-symmetry of w. Again, in terms of entries,
this is the version in (2) of Theorem 8.3. ◆

d d dA A dA d A dA A A dAt t t t tw w w ww= ( ) = - ◊ ( ) = - ◊ ( ) = - = ,
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8.4 Example Structural equations for the spherical frame field (Example
6.2). The dual forms and connection forms are

Let us check, say, the first structural equation

Using the skew-symmetry wij = -wji and the general properties of forms
developed in Chapter 1, we get

(the latter since dJ Ÿ dJ = 0). The sum of these terms is, correctly,

Second structural equations involve only one wedge product. For example,
since w11 = w22 = 0,

In this case,

which is the same as

To derive the expressions given above for the dual 1-forms, first compute
dx1, dx2, dx3 by differentiating the well-known equations

Then substitute in the formula qi = aij dxj, where A = (aij) is the atti-
tude matrix from Example 6.2. This result, somewhat disguised, is derived in 
elementary calculus by a familiar plausibility argument: If at each point the
spherical coordinates r, J, j are altered by increments dr, dJ, dj, then the
sides of the resulting infinitesimal box (Fig. 2.22) are dr, r cosj dJ, r dj.
These are exactly the formulas for q1, q2, q3.
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The structural equations provide a powerful method for dealing with geo-
metrical problems in R3: Select a frame field well adapted to the problem at
hand; find its dual 1-forms and connection forms; apply the structural equa-
tions; interpret the results. We will use this method later to study the geom-
etry of surfaces in R3.

Exercises

1. For a 1-form f = fiqi, prove

(Compare Ex. 5 of Sec. 7.)

2. Check all the structural equations of the spherical frame field.

3. For the cylindrical frame field E1, E2, E3.
(a) Starting from the basic cylindrical equations x = r cosJ, y = r sinJ,
z = z, show that the dual 1-forms are

(b) Deduce that E1[r] = 1, E2[J] = 1/r, E3[z] = 1 and that the other six 
possibilities E1[J], . . . are all zero.
(c) For a function f(r, J, z), show that

q q J q1 2 3= = =dr r d dz, , .

d df fj i ij
i

j
j

f w q= +ÏÌ
Ó

¸̋
˛

ŸÂÂ .

Â

98 2. Frame Fields

FIG. 2.22



4. Frame fields on R2. Given a frame field E1, E2 on R2 there is an angle
function y such that

(a) Express the connection form and dual 1-forms in terms of y and the
natural coordinates x, y.
(b) What are the structural equations in this case? Check that the results
in part (a) satisfy these equations.

(Hint: Defining E3 = U3 gives a frame field on R3.)

2.9 Summary

We have accomplished the aims set at the beginning of this chapter. The idea
of a moving frame has been expressed rigorously as a frame field—either on
a curve in R3 or on an open set of R3 itself. In the case of a curve, we used
only the Frenet frame field T, N, B of the curve. Expressing the derivatives
of these vector fields in terms of the vector fields themselves, we discovered
the curvature and torsion of the curve. It is already clear that curvature and
torsion tell a lot about the geometry of a curve; we shall find in Chapter 3
that they tell everything. In the case of an open set of R3, we dealt with an
arbitrary frame field E1, E2, E3. Cartan’s generalization (Theorem 7.2) of the
Frenet formulas followed the same pattern of expressing the (covariant)
derivatives of these vector fields in terms of the vector fields themselves.
Omitting the vector field V from the notation in Theorem 7.2, we have

Cartan’s equations are not conspicuously more complicated than Frenet’s,
because the notion of 1-form is available for the coefficients wij, the connec-
tion forms.
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E E E

E E E

E E E

T N

N T B

B N

— = +
— = - +
— = - -

¢ =
¢ = - +
¢ = -

1 12 2 13 3

2 12 1 23 3

3 13 1 23 2

w w
w w
w w

k
k t

t

,

,

,

,

,

.

E U U

E U U

1 1 2

2 1 2

= +

= - +

cos sin ,

sin cos .

y y

y y

E f
f
r

E f
r

f
E f

f
z1 2 3, ,[ ] =

∂
∂

[ ] =
∂
∂

[ ] =
∂
∂

1
J

.

2.9 Summary 99



▼

▲
Chapter 3

Euclidean Geometry

100

We recall some familiar features of plane geometry. First of all, two trian-
gles are congruent if there is a rigid motion of the plane that carries one tri-
angle exactly onto the other. Corresponding angles of congruent triangles are
equal, corresponding sides have the same length, the areas enclosed are equal,
and so on. Indeed, any geometric property of a given triangle is automati-
cally shared by every congruent triangle. Conversely, there are a number of
simple ways in which one can decide whether two given triangles are con-
gruent—for example, if for each the same three numbers occur as lengths of
sides.

In this chapter we shall investigate the rigid motions (isometries) of Euclid-
ean space, and see how these remarks about triangles can be extended to other
geometric objects.

3.1 Isometries of R3

An isometry, or rigid motion, of Euclidean space is a mapping that preserves
the Euclidean distance d between points (Definition 1.2, Chapter 2).

1.1 Definition An isometry of R3 is a mapping F: R3 Æ R3 such that

for all points p, q in R3.

1.2 Example (1) Translations. Fix a point a in R3 and let T be the 
mapping that adds a to every point of R3. Thus T(p) = p + a for all 

d F F dp q p q( ) ( )( ) = ( ), ,
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points p. T is called translation by a. It is easy to see that T is an isometry,
since

(2) Rotation around a coordinate axis. A rotation of the xy plane through
an angle J carries the point (p1, p2) to the point (q1, q2) with coordinates 
(Fig. 3.1)

Thus a rotation C of three-dimensional Euclidean space R3 around the z axis,
through an angle J, has the formula

Evidently, the mapping C is a linear transformation. A straightforward com-
putation shows that C preserves Euclidean distance, so it is an isometry.

Recall that if F and G are mappings of R3, the composite function GF is
a mapping of R3 obtained by applying first F, then G.

1.3 Lemma If F and G are isometries of R3, then the composite mapping
GF is also an isometry of R3.

Proof. Since G is an isometry, the distance from G(F(p)) to G(F(q)) is
d(F(p), F(q)). But since F is an isometry, this distance equals d(p, q). Thus
GF preserves distance; hence it is an isometry. ◆

C C p p p p p p p pp( ) = ( ) = - +( )1 2 3 1 2 1 2 3, , , ,cos sin sin cos .J J J J

q p p2 1 2= +sin cos .J J

q p p1 1 2= -cos sinJ J,

= - = ( )p q p qd , .

= +( ) - +( )p a q a

d T T dp q p a q a( ) ( )( ) = + +( ),  ,

FIG. 3.1
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In short, a composition of isometries is again an isometry.
We also recall that if F: R3 Æ R3 is both one-to-one and onto, then F has

a unique inverse function F -1: R3 Æ R3, which sends each point F(p) back to
p. The relationship between F and F -1 is best described by the formulas

where I is the identity mapping of R3, that is, the mapping such that I(p) = p
for all p.

Translations of R3 (as defined in Example 1.2) are the simplest type of
isometry.

1.4 Lemma (1) If S and T are translations, then ST = TS is also a 
translation.

(2) If T is translation by a, then T has an inverse T -1, which is translation
by -a.

(3) Given any two points p and q of R3, there exists a unique translation
T such that T(p) = q.

Proof. To prove (3), for example, note that translation by q - p certainly
carries p to q. This is the only possibility, since if T is translation by a and
T(p) = q, then p + a = q; hence a = q - p. ◆

A useful special case of (3) is that if T is a translation such that for some
one point T(p) = p, then T = I.

The rotation in Example 1.2 is an example of an orthogonal transformation
of R3, that is, a linear transformation C: R3 Æ R3 that preserves dot products
in the sense that

1.5 Lemma If C: R3 Æ R3 is an orthogonal transformation, then C is an
isometry of R3.

Proof. First we show that C preserves norms. By definition, ||p||2 = p • p;
hence

Thus || C(p) || = || p || for all points p. Since C is linear, it follows easily that
C is an isometry:

C C Cp p p p p p( ) = ( ) ( ) = =2 2• • .

C Cp q p q p q( ) ( ) =• • .for all ,

FF I F F I- -= =1 1, ,
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◆

Our goal now is Theorem 1.7, which asserts that every isometry can be
expressed as an orthogonal transformation followed by a translation. The
main part of the proof is the following converse of Lemma 1.5.

1.6 Lemma If F is an isometry of R3 such that F(0) = 0, then F is an
orthogonal transformation.

Proof. First we show that F preserves dot products; then we show that
F is a linear transformation. Note that by definition of Euclidean distance,
the norm || p || of a point p is just the Euclidean distance d(0, p) from the
origin to p. By hypothesis, F preserves Euclidean distance, and F(0) = 0;
hence

Thus F preserves norms. Now by a standard trick (“polarization”), we shall
deduce that it also preserves dot products. Since F is an isometry,

for any pair of points. Hence

By the definition of norm, this implies

Hence

The norm terms here cancel, since F preserves norms, and we find

as required.
It remains to prove that F is linear. Let u1, u2, u3 be the unit points 

(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Then we have the identity

p u= ( ) = Âp p p pi i1 2 3, , .

F Fp q p q( ) ( ) =• • ,

F F F Fp p q q p p q q( ) - ( ) ( ) + ( ) = - +2 2 2 22 2• • .

F F F Fp q p q p q p q( ) - ( )( ) ( ) - ( )( ) = -( ) -( )• • .

F Fp q p q( ) - ( ) = - .

d F F dp q p q( ) ( )( ) = ( ),  ,

F d F d F F dp 0 p 0 p 0 p p( ) = ( )( ) = ( ) ( )( ) = ( ) =, ,  , .

= ( )d p q p q, for all , .

d C C C C Cp q p q p q p q( ) ( )( ) = ( ) - ( ) = -( ) = -,



104 3. Euclidean Geometry

Also, the points u1, u2, u3 are orthonormal; that is, ui • uj = dij.
We know that F preserves dot products, so F(u1), F(u2), F(u3) must also

be orthonormal. Thus orthonormal expansion gives

But

so

Using this identity, it is a simple matter to check the linearity condition

◆

We now give a concrete description of an arbitrary isometry.

1.7 Theorem If F is an isometry of R3, then there exist a unique trans-
lation T and a unique orthogonal transformation C such that

Proof. Let T be translation by F(0). Then Lemma 1.4 shows that T -1 is
translation by -F(0). But T -1 F is an isometry, by Lemma 1.3, and 
furthermore,

Thus by Lemma 1.6, T -1 F is an orthogonal transformation, say T -1F = C.
Applying T on the left, we get F = TC.

To prove the required uniqueness, we suppose that F can also be expressed
as , where is a translation and an orthogonal transformation. We
must prove = T and = C. Now TC = ; hence C = T -1 . Since C
and are linear transformations, they of course send the origin to itself. It
follows that (T -1 )(0) = 0. But since T -1 is a translation, we conclude that
T -1 = I; hence = T. Then the equation TC = becomes TC = T .
Applying T -1 gives C = .. ◆

Thus every isometry of R3 can be uniquely described as an orthogonal trans-
formation followed by a translation. When F = TC as in Theorem 1.7, we call

C
CCTTT

TT
C

CTCTCT
CTCT

T F T F F F- -( )( ) = ( )( ) = ( ) - ( ) =1 10 0 0 0 0.

F TC= .

F a b aF bFp q p q+( ) = ( ) + ( ).

F p Fi ip u( ) = ( )Â .

F F pi i ip u p u( ) ( ) = =• • ,

F F F Fi ip p u u( ) = ( ) ( ) ( )Â • .
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C the orthogonal part of F, and T the translation part of F. Note that CT is
generally not the same as TC (Exercise 1).

This decomposition theorem is the decisive fact about isometries of R3 (and
its proof holds for Rn as well). We will use it to find an explicit formula for
an arbitrary isometry.

First, recall from linear algebra that if C: R3 Æ R3 is any linear transfor-
mation, its matrix (relative to the natural basis of R3) is the 3¥3 matrix {cij}
such that

Thus, using the column-vector conventions, q = C(p) can be written as

By a standard result of linear algebra, a linear transformation of R3 is
orthogonal (preserves dot products) if and only if its matrix is orthogonal
(transpose equals inverse).

Returning to the decomposition F = TC in Theorem 1.7, if T is transla-
tion by a = (a1, a2, a3), then

Using the above formula for C(p), we get

Alternatively, using the column-vector conventions, q = F(p) means

Exercises

Throughout these exercises, A, B, and C denote orthogonal transformations
(or their matrices), and Ta is translation by a.

1. Prove that CTa = TC(a)C.

2. Given isometries F = TaA and G = TbB, find the translation and orthog-
onal part of FG and GF.
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3. Show that an isometry F = TaC has an inverse mapping F -1, which is
also an isometry. Find the translation and orthogonal parts of F -1.

4. If

show that C is orthogonal; then compute C(p) and C(q), and check that 
C(p) • C(q) = p • q.

5. Let F = TaC, where a = (1, 3, -1) and

If p = (2, -2, 8), find the coordinates of the point q for which
(a) q = F(p). (b) q = F -1(p).
(c) q = (CTa) (p).

6. In each case decide whether F is an isometry of R3. If so, find its trans-
lation and orthogonal parts.

(a) F(p) = -p. (b) F(p) = (p • a) a, where || a || = 1.
(c) F(p) = (p3 - 1, p2 - 2, p1 - 3). (d) F(p) = (p1, p2, 1).

A group G is a set furnished with an operation that assigns to each pair g1, g2

of elements of G an element g1g2, subject to these rules: (1) associative law:
(g1g2)g3 = g1(g2g3), (2) there is a unique identity element e such that eg =
ge = g for all g in G, and (3) inverses: For each g in G there is an element 
g-1 in G such that gg-1 = g-1 g = e.

Groups occur naturally in many parts of geometry, and we shall mention
a few in subsequent exercises. Basic properties of groups may be found in a
variety of elementary textbooks.

7. Prove that the set E(3) of all isometries of R3 forms a group—with com-
position of functions as the operation. E(3) is called the Euclidean group of
order 3.

A subset H of a group G is a subgroup of G provided (1) if g1 and g2 are in
H, then so is g1g2, (2) is g is in H, so is g-1, and hence (3) the identity element
e of G is in H. A subgroup H of G is automatically a group.
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8. Prove that the set T (3) of all translations of R3 and the set O(3) of all
orthogonal transformations of R3 are each subgroups of the Euclidean group
E(3). O(3) is called the orthogonal group of order 3. Which isometries of R3

are in both these subgroups?

It is easy to check that the results of this section, though stated for R3, remain
valid for Euclidean spaces Rn of any dimension.

9. (a) Give an explicit description of an arbitrary 2 ¥ 2 orthogonal matrix
C. (Hint: Use an angle and a sign.)

(b) Give a formula for an arbitrary isometry F of R = R1.

3.2 The Tangent Map of an Isometry

In Chapter 1 we showed that an arbitrary mapping F: R3 Æ R3 has a tangent
map F* that carries each tangent vector v at p to a tangent vector F*(v) at
F(p). If F is an isometry, its tangent map is remarkably simple. (Since the dis-
tinction between tangent vector and point is crucial here, we temporarily
restore the point of application to the notation.)

2.1 Theorem Let F be an isometry of R3 with orthogonal part C.
Then

for all tangent vectors vp to R3.
Verbally: To get F*(vp), first shift the tangent vector vp to the canonically

corresponding point v of R3, then apply the orthogonal part C of F, and
finally shift this point C(v) to the canonically corresponding tangent vector
at F(p) (Fig. 3.2). Thus all tangent vectors at all points p of R3 are “rotated”
in exactly the same way by F*—only the new point of application F(p) depends
on p.

Proof. Write F = TC as in Theorem 1.7. Let T be translation by a, so
F(p) = a + C(p). If vp is a tangent vector to R3, then by Definition 7.4 of
Chapter 1, F*(vp) is the initial velocity of the curve t Æ F(p + tv). But using
the linearity of C, we obtain

= ( ) + ( )F tCp v .

F t TC t T C tC C tCp v p v p v a p v+( ) = +( ) = ( ) + ( )( ) = + ( ) + ( )

F Cp F p* v v( ) = ( ) ( )
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Thus F*(vp) is the initial velocity of the curve t Æ F(p) + tC(v), which is
precisely the tangent vector C(v)F(p). ◆

Expressed in terms of Euclidean coordinates, this result becomes

where C = (cij) is the orthogonal part of the isometry F, and if Ui is evalu-
ated at p, then is evaluated at F(p).

2.2 Corollary Isometries preserve dot products of tangent vectors. That
is, if vp and wp are tangent vectors to R3 at the same point, and F is an isom-
etry, then

Proof. Let C be the orthogonal part of F, and recall that C, being an
orthogonal transformation, preserves dot products in R3. By Theorem 2.1,

where we have twice used Definition 1.3 of Chapter 2 (dot products of
tangent vectors). ◆

Since dot products are preserved, it follows automatically that derived con-
cepts such as norm and orthogonality are preserved. Explicitly, if F is an isom-
etry, then || F*(v) || = || v ||, and if v and w are orthogonal, so are F*(v) and F*(w).
Thus frames are also preserved: if e1, e2, e3 is a frame at some point p of R3 and
F is an isometry, then F*(e1), F*(e2), F*(e3) is a frame at F(p). (A direct proof is
easy: ei • ej = dij, so by Corollary 2.2, F*(ei) • F*(ej) = ei • ej = dij.)

= =v w v w• •p p

F F C C C Cp p F p F p* • * • •v w v w v w( ) ( ) = ( ) ( ) = ( ) ( )( ) ( )

F Fp p p p* • * • .v w v w( ) ( ) =

Ui

F v U c v Uj j
j

ij j i
i j

* Â ÂÊ
ËÁ

ˆ
¯̃ = ,

,

FIG. 3.2
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Assertion (3) of Lemma 1.4 shows how two points uniquely determine a
translation. We now show that two frames uniquely determine an isometry.

2.3 Theorem Given any two frames on R3, say e1, e2, e3 at the point p
and f1, f2, f3 at the point q, there exists a unique isometry F of R3 such that
F*(ei) = fi for 1 � i � 3.

Proof. First we show that there is such an isometry. Let ê1, ê2, ê3, and f̂1,
f̂2, f̂3 be the points of R3 canonically corresponding to the vectors in 
the two frames. Let C be the unique linear transformation of R3 such that
C(êi) = f̂ i for 1 � i � 3. It is easy to check that C is orthogonal. Then let
T be a translation by the point q - C(p). Now we assert that the isometry
F = TC carries the e frame to the f frame. First note that

Then using Theorem 2.1 we get

for 1 � i � 3.
To prove uniqueness, we observe that by Theorem 2.1 this choice of C

is the only possibility for the orthogonal part of the required isometry. The
translation part is then completely determined also, since it must carry C(p)
to q. Thus the isometry F = TC is uniquely determined. ◆

To compute the isometry in the theorem, recall that the attitude matrix A
of the e frame has the Euclidean coordinates of ei as its ith row: ai1, ai2, ai3.
The attitude matrix B of the f frame is similar. We claim that C in the theorem
(or strictly speaking, its matrix) is tBA. To verify this it suffices to check that
tBA(ei) = fi, since this uniquely characterizes C. For i = 1 we find, using the
column-vector conventions,

that is, tBA(e1) = f1. The cases i = 2, 3 are similar; hence C = tBA. As noted
above, T is then necessarily translated by q - C(p).
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Exercises

1. If T is a translation, show that for every tangent vector v the vector T(v)
is parallel to v (same Euclidean coordinates).

2. Prove the general formulas (GF )* = G*F* and (F -1)* = (F*)-1 in the
special case where F and G are isometries of R3.

3. Given the frame

at p = (0, 1, 0) and the frame

at q = (3, -1, 1), find a and C such that the isometry F = TaC carries the e
frame to the f frame.

4. (a) Prove that an isometry F = TC carries the plane through p orthog-
onal to q π 0 to the plane through F(p) orthogonal to C(q).

(b) If P is the plane through (1/2, -1, 0) orthogonal to (0, 1, 0) find an
isometry F = TC such that F(P) is the plane through (1, -2, 1) orthogonal
to (1, 0, -1).

5. (Computer.)
(a) Verify that both sets of vectors in Exercise 3 form frames by showing
that A tA = I for their attitude matrices.
(b) Find the matrix C that carries each ei to fi, and check this for i = 1, 2,
3.

3.3 Orientation

We now come to one of the most interesting and elusive ideas in geometry.
Intuitively, it is orientation that distinguishes between a right-handed glove
and a left-handed glove in ordinary space. To handle this concept mathe-
matically, we replace gloves by frames and separate all the frames on R3 into
two classes as follows. Recall that associated with each frame e1, e2, e3 at a
point of R3 is its attitude matrix A. According to the exercises for Section 1
of Chapter 2,

e e e1 2 3 1• det .¥ = = ±A

f f f1 2 31 0 1 0 1 0 1 0 1 2= ( ) = ( ) = -( ), , 2 , , , , , ,

e e e1 2 32 2 1 3 2 1 2 3 1 2 2 3= ( ) = -( ) = -( ), , , , , , , ,
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When this number is +1, we shall say that the frame e1, e2, e3 is positively ori-
ented (or right-handed); when it is -1, the frame is negatively oriented (or left-
handed).

We omit the easy proof of the following facts.

3.1 Remark (1) At each point of R3 the frame assigned by the natural
frame field U1, U2, U3 is positively oriented.

(2) A frame e1, e2, e3 is positively oriented if and only if e1 ¥ e2 = e3. Thus
the orientation of a frame can be determined, for practical purposes, by the
“right-hand rule” given at the end of Section 1 of Chapter 2. Pictorially, the
frame (P) in Fig. 3.3 is positively oriented, whereas the frame (N ) is nega-
tively oriented. In particular, Frenet frames are always positively oriented,
since by definition, B = T ¥ N.

(3) For a positively oriented frame e1, e2, e3, the cross products are

For a negatively oriented frame, reverse the vectors in each cross product.
(One need not memorize these formulas—the right-hand rule will give them
all correctly.)

Having attached a sign to each frame on R3, we next attach a sign to each
isometry F of R3. In Chapter 2 we proved the well-known fact that the deter-
minant of an orthogonal matrix is either +1 or -1. Thus if C is the orthog-
onal part of the isometry F, we define the sign of F to be the determinant of
C, with notation

sgn det .F C=

e e e e e3 1 2 2 1= ¥ = - ¥ .

e e e e e2 3 1 1 3= ¥ = - ¥ ,

e e e e e1 2 3 3 2= ¥ = - ¥ ,

FIG. 3.3
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We know that the tangent map of an isometry carries frames to frames.
The following result tells what happens to their orientations.

3.2 Lemma If e1, e2, e3 is a frame at some point of R3 and F is an 
isometry, then

Proof. If , then by the coordinate form of Theorem 2.1 we
have

where C = (cij) is the orthogonal part of F. Thus the attitude matrix of the
frame F*(e1), F*(e2), F*(e3) is the matrix

But the triple scalar product of a frame is the determinant of its attitude
matrix, and by definition, sgnF = detC. Consequently,

◆

This lemma shows that if sgnF = +1, then F* carries positively oriented
frames to positively oriented frames and carries negatively oriented frames
to negatively oriented frames. On the other hand, if sgnF = -1, positive goes
to negative and negative to positive.

3.3 Definition An isometry F of R3 is said to be

where C is the orthogonal part of F.

orientation F C- ifreversing sgn det ,= = -1

orientation preserving F C- if sgn det ,= = +1

= ( ) ◊ ¥sgn .F e e e1 2 3

= ◊ = ◊det det det detC A C At

F F F C At* • * * dete e e1 2 3( ) ( ) ¥ ( ) = ( )

c a c a C Aik jk
k

ik
t

kj
k

tÂ ÂÊ
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ = .

F c a Uj ik jk i
i k

* e( ) = Â ,
,

e j jk ka U= Â

F F F F* • * * sgn • .e e e e e e1 2 3 1 2 3( ) ( ) ¥ ( ) = ( ) ¥
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3.4 Example (1) Translations. All translations are orientation-preserv-
ing. Geometrically this is clear, and in fact the orthogonal part of a transla-
tion T is just the identity mapping I, so sgnT = detI = +1.

(2) Rotations. Consider the orthogonal transformation C given in Example
1.2, which rotates R3 through angle q around the z axis. Its matrix is

Hence sgnC = detC = +1, so C is orientation-preserving (see Exercise 4).

(3) Reflections. One can (literally) see reversal of orientation by using a
mirror. Suppose the yz plane of R3 is the mirror. If one looks toward that
plane, the point p = (p1, p2, p3) appears to be located at the point

(Fig. 3.4). The mapping R so defined is called reflection in the yz plane.
Evidently it is an orthogonal transformation, with matrix

Thus R is an orientation-reversing isometry, as confirmed by the experimen-
tal fact that the mirror image of a right hand is a left hand.

Both dot and cross product were originally defined in terms of Euclidean
coordinates. We have seen that the dot product is given by the same formula,

v w e e• •= ( ) ( ) =Â Â Âv w v wi i i i i i ,

-Ê

Ë

Á
Á

ˆ

¯

˜
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R p p pp( ) = -( )1 2 3, ,
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q q
q q
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0
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no matter what frame e1, e2, e3 is used to get coordinates for v and w. Almost
the same result holds for cross products, but orientation is now involved.

3.5 Lemma Let e1, e2, e3 be a frame at a point of R3. If and 
, then

where e = e1 • e2 ¥ e3 = ±1.

Proof. It suffices merely to expand the cross product

using the formulas (3) of Remark 3.1. For example, if the frame is posi-
tively oriented, for the e1 component of v ¥ w we get

Since e = 1 in this case, we get the same result by expanding the determi-
nant in the statement of this lemma. ◆

It follows immediately that the effect of an isometry on cross products also
involves orientation.

3.6 Theorem Let v and w be tangent vectors to R3 at p. If F is an 
isometry of R3, then

Proof. Write . Now let

Since F* is linear,

A straightforward computation using Lemma 3.5 shows that

F F F* * *v w v w( ) ¥ ( ) = ¥( )e ,

F v F wi i i i* * .v e w e( ) = ( ) =Â Âand

e pi iF U= ( )( )* .

v p w p= ( ) = ( )Â ÂvU and wUi i i i  

F F F F* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

v w v w v w v w2 2 3 3 3 3 2 2 2 3 3 2 1e e e e e¥ + ¥ = -( ) .

v w e e e e e e¥ = + +( ) ¥ + +( )v v v w w w1 1 2 2 3 3 1 1 2 2 3 3

v w

e e e

¥ = e
1 2 3

1 2 3

1 2 3

v v v

w w w

,

w e= Âwi i

v e= Â vi i
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where

But U1, U2, U3 is positively oriented, so by Lemma 3.2, e = sgnF. ◆

Exercises

1. Prove

Deduce that sgn F = sgn (F -1).

2. If H0 is an orientation-reversing isometry of R3, show that every
orientation-reversing isometry has a unique expression H0F, where F is 
orientation-preserving.

3. Let v = (3, 1, -1) and w = (-3, -3, 1) be tangent vectors at some point.
If C is the orthogonal transformation given in Exercise 4 of Section 1, check
the formula

4. A rotation is an orthogonal transformation C such that det C = +1. Prove
that C does, in fact, rotate R3 around an axis. Explicitly, given a rotation C,
show that there exists a number J and points e1, e2, e3 with ei • ej = dij such
that (Fig. 3.5)

C e e3 3( ) = .

C e e e2 1 2( ) = - +sin cosJ J ,

C e e e1 1 2( ) = +cos sinJ J ,

C C C C* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

sgn sgn sgn sgn .FG F G GF( ) = ◊ = ( )

e = ¥ = ( )( ) ( )( ) ¥ ( )( )e e e p p p1 2 3 1 2 3• * • * * .F U F U F U

FIG. 3.5
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(Hint: The fact that the dimension of R3 is odd means that C has an eigen-
value +1, so there is a point p π 0 such that C(p) = p.)

5. Let a be a point of R3 such that || a || = 1. Prove that the formula

defines an orthogonal transformation. Describe its general effect on R3.

6. Prove
(a) The set O+(3) of all rotations of R3 is a subgroup of the orthogonal
group O(3) (see Ex. 8 of Sec. 3.1).
(b) The set E +(3) of all orientation-preserving isometries of R3 is a sub-
group of the Euclidean group E(3).

3.4 Euclidean Geometry

In the discussion at the beginning of this chapter, we recalled a fundamental
feature of plane geometry: If there is an isometry carrying one triangle onto
another, then the two (congruent) triangles have exactly the same geometric
properties. A close examination of this statement will show that it does not
admit a proof—it is, in fact, just the definition of “geometric property of a
triangle.” More generally, Euclidean geometry can be defined as the totality
of concepts that are preserved by isometries of Euclidean space. For example,
Corollary 2.2 shows that the notion of dot product on tangent vectors
belongs to Euclidean geometry. Similarly, Theorem 3.6 shows that the cross
product is preserved by isometries (except possibly for sign).

This famous definition of Euclidean geometry is somewhat generous,
however. In practice, the label “Euclidean geometry” is usually attached only
to those concepts that are preserved by isometries, but not by arbitrary map-
pings, or even the more restrictive class of mappings (diffeomorphisms) that
possess inverse mappings. An example should make this distinction clearer.
If a = (a1, a2, a3) is a curve in R3, then the various derivatives

look pretty much alike. Now, Theorem 7.8 of Chapter 1 asserts that velocity
is preserved by arbitrary mappings F: R3 Æ R3, that is, if b = F(a), then b¢ =
F*(a ¢). But it is easy to see that acceleration is not preserved by arbitrary map-
pings. For example, if a(t) = (t, 0, 0) and F = (x2, y, z), then a≤ = 0; hence
F*(a≤) = 0. But b = F(a) has the formula b(t) = (t2, 0, 0), so b≤ = 2U1. Thus

¢ = Ê
Ë

ˆ
¯ ¢¢ = Ê
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ˆ
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in this case, b = F(a), but b≤ π F*(a≤). We shall see in a moment, however,
that acceleration is preserved by isometries.

For this reason, the notion of velocity belongs to the calculus of
Euclidean space, while the notion of acceleration belongs to Euclidean geom-
etry. In this section we examine some of the concepts introduced in Chapter
2 and prove that they are, in fact, preserved by isometries. (We leave largely
to the reader the easier task of showing that they are not preserved by 
diffeomorphisms.)

Recall the notion of vector field on a curve (Definition 2.2 of Chapter 2).
If Y is a vector field on a: I Æ R3 and F: R3 Æ R3 is any mapping, then =
F*(Y ) is a vector field on the image curve = F(a). In fact, for each t in I,
Y(t) is a tangent vector to R3 at the point a(t). But then (t) = F*(Y(t)) is a
tangent vector to R3 at the point F(a(t)) = (t).

(These relationships are illustrated in Fig. 3.6.) Isometries preserve the
derivatives of such vector fields.

4.1 Corollary Let Y be a vector field on a curve a in R3, and let F be an
isometry of R3. Then = F*(Y ) is a vector field on = F(a), and

Proof. To differentiate a vector field , one simply differenti-
ates its Euclidean coordinate functions, so

¢ = ÂY
dy
dt

Uj
j .

Y y Uj j= Â

¢ = ¢( )Y F Y* .

aY

a
Y

a
Y

FIG. 3.6
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Thus by the coordinate version of Theorem 2.1, we get

On the other hand,

But each cij is constant, being by definition an entry in the matrix of the
orthogonal part of the isometry F. Hence

Thus the vector fields F*(Y¢) and ¢ are the same. ◆

We claimed earlier that isometries preserve acceleration: If = F(a), where
F is an isometry, then ≤ = F*(a≤). This is an immediate consequence of the
preceding result, for if we set Y = a ¢, then by Theorem 7.8 of Chapter 1,

= ¢; hence

Now we show that the Frenet apparatus of a curve is preserved by isome-
tries. This is certainly to be expected on intuitive grounds, since a rigid motion
ought to carry one curve into another that turns and twists in exactly 
the same way. And this is what happens when the isometry is orientation-
preserving.

4.2 Theorem Let b be a unit-speed curve in R3 with positive cur-
vature, and let = F(b) be the image curve of b under an isometry F of R3.
Then

where sgnF = ±1 is the sign of the isometry F.

Proof. Note that is also a unit-speed curve, since

¢ = ¢( ) = ¢ =b b bF* .1

b

B F F B= ( ) ( )sgn * ,

t t= ( ) = ( )sgn *F N F N, ,

k k= = ( ), T F T* ,

b

¢¢ = ¢ = ¢( ) = ¢¢( )a aY F Y F* * .

aY
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¢ = ( ) =Â ÂY
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Y F Y c y Uij j i= ( ) = Â* .

F Y c
dy
dt

Uij
j

i* .¢( ) = Â



3.4 Euclidean Geometry 119

Thus the definitions in Section 3 of Chapter 2 apply to both b and , so

Since F* preserves both acceleration and norms, it follows from the 
definition of curvature that

To get the full Frenet frame, we now use the hypothesis k > 0 (which
implies > 0, since = k). By definition, N = b≤/k ; hence using preced-
ing facts, we find

It remains only to prove the interesting cases B and t. Since the defini-
tion B = T ¥ N involves a cross product, we use Theorem 3.6 to get

The definition of torsion is essentially t = -B¢ • N = B • N¢. Thus, using
the results above for B and N, we get

◆

The presence of sgn F in the formula for the torsion of F(b) shows that
the torsion of a curve gives a more subtle description of the curve than has
been apparent so far. The sign of t measures the orientation of the twisting of
the curve. If F is orientation-reversing, the formula = -t proves that the
twisting of the image of curve F(b) is exactly opposite to that of b itself.

A simple example will illustrate this reversal.

4.3 Example Let b be the unit-speed helix

gotten from Example 3.3 of Chapter 2 by setting a = b = 1; hence c = .
We know from the general formulas for helices that k = t = 1/2. Now let R
be reflection in the xy plane, so R is the isometry R(x, y, z) = (x, y, -z). Thus
the image curve = R(b) is the mirror image
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of the original curve. One can see in Fig. 3.7 that the mirror has its usual
effect: b and twist in opposite ways—if b is “right-handed,” then is
“left-handed.” (The fact that b is going up and down is, in itself, irrele-
vant.) Formally: The reflection R is orientation-reversing; hence the theorem
predicts and Since is just the helix gotten in
Example 3.3 of Chapter 2 by taking a = 1 and b = -1, this may be checked
by the general formulas there.

Exercises

1. Let F = TC be an isometry of R3, b a unit speed curve in R3. Prove
(a) If b is a cylindrical helix, then F(b) is a cylindrical helix.
(b) If b has spherical image s, then F(b) has spherical image C(s).

2. Let Y = (t, 1 - t2, 1 + t2) be a vector field on the helix

and let C be the orthogonal transformation

Compute = C(a) and = C*(Y ), and check that

C Y Y C Y Y* * • • .¢( ) = ¢ ¢¢( ) = ¢¢ ¢ ¢¢ = ¢ ¢¢, ,a a a a
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3.5 Congruence of Curves 121

3. Sketch the triangles in R2 that have vertices

Show that these triangles are congruent by exhibiting an isometry F =
TC that carries D1 to D2. (Hint: the orthogonal part C is not altered if the
triangles are translated.)

4. If F: R3 Æ R3 is a diffeomorphism such that F* preserves dot products,
show that F is an isometry. (Hint: Show that F preserves lengths of curve 
segments and deduce that F-1 does also.)

5. Let F be an isometry of R3. For each vector field V let be the vector
field such that F*(V(p)) = (F(p)) for all p. Prove that isometries preserve
covariant derivatives; that is, show =

3.5 Congruence of Curves

In the case of curves in R3, the general notion of congruence takes the fol-
lowing form.

5.1 Definition Two curves a, b: I Æ E3 are congruent provided there
exists an isometry F of R3 such that b = F(a); that is, b(t) = F(a(t)) for all t
in I.

Intuitively speaking, congruent curves are the same except for position in
space. They represent trips at the same speed along routes of the same shape.
For example, the helix a(t) = (cos t, sin t, t) spirals around the z axis in exactly
the same way the helix b(t) = (t, cos t, sin t) spirals around the x axis. Evi-
dently these two curves are congruent, since if F is the isometry such that

then F (a) = b.
To decide whether given curves a and b are congruent, it is hardly practi-

cal to try all the isometries of R3 to see whether there is one that carries a to
b. What we want is a description of the shape of a unit-speed curve so accu-
rate that if a and b have the same description, then they must be congruent.
The proper description, as the reader will doubtless suspect, is given by cur-
vature and torsion. To prove this we need one preliminary result.

Curves whose congruence is established by a translation are said to be 
parallel. Thus, curves a, b: I Æ E3 are parallel if and only if there is a point

F p p p p p p1 2 3 3 1 2, , , , ,( ) = ( )

—V W.—V W
V

V

D D1 23 1 7 1 7 4 2 0 2 5 2 5 16 5: : ., , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) -( )
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p in R3 such that b(s) = a(s) + p for all s in I, or, in functional notation,
b = a + p.

5.2 Lemma Two curves a, b: I Æ R3 are parallel if their velocity vectors
a ¢(s) and b¢(s) are parallel for each s in I. In this case, if a(s0) = b(s0) for some
one s0 in I, then a = b.

Proof. By definition, if a ¢(s) and b¢(s) are parallel, they have the same
Euclidean coordinates. Thus

where ai and bi are the Euclidean coordinate functions of a and b. But 
by elementary calculus, the equation dai/ds = dbi/ds implies that there is 
a constant pi such that bi = ai + pi. Hence b = a + p. Furthermore, if
a(s0) = b(s0), we deduce that p = 0; hence a = b. ◆

5.3 Theorem If a, b: I Æ R3 are unit-speed curves such that ka = kb and
ta = ±tb, then a and b are congruent.

Proof. There are two main steps:
(1) Replace a by a suitably chosen congruent curve F(a).
(2) Show that F(a) = b (Fig. 3.8).
Our guide for the choice in (1) is Theorem 4.2. Fix a number, say 0, in

the interval I. If ta = tb, then let F be the (orientation-preserving) isome-
try that carries the Frenet frame Ta(0), Na(0), Ba(0) of a at a(0) to the

d
ds

s
d
ds

s ii ia b( ) = ( ) for ,1 3� �

FIG. 3.8
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Frenet frame Tb(0), Nb(0), Bb(0), of b at b(0). (The existence of this isom-
etry is guaranteed by Theorem 2.3.) Denote the Frenet apparatus of =
F(a) by , , , , ; then it follows immediately from Theorem 4.2 and
the information above that

(‡)

On the other hand, if ta = -tb, we choose F to be the (orientation-
reversing) isometry that carries Ta(0), Na(0), Ba(0) at a(0) to the frame
Tb(0), Nb(0), Bb(0) at b(0). (Frenet frames are positively oriented; hence
this last frame is negatively oriented: This is why F is orientation-
reversing.) Then it follows from Theorem 4.2 that the equations (‡) hold
also for = F(a) and b. For example,

For step (2) of the proof, we shall show = Tb; that is, the unit tan-
gents of = F(a) and b are parallel at each point. Since (0) = b(0), it
will follow from Lemma 5.2 that F(a) = b. On the interval I, consider the
real-valued function f = • Tb + • Nb + • Bb. Since these are unit
vector fields, the Schwarz inequality (Sec. 1, Ch. 2) shows that

furthermore, • Tb = 1 if and only if = Tb. Similar remarks hold for the
other two terms in f. Thus it suffices to show that f has constant value 3. By
(‡), f(0) = 3. Now consider

A simple computation completes the proof. Substitute the Frenet for-
mulas in this expression and use the equations = kb, = tb from (‡). The
resulting eight terms cancel in pairs, so f ¢ = 0, and f has, indeed, constant
value 3. ◆

Thus, a unit-speed curve is determined but for position in R3 by its curvature
and torsion.

Actually the proof of Theorem 5.3 does more than establish that a and b
are congruent; it shows how to compute explicitly an isometry carrying a to
b. We illustrate this in a special case.

tk

¢ = ¢ + ¢ + ¢ + ¢ + ¢ + ¢f T T T T N N N N B B B B• • • • • •b b b b b b
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T

B F B B0 0 0( ) = - ( )( ) = ( )* .a b
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t t b b= ( ) = ( ), .B B0 0

k k b b= ( ) = ( ), ,N N0 0

a b b0 0 0 0( ) = ( ) ( ) = ( ), ,T T

BNTtk
a



124 3. Euclidean Geometry

5.4 Example Consider the unit-speed curves a, b: R Æ R3 such that

where c = . Obviously, these curves are congruent by means of a reflec-
tion—they are the helices considered in Example 4.3—but we shall ignore
this in order to describe a general method for computing the required isom-
etry. According to Example 3.3 of Chapter 2, a and b have the same curva-
ture, ka = 1/2 = kb ; but torsions of opposite sign, ta = 1/2 = -tb. Thus the
theorem predicts congruence by means of an orientation-reversing isometry
F. From its proof we see that F must carry the Frenet frame

where a = 1/ , to the frame

where the minus sign will produce orientation reversal. (These explicit for-
mulas also come from Example 3.3 of Chapter 2.) By the remark following
Theorem 2.3, the isometry F has orthogonal part C = tBA, where A and B
are the attitude matrices of the two frames above. Thus

since a = 1/ . These two frames have the same point of application a(0) =
b(0) = (1, 0, 0). But C does not move this point, so the translation part of F
is just the identity map. Thus we have (correctly) found that the reflection 
F = C carries a to b.

From the viewpoint of Euclidean geometry, two curves in R3 are “the
same” if they differ only by an isometry of R3. What, for example, is a helix?
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It is not just a curve that spirals around the z axis as in Example 3.3 of
Chapter 2, but any curve congruent to one of these special helices. One can
give general formulas, but the best characterization follows.

5.5 Corollary Let a be a unit speed curve in R3. Then a is a helix if and
only if both its curvature and torsion are nonzero constants.

Proof. For any numbers a > 0 and b π 0, let ba,b be the special helix given
in Example 3.3 of Chapter 2. If a is congruent to ba,b, then (changing 
the sign of b if necessary) we can assume the isometry is orientation-
preserving. Thus, a has curvature and torsion

Conversely, suppose a has constant nonzero k and t. Solving the pre-
ceding equations, we get

Thus a and ba,b have the same curvature and torsion; hence they are 
congruent. ◆

Our results so far demand unit speed, but it is easy to weaken this 
restriction.

5.6 Corollary Let a, b: I Æ R3 arbitrary-speed curves. If

then the curves a and b are congruent.

The proof is immediate, for the data ensures that the unit speed parame-
trizations of a and b have the same curvature and torsion—hence they are
congruent. But then the original curves are congruent under the same 
isometry since their speeds are the same.

The theory of curves we have presented applies only to regular curves with
positive curvature k > 0, because only for such curves is it possible to define
the Frenet frame field. However, an arbitrary curve a in R3 can be studied by
means of an arbitrary frame field on a, that is, three unit-vector fields E1, E2,
E3 on a that are orthogonal at each point.
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At a critical point later on, we will need this generalization of the congru-
ence theorem (5.3):

5.7 Theorem Let a, b: I Æ R3 be curves defined on the same interval.
Let E1, E2, E3 be a frame field on a, and F1, F2, F3 a frame field on b. If

(1) a ¢ • Ei = b¢ • Fi (1 � i � 3),
(2) Ei¢ • Ej = Fi¢ • Fj (1 � i, j � 3),

then a and b are congruent.
Explicitly, for any t0 in I, if F is the unique Euclidean isometry that sends

each Ei(t0) to Fi(t0), then F(a) = b.

Proof. Let F be the specified isometry. Since F* preserves dot products,
it follows that the vector fields = F*(Ei) for 1 £ i £ 3 form a frame field
on = F(a). And since F* preserves velocities of curves and derivatives
of vector fields, by using condition (1) in the theorem, we find

(*)

Similarly, from condition (2), we get

(**)

In view of this last equation, orthonormal expansion yields

with the same coefficient functions aij. Note that aij + aji = 0; hence aii = 0.
(Proof: Differentiate • = dij.)

Now let f = • Fi. We prove f = 3 as before: f(t0) = 3, and

Thus each • Fi = 1, that is, and Fi are parallel at each point. By (*)
the same is true for

Since a(t0) = b(t0), Lemma 5.2 gives the required result, F(a) = = b.
◆

5.8 Remark Existence theorem for curves in R3. Curvature and torsion
tell whether two unit-speed curves are isometric, but they do more than that:

a
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Given any two continuous functions k > 0 and t on an interval I, there exists a
unit-speed curve a: I Æ R3 that has these functions as its curvature and torsion.
(As we know, any two such curves are congruent.) Thus the natural descrip-
tion of curves in R3 is devoid of geometry, consisting of a pair of real-valued
functions.

The proof of the existence theorem requires advanced methods, so we have
preferred to illustrate it by the corresponding result for plane curves 
(Exercises 7–10). Though simpler, this 2-dimensional version has the advan-
tage that plane curvature is not required to be positive.

Exercises

1. Given a curve a = (a1, a2, a3): I Æ R3, prove that b: I Æ R3 is con-
gruent to a if and only if b can be written as

where ei • ej = dij.

2. Let E1, E2, E3, be a frame field on R3 with dual forms qi and connection
forms wij. Prove that two curves a, b: I Æ R3 are congruent if qi(a ¢) = qi(b¢)
and wij(a ¢) = wij(b¢) for 1 � i, j � 3 (Hint: Use Thm. 5.7.)

3. Show that the curve

is a helix by finding its curvature and torsion. Find a helix of the form 
a(t) = (acos t, asin t, bt) and an isometry F such that F(a) = b.

4. (Computer; see Appendix.) (a) Show that the curves

defined on the entire real line, have the same speed, curvature, and torsion.
(b) Find formulas for T and C such that the isometry F = TC carries a to b
and verify explicitly that F(a) = b. (Hint: Use Ex. 5 of Sec. 2.)

5. (Computer optional.) Is the following curve a helix? Prove your answer.

6. Congruence of curves.
(a) Prove that curves a, b: I Æ R2 are congruent if a = b and they have
the same speed.

k̃k̃

c t t t t t t t t t t( ) = - + + + + + -( )2 2 2 2 4 2 4cos sin cos sin cos sin ., ,

a bt t t t t t t t t t t t( ) = + - +( ) ( ) = + - -( )2 2 3 2 3 2 31 2 1 2, , , , , ,

b t t t t t t( ) = + -( )3 2 3sin cos sin, ,
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(b) Show that the space curves

are congruent. Find an isometry that carries a to b.

7. Given a continuous function f on an interval I, prove—using ordinary
integration of functions—that there exists a unit-speed curve b(s) in R2 for
which f(s) is the plane curvature. (Hint: Reverse the logic in Ex. 8 of Sec. 2.3.)

8. Show that b(s) = (x(s), y(s)) in the preceding exercise is given by the solu-
tions of the differential equations

with initial conditions x(0) = y(0) = j(0) = 0. (These initial conditions suffice,
since any other b differs at most by a Euclidean isometry and a reparame-
trization s Æ s + c.)

Explicit integration is rarely possible; the following exercises use numeri-
cal integration.

9. (Numerical integration, computer graphics.) Write computer commands
that (a) given f(s), produce a numerical description of the solution curve b(s)
in the preceding exercise, and (b) given f(s), plot the solution curve.

10. (Continuation.) Plot unit-speed plane curves with the given plane cur-
vature function f on at least the given interval.

(a) f(s) = 1 + es, on -6 £ s £ 3.
(b) f(s) = 2 + 3 cos3s, on 0 £ s £ 2 p.
(c) f(s) = 3 - 2s2 + s3, on -2.5 £ s £ 3.5.

Adjust scales on axes as needed.

3.6 Summary

The basic result of this chapter is that an arbitrary isometry of Euclidean
space can be uniquely expressed as an orthogonal transformation followed
by a translation. A consequence is that the tangent map of an isometry F
is, at every point, essentially just the orthogonal part of F. Then it is a 
routine matter to test the concepts introduced earlier to see which belong to
Euclidean geometry, that is, which are preserved by isometries of Euclidean
space.

¢( ) = ( ) ¢( ) = ( ) ¢( ) = ( )x s s y s s s f scos sin ,j j j, ,

a bt t t t t t t( ) = ( ) ( ) = -( )2 02 2, , and , ,
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Finally, we proved an analogue for curves of the various criteria for con-
gruence of triangles in plane geometry; namely, we showed that a necessary
and sufficient condition for two curves in R3 to be congruent is that they have
the same curvature and torsion (and speed). Furthermore, the sufficiency
proof shows how to find the required isometry explicitly.



▼

▲
Chapter 4

Calculus on a Surface

130

This chapter begins with the definition of a surface in R3 and with some stan-
dard ways to construct surfaces. Although this concept is a more-or-less
familiar one, it is not as widely known as it should be that each surface has
a differential and integral calculus strictly comparable with the usual calcu-
lus on the Euclidean plane R2. The elements of this calculus—functions,
vector fields, differential forms, mappings—belong strictly to the surface and
not to the Euclidean space R3 in which the surface is located. Indeed, we shall
see in the final section that this calculus survives undamaged when R3 is
removed, leaving just the surface and nothing more.

4.1 Surfaces in R3

A surface in R3 is, to begin with, a subset of R3, that is, a certain collection
of points of R3. Of course, not all subsets are surfaces: We must certainly
require that a surface be smooth and two-dimensional. These requirements
will be expressed in mathematical terms by the next two definitions.

1.1 Definition A coordinate patch x: D Æ R3 is a one-to-one regular
mapping of an open set D of R2 into R3.

The image x(D) of a coordinate patch x—that is, the set of all values of
x—is a smooth two-dimensional subset of R3 (Fig. 4.1). Regularity (Defini-
tion 7.9 of Chapter 1), for a patch as for a curve, is a basic smoothness con-
dition; the one-to-one requirement is included to prevent x(D) from cutting
across itself. Initially, in order to avoid certain technical difficulties (Example
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1.6), we must use proper patches, those for which the inverse function x-1:
x(D) Æ D is continuous (that is, has continuous coordinate functions). If we
think of D as a thin sheet of rubber, then x(D) is gotten by bending and
stretching D in a not too violent fashion.

To construct a suitable definition of surface we start from the rough idea
that any small enough region in a surface M resembles a region in the plane R2.
The discussion above shows that this can be stated somewhat more precisely
as, near each of its points, M can be expressed as the image of a proper patch.
(When the image of a patch x is contained in M, we say that x is a patch in
M.) To get the final form of the definition, it remains only to define a neigh-
borhood N of p in M to consist of all points of M whose Euclidean distance
from p is less than some number e > 0.

1.2 Definition A surface in R3 is a subset M of R3 such that for each point
p of M there exists a proper patch in M whose image contains a neighbor-
hood of p in M (Fig. 4.2).

The familiar surfaces used in elementary calculus satisfy this definition; for
example, let us verify that the unit sphere S in R3 is a surface. By definition,

FIG. 4.1

FIG. 4.2
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S consists of all points at unit distance from the origin—that is, all points p
such that

To check the definition above, we start by finding a proper patch in S cover-
ing a neighborhood of the north pole (0, 0, 1). Note that by dropping each
point (q1, q2, q3) of the northern hemisphere of S onto the xy plane at (q1, q2,
0) we get a one-to-one correspondence of this hemisphere with a disk D of
radius 1 in the xy plane (see Fig. 4.3). If this plane is identified with R2 by
means of the natural association (q1, q2, 0) ´ (q1, q2), then D becomes the
disk in R2 consisting of all points (u, v) such that u2 + v2 < 1. Expressing this
correspondence as a function on D yields the formula

Thus x is a one-to-one function from D onto the northern hemisphere of
S. We claim that x is a proper patch. The coordinate functions of x are dif-
ferentiable on D, so x is a mapping. To show that x is regular, we compute
its Jacobian matrix (or transpose)

where Evidently the rows of this matrix are always linearly
independent, so its rank at each point is 2. Thus, by the criterion following
Definition 7.9 of Chapter 1, x is regular and hence is a patch. Furthermore,
x is proper, since its inverse function x-1: x(D) Æ D is given by the formula

f u v= - -1 2 2 .
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and hence is certainly continuous. Finally, we observe that the patch x covers
a neighborhood of (0, 0, 1) in S. Indeed, it covers a neighborhood of every
point q in the northern hemisphere of S.

In a strictly analogous way, we can find a proper patch covering each of
the other five coordinate hemispheres of S, and thus verify, by Definition 1.2,
that S is a surface. Our real purpose here has been to illustrate Definition
1.2—we soon find a much quicker way to prove (in particular) that spheres
are surfaces.

The argument above shows that if f is any differentiable real-valued func-
tion on an open set D in R2, then the function x: D Æ R3 such that

is a proper patch. We shall call patches of this type Monge patches.
We turn now to some standard methods of constructing surfaces. Note that

the image M = x(D) of just one proper patch automatically satisfies 1.2; M
is then called a simple surface. (Thus Definition 1.2 says that any surface in
R3 can be constructed by gluing together simple surfaces.)

1.3 Example The surface M: z = f(x, y). Every differentiable real-valued
function f on R2 determines a surface M in R3: the graph of f, that is, the set
of all points of R3 whose coordinates satisfy the equation z = f(x, y). Evi-
dently M is the image of the Monge patch

hence by the remarks above, M is a simple surface.

If g is a real-valued function on R3 and c is a number, denote by 
M: g = c the set of all points p such that g(p) = c. For example, if g is a 
temperature distribution in space, then M: g = c consists of all points of
temperature c. There is a simple condition that tells when such a subset of
R3 is a surface.

1.4 Theorem Let g be a differentiable real-valued function on R3, and c
a number. The subset M: g(x, y, z) = c of R3 is a surface if the differential
dg is not zero at any point of M.

(In Definition 1.2 and in this theorem we are tacitly assuming that M has
some points in it; thus the equation x2 + y2 + z2 = -1, for example, does not
define a surface.)

x u v u v f u v, , , ,( ) = ( )( );

x u v u v f u v, , , ,( ) = ( )( )

x- ( ) = ( )1
1 2 3 1 2p p p p p, , ,
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Proof. All we do is give geometric content to a famous result of
advanced calculus—the implicit function theorem. If p is a point of M, we
must find a proper patch covering a neighborhood of p in M (Fig. 4.4).
Since

the hypothesis on dg is equivalent to assuming that at least one of these
partial derivatives is not zero at p, say (∂g/∂z)(p) π 0. In this case, the
implicit function theorem says that near p the equation g(x, y, z) = c can
be solved for z. More precisely, it asserts that there is a differentiable real-
valued function h defined on a neighborhood D of (p1, p2) such that

(1) For each point (u, v) in D, the point (u, v, h(u, v)) lies in M; that is,
g(u, v, h(u, v)) = c.

(2) Points of the form (u, v, h(u, v)), with (u, v) in D, fill a neighbor-
hood of p in M.

It follows immediately that the Monge patch x: D Æ R3 such that

satisfies the requirements in Definition 1.2. Since p was an arbitrary point
of M, we conclude that M is a surface. ◆

From now on we use the notation M: g = c only when dg π 0 on M. Then
M is a surface said to be defined implicitly by the equation g = c. It is now
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easy to prove that spheres are surfaces. The sphere S in R3 of radius r > 0 
and center c = (c1, c2, c3) is the set of all points at distance r from c. If

then S is defined implicitly by the equation g = r2. Now,

Hence dg is zero only at the point c, which is not in S. Thus S is a surface.
An important class of surfaces is gotten by rotating curves.

1.5 Example Surfaces of revolution. Let C be a curve in a plane P Ã R3,
and let A be a line in P that does not meet C. When this profile curve C is
revolved around the axis A, it sweeps out a surface of revolution M in R3.

Let us check that M really is a surface. For simplicity, suppose that P is a
coordinate plane and A is a coordinate axis—say, the xy plane and x axis,
respectively. Since C must not meet A, we put it in the upper half, y > 0, of
the xy plane. As C is revolved, each of its points (q1, q2, 0) gives rise to a
whole circle of points

Thus a point p = (p1, p2, p3) is in M if and only if the point

is in C (Fig. 4.5).
If the profile curve is C: f(x, y) = c, we define a function g on R3 by

g x y z f x y z, , ,( ) = +( )2 2 .
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Then the argument above shows that the resulting surface of revolution is
exactly M: g(x, y, z) = c. Using the chain rule, it is not hard to show that dg
is never zero on M, so M is a surface.

The circles in M generated under revolution by each point of C are called
the parallels of M; the different positions of C as it is rotated are called the
meridians of M. This terminology derives from the geography of the sphere;
however, a sphere is not a surface of revolution as defined above. Its profile
curve must twice meet the axis of revolution, so two “parallels” reduce to
single points. To simplify the statements of later theorems, we use a slightly
different terminology in this case; see Exercise 12.

The necessity of the properness condition on the patches in Definition 1.2
is shown by the following example.

1.6 Example Suppose that a rectangular strip of tin is bent into a figure
8, as in Fig. 4.6. The configuration M that results does not satisfy our intu-
itive picture of what a surface should be, for along the axis A, M is not like
the plane R2 but is instead like two intersecting planes. To express this con-
struction in mathematical terms, let D be the rectangle -p < u < p, 0 < v < 1
in R2 and define x: D Æ R3 by x(u, v) = (sinu, sin2u, v). It is easy to check
that x is a patch, but its image M = x(D) is not a surface: x is not a proper
patch. Continuity fails for x-1: M Æ D since, roughly speaking, to restore M
to D, x-1 must tear M along the axis A (the z axis of R3).

By Example 1.5, the familiar torus of revolution T is a surface (Fig. 4.16).
With somewhat more work, one could construct double toruses of various
shapes, as in Fig. 4.7. By adding “handles” and “tubes” to existing surfaces
one can—in principle, at least—construct surfaces of any desired degree of
complexity (Fig. 4.8).

FIG. 4.6

FIG. 4.7
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Exercises

1. None of the following subsets M of R3 are surfaces. At which points p
is it impossible to find a proper patch in M that will cover a neighborhood
of p in M ? (Sketch M—formal proofs not required.)

(a) Cone M: z2 = x2 + y2

(b) Closed disk M: x2 + y2 � 1, z = 0.
(c) Folded plane M: xy = 0, x � 0, y � 0.

2. A plane in R3 is a surface M: ax + by + cz = d, where the numbers a, b,
c are necessarily not all zero. Prove that every plane in R3 may be described
by a vector equation as on page 62.

3. Sketch the general shape of the surface M: z = ax2 + by2 in each of the
following cases:

(a) a > b > 0. (b) a > 0 > b.
(c) a > b = 0. (d) a = b = 0.

4. In which of the following cases is the mapping x: R2 Æ R3 a patch?
(a) x(u, v) = (u, uv, v). (b) x(u, v) = (u2, u3, v).
(c) x(u, v) = (u, u2, v + v3). (d) x(u, v) = (cos2pu, sin2pu, v).

(Recall that x is one-to-one if and only if x(u, v) = x(u1, v1) implies (u, v) =
(u1, v1).)

5. (a) Prove that M: (x2 + y2)2 + 3z2 = 1 is a surface.
(b) For which values of c is M: z(z - 2) + xy = c a surface?

6. Determine the intersection z = 0 of the monkey saddle

with the xy plane. On which regions of the plane is f > 0? f < 0? How does
this surface get its name? (Hint: see Fig. 5.19.)

M z f x y f x y y yx: ,= ( ) ( ) = -, , ,3 23

FIG. 4.8



7. Let x: D Æ R3 be a mapping, with

(a) Prove that a point p = (p1, p2, p3) of R3 is in the image x(D) if and only
if the equations

can be solved for u and v, with (u, v) in D.
(b) If for every point p in x(D) these equations have the unique solution 

u = f1(p1, p2, p3), v = f2(p1, p2, p3), with (u, v) in D, prove that x is one-to-one
and that x-1: x(D) Æ D is given by the formula

8. Let x: D Æ R3 be the function given by

on the first quadrant D: u > 0, v > 0. Show that x is one-to-one and find a
formula for its inverse function x-1: x(D) Æ D. Then prove that x is a proper
patch.

9. Let x: R2 Æ R3 be the mapping

Show that x is a proper patch and that the image of x is the entire surface
M: z = (x2 - y2)/4.

10. If F: R3 Æ R3 is a diffeomorphism and M is a surface in R3, prove 
that the image F(M) is also a surface in R3. (Hint: If x is a patch in M, then
the composite function F(x) is regular, since F(x)* = F*x* by Ex. 9 of
Sec. 1.7.)

11. Prove this special case of Exercise 10: If F is a diffeomorphism of R3,
then the image of the surface M: g = c is : = c, where = g(F -1) and

is a surface. (Hint: If dg(v) π 0 at p in M, show by using Ex. 7 of Sec. 1.7
that d (F*v) π 0 at F(p).)

12. Let C be a Curve in the xy plane that is symmetric about the x axis.
Assume C crosses the x axis and always does so orthogonally. Explain why
there can be only one or two crossings. Thus C is either an arc or is closed
(Fig. 4.9). Revolving C about the x axis gives a surface M, called an aug-
mented surface of revolution. Explain how to define patches in M at the 
crossing points.

g
M

ggM

x u v u v u v uv, , ,( ) = + -( ).

x u v u uv v, , ,( ) = ( )2 2

x p p p- ( ) = ( ) ( )( )1
1 2f f, .

p x u v p x u v p x u v1 1 2 2 3 3= ( ) = ( ) = ( ), , , , ,

x u v x u v x u v x u v, , , , , ,( ) = ( ) ( ) ( )( )1 2 3 .
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4.2 Patch Computations

In Section 1, coordinate patches were used to define a surface; now we con-
sider some properties of patches that will be useful in studying surfaces.

Let x: D Æ R3 be a coordinate patch. Holding u or v constant in the func-
tion (u, v) Æ x(u, v) produces curves. Explicitly, for each point (u0, v0) in D
the curve

is called the u-parameter curve, v = v0, of x; and the curve

is the v-parameter curve, u = u0 (Fig. 4.10).
Thus, the image x(D) is covered by these two families of curves, which are

the images under x of the horizontal and vertical lines in D, and one curve
from each family goes through each point of x(D).

2.1 Definition If x: D Æ R3 is a patch, for each point (u0, v0) in D:
(1) The velocity vector at u0 of the u-parameter curve, v = v0, is denoted

by xu(u0, v0).

v u vÆ ( )x 0 ,

u u vÆ ( )x , 0

FIG. 4.9

FIG. 4.10
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(2) The velocity vector at v0 of the v-parameter curve, u = u0, is denoted
by xv(u0, v0).

The vectors xu(u0, v0) and xv(u0, v0) are called the partial velocities of x at
(u0, v0) (Fig. 4.11).

Thus xu and xv are functions on D whose values at each point (u0, v0) are
tangent vectors to R3 at x(u0, v0). The subscripts u and v are intended to
suggest partial differentiation. Indeed if the patch is given in terms of its
Euclidean coordinate functions by a formula

then it follows from the definition above that the partial velocity functions
are given by

The subscript x (frequently omitted) is a reminder that xu(u, v) and xv(u, v)
have point of application x(u, v).

2.2 Example The geographical patch in the sphere. Let S be the sphere
of radius r > 0 centered at the origin of R3. Longitude and latitude on the
earth suggest a patch in S quite different from the Monge patch used on S
in Section 1. The point x(u, v) of S with longitude u (-p < u < p) and lati-
tude v (-p/2 < v < p/2) has Euclidean coordinates (Fig. 4.12).

With the domain D of x defined by these inequalities, the image x(D) of x
is all of S except one semicircle from north pole to south pole. The u-
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parameter curve, v = v0, is a circle—the parallel of latitude v0. The v-
parameter curve, u = u0, is a semicircle—the meridian of longitude u0.

We compute the partial velocities of x to be

where r denotes a scalar multiplication. Evidently xu always points due east,
and xv due north (Fig. 4.13). In a moment we shall give a formal proof that
x is a patch in S.

To test whether a given subset M of R3 is a surface, Definition 1.2 demands
proper patches (and Example 1.6 shows why). But once we know that M is
a surface, the properness condition need no longer concern us (Exercise 14
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u v r v u v u v
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cos sin cos cos
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FIG. 4.12
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of Section 3). Furthermore, in many situations the one-to-one restriction on
patches can also be dropped.

2.3 Definition A regular mapping x: D Æ R3 whose image lies in a
surface M is called a parametrization of the region x(D) in M.

(Thus a patch is merely a one-to-one parametrization.) In favorable cases
this image x(D) may be the whole surface M, and we then have the analogue
of the more familiar notion of parametrization of a Curve (see end of Section
1.4). Parametrizations will be of first importance in practical computations
with surfaces, so we consider some ways of determining whether a mapping
x: D Æ R3 is a parametrization of (part of) a given surface M.

The image of x must, of course, lie in M. Note that if the surface is given
in the implicit form M: g = c, this means that the composite function g(x)
must have constant value c.

To test whether x is regular, note first that parameter curves and partial
velocities xu and xv are well-defined for an arbitrary differentiable mapping
x: D Æ R3. Also, the last two rows of the cross product

give the (transposed) Jacobian matrix of x at each point. Thus the regular-
ity of x is equivalent to the condition that xu ¥ xv is never zero, or, by prop-
erties of the cross product, that at each point (u,v) of D the partial velocity
vectors of x are linearly independent.

Let us try out these methods on the mapping x given in Example 2.2. Since
the sphere is defined implicitly by g = x2 + y2 + z2 = r2, we must show that
g(x) = r2. Substituting the coordinate functions of x for x, y, and z gives

A short computation using the formulas for xu and xv, given in Example
2.2, yields

r u vU u vU v vUu v
- ¥ = + +2 2
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Since -p/2 < v < p/2 in the domain D of x, cosv is never zero there; but sinu
and cosu are never zero simultaneously, so xu ¥ xv, is never zero on D. Thus
x is regular—and hence is a parametrization. In fact, it remains a parame-
trization if the condition -p < u < p is dropped, thus replacing D by the infi-
nite strip -p/2 < v < p/2. In this case the u-parameter curves are periodic
parametrizations of the meridians, and x covers the entire sphere except for
the poles (0, 0, ±1).

To show that x on the original domain D is a patch, it remains only to
show that it is one-to-one on D, that is,

In view of the definition of x, the vector equation here gives the three scalar
equations

Since -p/2 < v < p/2 in D, the last equation implies v = v1. Thus r cosv =
rcosv1 > 0 can be canceled from the first two equations, and we conclude that
u = u1 as well.

The geographical definition of x in Example 2.2 makes the preceding
results seem almost obvious, but the methods used will serve in more diffi-
cult cases.

2.4 Example Parametrization of a surface of revolution. Suppose that
M is obtained, as in Example 1.5, by revolving a curve C in the upper half
of the xy plane about the x axis. Now let

be a parametrization of C (note that h > 0). As we observed in Example 1.5,
when the point (g(u), h(u), 0) on the profile curve C has been rotated through
an angle v, it reaches a point x(u, v) with the same x coordinate g(u), but new
y and z coordinates h(u) cosv and h(u) sinv, respectively (Fig. 4.14). Thus

Evidently this formula defines a mapping into M whose image is all of M. A
short computation shows that xu and xv are always linearly independent, so
x is a parametrization of M. The domain D of x consists of all points (u, v)
for which u is in the domain of a. The u-parameter curves of x parametrize

x u v g u h u v h u v, , ,( ) = ( ) ( ) ( )( )cos sin .
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the meridians of M, the v-parameter curves the parallels. (Thus the parame-
trization x: D Æ M is never one-to-one.)

Obviously we are not limited to rotating curves in the xy plane about the
x axis. But with other choices of coordinates, we maintain the same geomet-
ric meaning for the functions g and h: g measures distance along the axis of
revolution, while h measures distance from the axis of revolution.

Actually, the geographical patch in the sphere is one instance of Example
2.4 (with u and v reversed); here is another.

2.5 Example Torus of revolution T. This is the surface of revolution
obtained when the profile curve C is a circle. Suppose that C is the circle 
in the xz plane with radius r > 0 and center (R, 0, 0). We shall rotate about
the z axis; hence we must require R > r to keep C from meeting the axis of
revolution. A natural parametrization (Fig. 4.15) for C is

Thus by the remarks above we must have g(u) = r sin u (distance along the
z axis) and h(u) = R + rcosu (distance from the z axis). The general 
argument in Example 2.4—with coordinate axes permuted—then yields the 
parametrization

We call x the usual parametrization of the torus (Fig. 4.16). Its domain is the
whole plane R2, and it is periodic in both u and v:
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2.6 Definition A ruled surface is a surface swept out by a straight line L
moving along a curve b. The various positions of the generating line L
are called the rulings of the surface. Such a surface always has a ruled 
parametrization,

We call b the base curve and d the director curve, although d is usually pic-
tured as a vector field on b pointing along the line L.

Several examples of ruled surfaces are given in the following exercises. It
is usually necessary to put restrictions on b and d to ensure that x is a 
parametrization.

There are infinitely many different parametrizations and patches in any
surface. Those we have discussed occur frequently and are fitted in a natural
way to their surfaces.

Exercises

1. Find a parametrization of the entire surface obtained by revolving:
(a) C: y = cosh x around the x axis (catenoid).
(b) C: (x - 2)2 + y2 = 1 around the y axis (torus).
(c) C: z = x2 around the z axis (paraboloid).

2. Partial velocities xu and xv are defined for an arbitrary mapping x: D Æ
R3, so we can consider the real-valued functions

on D. Prove

x xu v EG F¥ = -2 2.

E F Gu u u v v v= = =x x x x x x• • •, ,

x u v u v u,( ) = ( ) + ( )b d .

FIG. 4.16
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Deduce that x is a regular mapping if and only if EG - F 2 is never zero. (This
is often the easiest way to check regularity. We will see, beginning in the next
chapter, that the functions E, F, G are fundamental to the geometry of
surfaces.)

3. A generalized cone is a ruled surface with a parametrization of the form

Thus all rulings pass through the vertex p (Fig. 4.17). Show that x is regular
if and only if v and d ¥ d ¢ are never zero. (Thus the vertex is never part of
the cone. Unless the term generalized is used, we assume that d is a closed
curve and require either v > 0 or v < 0.)

4. A generalized cylinder is a ruled surface for which the rulings are all
Euclidean parallel (Fig. 4.18). Thus there is always a parametrization of the
form

Prove: (a) Regularity of x is equivalent to b¢ ¥ q never zero.
(b) If C: f(x, y) = a is a Curve in the plane, show that in R3 the same equa-
tion defines a surface . If t Æ (x(t), y(t)) is a parametrization of C, find
a parametrization of that shows it is a generalized cylinder.

Generalized cylinders are a rather broad category—including Euclidean
planes when b is a straight line—so unless the term generalized is used, we
assume that cylinders are over closed curves b.

5. A line L is attached orthogonally to an axis A (Fig. 4.19). If L moves
steadily along A, rotating at constant speed, then L sweeps out a helicoid H.

When A is the z axis, H is the image of the mapping x: R2 Æ R3 such that

x u v u v u v bv b, , ,( ) = ( ) π( )cos sin .0
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x pu v v u,( ) = + ( )d .
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4.2 Patch Computations 147

(a) Prove that x is a patch.
(b) Describe its parameter curves.
(c) Express the helicoid in the implicit form g = c.
(d) (Computer graphics.) Plot one full turn (0 � v � 2p) of a helicoid with
b = 1/2. Restrict the rulings to -1 � u � 1.

6. (a) Show that the saddle surface M: z = xy is doubly ruled: Find two
ruled parametrizations with different rulings.

(b) (Computer graphics.) Plot a representative portion of M, using a patch
for which the parameter curves are rulings.

7. Let b be a unit-speed parametrization of the unit circle in the xy plane.
Construct a ruled surface as follows: Move a line L along b in such a way
that L is always orthogonal to the radius of the circle and makes constant
angle p /4 with b¢ (Fig. 4.20).

(a) Derive this parametrization of the resulting ruled surface M:

(b) Express x explicitly in terms of v and coordinate functions for b.
(c) Deduce that M is given implicitly by the equation

(d) Show that if the angle p /4 above is changed to -p /4, the same surface
M results. Thus M is doubly ruled.
(e) Sketch this surface M showing the two rulings through each of the
points (1, 0, 0) and (2, 1, 2).

x y z2 2 2 1+ - = .

x u v u v u U,( ) = ( ) + ¢( ) +( )b b 3 .

FIG. 4.19 FIG. 4.20
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8. Let M be the surface of revolution gotten by revolving the curve 
t Æ (g(t), h(t), 0) about the x axis (h > 0). Show that:

(a) If g¢ is never zero, then M has a parametrization of the form

(b) If h¢ is never zero, then M has a parametrization of the form

A quadric surface is a surface M: g = 0 in R3 such that g contains at most
quadratic terms in x1, x2, x3, that is,

Trivial cases excepted, every quadric surface is congruent to one of the five
types described in the next two exercises. (Use of computers is optional in
these exercises.)

9. In each case, (i) show that M is a surface, and sketch its general shape
when a = 3, b = 2, c = 1; (ii) show that x is a parametrization in M and
describe what part of M it covers.

(a) Ellipsoid.

x(u, v) = (a cos u cosv, bcos u sinv, c sinu) on D: -p/2 < u < p/2.

(b) Hyperboloid of one sheet (Fig. 4.21).

x(u, v) = (a cosh ucosv, b cosh u sin v, c sinh u) 

on R2.
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(c) Hyperboloid of two sheets (Fig. 4.21).

x(u, v) = (a sinh u cos v, b sinh u sin v, c cosh u) 

on D: u π 0.

10. Sketch the following surfaces (graphs of functions) for a = 2, b = 1:

(a) Elliptic paraboloid. Show that

is a parametrization that omits only one point of M.

(b) Hyperbolic paraboloid.

Show that M is covered by the single patch

11. Doubly ruled quadrics.
(a) Show that the hyperbolic paraboloid M in the preceding exercise is
doubly ruled.
(b) (Computer graphics.) For a = 2, b = 1 use the patch in (b) of Exercise
10 to plot a portion of M. (Keep the same scale on all axes; the parame-
ter curves will be the rulings.)
(c) Find two different ruled parametrizations of the hyperboloid of one
sheet by using the scheme in the special case, Exercise 7.
(d) (Computer graphics.) Plot a portion of each of these parametrizations,
taking a = 1.5, b = 1, c = 2.

4.3 Differentiable Functions and Tangent Vectors

We now begin an exposition of the calculus on a surface M in R3. The space
R3 will gradually fade out of the picture, since our ultimate goal is a calcu-
lus for M alone. Generally speaking, we shall follow the order of topics in
Chapter 1, making such changes as are necessary to adapt the calculus of the
plane R2 to a surface M.

Suppose that f a is real-valued function defined on a surface M. If x: D Æ
M is a coordinate patch in M, then the composite function f(x) is called a
coordinate expression for f; it is just an ordinary real-valued function (u, v) Æ
f(x(u, v)). We define f to be differentiable provided all its coordinate expres-
sions are differentiable in the usual Euclidean sense (Definition 1.3 of
Chapter 1).
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For a function F: Rn Æ M, each patch x in M gives a coordinate expres-
sion x-1(F ) for F. Evidently this composite function is defined only on the set
O of all points p of Rn such that F(p) is in x(D). Again we define F to be dif-
ferentiable provided all its coordinate expressions are differentiable in the
usual Euclidean sense. We must understand that this includes the requirement
that O be an open set of Rn, so that the differentiability of x-1(F ):O Æ R2 is
well-defined, as in Section 7 of Chapter 1

In particular, a curve a: I Æ M in a surface M is, as before, a differentiable
function from an open interval I into M.

To see how this definition works out in practice, we examine an important
special case.

3.1 Lemma If a is a curve a : I Æ M whose route lies in the image x(D)
of a single patch x, then there exist unique differentiable functions a1, a2 on
I such that

or in functional notation, a = x(a1, a2). (See Fig. 4.22.)

Proof. By definition, the coordinate expression x-1 a: I Æ D is differen-
tiable—it is just a curve in R2 whose route lies in the domain D of x. If a1,
a2 are the Euclidean coordinate functions of x-1 a, then

These are the only such functions, for if a = x(b1, b2), then

◆

These functions a1, a2 are called the coordinate functions of the curve a with
respect to the patch x.

a a b b b b1 2
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For an arbitrary patch x: D Æ M, it is natural to think of the domain D
as a map of the region x(D) in M. The functions x and x-1 establish a one-
to-one correspondence between objects in x(D) and objects in D. If a curve
a in x(D) represents the voyage of a ship, the coordinate curve (a1, a2) plots
its position on the map D.

A rigorous proof of the following technical fact requires the methods of
advanced calculus, and we shall not attempt to give a proof here.

3.2 Theorem Let M be a surface in R3. If F: Rn Æ R3 is a (differentiable)
mapping whose image lies in M, then considered as a function F. Rn Æ M
into M, F is differentiable (as defined above).

This theorem links the calculus of M tightly to the calculus of R3. For
example, it implies the “obvious” result that a curve in R3 that lies in M is a
curve of M.

Since a patch is a differentiable function from an open set of R2 into R3, it
follows that a patch is a differentiable function into M. Hence its coordinate
expressions are all differentiable, so patches overlap smoothly.

3.3 Corollary If x and y are patches in a surface M in R3 whose images
overlap, then the composite functions x-1y and y-1x are (differentiable) map-
pings defined on open sets of R2.

FIG. 4.23

The function y-1x, for example, is defined only for those points (u, v) in D
such that x(u, v) lies in the image y(E) of y (Fig. 4.23).

By an argument like that for Lemma 3.1, Corollary 3.3 can be rewritten:

3.4 Corollary If x and y are overlapping patches in M, then there exist
unique differentiable functions and such thatvu
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for all (u, v) in the domain of x-1y. In functional notation: y = x( , ).
There are, of course, symmetrical equations expressing x in terms of y.
Corollary 3.3 makes it much easier to prove differentiability. For example,

if f is a real-valued function on M, instead of verifying that all coordinate
expressions f(x) are Euclidean differentiable, we need only do so for enough
patches x to cover all of M (so a single patch will often be enough). The proof
is an exercise in checking domains of composite functions: For an arbitrary
patch y, fx and x-1y differentiable imply fxx-1y differentiable. This function
is in general not fy, because its domain is too small. But since there are
enough x’s to cover M, such functions constitute all of f y, and thus prove
that it is differentiable.

It is intuitively clear what it means for a vector to be tangent to a surface
M in R3. A formal definition can be based on the idea that a curve in M must
have all its velocity vectors tangent to M.

3.5 Definition Let p be a point of a surface M in R3. A tangent vector v
to R3 at p is tangent to M at p provided v is a velocity of some curve in M
(Fig. 4.24).

The set of all tangent vectors to M at p is called the tangent plane of M at
p and is denoted by Tp(M). The following result shows, in particular, that at
each point p of M the tangent plane Tp(M) is actually a 2-dimensional vector
subspace of the tangent space Tp(R3).

3.6 Lemma Let p be a point of a surface M in R3, and let x be a patch
in M such that x(u0, v0) = p. A tangent vector v to R3 at p is tangent to M
if and only if v can be written as a linear combination of xu(u0, v0) and 
xv(u0, v0).

vu

y xu v u u v v u v, , , ,( ) = ( ) ( )( )

FIG. 4.24



Since partial velocities are always linearly independent, we deduce that they
provided a basis for the tangent plane of M at each point of x(D).

Proof. Note that the parameter curves of x are curves in M, so xu and
xv are always tangent to M at p.

First suppose that v is tangent to M at p; thus there is a curve a in M
such that a(0) = p and a ¢(0) = v. Now by Lemma 3.1, a may be written

a = x(a1, a2);

hence by the chain rule,

But since a(0) = p = x(u0, v0), we have a1(0) = u0, a2(0) = v0. Hence eval-
uation at t = 0 yields

Conversely, suppose that a tangent vector v to R3 can be written

By computations as above, v is the velocity vector at t = 0 of the curve

Thus v is tangent to M at p. ◆

A reasonable deduction, based on the general properties of derivatives, is
that the tangent plane Tp(M) is the linear approximation of the surface M
near p.

3.7 Definition A Euclidean vector field Z on a surface M in R3 is a func-
tion that assigns to each point p of M a tangent vector Z(p) to R3 at p.

A Euclidean vector field V for which each vector V(p) is tangent to M at
p is called a tangent vector field on M (Fig. 4.25). Frequently these vector
fields are defined, not on all of M, but only on some region in M. As usual,
we always assume differentiability.

A Euclidean vector z at a point p of M is normal to M if it is orthogonal
to the tangent plane Tp(M)—that is, to every tangent vector to M at p. And
a Euclidean vector field Z on M is a normal vector field on M provided each
vector Z(p) is normal to M.

t u tc v tcÆ +( )x 0 0 2+ ,1 .

v x x= ( ) + ( )c u v c u vu v1 0 0 2 0 0, , .
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0 0

2
0 0

da
dt

u v
da
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u vu v, , .

¢ = ( ) + ( )a x xu va a
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a a
da
dt1 2

1
1 2

2, , .
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Because Tp(M) is a two-dimensional subspace of Tp(R3), there is only one
direction normal to M at p: All normal vectors z at p are collinear.

Thus if z is not zero, it follows that Tp(M) consists of precisely those vectors
in Tp(R3) that are orthogonal to z.

It is particularly easy to deal with tangent and normal vector fields on a
surface given in implicit form.

3.8 Lemma If M: g = c is a surface in R3, then the gradient vector field
(considered only at points of M) is a nonvanishing normal

vector field on the entire surface M.

Proof. The gradient is nonvanishing (that is, never zero) on M since in
the implicit case we require that the partial derivatives cannot
simultaneously be zero at any point of M.

We must show that (—g)(p) • v = 0 for every tangent vector v to M at p.
First note that if a is a curve in M, then g(a) = g(a1, a2, a3) has constant
value c. Thus by the chain rule,

Now choose a to have initial velocity

at a(0) = p. Then

◆
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3.9 Example Vector fields on the sphere S: The lemma 
shows that

is a normal vector field on S (Fig. 4.26). This is geometrically evident,
since is the vector p with point of application p! It follows
by a remark above that vp is tangent to S if and only if the dot product 
vp • pp = v • p is zero. Similarly, a vector field V on S is a tangent vector field
if and only if V • X = 0. For example, V(p) = (-p2, p1, 0) defines a tangent
vector field on S that points “due east” and vanishes at the north and south
poles (0, 0, ±r).

We must emphsasize that only the tangent vector fields on M belong to the
calculus of M itself, since they derive ultimately from curves in M (Defini-
tion 3.5). This is certainly not the case with normal vector fields. However, as
we shall see in the next chapter, normal vector fields are quite useful in study-
ing M from the viewpoint of an observer in R3.

Finally, we shall adapt the notion of directional derivatives to a surface.
Definition 3.1 of Chapter 1 uses straight lines in R3; thus we must use the less
restrictive formulation based on Lemma 4.6 of Chapter 1.

3.10 Definition Let v be a tangent vector to M at p, and let f be a dif-
ferentiable real-valued function on M. The derivative v[f] of f with respect 
to v is the common value of ( fa)(0) for all curves a in M with initial
velocity v.

Directional derivatives on a surface have exactly the same linear and Leib-
nizian properties as in the Euclidean case (Theorem 3.3 of Chapter 1).

d dt/( )

X pUi ip p( ) = ( )Â

X g xUi i= — = Â1
2

g x ri= =Â 2 2.

FIG. 4.26



Exercises

1. Let x be the geographical patch in the sphere S (Ex. 2.2). Find the 
coordinate expression f(x) for the following functions on S:

(a) f(p) = p1
2 + p2

2. (b) f(p) = (p1 - p2)2 + p3
2.

2. Let x be the usual parametrization of the torus (Ex. 2.5).
(a) Find the Euclidean coordinates a1, a2, a3 of the curve a(t) = x(t, t).
(b) Show that a is periodic, and find its period p > 0, the smallest number
such that a(t + p) = a(t) for all t.

3. (a) Prove Corollary 3.4.
(b) Derive the chain rule

where xu and xv are evaluated on ( , ).
(c) Deduce that yu ¥ yv = Jxu ¥ xv, where J is the Jacobian of the mapping
x-1y = ( , ): D Æ R2.

4. Let x be a patch in M.
(a) If x* is the tangent map of x (Sec. 7 of Ch. 1), show that

where U1, U2 is the natural frame field on R2.
(b) If f is a differentiable function on M, prove

5. Prove that:
(a) v = (v1, v2, v3) is tangent to M: z = f(x, y) at a point p of M if and only 
if

(b) if x is a patch in an arbitrary surface M, then v is tangent to M at 
x(u, v) if and only if

6. Let x and y be the patches in the unit sphere S that are defined on the
unit disk D: u2 + v2 < 1 by
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where 
(a) On a sketch of S indicate the images x(D) and y(D), and the region on
which they overlap.
(b) At which points of D is y-1x defined? Find a formula for this function.
(c) At which points of D is x-1y defined? Find a formula for this function.

7. Find a nonvanishing normal vector field on M: z = xy and two tangent
vector fields that are linearly independent at each point.

8. Let C be the circular cone parametrized by

If a is the curve 

(a) Express a ¢ in terms of xu and xv.
(b) Show that at each point of a, the velocity a ¢ bisects the angle between 
xu and xv. (Hint: Verify that

,

where xu and xv are evaluated on )
(c) Make a sketch of the cone C showing the curve a.

9. If z is a nonzero vector normal to M at p, let be the Euclidean
plane through p orthogonal to z. Prove:

(a) If each tangent vector vp to M at p is replaced by its tip p + v, then
Tp(M) becomes . Thus gives a concrete representation of
Tp(M) in R3. It is called the Euclidean tangent plane to M at p.
(b) If x is a patch in M, then consists of all points r in R3 such
that (r - x(u, v)) • xu(u, v) ¥ xv(u, v) = 0.
(c) If M is given implicitly by g = c, then consists of all points r
in R3 such that (r - p) • (—g)(p) = 0.

10. In each case below find an equation of the form ax + by + cz = d for
the plane .

(a) p = (0, 0, 0) and M is the sphere

(b) p = (1, -2, 3) and M is the ellipsoid

(c) p = x(2, p /4), where M is the helicoid parametrized by

x u v u v u v v, , ,( ) = ( )cos sin .2

x y z2 2 2
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11. (Continuation of Ex. 2.) With x the usual parametrization of the torus
of revolution T, consider the curve a: R Æ T such that a(t) = x(at, bt).

(a) If a/b is a rational number, show that a is a simple closed curve in T,
that is, periodic with no self-crossings.
(b) If a/b is irrational, show a is one-to-one. Such a curve is called a
winding line on the torus. It is dense in T in the sense that given any e > 0,
a comes within distance e of every point of T.
(c) (Computer graphics.) For reference, plot the torus T with R = 3, r = 1
(see Ex. 2.5). Then plot the following curves in T:
(i) a(t) = x(3t, 5t) on intervals 0 � t � b, for b = p, 2p, and larger values.
Estimate the period of a, in this case the smallest number T > 0 such that
a(T) = a(0).
(ii) a(t) = x(pt, 5t) on intervals 0 � t � b, for increasing values of b. (Keep
the curve reasonably smooth.)

12. A Euclidean vector field on M is differentiable provided its
coordinate functions z1, z2, z3 (on M) are differentiable. If V is a tangent vector
field on M, show that

(a) For every patch x: D Æ M, V can be written as

(b) V is differentiable if and only if the functions f and g (on D) are 
differentiable.

The following exercises deal with open sets in a surface M in R3, that is, sets
U in M that contain a neighborhood in M of each of their points.

13. Prove that if y: E Æ M is a proper patch, then y carries open sets in E
to open sets in M. Deduce that if x: D Æ M is an arbitrary patch, then 
the image x(D) is an open set in M. (Hint: To prove the latter assertion, use
Cor. 3.3.)

14. Prove that every patch x: D Æ M in a surface M in R3 is proper. (Hint:
Use Ex. 13. Note that (x-1y)y-1 is continuous and agrees with x-1 on an open
set in x(D).)

15. If U is a subset of a surface M in R3, prove that U is itself a surface in
R3 if and only if U is an open set of M.

4.4 Differential Forms on a Surface

In Chapter 1 we discussed differential forms on R3 only in sufficient detail to
take care of the Cartan structural equations (Theorem 8.3 of Chapter 2). In
the next three sections we shall give a rather complete treatment of forms on
a surface.

V u v f u v u v g u v u vu vx x x, , , , ,( )( ) = ( ) ( ) + ( ) ( ).

Z zUi i= Â
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Forms are just what we will need to describe the geometry of a surface,
but this is only one example of their usefulness. Surfaces and Euclidean
spaces are merely special cases of the general notion of manifold (Section 8).
Every manifold has a differential and integral calculus—expressed in terms
of functions, vector fields, and forms—that generalizes the usual elementary
calculus on the real line. Thus forms are fundamental to all the many
branches of mathematics and its applications that are based on calculus. In
the special case of a surface, the calculus of forms is rather easy, but it still
gives a remarkably accurate picture of the most general case.

Just as for R3, a 0-form f on a surface M is simply a (differentiable) real-
valued function on M, and a 1-form f on M is a real-valued function on
tangent vectors to M that is linear at each point (Definition 5.1 of Chapter
1). We did not give a precise definition of 2-forms in Chapter 1, but we shall
do so now. A 2-form will be a two-dimensional analogue of a 1-form: a real-
valued function, not on single tangent vectors, but on pairs of tangent vectors.
(In this context the term “pair” will always imply that the tangent vectors
have the same point of application.)

4.1 Definition A 2-form h on a surface M is a real-valued function on
all ordered pairs of tangent vectors v, w to M such that

(1) h (v, w) is linear in v and in w;
(2) h (v, w) = -h (w, v).

Since a surface is two-dimensional, all p-forms with p > 2 are zero, by def-
inition. This fact considerably simplifies the theory of differential forms on
a surface.

At the end of this section we will show that our new definitions are con-
sistent with the informal exposition given in Chapter 1, Section 6.

Forms are added in the usual pointwise fashion; we add only forms of the
same degree p = 0, 1, 2. Just as a 1-form f is evaluated on a vector field V,
now a 2-form h is evaluated on a pair of vector fields V, W to give a real-
valued function h(V, W) on the surface M. Of course, we shall always assume
that the forms we deal with are differentiable—that is, convert differentiable
vector fields into differentiable functions.

Note that the alternation rule (2) in Definition 4.1 implies that

for any tangent vector v. This rule also shows that 2-forms are related to
determinants.

h v v,( ) = 0
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4.2 Lemma Let h be a 2-form on a surface M, and let v and w be (lin-
early independent) tangent vectors at some point of M. Then

Proof. Since h is linear in its first variable, its value on the pair of tangent
vectors av + bw, cv + dw is ah(v, cv + dw) + bh(w, cv + dw). Using the
linearity of h in its second variable, we get

Then the alternation rule (2) gives

◆

Thus the values of a 2-form on all pairs of tangent vectors at a point are
completely determined by its value on any one linearly independent pair. This
remark is used frequently in later work.

Wherever they appear, differential forms satisfy certain general properties,
established (at least partially) in Chapter 1 for forms on R3. To begin with,
the wedge product of a p-form and a q-form is always a ( p + q)-form. If p or
q is zero, the wedge product is just the usual multiplication by a function. On
a surface, the wedge product is always zero if p + q > 2. So we need a defin-
ition only for the case p = q = 1.

4.3 Definition If f and y are 1-forms on a surface M, the wedge product
f Ÿ y is the 2-form on M such that

for all pairs v, w of tangent vectors to M.

Note that f Ÿ y really is a 2-form on M, since it is a real-valued function
on all pairs of tangent vectors and satisfies the conditions in Definition 4.1.
The wedge product has all the usual algebraic properties except commuta-
tivity; in general, if x is a p-form and h is a q-form, then

On a surface the only minus sign occurs in the multiplication of 1-forms,
where just as in Chapter 1, we have f Ÿ y = -y Ÿ f, and hence f Ÿ f = 0.

The differential calculus of forms is based on the exterior derivative d. For
a 0-form (function) f on a surface, the exterior derivative is, as before, the 

x h h xŸ = -( ) Ÿ1 pq .

f y f y f yŸ( )( ) = ( ) ( ) - ( ) ( )v w v w w v,
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1-form df such that df(v) = v[ f ]. Wherever forms appear, the exterior deriv-
ative of a p-form is a (p + 1)-form. Thus, for surfaces the only new defini-
tion we need is that of the exterior derivative df of a 1-form f.

4.4 Definition Let f be a 1-form on a surface M. Then the exterior deriv-
ative df of f is the 2-form such that for any patch x in M,

As it stands, this is not yet a valid definition; there is a problem of consis-
tency. What we have actually defined is a form dxf on the image of each patch
x in M. So what we must prove is that on the region where two patches
overlap, the forms dxf and dyf are equal. Only then will we have obtained
from f a single form df on M.

4.5 Lemma Let f be a 1-form on M. If x and y are patches in M, then
dxf = dyf on the overlap of x(D) and y(E).

Proof. Because yu and yv are linearly independent at each point, it suf-
fices by Lemma 4.2 to show that

Now, as in Corollary 3.4, we write y = x( , ) and deduce by the chain
rule that

(1)

where xu and xv are henceforth evaluated on ( , ). Then by Lemma 4.2,

(2)

where J is the Jacobian (∂ /∂u) (∂ /∂v) - (∂ /∂v) (∂ /∂u). Thus it is clear
from Definition 4.4 that to prove (dyf) (yu, yv) = (dxf) (yu, yv), all we need
is the equation.
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It suffices to operate on (f(yv)), for merely reversing u and v will
then yield (f(yu)). Since (3) requires us to subtract these two deriva-
tives, we can discard any terms that will cancel when u and v are everywhere
reversed.

Applying f to the second equation in (1) yields

Hence by the chain rule,

(4)

where in accordance with the remark above we have discarded two sym-
metric terms. Next we use the chain rule—and the same remark—to get

(5)

Now reverse u and v in (5) (and also and ) and subtract from (5)
itself. The result is precisely equation (3). ◆

It is difficult to exaggerate the importance of the exterior derivative. We
have already seen in Chapter 1 that it generalizes the familiar notion of dif-
ferential of a function, and that it contains the three fundamental derivative
operations of classical vector analysis (Exercise 8 in Section 1.6). In Chapter
2 it is essential to the Cartan structural equations (Theorem 8.3). Perhaps the
clearest statement of its meaning will come in Stokes’s theorem (6.5), which
could actually be used to define the exterior derivative of a 1-form.

On a surface, the exterior derivative of a wedge product displays the same
linear and Leibnizian properties (Theorem 6.4 of Chapter 2) as in R3; see
Exercise 3. For practical computations these properties are apt to be more
efficient than a direct appeal to the definition. Examples of this technique
appear in subsequent exercises.

The most striking property of this notion of derivative is that there are no
second exterior derivatives: Wherever forms appear, the exterior derivative
applied twice always gives zero. For a surface, we need only prove this for 0-
forms, since even for a 1-form f, the second derivative d(df) is a 3-form, and
hence is automatically zero.

4.6 Theorem If f is a real-valued function on M, then d(df) = 0.

Proof. Let y = df, so we must show dy = 0. It suffices by Lemma 4.2
to prove that for any patch x in M we have (dy)(xu, xv) = 0. Now using
Exercise 4 of Section 3, we get
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and similarly

Hence

◆

Many computations and proofs reduce to the problem of showing that two
forms are equal. As we have seen, to do so it is not necessary to check that
the forms have the same value on all tangent vectors. In particular, if x is a
coordinate patch, then

(1) for 1-forms on x(D): f = y if and only if f(xu) = y(xu) and f(xv) =
y(xv);

(2) for 2-forms on x(D): m = v if and only if m(xu, xv) = v(xu, xv).

(To prove these criteria, we express arbitrary tangent vectors as linear com-
binations of xu and xv.) More generally, xu and xv may be replaced by any
two vector fields that are linearly independent at each point.

Let us now check that the rigorous results proved in this section are con-
sistent with the rules of operation stated in Chapter 1, Section 6.

4.7 Example Differential forms on the plane R2. Let u1 = u and u2 = v
be the natural coordinate functions, and U1, U2 the natural frame field on R2.
The differential calculus of forms on R2 is expressed in terms of u1 and u2 as
follows:

If f is a function, f a 1-form, and h a 2-form, then

(1) f = f1du1 + f2du2, where fi = f(Ui).
(2) h = gdu1du2, where g = h(U1,U2).
(3) for y = g1du1 + g2du2 and f as above,

(4)

(5)

For the proof of these formulas, see Exercise 4.
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Similar definitions and coordinate expressions may be established on 
any Euclidean space. In the case of the real line R1, the natural frame field
reduces to the single vector field U1 for which . All p-forms
with p > 0 are zero, and for a 1-form, f = f(U1) dt.

Wherever differential forms are used, the following conditions are funda-
mental.

4.8 Definition A differential form f is closed if its exterior derivative is
zero, df = 0; and f is exact if it is the exterior derivative of some form,
f = dx.

Since d applied twice is always 0, every exact form is closed. In the case of
a surface, since d increases degrees by 1, every 2-form is closed and no 0-form
(i.e., function) is exact. Thus 1-forms are the important case, and for a 1-form
f exactness always means that there is a function f such that df = f. The ana-
lytical and topological consequences of these definitions run deep.

Exercises

1. Prove the Leibnizian formulas

where f and g are functions on M and f is a 1-form.
(Hint: By definition, ( ff)(vp) = f(p)f(vp); hence ff evaluated on xu is f(x)f(xu).)

2. (a) Prove formulas (1) and (2) in Example 4.7 using the remark preced-
ing Example 4.7. (Hint: Show (du1du2) (U1, U2) = 1.)

(b) Derive the remaining formulas using the properties of d and the wedge
product.

3. If f is a real-valued function on a surface, and g is a function on the real
line, show that

Deduce that

4. If f, g, and h are functions on a surface M, and f is a 1-form, prove:
(a) d( fgh) = ghdf + fhdg + fgdh,
(b) d(ff ) = fdf - f Ÿ df, (ff = ff),
(c) (df Ÿ dg) (v, w) = v[ f ]w[g] - v[g]w[ f ].

d g f g f df( )( ) = ¢( ) .

v vp pg f g f f( )[ ] = ¢( ) [ ].

d fg g df f dg d f df f d( ) = + ( ) = Ÿ +, ,f f f

U f df dt1 = [ ] =
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5. Suppose that M is covered by open sets U1, . . . , Uk, and on each Ui there
is defined a function fi such that fi - fj is constant on the overlap of Ui and
Uj. Show that there is a 1-form f on M such that f = dfi on each Ui. Gener-
alize to the case of 1-forms fi such that fi - fj is closed.

6. Let y: E Æ M be an arbitrary mapping of an open set of R2 into a surface
M. If f is a 1-form on M, show that the formula

is still valid even when y is not regular or one-to-one.
(Hint: In the proof of Lem. 4.5, check that equation (3) is still valid in 

this case.)

A patch x in M establishes a one-to-one correspondence between an open
set D of R2 and an open set x(D) of M. Although we have emphasized the
function x: D Æ x(D), there are some advantages to emphasizing instead the
inverse function x-1: x(D) Æ D.

7. If x: D Æ M is a patch in M, let and be the coordinate functions of
x-1, so x-1(p) = ( (p), (p)) for all p in x(D). Show that

(a) and are differentiable functions on x(D) such that:

These functions constitute the coordinate system associated with x.

(b) d (xu) = 1, d (xv) = 0,

d (xu) = 0, d (xv) = 1.

(c) If f is a 1-form and h is a 2-form, then

(Hint: for (b) use Ex. 4(b) of Sec. 3.)

8. Identify (or describe) the associated coordinate system , of
(a) The polar coordinate patch x(u, v) = (ucosv, usinv) defined on the
domain D: u > 0, 0 < v < 2p.
(b) The identity patch x(u, v) = (u, v) in R2.
(c) The geographical patch x in the sphere.

ṽũ

f f f
h h

= + ( ) = ( ) ( ) = ( )
= ( ) = ( )

f du g dv f g

h du dv h
u v

u v

˜ ˜ ;

˜ ˜ .

, where ,

, where ,

x x x x

x x x

ṽṽ

ũũ

˜ ˜ .u u v u v u v vx x, , ,( )( ) = ( )( ) =

ṽũ
ṽũ

ṽũ

d
u vu v v uf f fy y y y,( ) =
∂
∂

( )( ) -
∂
∂

( )( )
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4.5 Mappings of Surfaces

To define differentiability of a function from a surface to a surface, we follow
the same general scheme used in Section 3 and require that all its coordinate
expressions be differentiable.

5.1 Definition A function F: M Æ N from one surface to another is 
differentiable provided that for each patch x in M and y in N the composite
function y-1Fx is Euclidean differentiable (and defined on an open set of R2).
F is then called a mapping of surfaces.

Evidently the function y-1Fx is defined at all points (u, v) of D such that
F(x(u, v)) lies in the image of y (Fig. 4.27). As in Section 3 we deduce from
Corollary 3.3 that in applying this definition, it suffices to check enough
patches to cover both M and N.

5.2 Example (1) Let S be the unit sphere in R3 (center at 0) but with
north and south poles removed, and let C be the cylinder based on the unit
circle in the xy plane. So C is in contact with the sphere along the equator.
We define a mapping F: S Æ C as follows: If p is a point of S, draw the line
orthogonally out from the z azis through p, and let F(p) be the point at which
this line first meets C, as in Fig. 4.28. To prove that F is a mapping, we use 
the geographical patch x in S (Example 2.2), and for C the patch y(u, v) =
(cosu, sinu, v). Now x(u, v) = (cosvcosu, cosvsinu, sinv), so from the defi-
nition of F we get

But this point of C is y(u, sinv); hence

F u v u u vx , , ,( )( ) = ( )cos sin sin .

FIG. 4.27
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Applying y-1 to both sides of this equation gives

so y-1Fx is certainly differentiable. (Actually, x does not entirely cover S, but
the missing semicircle can be covered by a patch like x.) We conclude that F
is a mapping.

(2) Stereographic projection of the punctured sphere S onto the plane. Let
S be a unit sphere resting on the xy plane at the origin, so the center of S is
at (0, 0, 1). Delete the north pole n = (0, 0, 2) from S. Now imagine that there
is a light source at the north pole, and for each point p of S, let P(p) be the
shadow of p in the xy plane (Fig. 4.29). As usual, we identify the xy plane
with R2 by (p1, p2, 0) ´ (p1, p2). Thus we have defined a function P from S
onto R2. Evidently P has the form

where r and R are the distances from p and P(p), respectively, to the z axis.
But from the similar triangles in Fig. 4.30, we see that R/2 = r/(2 - p3); hence

Now if x is any patch in S, the composite function Px is Euclidean differ-
entiable, so P: S Æ R2 is a mapping.

P p p p
p

p
p

p1 2 3
1

3

2

3

2
2

2
2

, , ,( ) =
- -

Ê
ËÁ

ˆ
¯̃.

P p p p
Rp

r
Rp

r1 2 3
1 2, , , ,( ) = Ê

Ë
ˆ
¯

y x-( )( ) = ( )1F u v u v, , ,sin

F u v u vx y, ,( )( ) = ( )sin .

FIG. 4.28 FIG. 4.29
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Just as for mappings of Euclidean space, each mapping of surfaces has a
tangent map.

5.3 Definition Let F: M Æ N be a mapping of surfaces. The tangent map
F* of F assigns to each tangent vector v to M the tangent vector F*(v) to N
such that if v is the initial velocity of a curve a in M, then F*(v) is the initial
velocity of the image curve F(a) in N (Fig. 4.31).

Furthermore, at each point p, the tangent map F* is a linear transforma-
tion from the tangent plane Tp(M) to the tangent plane TF(p)(N) (see Exercise
9). It follows immediately from the definition that F* preserves velocities of
curves: If = F(a) is the image in N of a curve a in M, then F*(a ¢) = ¢.
As in the Euclidean case, we deduce the convenient property that the tangent
map of a composition is the composition of the tangent maps (Exercise 10).

The tangent map of a mapping F: M Æ N may be computed in terms of
partial velocities as follows. If x: D Æ M is a parametrization in M, let y be
the composite mapping F(x): D Æ N (which need not be a parametrization).
Obviously, F carries the parameter curves of x to the corresponding para-
meter curves of y. Since F* preserves velocities of curves, it follows at once
that

Since xu and xv give a basis for the tangent space of M at each point of x(D),
these readily computable formulas completely determine F*.

F Fu u v v* , *x y x y( ) = ( ) = .

aa

FIG. 4.30

FIG. 4.31



The discussion of regular mappings in Section 7 of Chapter 1 translates
easily to the case of a mapping of surfaces F: M Æ N. F is regular provided
all of its derivative maps F*p: Tp(M) Æ TF(p)(N) are one-to-one. Since these
tangent planes have the same dimension, we know from linear algebra that
the one-to-one requirement is equivalent to F* being a linear isomorphism.
A mapping F: M Æ N that has an inverse mapping F-1: N Æ M is called a
diffeomorphism. We may think of a diffeomorphism F as smoothly distort-
ing M to produce N. By applying the Euclidean formulation of the inverse
function theorem to a coordinate expression y-1Fx for F, we can deduce this
extension of the inverse function theorem (7.10 of Chapter 1).

5.4 Theorem Let F: M Æ N be a mapping of surfaces, and suppose that
F*p: Tp(M) Æ TF(p)(N) is a linear isomorphism at some one point p of M.
Then there exists a neighborhood U of p in M such that the restriction of F
to U is a diffeomorphism onto a neighborhood V of F(p) in N.

An immediate consequence is this useful result: A one-to-one regular
mapping F of M onto N is a diffeomorphism. For since F is one-to-one and
onto, it has a unique inverse function F -1, and F -1 is a differentiable mapping
since on each neighborhood V as above, it coincides with the inverse of the
diffeomorphism U Æ V. Surfaces M and N are said to be diffeomorphic if
there exists a diffeomorphism from M to N.

Diffeomorphisms have little respect for size or shape; here are some 
examples.

5.5 Example (1) Any open rectangle in the plane R2 is diffeomorphic 
to the entire plane. Take R: -p/2 < u, v < p/2 for simplicity. Then F(u,v) =
(tanu, tanv) is a mapping of R onto R2. Using a branch of the inverse 
tangent function, the mapping F -1(u1, v1) = (tan-1 (u1), tan-1 (v1)) is a dif-
ferentiable inverse of F, so F is a diffeomorphism.

(2) The sphere S minus one point is also diffeomorphic to the entire plane.
Stereographic projection P, as in Example 5.2(2), is a one-to-one mapping of
the punctured sphere S0 onto R2. A variant

of the usual geographical parametrization is a parametrization of S0 - 0. The
formula for P in Example 5.2 gives

y xu v P u v
v
v

u u, , ,( ) = ( )( ) =
-

( )2
1

cos
sin

cos sin .

x u v v u v u v, , ,( ) = +( )cos cos cos sin sin1
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Since P*(xu) = yu and P*(xv) = yv, the regularity of F can be checked by
computing yu and yv. These turn out to be orthogonal and nonzero, hence
linearly independent, as suggested by Fig. 4.32.

(3) A cylinder C over a closed curve is diffeomorphic to the plane 
minus one point. For simplicity, take C: x2 + y2 = 1, and define a mapping 
F: C Æ R2 by F(x, y, z) = ez(x, y). Since ez takes on all values r > 0, F maps 
C onto R2 - 0.

For the inverse of F, experimentation suggests

To prove G = F -1, compute G(F(x, y, z)) = (x, y, z) and F(G(u, v)) = (u, v).

Differential forms have the remarkable property that they can be moved
from one surface to another by means of an arbitrary mapping.† Let us
experiment with a 0-form, that is, a real-valued function. If F: M Æ N is a
mapping of surfaces and f is a function on M, there is simply no reasonable
general way to move f over to a function on N. But if instead, f is a function
on N, the problem is easy; we pull f back to the composite function f(F) on
M. The corresponding pull-back for 1-forms and 2-forms is accomplished as
follows.

5.6 Definition Let F: M Æ N be a mapping of surfaces.
(1) If f is a 1-form on N, let F*f be the 1-form on M such that

for all tangent vectors v to M.
(2) If h is a 2-form on N, let F*h be the 2-form on M such that

F F* *f f( )( ) = ( )v v

G u v
u

u v

v

u v
u v, , ,( ) =

+ +
+Ê

Ë
ˆ
¯2 2 2 2

2 2log .

FIG. 4.32

† This is not true for vector fields.
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for all pairs of tangent vectors v, w on M (Fig. 4.33).

When we are dealing with a function f in its role as a 0-form, we shall some-
times write F*f instead of f(F), in accordance with the notation for the pull-
back of 1-forms and 2-forms.

The essential operations on forms are sum, wedge product, and exterior
derivative; all are preserved by mappings.

5.7 Theorem Let F: M Æ N be a mapping of surfaces, and let x and h
be forms on N. Then

(1) F*(x + h) = F*x + F*h,
(2) F*(x Ÿ h) = F*x Ÿ F*h,
(3) F*(dx) = d(F*x).

Proof. In (1), x and h are both assumed to be p-forms (degree p = 0, 1,
2) and the proof is a routine computation. In (2), we must allow x and h
to have different degrees. When, say, x is a function f, the given formula
means simply F *( fh) = f(F )F *(h). In any case, the proof of (2) is also a
straightforward computation. But (3) is more interesting. The easier case
when x is a function is left as an exercise, and we address ourselves to the
case where x is a 1-form.

It suffices to show that for every patch x: D Æ M,

Let y = F(x), and recall that F*(xu) = yu and F*(xv) = yv. Thus, using the
definitions of d and F*, we get

d F F du v u v* , * ,x x( )( )( ) = ( )( )( )x x x x .

F F F* , * , *h h( )( ) = ( )v w v w

FIG. 4.33
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Even if y is not a patch, Exercise 6 of Section 4 shows that this last expres-
sion is still equal to dx(yu, yv). But

Thus we conclude that d(F*x) and F*(dx) have the same value on 
(xu, xv). ◆

The elegant formulas in Theorem 5.7 are the key to the deeper study of
mappings. In Chapter 6 we shall apply them to the connection forms of frame
fields to get fundamental information about the geometry of mappings of
surfaces.

Exercises

1. Let M and N be surfaces in R3. If F: R3 Æ R3 is a mapping such that the
image F(M) of M is contained in N, then the restriction of F to M is a 
function F |M: M Æ N. Prove that F |M is a mapping of surfaces. (Hint: Use
Thm. 3.2.)

2. Let S be the sphere of radius r with center at the origin of R3. Describe
the effect of the following mappings F: S Æ S on the meridians and paral-
lels of S.

(a) F(p) = -p.
(b) F(p1, p2, p3) = (p3, p1, p2).

(c)

3. Let M be a simple surface, that is, one that is the image of a single proper
patch x: D Æ R3. If y: D Æ N is any mapping into a surface N, show that
the function F: M Æ N such that

is a mapping of surfaces. (Hint: Write F = yx-1, and use Cor. 3.3.)

F u v u v u v Dx y, , for all , in( )( ) = ( ) ( )

F p p p
p p p p

p1 2 3
1 2 1 2

3
2 2

, , , ,( ) =
+ -

-Ê
Ë

ˆ
¯.

d d F F F du v u v u vx x xy y x x x x, * , * * ,( ) = ( ) = ( )( )( ).
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4. Use the preceding exercise to construct a mapping of the helicoid H (Ex.
2.5) onto the torus T (Ex. 2.5) such that the rulings of H are carried to the
meridians of T.

5. If S is the sphere || p || = r, the mapping A: S Æ S such that A(p) = -p
is called the antipodal map of S. Prove that A is a diffeomorphism and that
A*(vp) = (-v)-p.

6. A regular mapping F: M Æ N of surfaces is often called a local diffeo-
morphism. For such a mapping F, prove that, in fact, every point p of M has
a neighborhood U such that F |U is a diffeomorphism of U onto a neighbor-
hood of F(p) in N.

7. If x: D Æ M is a parametrization, prove that the restriction of x to a
sufficiently small neighborhood of a point (u0, v0) in D is a patch in M. (Thus
any parametrization can be cut into patches.)

8. Let F: M Æ N be a mapping. If x is a patch in M, then as in the text,
let y = F(x). (Although y maps into N, it is not necessarily a patch.) For a
curve

in M, show that the image curve = F(a) in N, has velocity

9. Prove: (a) The invariance property needed to justify the definition (5.3)
of the tangent map.

(b) Tangent maps F*: Tp(M) Æ TF(p)(N) are linear transformations.

10. Given mappings be the composite
mapping. Show that

(a) GF is differentiable, (b) (GF)* = G*F*,
(c) (GF)* = F*G*,
that is, for any form x on P, (GF )* (x) = F* (G*(x)). (Note the reversal of
factors, caused by the fact that forms travel in the opposite direction from
points and tangent vectors.)

11. Prove that every surface of revolution is diffeomorphic to either a torus
or a cylinder. (Hint: Parametrize profile curves on the same interval.) (As 
Fig. 4.9 suggests, every augmented surface of revolution is diffeomorphic to
either a plane or a sphere.)

12. (a) Show that the inverse mapping P-1 of the stereographic projection
P: S0 Æ R2 is given by

F GM N P GF M PÆ Æ Æ, :let

¢ = ( ) + ( )a
da
dt

a a
da
dt

a au v
1

1 2
2

1 2y y, , .

a

a t a t a t( ) = ( ) ( )( )x 1 2,
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174 4. Calculus on a Surface

(Check that both PP -1 and P -1P are identity maps.)
(b) Deduce that the entire sphere S can be covered by only two patches.
(The scheme in Section 1 requires six.)

13. (Consistent formulas.) If G: Æ M is a regular mapping onto M, and
: Æ N is an arbitrary mapping, we say that the formula F(G(q)) = (q)

is consistent provided

for q1, q2 in . Prove:
(a) In this case, F is a well-defined differentiable mapping from M to N.
(b) Furthermore, if the reverse implication

also holds, then F is one-to-one.
This result is helpful in constructing maps F: M Æ N with specified prop-

erties. Often G will be a parametrization of M.

˜ ˜F F G Gq q q q1 2 1 2( ) = ( ) fi ( ) = ( )

M̃

G G F Fq q q q1 2 1 2( ) = ( ) fi ( ) = ( )˜ ˜

F̃M̃F̃
M̃

P u v
u v f

f
f u v- ( ) =

( )
+

= +1 2 24 4 2
4

,
, ,

, where .

M

M

F

F
N

G
˜

˜

4.6 Integration of Forms

Differential forms are no less important in integral calculus than in differen-
tial calculus. Indeed, they are just what is needed to establish integration
theory on an arbitrary surface. In a sense, integration takes place only on
Euclidean space, so a form on a surface is integrated by first pulling it back
to Euclidean space.

Consider the one-dimensional case. Let a: [a, b] Æ M be a curve segment
on a surface M. The pullback a*f of a 1-form f on M to the interval [a, b]
has the expression f(t)dt, where by the remarks following Example 4.7,

Thus the scheme mentioned above yields the following result:

f t U t U t t( ) = ( ) ( )( ) = ( )( )( ) = ¢( )( )a f f a f a* 1 1* .
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6.1 Definition Let f be a 1-form on M, and let a: [a, b] Æ M be a curve
segment in M (Fig. 4.34). Then the integral of f over a is

The integral often called a line integral, has a wide variety of uses in 
science and engineering. For example, let us consider a vector field V on a
surface M as a force field, and a curve a: [a, b] Æ M as a description of a
moving particle, with a(t) its position at time t. What is the total amount 
of work W done by the force on the particle as it moves from p = a(a) to 
q = a(b)? The discussion of velocity in Chapter 1, Section 4, shows that for
Dt small, the subsegment of a from a(t) to a(t + Dt) is approximated by the
straight line segment Dt a(t). Work is done on the particle only by the com-
ponent of force tangent to a, that is,

where J is the angle between V(a(t)) and a ¢(t) (Fig. 4.35). Thus the work
done by the force during time Dt is approximately the force (as above) times
the distance ||a ¢(t)|| Dt. Adding these contributions over the whole time inter-
val [a, b] and taking the usual limit, we get

W V t t dt
a

b

= ( )( ) ¢( )Ú a a• .

V Va
a
a

a J( ) ¢
¢

= ( )• cos ,

f
aÚ ,

f a f f a
a a b a

b

t dtÚ Ú= = ¢( )( )
[ ]Ú *

,
.

FIG. 4.34

FIG. 4.35
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To express this more simply, we introduce the 1-form f dual to the vector field
V; its value on a tangent vector w at p is w • V(p). Then by Definition 6.1,
the total work is just

We emphasize that this notion of line integral—like everything we do with
forms—applies without essential change if the surface M is replaced by a
Euclidean space or, indeed, by any manifold (Section 8).

When the 1-form being integrated is the differential of a function, we get
the following generalization of the fundamental theorem of calculus.

6.2 Theorem Let f be a function on M, and let a: [a, b] Æ M be a curve
segment in M from p = a(a) to q = a(b). Then

Proof. By definition,

But

Hence, by the fundamental theorem of calculus,

◆

Thus the integral is path independent: its value is the same for all curves

from p to q. Hence it is zero for all closed curves, a(a) = a(b).
The preceding theorem can be interpreted roughly as follows: The “bound-

ary” of the curve segment a from p to q is q - p, where the purely formal minus
sign indicates that p is the starting point of a. Then the integral of df over a
equals the “integral” of f over the boundary of a, namely, f(q) - f(p). This
interpretation will be justified by the analogous theorem (6.5) in dimension 2.

If we consider a closed rectangle R: a � u � b, c � v � d in R2 as a 2-
dimensional interval, then a 2-segment is a differentiable map x: R Æ M of
R into M (Fig. 4.36). As for a 1-segment, differentiability means that x can
be extended over a larger open set containing R. Although we use the patch
notation x, we do not assume that x is either regular or one-to-one—but the
partial velocities xu and xv are still well defined.

df
aÚ

df
d
dt

f dt f b f a f f
a a

b

Ú Ú= ( )( ) = ( )( ) - ( )( ) = ( ) - ( )a a a q p .

df f
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If h is a 2-form on M, then the pullback x*h of h has, using Example 4.7,
the expression h du dv, where

Then strict analogy with Definition 6.1 yields:

6.3 Definition Let h be a 2-form on M, and let x: R Æ M be a 2-segment
in M. The integral of h over x is

The physical applications of this integral are no less rich than those of Def-
inition 6.1; however, we proceed directly toward the analogue of Theorem
6.2.

6.4 Definition Let x: R Æ M be a 2-segment in M, with R the closed rec-
tangle a � u � b, c � v � d (Fig. 4.37). The edge curves of x are the curve
segments a, b, g, d such that

Then the boundary ∂x of the 2-segment x is the formal expression

∂ = + - -x a b g d .
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d

u u c

v b v

u u d
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h h h
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x xÚÚ ÚÚ Ú= = ( )Úx du dv
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d
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* , .

h U U U U u v= ( )( ) = ( ) = ( )x x x x x* , * , * ,h h h1 2 1 2 .

FIG. 4.36
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These four curve segments are gotten by restricting the function x: R Æ M
to the four line segments that make up the boundary of the rectangle R (Fig.
4.37). The formal minus signs before g and d signal that the parametrizations
of g and d would have to be reversed to give a consistent trip around the rim
of x(R) (Fig. 4.38).

Then if f is a 1-form on M, the integral of f over the boundary ∂x of x is
defined to be

The 2-dimensional analogue of Theorem 6.2 is

6.5 Theorem (Stokes’ theorem) If f is a 1-form on M, and x: R Æ M is
a 2-segment, then

Proof. We work on the double integral and show that it turns into the
integral of f over the boundary of x. Combining Definitions 6.3 and 4.4
gives

Let f = f(xu) and g = f(xv). Then the equation above becomes

(1)

Now we treat these double integrals as iterated integrals. Suppose the
rectangle R is given, as usual, by the inequalities a � u � b, c � v � d.
Then integrating first with respect to u, we find

∂
∂

∂
∂
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In the partial integral defining I(v), v is constant, so the integrand is just
the ordinary derivative with respect to u. Thus, the fundamental theorem
of calculus applies to give I(v) = g(b, v) - g(a, v) (Fig. 4.39). Hence

(2)

Consider the first integral on the right. By definition, g(b, v) = f(xv(b,
v)). But xv(b, v) is exactly the velocity b¢(v) of the “right side” curve b in
∂x. Hence by Definition 6.1,

A similar argument shows that the other integral in (2) is . Thus

(3)

In the same way—but integrating first with respect to v—we find

(4)

Assembling the information in (1), (3), and (4) gives the required result,

◆

Stokes’ theorem ranks as one of the most useful results in all mathe-
matics. Alternative formulations and extensive applications can be found in
texts on advanced calculus and applied mathematics. We will use it to study
the geometry and topology of surfaces.

The line integral is not particularly sensitive to reparametrization of

the curve segment a. All that matters is the overall direction in which the
route of a is traversed, as indicated by what the reparametrization does to
end points.
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6.6 Lemma Let a(h): [a, b] Æ M be a reparametrization of a curve
segment a: [c, d] Æ M by h: [a, b] Æ [c, d]. For any 1-form f on M,

(1) If h is orientation-preserving, that is, if h(a) = c and h(b) = d, then

(2) If h is orientation-reversing, that is, if h(a) = d and h(b) = c, then

Proof. The velocity of a(h) is a(h)¢ = dh/dt a ¢(h), so

Now we apply the theorem on change of variables in an integral to the last
integral above. If h is orientation-preserving, then

while in the orientation-reversing case,

◆

This lemma provides a concrete interpretation to the formal minus signs
in the boundary ∂x = a + b - g - d of a 2-segment. For any curve

x: [t0, t1] Æ M,

let -x be any orientation-reversing reparametrization of x, for instance,
(-x)(t) = x(t0 + t1 - t). Then by the lemma,

Thus the formula for just before Theorem 6.5 can be rewritten as

Exercises

1. If a is a curve in R2 and f is a 1-form, prove this computational rule for
finding f(a ¢)dt: Substitute u = a1 and v = a2 into the coordinate expression 
f = f(u, v) du + g(u, v) dv.

2. Let a: [-1, 1] Æ R2 be the curve segment given by a(t) = (t, t2).

(a) If f = v2 du + 2uv dv, compute 

(b) Find a function f such that df = f and check Theorem 6.2 in this case.
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3. Let f be a 1-form on a surface M. Show:
(a) If f is closed, then for every 2-segment x in M.
(b) If f is exact, then more generally,

for any closed, piecewise smooth curve whose smooth segments are a1, . . . ,
ak (hence ak ends at the start of a1).

4. The 1-form

is well-defined on the plane R2 with the origin 0 removed. Show:
(a) y is closed but not exact on R2 - 0. (Hint: Integrate around the unit
circle and use Ex. 3.)
(b) The restriction of y to, say, the right half-plane u > 0 is exact.

5. (a) Show that every curve a in R2 that does not pass through the origin
has an (orientation-preserving) reparametrization in the polar form

(Hint: Use Ex. 12 of Sec. 2.1.)
If the curve a: [a, b] Æ R2 - 0 is closed, prove:

(b) wind is an integer.

This integer, called the winding number of a about 0, represents the total
algebraic number of times a has gone around the origin in the counter-
clockwise direction. (Note that wind(a) = wind(a/||a||).)

(c) If y is the 1-form in Exercise 4, then wind

(d) If a = ( f, g), then

(The determinant is of the 2¥2 matrix whose rows are a(t) and a ¢(t).)

6. (Continuation, by computer.) For a point p Œ R2 not on a closed curve a,
the winding number of a about p is defined to be wind(a - p).

(a) Write commands that given a closed curve a in R2 and a point p not
on a, return the winding number of a about p. (Hint: Use either integral
in (d) of the preceding exercise.)
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(b) In each case, plot the curve a (observing its orientation) and estimate
the winding numbers about the indicated points p. Then calculate these
numbers, using the integral in (d) above. (Numerical integration is efficient
here, since the result is known to be an integer.)

(i) lemniscate, a(t) = (2sin t, sin2t); p = (1, 0), (0, 1), (-1, 0).
(ii) limaçon, b(t) = (3sin t + 1) (cos t, sin t); p = (0, 1), (0, 3), (0, 5).

7. Let F: M Æ N be a mapping. Prove:
(a) If a is a curve segment in M, and f is a 1-form on N, then

(b) If x is 2-segment in M, and h is a 2-form on N, then 

8. Let x be a patch in a surface M. For a curve segment

in x(R), show that

where xu and xv are evaluated on (a1, a2). (This generalizes Ex. 1, which is
recovered by using the identity patch x(u, v) = (u, v) in R2.)

9. Let x be the usual parametrization of the torus T (Ex. 2.5). For integers
m and n, let a be the closed curve

Find:

(a) where x is the 1-form such that x(xu) = 1 and x(xv) = 0.

(b) where h is the 1-form such that h(xu) = 0 and h(xv) = 1.

For an arbitrary closed curve g in T, is an integer that counts the 

total (algebraic) number of times g goes around the torus in the general 

direction of the parallels, and gives a similar count for the meridi- 

ans. (This suggests the informal notation x = dJ, h = dj, but see Ex. 7 of
Sec. 7.)

10. Let x: R Æ M be a 2-segment defined on the unit square R: 0 � u,
v � 1. If f is the 1-form on M such that
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compute and separately, and check the results by Stokes’ theorem.

(Hint: x*df = d(x*f).)

11. Same as Exercise 10, except that R: 0 � u � p/2, 0 � v � p, and 
f(xu) = ucosv, f(xv) = vsinu.
The following exercise is a 2-dimensional analogue of Lemma 6.6. However,
with future applications in mind, we generalize 2-segments x: R Æ M by
replacing the rectangle R by any compact region R in R2 whose boundary
consists of smooth curve segments. (Compactness ensures that integrals over
R will be finite.)

12. (Effect of change of variables.) Let x: S Æ M be a differentiable mapping
and let (U, V): R Æ S be a one-to-one regular map whose Jacobian 
determinant

is always positive (orientation-preserving case) or always negative (orientation-
reversing case). Then let y: R Æ M be given by y(u, v) = x(U(u, v), V(u, v)).

(a) For a 2-form h on M, use

to prove

(b) Deduce that in the orientation-preserving case, and 

minus this in the orientation-reversing case.
(Hint: The formula for change of variables in a double integral involves
the absolute value of a Jacobian determinant.)

13. The classical Stokes’ theorem asserts, typically, that if x: D Æ R3 is a 
2-segment and V is a vector field on R3, then

where — ¥ V = curl V. Interpret this as a special case of Theorem 6.5. (Hint:
Assume and use Ex. 8 of Sec. 1.6.)dA EG F du dvª - 2 † ,
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4.7 Topological Properties of Surfaces

Topological properties are the most basic a surface can have. In this section
we discuss four such properties, phrasing the definitions in terms most effi-
cient for geometry.

7.1 Definition A surface is connected provided that for any two points p
and q of M there is a curve segment in M from p to q. (See also Exercise 9.)

Thus a connected surface M is all in one piece, since one can travel from
any point in M to any other without leaving M. Most of the surfaces we have
met so far have been connected; the surface M: z2 - x2 - y2 = 1 (a hyper-
boloid of two sheets) is not. Connectedness is a mild and natural condition
that is sometimes included in the definition of surface.

The general definition of compactness is expressed in terms of open cov-
erings. An open covering of a set A is a collection of open sets that covers A
in the sense that each point of A is in at least one of the sets.

A subset A in a space S (for us, either a Euclidean space or a surface) is
compact provided that given any open covering of A some finite number of
the sets already covers A. In elementary calculus it is usually proved that a
closed interval I: a � t � b in R is compact, and this result extends to higher
dimensions. In particular, any closed rectangle R: a � u � b, c � v � d in R2

is compact.
We will need this abstract definition at a few crucial points, but in surface

theory the following concrete criterion is more useful.

7.2 Lemma A surface M is compact if and only if it can be covered by
the images of a finite number of 2-segments in M.

Proof. Suppose M is compact. For each point p in M, by using a coor-
dinate patch containing p, we can construct a 2-segment whose image con-
tains a neighborhood of p. The definition of compactness shows that a
finite number of these neighborhoods already covers M; hence the corre-
sponding 2-segments cover M.

The converse is an exercise in finiteness. First we show that the image
x(R) of a single 2-segment is compact. Recall that the definition of differ-
entiability for 2-segments allows us to assume that x has been smoothly
extended over an open set containing the (closed) rectangle R.

Let {Ua} be an open covering of M. For each point r in R, one of these
sets, say Ur, contains x(r). Being differentiable, x is also continuous, so r
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has a neighborhood Nr that is carried into Ur by x. For all r, these neigh-
borhoods Nr form an open covering of R. As mentioned above, the rec-
tangle R is compact, so some finite number of these neighborhoods cover
R. But this means that the corresponding original sets Ur (finite in number!)
cover x(R); hence it is compact.

Now suppose that M is covered by the images of a finite number of 2-
segments x1, . . . , xk. If {Ua} is an open covering of M, then we have just
shown that a finite number of these sets suffice to cover the image of each
xi. Collecting these sets for i = 1, 2, . . . , k produces a finite number of sets
Ua that cover M. Thus M is compact. ◆

It follows at once from this proof that a region R in M is compact if it is
composed of the images of finitely many 2-segments in M. For example,
spheres are compact, since if the formula for the geographical patch
(Example 2.2) is applied on the closed rectangle.

then this single 2-segment covers the entire sphere†. Similarly, the torus
(Example 2.5) is compact, as is every surface of revolution whose profile
curve is closed.

The following lemma generalizes this fundamental fact: A continuous real-
valued function on a closed rectangle R in the plane takes on a maximum at
some point of R.

7.3 Lemma A continuous function f on a compact region R in a surface
M takes on a maximum at some point of M.

Proof. We show this in the only case we need: where R consists of the
images x1(R1), . . . , xk(Rk) of a finite number of 2-segments (for example,
where R is an entire surface).

Since each xi is continuous, the composite functions f(xi): Ri Æ R
are all continuous. By the remark above, for each index i, there is a point
(ui, vi) in Ri where f(xi) is a maximum. Let f(xj(uj, vj)) be the largest of these
finite number k of maximum values; then evidently f(p) � f(xj(uj, vj)) for
all p in M. ◆

R u v: - -p p p p� � � �, ,2 2

† Amazingly, every compact surface can be expressed as the image of a single 2-segment. See Ch. 1
of [Ma].



This lemma is useful in proving noncompactness. For example, a cylinder
C such as x2 + y2 = r2 is not compact since the coordinate function z is
unbounded on C.

Finite size alone does not produce compactness. For example, the open disk
D: x2 + y2 < 1 in the xy plane is itself a surface. Although D is bounded and
has finite area p, it is not compact since the function f = (1 - x2 - y2)-1 is 
continuous on D and does not have a maximum.

In general, a compact surface cannot have open edges, as D does, but must
be smoothly closed up everywhere and finite in size—like a sphere or torus.

Roughly speaking, an orientable surface is one that is not twisted. Of the
many equivalent definitions of orientability for surfaces, the following is
perhaps the simplest.

7.4 Definition A surface M is orientable if there exists a differentiable (or
merely continuous) 2-form m on M that is nonzero at every point of M.

Recall that a 2-form is zero at a point p if it is zero on every pair of tangent
vectors at p—or equivalently, on one linearly independent pair. Thus the
plane R2 is orientable since du dv is a nonvanishing 2-form. This definition of
orientability is somewhat mysterious, so for a surface M in R3 we give a more
intuitive description in terms of Euclidean geometry. A unit normal U on M
is a differentiable Euclidean vector field on M that has unit length and is
everywhere normal to M.

7.5 Proposition A surface M Ã R3 is orientable if and only if there exists
a unit normal vector field on M. If M is connected as well as orientable, there
are exactly two unit normals, ±U.

Proof. We use the cross product of R3 to convert normal vector fields
into 2-forms, and vice versa.

Let U be a unit normal on M. If v and w are tangent vectors to M at
p, define

Standard properties of the cross product show that m is a 2-form on M.
When v and w are linearly independent, so are all three vectors, so 
m(v, w) π 0. Thus m is nonvanishing, which proves that M is orientable.

Conversely, suppose M is orientable, with m a nonvanishing 2-form.
Again, nonvanishing implies that if v, w are linearly independent vectors
at a point p of M, then m(v, w) π 0. Now define

m v w p v w,( ) = ( ) ¥U • .
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This formula is independent of the choice of v, w. Explicitly, for any other
such pair v¢, w¢, it follows from Lemma 4.2 and the analogous formula for
cross products that

Properties of the cross product show that Z(p) is nonzero and normal 
to M. The formula for cross product shows that Z is differentiable. Thus
U = Z/||Z|| is the required unit normal.

If U is a unit normal on M, then so is -U. To show that there are no
others, let V also be a unit normal. At each point these (differentiable) unit
vector fields are collinear, so the only values for the dot product V • U are
+1 and -1. On a connected surface, a nonvanishing differentiable function
cannot change sign (Exercise 4), hence either V • U = +1 everywhere, so 
V = U, or V • U = -1 everywhere, so V = -U. ◆

For example, all spheres, cylinders, surfaces of revolution, and quadric sur-
faces are orientable. It follows from Lemma 3.8 that every surface in R3 that
can be defined implicitly is orientable.

However, nonorientable surfaces do exist in R3. The simplest example is
the famous Möbius band B, made from a strip of paper by giving it a half
twist, then gluing its ends together (Fig. 4.40). B is nonorientable since it
cannot have a (differentiable) unit normal. To see this let g be a closed curve,
as in Fig. 4.40, that runs once around the band with g (0) = g (1) = p. Now
suppose a unit normal vector U at g (0) moves continuously around g. As the
figure shows, the twist in B forces the contradiction

U(p) = U(g (1)) = -U(g (0)) = -U(p).

¢ ¥ ¢
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¥
( )

v w
v w
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The last of the topological properties we consider will let us express for-
mally the intuitive idea that a plane is simpler than a cylinder, and a sphere
is simpler than a torus. The key is that in the cylinder or a torus there are
closed curves that cannot be continuously shrunk down to a point.

7.6 Definition A closed curve a in M is homotopic to a constant provided
there is a 2-segment x: R Æ M (called a homotopy) defined on

such that a is the base curve of x and the other three edge curves are con-
stant at p = a(a) = a(b).

A curve such as a for which a(a) = a(b) holds but not necessarily a¢(a) =
a¢(b) is often called a loop at p. Since the sides b and d of x are constant at
p, for every 0 � v � 1 the u-parameter curve av(u) = x(u, v) is also a loop at
p. As v varies from 0 to 1, the loop av varies continuously from a0 = a to the
curve a1 = g, which is constant at p.

It is easy to show that in the plane every loop is homotopic to a constant.
Given a loop a: [a, b] Æ R2 at p in R2, use scalar multiplication in R2 to define
x(u, v) = va(a) + (1 - v)a(u). Then

Hence x is a homotopy from a to a constant.

7.7 Definition A surface M is simply connected provided it is connected
and every loop in M is homotopic to a constant.

(This definition is valid for any manifold—and more generally.) The pre-
ceding homotopy shows that the plane R2 is simply connected, and the same
formula works for any Euclidean space.

The 2-sphere S is also simply connected. Consider the following scheme of
proof. Let a be a loop in S at, say, the north pole of S. Pick a point q not on
a. For simplicity, suppose q is the south pole. Now let x be the homotopy
under which each point of a moves due north along a great circle, reaching
p in unit time. This x is a homotopy of a to a constant, as required.

But there is a difficulty here: finding the point q. In our usual case, where
a is differentiable, techniques from advanced calculus will show that there is
always a point q not on a. However, if a is merely continuous, it may actu-
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ally fill the entire sphere. In this case, topological methods can be used to
deform a slightly, making it no longer space-filling; then the scheme above is
valid.

To show that a given surface is simply connected, we can always try to con-
struct the necessary homotopies; however, to show that a surface is not simply
connected, indirect means are usually required. One of the most effective
derives from integration. Recall that a differential form f is closed if df = 0.

7.8 Lemma Let f be a closed 1-form on a surface M. If a loop a in M
is homotopic to a constant, then 

Proof. Suppose x is a homotopy showing that a loop a is homotopic to
a constant, say p. Now we apply Stokes’ theorem (Theorem 6.5). The inte-
gral over a constant curve is zero, and df = 0, hence

◆

Now suppose we remove a single point, say the origin 0, from the (simply
connected) plane R2. The loop a: [0, 2p] Æ C given by a(t) = (cos t, sin t)
circles once around the missing point. It seems obvious that a cannot be
shrunk down to a point in the punctured plane P = R2 - 0. The preceding
lemma provides an easy way to prove it.

Exercise 4 of the preceding section shows that the 1-form

on P is closed and that its integral around a is 2p (these are easy computa-
tions). By the lemma, a is not homotopic to a constant; hence P is not simply
connected.

As noted earlier, since d 2 = 0, exact forms are always closed. However,
closed forms need not be exact. For example, if the closed 1-form y were
exact, it would follow from Stokes’ theorem (6.5) that However, in
an important special case, closed 1-forms are exact.

7.9 Lemma (Poincaré) On a simply connected surface, every closed 1-
form is exact.

Proof. First we show that the integral of a closed 1-form is path indepen-

dent, that is, if a and b are curve segments from p to q, then 

In fact, if -b is an orientation-reversing reparametrization of b, then 
a + (-b) = a - b is a loop. By simple connectedness, it is homotopic to a
constant. Thus, using Lemma 6.6,
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Now suppose f is a closed 1-form on a simply connected surface
M. Pick a point p0 and define for any curve segment d from 

p0 to p. Path independence makes f a well-defined function on M.
To show that df = f, we must show that df(v) = f(v) for every tangent

vector v at a point p. This is equivalent to v[ f ] = f(v).
Let a: [a, b] Æ M be a curve with initial velocity a ¢(a) = v. Then 

d + a |[a, t] is a curve from p0 to a(t) (Fig. 4.41), so by the definition of f,

Taking the derivative with respect to t gives

When t = 0 this becomes v[ f ] = f(v), as required. ◆

Among the four properties we have discussed there are two direct impli-
cations—both yielding orientability.

7.10 Theorem A compact surface in R3 is orientable.

This is an easy consequence of the following nontrivial topological
theorem, a 2-dimensional version of the Jordan Curve Theorem. If M is a
compact surface in R3, then M separates R3 into two nonempty open sets: an
exterior (the points that can escape to infinity) and an interior (the points
trapped inside M). So we need only pick the unit normal vector at each p in
M that points into, say, the exterior and apply Proposition 7.5. Thus orien-
tation is at stake when in elementary calculus the “outward unit normal” is
assigned to a surface in R3.
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7.11 Theorem A simply connected surface is orientable.

We defer the proof until Section 4 of Chapter 8. (Notice, for future refer-
ence, that this theorem does not mention R3.)

A final note: Because the properties discussed in this section are topolog-
ical, they can be defined solely in terms of open sets and continuous func-
tions. However, differentiable versions are usually more practical for use in
geometry.

Exercises

1. Which of the following surfaces are compact and which are connected?
(a) A sphere with one point removed.
(b) The region z > 0 in M: z = xy.
(c) A torus with the curve a(t) = x(t, t) removed. (See Ex. 2 of Sec. 4.3.)
(d) The surface in Fig. 4.8.
(e) M: x2 + y4 + z6 = 1.

2. Let F be a mapping of a surface M onto a surface N. Prove:
(a) If M is connected, then N is connected.
(b) If M is compact, then N is compact. (Try both the covering definition
and the criterion in Lem. 7.2.)

3. Let F: M Æ N be a regular mapping. Prove that if N is orientable, then
M is orientable.

4. Let f be a differentiable real-valued function on a connected surface.
Prove:

(a) If df = 0, then f is constant.
(b) If f is never zero then either f > 0 or f < 0.

5. Of the four basic types of surfaces of revolution (see Ex. 11 of Sec.
5)—plane, sphere, cylinder, torus—which are,

(a) connected? (b) compact?
(c) orientable? (d) simply connected?

A closed curve a in M is freely homotopic to a constant if the conditions on
x in Definition 7.6 are weakened to b = d with only g required to be constant
(Fig. 4.42). Then the v constant curves av are loops that move along the curve
b = d as they shrink to p.

6. (a) If a loop a is freely homotopic to a constant via x, show that for any
1-form f,
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(b) If closed curves a and b in R2 - p are freely homotopic in R2 - p, show
that they have the same winding number about p.
(c) A smooth disk D in a surface is the image of the unit disk x2 + y2 £ 1
in R2 under a one-to-one regular map F. Show that the 2-segment

fills D and is a free homotopy of the (closed) boundary curve v Æ x(1, v) to
a constant.

7. Let f be a closed 1-form and a a closed curve.

(a) Show that if either f is exact or a is freely homotopic to a 
constant.
(b) Deduce that on a torus T the meridians and parallels are not freely
homotopic to constants, and the closed 1-forms x and h of Exercise 9 of
Section 6 are not exact.

8. (Counterexamples.) Give examples to show that the following are false:
(a) Converses of (a) and (b) of Exercise 2.
(b) Exercise 3 with F not regular.
(c) Converse of Exercise 3.

9. (a) If p is a point of a surface S, show that the set of all points of S that
can be connected to p by a (piecewise smooth) curve in S is an open set of
S. (Hint: Each point of a surface has a neighborhood that is connected in
the sense of Def. 7.1.)

(b) Same as (a) but with can replaced by cannot.
(c) For a surface M, show that Definition 7.1 (“path-connectedness”) is
equivalent to the general topological definition of connectedness, namely:
If U and M - U are open sets of M, and U contains at least one point,
then M = U. (Use the corresponding property for a closed interval in R,
a standard result of analysis.)

10. The Hausdorff axiom asserts that distinct points p π q have disjoint
neighborhoods. Prove:

f
aÚ = 0

x u v F u v u v u v, , , , ,( ) = ( ) ( )cos sin 0 1 0 2� � � � p

f f
aÚ ÚÚ= d

x
.
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(a) R3 obeys the Hausdorff axiom. (The same proof works for all Rn.)
(b) A surface M in R3 obeys the Hausdorff axiom.

11. If R is a compact region in a surface M, prove that R is a closed set of
M, that is, M - R is an open set. (Hint: To show that M - R is open, use
the preceding exercise and the fact that a finite intersection of neighborhoods
of p is again a neighborhood of p.)

12. Let M and N be surfaces in R3 such that M is contained in N.
(a) If M is compact and N is connected, prove that M = N. (Hint: Show
that M is both closed and open in N.)
(b) Give examples to show that (a) fails if either M is not compact or N is
not connected.
(c) Deduce from (a) that if F: M Æ N is a local diffeomorphism with M
compact and N connected, then F(M) = N.

4.8 Manifolds

Surfaces in R3 are a matter of everyday experience, so it is reasonable to inves-
tigate them mathematically. But examining this concept with a critical eye,
we may well ask whether there could not be surfaces in R4, or in Rn—or even
surfaces that are not contained in any Euclidean space. To devise a definition
for such a surface, we must rely not on our direct experience of the real world,
but on our mathematical experience of surfaces in R3. Thus we shall strip
away from Definition 1.2 every feature that involves R3. What is left will be
just a surface.

To begin with, a surface will be a set M: a collection of any objects what-
soever. We call these objects the points of M, but as examples below will show,
they definitely need not be the usual points of some Euclidean space. An
abstract patch in M will now be just a one-to-one function x: D Æ M from
an open set D of R2 into the set M.

To get a workable definition of surface we must find a way to define what
it means for functions involving M to be differentiable. The key to this
problem turns out to be the smooth overlap condition in Corollary 3.3. To
prove this condition is now a logical impossibility since R3 is gone, so in the
usual fashion of mathematics, we make it an axiom.

8.1 Definition A surface is a set M furnished with a collection P of
abstract patches in M satisfying

(1) The covering axiom: The images of the patches in the collection P

cover M.
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(2) The smooth overlap axiom: For any patches x, y in P, the composite
functions y-1x and x-1y are Euclidean differentiable—and defined on open
sets of R2.

This definition generalizes Definition 1.2: A surface in R3 is a surface in
this sense. However, there is a technical gap in this definition that requires
attention. First, for any patch x: D Æ M in a surface, define a set x(U ) to be
open provided U is open in D Ã R2. Then the open sets of M are all unions
of such sets. (This is consistent with the case M Ã R3, since there x and x-1

are continuous.)
Examples like that in Exercise 11 show that for the open sets to behave

properly we must add another axiom to the definition of surface.

(3) The Hausdorff axiom: For any points p π q in M there exist disjoint
(that is, nonoverlapping) patches x and y with p in x(D) and q in y(E).

Here is an example of an important surface that, as we will soon see,
cannot be found in R3.

8.2 Example The projective plane P. Starting from the unit sphere S in
R3 we construct P by identifying antipodal points in S, that is, by considering
p and -p to be the same point of P (Fig. 4.43). Formally, this means that the
set P consists of all antipodal pairs {p, -p} of points in S. Order is not 
relevant here; that is, {p, -p} = {-p, p}. (Working with the projective plane
often involves looking back and forth between antipodal points.)

There are two important mappings associated with P: the antipodal 
map A(p) = -p on S and the projection F(p) = {p, -p} of S onto P. Note that
FA = F.

Call a patch x in S “small” if it is contained in a single open hemisphere.
Then the composite function Fx is one-to-one, and is thus an abstract patch.
The collection of all such abstract patches makes P a surface. In fact, the cov-
ering condition (1) is clear, and the Hausdorff axiom derives from the cor-
responding property for Euclidean spaces. The smooth overlap axiom (2) can
be checked as follows.

FIG. 4.43



Suppose Fx and Fy overlap in S; that is, their images have points in
common. If x and y overlap in S, then (Fy)-1Fx = y-1x, which by Corollary
3.3 is differentiable and defined on an open set. On the other hand, if x and
y do not overlap, replace y by Ay. Then x and Ay do overlap, so the previ-
ous argument applies.

To emphasize the distinction between a surface in R3 and the general
notion of surface defined above, we sometimes call the latter an abstract
surface.

To get as many patches as possible in an abstract surface M we always
understand that its patch collection P has been enlarged to include all the
abstract patches in M that overlap smoothly with those originally in P. We
emphasize that abstract surfaces M1 and M2 with the same set of points are
nevertheless different surfaces if their (enlarged) patch collections P1 and P2

are different.
There is essentially only one problem to solve in establishing calculus on

an abstract surface M, and that is to define the velocity of a curve in M. In
the old definition a velocity vector was a tangent vector to R3, so something
new is needed. For everything else—differentiable functions, curves them-
selves, tangent vectors, vector fields, differentiable forms, and so on—the def-
initions and theorems given for surfaces in R3 apply without change. It is
necessary to tinker with a few proofs, but no serious problems arise.

It makes little difference what we define velocity to be—provided the 
new definition produces the same essential behavior as before. The most 
efficient choice is based on the directional derivative property in Lemma 4.6,
Chapter 1.

8.3 Definition Let a: I Æ M be a curve in an abstract surface M. For
each t in I the velocity vector a ¢(t) is the function such that

for every differentiable real-valued function f on M.

Thus a ¢(t) is a real-valued function whose domain is the set F of all real-
valued functions on M. This is all we need to generalize the calculus on sur-
faces in R3 to the case of an abstract surface.

We now have a calculus for Rn (Chapter 1) and another one for surfaces.
These are strictly analogous, but analogies in mathematics, though useful 
initially, can be annoying in the long run. What we need is a single calculus
of which these two will be special cases. The most general object on which

¢( )[ ] =
( ) ( )a

a
t f

d f
dt

t
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calculus can be conducted is called a manifold. It is simply an abstract surface
of arbitrary dimension n.

8.4 Definition An n-dimensional manifold M is a set furnished with a col-
lection P of abstract patches (one-to-one functions x: D Æ M, D an open set
in Rn) satisfying

(1) The covering property: The images of the patches in the collection P

cover M.
(2) The smooth overlap property: For any patches x, y in P, the compos-

ite functions y-1x and x-1y are Euclidean differentiable—and defined on open
sets of Rn.

(3) The Hausdorff property: For any points p π q in M there are disjoint
patches x and y with p in x(D) and q in y(E).

Thus a surface (Definition 8.1) is just a 2-dimensional manifold. As before,
Euclidean n-space Rn is an n-dimensional manifold whose (initial) patch col-
lection consists only of the identity map.

To keep this definition as close as possible to that of a surface in R3, we
have deviated somewhat from the standard definition of manifold in which
it is the inverse functions x-1: x(D) Æ D that are axiomatized.

The calculus of an arbitrary n-dimensional manifold is defined in the same
way as for n = 2. Usually we need only replace i = 1, 2 by i = 1, 2, . . . , n.
Differential forms on an n-dimensional manifold have the same general prop-
erties as in the case n = 2, which we have explored in Sections 4, 5, and 6.
But there are p-forms for 0 � p � n, so when n is large, the algebra becomes
more complicated.

Wherever calculus appears in mathematics and its applications, manifolds
will be found, and higher dimensional manifolds turn out to be important in
problems—both pure and applied—that initially seem to involve only dimen-
sions 2 or 3. For example, here is a 4-dimensional manifold that has already
appeared, implicitly at least, in this chapter.

8.5 Example The tangent bundle of a surface. For a surface M, let T(M)
be the set of all tangent vectors to M at all points of M. (For simplicity we
assume M is a surface in R3, but it could just as well be an abstract surface
or, indeed, a manifold of any dimension.) Since M has dimension 2 and each
tangent space Tp(M) has dimension 2, we anticipate that T(M) will have
dimension 4.

To get a natural patch collection for T(M) we derive from each patch x in
M an abstract patch in T(M). Given x: D Æ M, let be the open set in R4D̃x̃
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consisting of all points (p1, p2, p3, p4) for which (p1, p2) is in D. Then let be
the function Æ T(M) given by

(In Fig. 4.44 we identify R2 with the x1x2 plane of R4 and deal as best we can
with dimension 4.)

Using Exercise 3 of Section 3 and the proof of Lemma 3.6, it is not diffi-
cult to check that each such function is one-to-one and that the collection
of all such patches satisfies the conditions in Definition 8.4. Thus T(M) is a
4-dimensional manifold, called the tangent bundle of M.

Exercises

1. Prove that a surface M is nonorientable if there is a smoothly closed
curve a: [a, b] Æ M and a tangent vector field Y on a such that

(i) Y and a ¢ are linearly independent at every point, and
(ii) Y(b) = -Y(a).

(Hint: Assume M is orientable and deduce a contradiction.)

2. Establish the following properties of the projective plane P.
(a) If F: S Æ P is the projection, then each tangent vector to P is the image
under F* of exactly two tangent vectors to S, these of the form vp and -v-p.
(b) P is compact, connected, and nonorientable—hence P is not diffeo-
morphic to any surface in R3.

3. (a) Prove that the tangent bundle T(M) of a surface is a manifold. (If x
and y are overlapping patches in M, find an explicit formula for -1 .)

(b) If M is the image of a single patch x: R2 Æ M, show that the tangent
bundle of M is diffeomorphic to R4.

x̃ỹ

x̃

˜ .x x xp p p p p p p p p pu v1 2 3 4 3 1 2 4 1 2, , , , ,( ) = ( ) + ( )
D̃

x̃
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4. A surface M in R3 is closed if it is a closed set of R3, that is, R3 - M is
an open set. (Confusingly, closed surface has sometimes been defined by
analogy with closed curve to mean compact surface.)

(a) Prove that every surface given in the implicit form M: g = c is closed.
(b) Prove that a compact surface in R3 is closed. (Hint: Use the scheme of
Ex. 11 of Sec. 7.)
(c) Give an example of a closed surface in R3 that is not compact.

5. A surface M in R3 is bounded provided there is a number R > 0 such that
||p|| � R for all p Œ M.

(a) Prove that a compact surface M Ã R3 is bounded.
(b) Give an example of a surface in R3 that is bounded but not compact.
It follows from this exercise and Exercise 4 that if M Ã R3 is compact, it
is closed and bounded. The converse is true but is more difficult to prove
(see [Mu]).

6. Let M̂ be the set of all the unit normal vectors on a surface M in R3. (So
there are two points of M̂ for each point of M.) For each patch x in M we
define two patches in M̂, namely,

(a) Show that the set of all such patches makes M̂ a surface, called the ori-
entation covering surface of M.
(b) Describe the orientation covering surface of the unit sphere S Ã R3 and
of the torus T Ã R3.
(c) If a connected surface M in R3 is orientable, show that M̂ consists of
two diffeomorphic copies of M. (Hint: M has smooth unit normals ±U.)
(d) The natural map ±U Æ p of M̂ onto M is regular.

7. (Continuation.) If a connected surface M in R3 is nonorientable, show
that M̂ is (i) connected and (ii) orientable. (Thus nonorientability can be
cured by doubling. For an example, see Ex. 10.)
(Hints: (i) If a: [a, b] Æ M is a curve, then any unit normal vector at a(a)
can be moved differentiably along a as a unit normal Ua(t)—thus giving a
curve in M̂. Assume this fact: if M is nonorientable, there exists a loop a in
M with Ua(b) = -Ua(a).

(ii) Any patch z determines a unit vector field Uz = zu ¥ zv/||zu ¥ zv||. If
patches x and y in M meet, but Uy = -Ux on the overlap, then x̂ and ŷ do
not meet.)

8. A Möbius band B can be constructed as a ruled surface by

x u v u v u v, , with, say, ,( ) = ( ) + ( ) - < <b d 1 3 1 3

x
x x
x x±( ) = ±

¥
¥

u v u v

u v

, .
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where b(u) = (cosu, sinu, 0) and

(The ruling makes only a half turn as it traverses the circle b.)
Show that x is one-to-one and regular, with unit normal

9. (Continuation, computer graphics.)
(a) Plot the Möbius band B.
(b) Plot a surface that represents B with its central circle b removed 
(for clarity, remove a small band around b). Is this surface connected? 
orientable?

Although a point of M̂ is a vector in R3, not a point of R3, in favorable
cases M̂ can be turned into a surface in R3 by mapping each Up in M̂ to
the point p + eUp (Euclidean coordinates) in R3 for some small e > 0. (For
e = 1, the point would be the tip of the “arrow” Up.)

10. (Continuation.)
(a) Using the scheme above, plot the orientation covering surface B̂ of the
Möbius band B. (Take e = 1/4.)
(b) By inspection, is B̂ connected? orientable? How is B̂ related to the
surface in (b) of the preceding exercise?

11. (Plane with two origins.) Let Z consist of all ordered pairs of real
numbers and one additional point 0*. Let x and y be the functions from R2

to Z such that

but

(a) Show that the abstract patches x and y constitute a patch collection
that satisfies the first two conditions in Definition 8.1, but not the Haus-
dorff axiom. Without the Hausdorff axiom, strange things can happen.
For example, prove:
(b) A convergent sequence in Z can have two limits.
(c) The function F: Z Æ Z that reverses 0 and 0*, leaving all other points
fixed, is a differentiable mapping.

x 0 y 00 0 0 0 0 0, , and , *( ) = = ( ) ( ) = .
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12. (a) Given a one-to-one function H from a manifold M onto an arbi-
trary set A, prove there is a unique way to make A a manifold so that H
becomes a diffeomorphism. (Hint: Diffeomorphisms move patches to
patches.)

(b) In each of the following cases, find natural choices of H and M that
make the set a manifold.
(i) The set of all 2 ¥ 2 real symmetric matrices.
(ii) The set of all circles in R2.
(iii) The set of all great circles on a sphere S.
(iv) The set of all (finite) closed intervals in R.

13. (Integral curves.) A curve a in M is an integral curve of a vector field V
on M provided a ¢(t) = V(a(t)) for all t. Thus an integral curve has at each
point the velocity prescribed by V. If a(0) = p, we say that a starts at p.

(a) In R2, show that the curve a(t) = (u(t), v(t)) is an integral curve of
V = f1U1 + f2U2 starting at (a, b) Œ R2 if and only if

The theory of differential equations guarantees that there is a unique solu-
tion for a.

(b) Find an explicit formula for the integral curve of V = -u2U1 + uvU2

on R2 that starts at the point (1, -1). (The differential equations involved
can be solved by elementary methods since one of them is particularly
simple.)
(c) Sketch (by hand or by computer) the integral curve a on suitable inter-
vals A < t < -1 and -1 < t < B.

14. (Continuation.) Show that every vector field V on a surface M has an
integral curve b starting at any given point p. Specifically, if x: D Æ M is a
patch with x(a, b) = p, and is the vector field on D such that x*( ) = V,
show that b(t) = x(u(t), v(t)), where (u(t), v(t)) is the integral curve of start-
ing at (a, b).

15. (Cartesian products.) For any sets A and B the Cartesian product A¥B
consists of all ordered pairs (a, b), with a in A and b in B. If x: D Æ M and 
y: E Æ N are patches in surfaces M and N, define x¥y: D¥E Æ M¥N by

Show that x¥y is an abstract patch and that the collection P of all such
patches makes M¥N a 4-dimensional manifold. M¥N is called the Cartesian
product of M and N.

x y x y¥( ) ¢ ¢( ) = ( ) ¢ ¢( )( )u v u v u v u v, , , , , , .
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The same scheme works for any two manifolds. It derives from the way the
x axis and y axis produce the xy plane; indeed, R¥R is precisely R2.

16. If M is an abstract surface, a proper imbedding of M into R3 is a 
one-to-one regular mapping F: M Æ R3 such that the inverse function F-1:
F(M) Æ M is continuous. Prove that the image F(M) of a proper imbedding
is a surface in R3 (Def. 1.2) and that it is diffeomorphic to M.

If F: M Æ R3 is merely regular, then F is an immersion of M into R3, and
the image F(M) is often called an “immersed surface,” even though it can cut
across itself and hence not satisfy Definition 1.2.

4.9 Summary

The discovery of calculus made it possible to study arbitrary curved surfaces
M in R3. Initially this was done mostly in terms of the natural Euclidean
coordinates {x, y, z} of R3. However, it gradually became clear that in many
contexts, coordinates {u, v} in the surface itself were more efficient. Thus a
two-dimensional calculus was developed for surfaces, one that remains valid
even if the surface is not contained in R3.

Along with the Euclidean spaces, such surfaces are prime examples of the
general notion of manifold. The calculus of any manifold involves differen-
tiable functions, vector fields, differential forms, mappings—and various
operations of differentiation and integration. These features are all preserved
in a suitable sense by diffeomorphisms—indeed, this criterion gives a formal
definition of manifold theory.
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Chapter 5

Shape Operators

202

In Chapter 2 we measured the shape of a curve in R3 by its curvature and
torsion functions. Now we consider the analogous measurement problem for
surfaces. It turns out that the shape of a surface M in R3 is described infini-
tesimally by a certain linear operator S defined on each of the tangent planes
of M. As with curves, to say that two surfaces in R3 have the same shape means
simply that they are congruent. And just as with curves, we shall justify our
infinitesimal measurements by proving that two surfaces with “the same”
shape operators are, in fact, congruent. The algebraic invariants (determinant,
trace, . . .) of its shape operators thus have geometric meaning for the surface
M. We investigate this matter in detail and find efficient ways to compute these
invariants, which we test on a number of geometrically interesting surfaces.

From now on, the notation M Ã R3 means a connected surface M in R3 as
defined in Chapter 4.

5.1 The Shape Operator of M Ã R3

Suppose that Z is a Euclidean vector field (Definition 3.7 of Chapter 4) on a
surface M in R3. Although Z is defined only at points of M, the covariant
derivative �vZ (Chapter 2, Section 5) still makes sense as long as v is tangent
to M. As usual, �vZ is the rate of change of Z in the v direction, and there
are two main ways to compute it.

Method 1. Let a be a curve in M that has initial velocity a ¢(0) = v. Let
Za be the restriction of Z to a, that is, the vector field t Æ Z(a(t)) on a. Then

where the derivative is that of Chapter 2, Section 2.

— = ( )¢ ( )vZ Za 0 ,
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Method 2. Express Z in terms of the natural frame field of R3 by

Then

where the directional derivative is that of Definition 3.10 in Chapter 4.
It is easy to show that these two methods give the same result. In fact, since

,

(Compare Lemma 5.2 of Chapter 2.) Note that even if Z is a tangent vector
field, the covariant derivative �vZ need not be tangent to M.

If M is an orientable surface, Proposition 7.5 of Chapter 4 shows that there
is always a (differentiable) unit normal vector field U on the entire surface,
and in fact—since M is now assumed connected—there are exactly two, ±U.
Even if M is not orientable, unit normals ±U are available locally, since a
small region around any point is orientable. In fact, we will find explicit for-
mulas for U on the image x(D) Ã M of any patch.

We are now in a position to find a mathematical measurement of the shape
of a surface in R3.

1.1 Definition If p is a point of M, then for each tangent vector v to M
at p, let

where U is a unit normal vector field on a neighborhood of p in M. Sp is
called the shape operator of M at p derived from U.† (Fig. 5.1.)

S Up vv( ) = -— ,

Z z U z Ui i i ia a( )¢ ( ) = ( )¢ ( ) = [ ]Â Â0 0 v .

Z zUi i= Â

— = [ ]Âv i iZ z Uv ,

Z zUi i= Â .

Sp(v) v

FIG. 5.1

† The minus sign artificially introduced in this definition will sharply reduce the total number of
minus signs needed later on.



The tangent plane of M at any point q consists of all Euclidean vectors
orthogonal to U(q). Thus the rate of change �vU of U in the v direction tells
how the tangent planes of M are varying in the v direction—and this gives
an infinitesimal description of the way M itself is curving in R3.

Note that if U is replaced by -U, then Sp changes to -Sp.

1.2 Lemma For each point p of M Ã R3, the shape operator is a linear
operator

on the tangent plane of M at p.

Proof. In Definition 1.1, U is a unit vector field, so U • U = 1. Thus by
a Leibnizian property of covariant derivatives,

where v is tangent to M at p. Since U is also a normal vector field, it follows
that Sp(v) is tangent to M at p. Thus Sp is a function from Tp(M) to Tp(M).
(It is to emphasize this that we use the term “operator” instead of
“transformation.”)

The linearity of Sp is a consequence of a linearity property of covari-
ant derivatives:

◆

At each point p of M Ã R3 there are actually two shape operators, ±Sp,
derived from the two unit normals ±U near p. We shall refer to all of these,
collectively, as the shape operator S of M. Thus if a choice of unit normal is
not specified, there is a relatively harmless ambiguity of sign.

1.3 Example Shape operators of some surfaces in R3.
(1) Let S be the sphere of radius r consisting of all points p of R3 with 

|| p || = r. Let U be the outward normal on S. Now as U moves away from
any point p in the direction v, evidently U topples forward in the exact direc-
tion of v itself (Fig. 5.2). Thus S(v) must have the form -cv.

In fact, using gradients as in Example 3.9 of Chapter 4, we find

U
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But then

Thus for all v. So the shape operator S is merely scalar
multiplication by . This uniformity in S reflects the roundness of
spheres: They bend the same way in all directions at all points.

(2) Let P be a plane in R3. A unit normal vector field U on P is evidently
parallel in R3 (constant Euclidean coordinates) (Fig. 5.3). Hence

for all tangent vectors v to P. Thus the shape operator is identically zero,
which is to be expected, since planes do not bend at all.

(3) Let C be the circular cylinder x2 + y2 = r2 in R3. At any point p of C,
let e1 and e2 be unit tangent vectors, with e1 tangent to the ruling of the cylin-
der through p, and e2 tangent to the cross-sectional circle. Use the outward
normal U as indicated in Fig. 5.4.

Now, when U moves from p in the e1 direction, it stays parallel to itself just
as on a plane; hence S(e1) = 0. When U moves in the e2 direction, it topples

S Uvv( ) = -— = 0

-1/r
S rv v( ) = - /

— = [ ] ( ) = -Âv i iU
r

x U
r

1
v p

v
.

FIG. 5.2

FIG. 5.3

FIG. 5.4
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forward exactly as on a sphere of radius r; hence S(e2) = -e2/r. In this way S
describes the “half-flat, half-round” shape of a cylinder.

(4) The saddle surface M: z = xy. For the moment we investigate S only at
p = (0, 0, 0) in M. Since the x and y axes of R3 lie in M, the vectors 

u1 = (1, 0, 0) and u2 = (0, 1, 0)

are tangent to M at p. We use the “upward” unit normal U, which at p is 
(0, 0, 1). Along the x axis, U stays orthogonal to the x axis, and as it pro-
ceeds in the u1 direction, U swings from left to right (Fig. 5.5).

FIG. 5.5

In fact, a routine computation (Exercise 3) shows that �u1
U = -u2. Similarly,

we find �u2U = -u1. Thus the shape operator of M at p is given by the formula

These examples clarify the analogy between the shape operator of a surface
and the curvature and torsion of a curve. In the case of a curve, there is only
one direction to move, and k and t measure the rate of change of the unit
vector fields T and B (hence N). For a surface, only one unit vector field is
intrinsically determined—the unit normal U. Furthermore, at each point,
there is now a whole plane of directions in which U can move, so that rates
of change of U are measured, not numerically, but by the linear operators S.

1.4 Lemma For each point p of M Ã R3, the shape operator

is a symmetric linear operator; that is,

for any pair of tangent vectors to M at p.

S Sv w w v( ) = ( )• •

S T M T Mp p: ( ) Æ ( )

S a b b au u u u1 2 1 2+( ) = + .



We postpone the proof of this crucial fact to Section 4, where it occurs
naturally in the course of general computations.

From the viewpoint of linear algebra, a symmetric linear operator on a
two-dimensional vector space is a very simple object indeed. For a shape
operator, its eigenvalues and eigenvectors, its trace and determinant, all turn
out to have geometric meaning of first importance for the surface M Ã R3.

Exercises

1. Let a be a curve in M Ã R3. If U is a unit normal of M restricted to the
curve a, show that S(a ¢) = -U ¢.

2. Consider the surface M: z = f(x, y), where

(The subscripts indicate partial derivatives.) Show that
(a) The vectors u1 = U1(0) and u2 = U2(0) are tangent to M at the origin 0,
and

is a unit normal vector field on M.
(b) S(u1) = fxx(0, 0)u1 + fxy(0, 0)u2,

S(u2) = fyx(0, 0)u1 + fyy(0, 0)u2.

(Note: The square root in the denominator is no real problem here because
of the special character of f at (0, 0). In general, direct computation of S is
awkward, and in Section 4 we shall establish indirect ways of getting at it.)

3. (Continuation.) In each case, express S(au1 + bu2) in terms of u1 and u2,
and determine the rank of S at 0 (rank S is dimension of image S: 0, 1, or
2).

(a) z = xy. (b) z = 2x2 + y2.
(c) z = (x + y)2. (d) z = xy2.

4. Let M be a surface in R3 oriented by a unit normal vector field

Then the Gauss map G: M Æ S of M sends each point p of M to the point
(g1(p), g2(p), g3(p)) of the unit sphere S. Pictorially: Move U(p) to the origin
by parallel motion; there it points to G(p) (Fig. 5.6).

Thus G completely describes the turning of U as it traverses M.

U g U g U g U= + +1 1 2 2 3 3.

U
f U f U U

f f

x y

x y

=
- - +

+ +
1 2 3

2 21

f f fx y0 0 0 0 0 0 0, , ,( ) = ( ) = ( ) = .
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For each of the following surfaces, describe the image G(M ) of the Gauss
map in the sphere S (use either normal):

(a) Cylinder, x2 + y2 = r2.
(b) Cone,
(c) Plane, x + y + z = 0.
(d) Sphere, (x - 1)2 + y2 + (z + 2)2 = 1.

5. Let G: T Æ S be the Gauss map of the torus T (Ex. 2.5 of Ch. 4) derived
from its outward unit normal U. What are the image curves under G of the
meridians and parallels of T? Which points of S are the image of exactly two
points of T?

6. Let G: M Æ S be the Gauss map of the saddle surface M: z = xy derived
from the unit normal U obtained as in Exercise 2. What is the image under
G of one of the straight lines, y = constant, in M? How much of the sphere
is covered by the entire image G(M )?

7. Show that the shape operator of M is (minus) the tangent map of its
Gauss map: If S and G: M Æ S are both derived from U, then S(v) and 
-G*(v) are parallel for every tangent vector v to M.

8. An orientable surface has two Gauss maps derived from its two unit
normals. Show that they differ only by the antipodal mapping of S (Ex. 8.2
of Ch. 4). Define a Gauss-type mapping for a nonorientable surface in R3.

9. If V is a tangent vector field on M (with unit normal U), then S(V) is
the tangent vector field on M whose value at each point p is Sp(V(p)). Show
that if W is also tangent to M, then

Deduce that the symmetry of S is equivalent to the assertion that the bracket

of two tangent vector fields is again a tangent vector field.

V W W VV W,[ ] = — - —

S V W W UV( ) = —• • .

z x y= +2 2 .

FIG. 5.6
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5.2 Normal Curvature

Throughout this section we shall work in a region of M Ã R3 that has been
oriented by the choice of a unit normal vector field U, and we use the shape
operator S derived from U.

The shape of a surface in R3 influences the shape of the curves in M.

2.1 Lemma If a is a curve in M Ã R3, then

Proof. Since a is in M, its velocity a ¢ is always tangent to M. Thus 

a ¢ • U = 0,

where U is restricted to the curve a. Differentiation yields

But from Section 1, we know that S(a ¢) = -U¢. Hence

◆

Geometric interpretation: at each point, a ≤ • U is the component of accel-
eration a ≤ normal to the surface M (Fig. 5.7). The lemma shows that this
component depends only on the velocity a¢ and the shape operator of M.
Thus all curves in M with a given velocity v at point p will have the same normal
component of acceleration at p, namely, S(v) • v. This is the component of
acceleration that the bending of M in R3 forces them to have.

Thus if v is standardized by reducing it to a unit vector u, we get a mea-
surement of the way M is bent in the u direction.

2.2 Definition Let u be a unit vector tangent to M Ã R3 at a point p.
Then the number k(u) = S(u) • u is called the normal curvature of M in the u
direction.

¢¢ = - ¢ ¢ = ¢( ) ¢a a a a• • •U U S

¢¢ + ¢ ¢ =a a• • .U U 0

¢¢ = ¢( ) ¢a a a• • .U S

FIG. 5.7
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In this context, we define a tangent direction to M at p to be a one-
dimensional subspace L of Tp(M), that is, a line through the zero vector
(located for intuitive purposes at p). Any nonzero tangent vector at p deter-
mines a direction L, but we prefer to use one of the two unit vectors ±u
in L. Note that

Thus, although we evaluate k on unit vectors, it is, in effect, a real-valued
function on the set of all tangent directions to M.

Given a unit tangent vector u to M at p, let a be a unit-speed curve in M
with initial velocity a ¢(0) = u. Using the Frenet apparatus of a, the preced-
ing lemma gives

Thus the normal curvature of M in the u direction is k (0)cosJ, where k(0)
is the curvature of a at a(0) = p, and J is the angle between the principal
normal N(0) and the surface normal U(p), as in Fig. 5.8.

Given u, there is a natural way to choose the curve so that J is 0 or p. In
fact, if P is the plane determined by u and U(p), then P cuts from M (near
p) a curve s called the normal section of M in the u direction. If we give s
unit-speed parametrization with s ¢(0) = u, then N(0) = ±U(p), since 

s ≤(0) = k (0)N(0)

is orthogonal to s ¢(0) = u and tangent to P. So for a normal section in the u
direction (Fig. 5.9),

k N Uu p( ) = ( ) ( ) ( ) = ± ( )k ks s0 0 0• .

k S U N Uu u u p p( ) = ( ) = ¢¢( ) ( ) = ( ) ( ) ( )
= ( )

• • •

cos .

a k

k J

0 0 0

0

k S S ku u u u u u( ) = ( ) = -( ) -( ) = -( )• • .

FIG. 5.8
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Thus it is possible to make a reasonable estimate of the normal curvatures
in various directions on a surface M Ã R3 by picturing what the corre-
sponding normal sections would look like. We know that the principal
normal N of a curve tells in which direction it is turning. Thus the preced-
ing discussion gives geometric meaning to the sign of the normal curvature
k(u) (relative to our fixed choice of U).

(1) If k(u) > 0, then N(0) = U(p), so the normal section s is bending
toward U(p) at p (Fig. 5.10). Thus in the u direction the surface M is bending
toward U(p).

(2) If k(u) < 0, then N(0) = -U(p), so the normal section s is bending
away from U(p) at p. Thus in the u direction M is bending away from U(p)
(Fig. 5.11).

(3) If k(u) = 0, then ks(0) = 0 and N(0) is undefined. Here the normal
section s is not turning at s(0) = p. We cannot conclude that in the u direc-
tion M is not bending at all, since k might be zero only at s(0) = p. But we
can conclude that its rate of bending is unusually small.

In different directions at a fixed point p, the surface may bend in quite dif-
ferent ways. For example, consider the saddle surface z = xy in Example 1.3.
If we identify the tangent plane of M at p = (0, 0, 0) with the xy plane of

FIG. 5.9

FIG. 5.10 FIG. 5.11
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R3, then clearly the normal curvature in the direction of the x and y axes is
zero, since the normal sections are straight lines. However, Fig. 5.5 shows that
in the tangent direction given by the line y = x, the normal curvature is pos-
itive, for the normal section is a parabola bending upward. (U(p) = (0, 0, 1)
is “upward.”) But in the direction of the line y = -x, normal curvature is
negative, since this parabola bends downward.

Let us now fix a point p of M Ã R3 and imagine that a unit tangent vector
u at p revolves, sweeping out the unit circle in the tangent plane Tp(M). From
the corresponding normal sections, we get a moving picture of the way M is
bending in every direction at p (Fig. 5.12).

2.3 Definition Let p be a point of M Ã R3. The maximum and minimum
values of the normal curvature k(u) of M at p are called the principal curva-
tures of M at p, and are denoted by k1 and k2. The directions in which these
extreme values occur are called principal directions of M at p. Unit vectors
in these directions are called principal vectors of M at p.

Using the normal-section scheme discussed above, it is often fairly easy to
pick out the directions of maximum and minimum bending. For example, if
we use the outward normal (U) on a circular cylinder C as in Fig. 5.4, then
the normal sections of C all bend away from U, so k(u) � 0. Furthermore,
it is reasonably clear that the maximum value k1 = 0 occurs only in the direc-
tion e1 of a ruling; minimum value k2 < 0 occurs only in the direction e2

tangent to a cross-section.
An interesting special case occurs at points p for which k1 = k2. The

maximum and minimum normal curvature being equal, it follows that k(u)
is constant: M bends the same amount in all directions at p (so all directions
are principal).

2.4 Definition A point p of M Ã R3 is umbilic provided the normal cur-
vature k(u) is constant on all unit tangent vectors u at p.

FIG. 5.12
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For example, what we found in (1) of Example 1.3 was that every point of
the sphere S is umbilic, with 

2.5 Theorem (1) If p is an umbilic point of M Ã R3, then the shape oper-
ator S at p is just scalar multiplication by k = k1 = k2.

(2) If p is a nonumbilic point, k1 π k2, then there are exactly two princi-
pal directions, and these are orthogonal. Furthermore, if e1 and e2 are prin-
cipal vectors in these directions, then

In short, the principal curvatures of M at p are the eigenvalues of S, and
the principal vectors of M at p are the eigenvectors of S.

Proof. Suppose that k takes on its maximum value k1 at e1, so

Let e2 be merely a unit tangent vector orthogonal to e1 (presently we shall
show that it is also a principal vector).

If u is any unit tangent vector at p, we write

where c = cosJ, s = sinJ (Fig. 5.13). Thus normal curvature k at p becomes
a function on the real line: k(J) = k(u(J)).

For 1 � i, j � 2, let Sij be the number S(ei) · ej. Note that S11 = k1, and
by the symmetry of the shape operator, S12 = S21. We compute

(1)

Hence

k S c s c s

c S scS s S

J( ) = +( ) +( )
= + +

e e e e1 2 1 2

2
11 12

2
222

•

.

u u e e= ( ) = +J c s1 2 ,

k k S1 1 1 1= ( ) = ( )e e e• .

S k S ke e e e1 1 1 2 2 2( ) = ( ) =, .

k k r1 2 1= = - .

FIG. 5.13
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(2)

If J = 0, then c = 1 and s = 0, so u(0) = e1. Thus, by assumption, k(J)
is a maximum at J = 0, so (dk/dJ)(0) = 0. It follows immediately from (2)
that S12 = 0.

Since e1, e2 is an orthonormal basis for Tp(M), we deduce by orthonor-
mal expansion that

(3)

Now if p is umbilic, then S22 = k(e2) is the same as S11 = k(e1) = k1, so (3)
shows that S is scalar multiplication by k1 = k2.

If p is not umbilic, we look back at (1), which has become

(4)

Since k1 is the maximum value of k(J), and k(J) is now nonconstant, it
follows that k1 > S22. But then (4) shows: (a) the maximum value k1 is taken
on only when c = ±1, s = 0, that is, in the e1 direction; and (b) the minimum
value k2 is S22, and is taken on only when c = 0, s = ±1 that is, in the e2 direc-
tion. This proves the second assertion in the theorem, since (3) now reads:

◆

Contained in the preceding proof is Euler’s formula for the normal cur-
vature of M in all directions at p.

2.6 Corollary Let k1, k2 and e1, e2 be the principal curvatures and vectors
of M Ã R3 at p. Then if u = cosJ e1 + sinJ e2, the normal curvature of M
in the u direction is (Fig. 5.13)

Here is another way to show how the principal curvatures k1 and k2 control
the shape of M near an arbitrary point p. Since the position of M in R3 is of
no importance, we can assume that (1) p is at the origin of R3, (2) the tangent
plane Tp(M) is the xy plane of R3, and (3) the x and y axes are the principal
directions. Near p, M can be expressed as M: z = f(x, y), as shown in Fig.
5.14, and the idea is to construct an approximation of M near p by using only
terms up to quadratic in the Taylor expansion of the function f. Now (1) and
(2) imply f 0 = f 0

x = f 0
y = 0, where the subscripts indicate partial derivatives

and the superscript zero denotes evaluation at x = 0, y = 0. Thus the qua-
dratic approximation of f near (0, 0) reduces to

k k ku( ) = +1
2

2
2cos sin .J J

S k ke e e e1 1 1 2 2 2( ) = ( ) =, S .

k c k s SJ( ) = +2
1

2
22.

S S Se e e e1 11 1 2 22 2( ) = ( ) =, S .

dk
d

sc S S c S S
J

J( ) = -( ) + -( )2 222 11
2 2

12.
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In Exercise 2 of Section 1 we found that for the tangent vectors

at p = 0,

By condition (3) above, u1 and u2 are principal vectors, so it follows from
Theorem 2.5 that k1 = f 0

xx, k2 = f 0
yy, and f 0

xy = 0.
Substituting these values in the quadratic approximation of f, we conclude

that the shape of M near p is approximately the same as that of the surface

near 0. M¢ is called the quadratic approximation of M near p. It is an ana-
logue for surfaces of a Frenet approximation of a curve.

From Definition 2.2 through Corollary 2.6 we have been concerned with
the geometry of M Ã R3 near one of its points p. These results thus apply
simultaneously to all the points of the oriented region O on which, by our
initial assumption, the unit normal U is defined. In particular then, we have
actually defined principal curvature functions k1 and k2 on O, where at each
point p of O, k1(p) and k2(p) are the principal curvatures of M at p. Note that
these functions are only defined “modulo sign”: If U is replaced by -U, they
become -k1 and -k2.

¢ = +( )M z k x k y:
1
2 1

2
2

2

S U f fxy yyu u uu2
0

1
0

22( ) = -— = + .

S U f fxx xyu u uu1
0

1
0

21( ) = -— = + ,

u u1 21 0 0 0 1 0= ( ) = ( ), , and , ,

f x y f x f xy f yxx xy yy,( ) + +( )~ .
1
2

20 2 0 0 2

FIG. 5.14



Exercises

1. Use the results of Example 1.3 to find the principal curvatures and prin-
cipal vectors of

(a) The cylinder, at every point.
(b) The saddle surface, at the origin.

2. If v π 0 is a tangent vector (not necessarily of unit length), show that the
normal curvature of M in the direction of v is 

3. For each integer n � 2, let an be the curve t Æ (rcos t, rsin t, ±tn) in the
cylinder M: x2 + y2 = r2. These curves all have the same velocity at t = 0;
test Lemma 2.1 by showing that they all have the same normal component
of acceleration at t = 0.

4. For each of the following surfaces, find the quadratic approximation near
the origin:

(a) z = exp (x2 + y2) - 1. (b) z = logcosx - log cosy.
(c) z = (x + 3y)3.

5.3 Gaussian Curvature

The preceding section found the geometrical meaning of the eigenvalues and
eigenvectors of the shape operator. Now we examine the determinant and
trace of S.

3.1 Definition The Gaussian curvature of M Ã R3 is the real-valued func-
tion K = detS on M. Explicitly, for each point p of M, the Gaussian curva-
ture K(p) of M at p is the determinant of the shape operator S of M at p.

The mean curvature of M Ã R3 is the function trace S. Gaussian
and mean curvature are expressed in terms of principal curvature by

3.2 Lemma .

Proof. The determinant (and trace) of a linear operator may be defined
as the common value of the determinant (and trace) of all its matrices. If
e1 and e2 are principal vectors at a point p, then by Theorem 2.5, we have
S(e1) = k1(p)e1 and S(e2) = k2(p)e2. Thus the matrix of S at p with respect
to e1, e2 is

K k k H k k= = +( )1 2 1 2

1
2

,  

H = 1 2/

k Sv v v v v( ) = ( ) • • .
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This immediately gives the required result. ◆

A significant fact about the Gaussian curvature: It is independent of the
choice of the unit normal U. If U is changed to -U, then the signs of both
k1 and k2 change, so K = k1k2 is unaffected. This is obviously not the case with
mean curvature which has the same ambiguity of sign as
the principal curvatures themselves.

The normal section method in Section 2 lets us tell, by inspection, approx-
imately what the principal curvatures of M are at each point. Thus we get a
reasonable idea of what the Gaussian curvature K = k1k2 is at each point p
by merely looking at the surface M. In particular, we can usually tell what the
sign of K(p) is—and this sign has an important geometric meaning, which
we now illustrate.

3.3 Remark The sign of Gaussian curvature at a point p.

(1) Positive. If K(p) > 0, then by Lemma 3.2, the principal curvatures k1(p)
and k2(p) have the same sign. By Corollary 2.6, either k(u) > 0 for all unit
vectors u at p or k(u) < 0. Thus M is bending away from its tangent plane Tp(M)
in all tangent directions at p (Fig. 5.15)

The quadratic approximation of M near p is the paraboloid

(2) Negative. If K(p) < 0, then by Lemma 3.2, the principal curvatures k1(p)
and k2(p) have opposite signs. Thus the quadratic approximation of M near
p is a hyperboloid, so M is also saddle-shaped near p (Fig. 5.16).

z k x k y= ( ) + ( )1
2

1
21

2
2

2p p .

H k k= +( )1 2 2 ,

k

k
1

2

0

0

p

p

( )
( )

Ê
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ˆ
¯̃
.
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218 5. Shape Operators

(3) Zero. If K(p) = 0, then by Lemma 3.2 there are two cases:
(a) If only one principal curvature is zero, say

(b) If both principal curvatures are zero, say

In case (a) the quadratic approximation is the cylinder so M
is trough-shaped near p (Fig. 5.17).

In case (b), the quadratic approximation reduces simply to the plane 
z = 0, so we get no information about the shape of M near p.

A torus of revolution T provides a good example of these different cases.
At points on the outer half O of T, the torus bends away from its tangent
plane as one can see from Fig. 5.18; hence K > 0 on O. But near each point
p of the inner half I, T is saddle-shaped and cuts through Tp(M). Hence 
K < 0 on I.

Near each point on the two circles (top and bottom) that separate O and
I, the torus is trough-shaped; hence K = 0 there. (A quantitative check of
these qualitative results is given in Section 7.)

In case 3(b) above, where both principal curvatures vanish, p is called a
planar point of M. (There are no planar points on the torus.) For example,
the central point p of a monkey saddle, say

is planar. Here three hills and valleys meet, as shown in Fig. 5.19. Thus p
must be a planar point—the shape of M near p is too complicated for the
other three possibilities in Remark 3.3.

We consider now some ways to compute Gaussian and mean curvature.

M z x x y x y: = +( ) -( )3 3 ,

2 1
2z k x= ( )p ,

k k1 2 0p p( ) = ( ) = .

k k1 20 0p p( ) π ( ) =, .

FIG. 5.17 FIG. 5.18
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3.4 Lemma If v and w are linearly independent tangent vectors at a point
p of M Ã R3, then

Proof. Since v, w is a basis for the tangent plane Tp(M), we can write

This shows that

is the matrix of S with respect to the basis v, w. Hence

Using standard properties of the cross product, we compute

and a similar calculation gives the formula for H(p). ◆

Thus if V and W are tangent vector fields that are linearly independent at
each point of an oriented region, we have vector field equations

S V S W KV W

S V W V S W HV W

( ) ¥ ( ) = ¥

( ) ¥ + ¥ ( ) = ¥

,

2 .

S S a b c d

ad bc K

v w v w v w

v w p v w

( ) ¥ ( ) = +( ) ¥ +( )
= -( ) ¥ = ( ) ¥ ,

K S ad bc H S a dp p( ) = = - ( ) = = +( )det ., trace
1
2

1
2

a b

c d
Ê
ËÁ

ˆ
¯̃

S a b

S c d

v v w

w v w

( ) = +

( ) = +

,

.

S S K

S S H

v w p v w

v w v w p v w

( ) ¥ ( ) = ( ) ¥

( ) ¥ + ¥ ( ) = ( ) ¥

,

2 .

FIG. 5.19



These may be solved for K and H by dotting each side with the normal
vector field V ¥ W, and using the Lagrange identity (Exercise 6). We then find

The denominators are never zero, since the independence of V and W is
equivalent to (V ¥ W) • (V ¥ W) > 0. In particular, the functions K and H
are differentiable.

Once K and H are known, it is a simple matter to find k1 and k2.

3.5 Corollary On an oriented region O in M, the principal curvature
functions are

Proof. To verify the formula, it suffices to substitute

and note that

◆

A more enlightening derivation (Exercise 4) uses the characteristic polyno-
mial of S.

This formula shows only that k1 and k2 are continuous functions on O; they
need not be differentiable since the square-root function is badly behaved at
zero. The identity in the proof shows that H 2 - K is zero only at umbilic points,
however, so k1 and k2 are differentiable on any oriented region free of umbilics.

A natural way to single out special types of surfaces in R3 is by restric-
tions on Gaussian and mean curvature.

3.6 Definition A surface M in R3 is flat provided its Gaussian curvature
is zero, and minimal provided its mean curvature is zero.

H K
k k

k k
k k2 1 2

2

1 2
1 2

2

4 4
- =

+( )
- =

-( )
.

K k k H
k k

= =
+

1 2
1 2

2
and

k k H H K1 2
2, = ± - .

K

S V V S V W

S W V S W V
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W V W W

H
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=
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As expected, a plane is flat, for by Example 1.3 its shape operators are all
zero, so K = det S = 0. On a circular cylinder, (3) of Example 1.3 shows that
S is singular at each point p, that is, has rank less than the dimension of the
tangent plane Tp(M). Thus, although S itself is never zero, its determinant is
always zero, so cylinders are also flat. This terminology seems odd at first for
a surface so obviously curved, but it will be amply justified in later work.

Note that minimal surfaces have Gaussian curvature K � 0, because if

then k1 = -k2, so K = k1k2 � 0.
Another notable class of surfaces consists of those with constant Gauss-

ian curvature. As mentioned earlier, Example 1.3 shows that a sphere of
radius r has (for U outward). Thus the sphere S has constant
positive curvature : The smaller the sphere, the larger its curvature.

We shall find many examples of these various special types of surface as 
we proceed through this chapter.

Exercises

1. Show that there are no umbilics on a surface with K < 0, and that when
K � 0, umbilic points are planar.

2. Let u1 and u2 be orthonormal tangent vectors at a point p of M. What
geometric information can be deduced from each of the following conditions
on S at p?

(a) S(u1) • u2 = 0. (b) S(u1) + S(u2) = 0.
(c) S(u1) ¥ S(u2) = 0. (d) S(u1) • S(u2) = 0.

3. (Mean curvature.) Prove that
(a) the average value of the normal curvature in any two orthogonal direc-
tions at p is H(p). (The analogue for K is false.)

(b) 

where k(J) is normal curvature.

4. The characteristic polynomial of an arbitrary linear operator S is

where A is any matrix of S.

p k A kI( ) = -( )det ,

H k dp( ) = ( ) ( )Ú1 2
0

2

/ p J J
p

,

K r= 1 2

k k r1 2 1= = -

H
k k

=
+

=1 2

2
0,
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(a) Show that the characteristic polynomial of the shape operator is

(b) Every linear operator satisfies its characteristic equation; that is, p(S)
is the zero operator when S is formally substituted in p(k). Prove this in
the case of the shape operator by showing that

for any pair of tangent vectors to M.
The real-valued functions

defined for all pairs of tangent vectors to an oriented surface, are tradition-
ally called the first, second, and third fundamental forms of M. They are not
differential forms; in fact, they are symmetric in v and w rather than alter-
nating. The shape operator does not appear explicitly in the classical treat-
ment of this subject; it is replaced by the second fundamental form.

5. (Dupin curve.) For a point p of an oriented region of M, let C0 be the
intersection of M near p with its tangent plane ; specifically, C0 con-
sists of those points of M near p that lie in the plane through p orthogonal
to U(p). C0 may be approximated by substituting for M its quadratic approx-
imation M̂; thus C0 is approximated by the curve

(a) Describe Ĉ0 in each of the three cases K(p) > 0, K(p) < 0, and K(p) = 0
(not planar).
(b) Repeat (a) with C0 replaced by Ce and C-e, where the tangent plane has
been replaced by the two parallel planes at distance ±e from it.
(c) This scheme fails for planar points since the quadratic approximation
becomes M̂: z = 0. For the monkey saddle, sketch C0, Ce, and C-e.

6. For vectors x, y, v, w in R3, prove the Lagrange identity

(a) By hand. (Hint: Since both sides are linear in each vector separately, it
suffices to prove the identity when each vector is one of the unit vectors
u1, u2, u3.)
(b) By computer. (For dot and cross products, see the Appendix.)

x y v w
x v x w

y v y w
¥( ) ¥( ) =•

• •

• •
.

ˆ : .C k x k y0 1
2

2
2 0 0 0+ = ( ), near ,  

T Mp ( )

I , , II , ,

III , ,

v w v w v w v w

v w v w v w

( ) = ( ) = ( )
( ) = ( ) = ( ) ( )

• •

• •

S

S S S2

S S HS Kv w v w v w( ) ( ) - ( ) + =• • •2 0

k Hk K2 2- + .
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7. (Parallel surfaces.) Let M be a surface oriented by U; for a fixed number
e (positive or negative) let F: M Æ R3 be the mapping such that

(a) If v is tangent to M at p, show that = F*(v) is v - eS(v). Deduce that

where

When the function J does not vanish on M (for example, if M is compact
and |e | small), this shows that F is a regular mapping, so the image

is at least an immersed surface in R3 (Ex. 16 in Sec. 4.8). is said to be par-
allel to M at distance e (Fig. 5.20).

(b) Show that the canonical isomorphisms of R3 make U a unit normal on
for which .

(c) Derive the following formulas for the Gaussian and mean curvatures
of M:

8. (Continuation.)
(a) Check the results in (c) in the case of a sphere of radius r oriented by
the outward normal U. Describe the mapping F = Fe when e is 0, -r, and
-2r.
(b) Starting from an orientable surface with constant positive Gaussian
curvature, construct a surface with constant mean curvature.

K F
K
J

H F
H K

J
( ) = ( ) =

-
; .

e

S Sv v( ) = ( )M

M

M F M= ( )

J H K k k= - + = -( ) -( )1 2 1 12
1 2e e e e .

v w p v w¥ = ( ) ¥J ,

v

F Up p p( ) = + ( )e .

FIG. 5.20
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5.4 Computational Techniques

We have defined the shape operators S of a surface M in R3 and found geo-
metrical meaning for its main algebraic invariants: Gaussian curvature K,
mean curvature H, principal curvatures k1 and k2, and (at each point) prin-
cipal vectors e1 and e2. We shall now see how to express these invariants in
terms of patches in M.

If x: D Æ M is a patch in M Ã R3, we have already used the three real-
valued functions

on D. Here E > 0 and G > 0 are the squares of the speeds of the u- and v-
parameter curves of x, and F measures the coordinate angle J between xu and
xv, since

(Fig. 5.21). E, F, and G are the “warping functions” of the patch x: They
measure the way x distorts the flat region D in R2 in order to apply it to the
curved region x(D) in M. These functions completely determine the dot
product of tangent vectors at points of x(D), for if

then

(In such equations we understand that xu, xv, E, F, and G are evaluated at 
(u, v) where x(u, v) is the point of application of v and w.)

Now xu ¥ xv is a function on D whose value at each point (u, v) of D is a
vector orthogonal to both xu(u, v) and xv(u, v)—and hence normal to M at
the point x(u, v). Furthermore, by Exercise 6 of Section 3,

x xu v EG F¥ = -2 2 .

v w• .= + +( ) +Ev w F v w v w Gv w1 1 1 2 2 1 2 2

v x x w x x= + = +v v w wu v u u1 2 1 2and ,

F EGu v u v= = =x x x x• cos cosJ J

E F Gu u u v v u v v= = = =x x x x x x x x• • • •, ,

FIG. 5.21



Since x is, by definition, regular, this real-valued function on D is never zero.
Thus we can construct the unit normal function

on D, which assigns to each (u, v) in D a unit normal vector to M at x(u, v).
We emphasize that in this context, U, like xu and xv, is not a vector field on
x(D), but merely a vector-valued function on D. Nevertheless, we may regard
the system xu, xv, U as a kind of defective frame field. At least U has unit
length and is orthogonal to both xu and xv, even though xu and xv are gener-
ally not orthonormal.

In this context, covariant derivatives are usually computed along the para-
meter curves of x, where by the discussion in Section 1, they reduce to partial
differentiation with respect to u and v. As in the case of xu and xv, these partial
derivatives are again denoted by subscripts u and v. If

then just as for xu and xv on page 140, we have

Evidently xuu and xvv give the accelerations of the u- and v-parameter
curves. Since order of partial differentiation is immaterial, xuv = xvu, which
gives both the covariant derivative of xu in the xv direction and of xv in the
xu direction.

Now if S is the shape operator derived from U, we define three more real-
valued functions on D:

Because xu, xv gives a basis for the tangent space of M at each point of
x(D), it is clear that these functions uniquely determine the shape operator.
Since this basis is generally not orthonormal, , , and  do not lead to simple

L

M

N

,

,

= ( )
= ( ) = ( )
= ( )

S

S S

S

u u

u v v u

v v

x x

x x x x

x x

•

• •

• .

x

x

x

x

x

x

uu

vu

vv

x
u

x
u

x
u

x
u v

x
u v

x
u v

x
v

x
v

x
v

=
∂
∂

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂

∂ ∂
∂

∂ ∂
∂

∂ ∂
Ê
ËÁ

ˆ
¯̃

=
∂
∂

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

2
1

2

2
2

2

2
3

2

2
1

2
2

2
3

2
1

2

2
2

2

2
3

2

, , ,

, , ,

, , .

x u v x u v x u v x u v, , , , , , ,( ) = ( ) ( ) ( )( )1 2 3

U u v

u v

=
¥
¥

x x
x x

5.4 Computational Techniques 225



expressions for S(xu) and S(xv) in terms of xu and xv. In the formulas 
preceding Corollary 3.5, however, they do provide simple expressions for 
Gaussian and mean curvature.

4.1 Corollary If x is a patch in M Ã R3, then

Proof. Evaluated on x(D), the formulas on page 220 express K and H in
terms of tangent vector fields V and W. If the latter are replaced by xu and
xv, respectively, we find the required formulas for K and H. ◆

When the patch x is clear from context, we shall usually abbreviate the
composite functions K(x) and H(x) to merely K and H.

By a device like that used in Lemma 2.1, we can find a simple way to
compute , , and —and thereby K and H. For example, since U • xu = 0,
partial differentiation with respect to v—that is, ordinary differentiation
along v-parameter curves—yields

(Recall that Uv is the covariant derivative of the vector field v Æ U (u0, v) on
each v-parameter curve u = u0.) Since xv gives the velocity vectors of such
curves, Exercise 1.1 shows that Uv = -S(xv). Thus the preceding equation
becomes

(Fig. 5.22). Three similar equations may be found by replacing u by v, and v
by u. In particular,

Again, since xu and xv give a basis for the tangent space at each point, this is
sufficient to prove that S is symmetric (Lemma 1.4).

4.2 Lemma If x is a patch in M Ã R3, then
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The first equation in each case is just the definition, and u and v may be
reversed in the formulas for .

4.3 Example Computation of Gaussian and mean curvature
(1) Helicoid (Exercise 5 of Section 4.2). This surface H, shown in Fig. 5.23,

is covered by a single patch

x u v u v u v bv b, , , , ,( ) = ( ) πcos sin 0

FIG. 5.22

FIG. 5.23



for which

Hence

Because coordinate patches are, by definition, regular mappings, we have seen
in Chapter 4 that the function

is never zero. For any patch we denote this useful function by W, that is,

In the case at hand, so the unit normal function is

(A computation of U can always be checked by verifying that the result is a
unit vector orthogonal to both xu and xv.)

Next we find

Here xuu = 0 is obvious, since the u-parameter curves are straight lines. The
v-parameter curves are helices, and this formula for the acceleration xvv was
found already in Chapter 2. Now by Lemma 4.2,

Hence by Corollary 4.1 and the results above,
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Thus the helicoid is a minimal surface with Gaussian curvature

The minimum value occurs on the central axis (u = 0) of the 
helicoid, and K Æ 0 as distance |u| from the axis increases to infinity.

(2) The saddle surface M: z = xy (Example 1.3). This time we use the
Monge patch x(u, v) = (u, v, uv) and with the same format as above, compute

Hence

Strictly speaking, these functions are K(x) and H(x) defined on the domain
R2 of x. In this case, it is easy to express K and H directly as functions 
on M by using the cylindrical coordinate functions and z. Note
from Fig. 5.24 that

and

hence on M,
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Thus the Gaussian curvature of M depends only on distance to the z axis,
rising from K = -1 (at the origin) toward zero as r goes to infinity, while H
varies more radically.

Like all simple (that is, one-patch) surfaces, the helicoid and saddle sur-
faces are orientable, since computations as above provide a unit normal on
the whole surface. Thus the principal curvature functions k1 ≥ k2 can be
defined unambiguously on each surface. These can always be found from K
and H by Corollary 3.5. Since the helicoid is a minimal surface, we get the
simple result

For the saddle surface,

Techniques for computing principal vectors are left to the exercises.
The computational results in this section, though stated for coordinate

patches, remain valid for arbitrary regular mappings x: D Æ R3 since the
restriction of x to any small enough open set in D is a patch.

Exercises

1. For the geographical parametrization
of the sphere S of radius r, find E,x u v r v u r v u r v, , ,( ) = ( )cos cos cos sin sin ,

k k
z r z

r
1 2

2 2

2 3 2

1

1
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- ± + +
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.

k k
b

b u1 2 2 2
, =

±
+( ) .

FIG. 5.24



F, G, and W, and then the unit normal U, Gaussian curvature K, and mean
curvature H.

2. For a Monge patch x(u, v) = (u, v, f(u, v)), show that,

where

Then find formulas for K and H.

3. (Continuation.) Deduce that the image of x is
(a) flat if and only if

(b) minimal if and only if

4. Let x be the patch

defined on Show that the image of x is a minimal surface
with Gaussian curvature

where W 2 = 1 + tan2u + tan2v. (This patch is in Scherk’s surface, Ex. 5 of
Sec. 5.5.)

5. Show that a curve segment

has length

where E, F, and G are evaluated on a1, a2.
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6. Find the Gaussian curvature of the elliptic and hyperbolic paraboloids

where e = ±1.

7. Find the curvature of the monkey saddle M: z = x3 - 3xy2, and express
it in terms of

8. A patch x in M is orthogonal provided F = 0 (so xu and xv are orthogo-
nal at each point). Show that in this case

(b) A patch x in M is principal provided F =  = 0. Prove that xu and xv

are principal vectors at each point, with corresponding principal curvatures
/E and /G.

9. Prove that a nonzero tangent vector v = v1xu + v2xv is a principal vector
if and only if

(Hint: v is principal if and only if S(v) ¥ v = 0.)

10. Show that on the saddle surface z = xy the two vector fields

are principal at each point. Check that they are orthogonal and tangent to M.

11. If v = v1xu + v2xv is tangent to M at x(u, v), show that the normal 

curvature in the direction is

where the various functions are evaluated at (u, v).

k
v v v v

Ev Fv v Gv
u( ) =

+ +
+ +

 1
2

1 2 2
2

1
2

1 2 2
2

2

2

M N
,

u v v= /

1 1 1 12 2 2 2+ ± + + ± +( )x y y x x y,  

v v v v

E F G
2
2

1 2 1
2

0

-
=

L M N

.

S
E G

S
E G

u u v

v u v

x x x

x x x

( ) = +

( ) = +

L M

M N

,

.

r x y= +2 2 .

M z
x
a

y
b

: = +
2

2

2

2
e ,

232 5. Shape Operators



5.4 Computational Techniques 233

12. Show that a ruled surface x(u, v) = b(u) + vd(u) has Gaussian curvature

where W = ||b ¢ ¥ d + vd¢ ¥ d ||.

13. (Flat ruled surfaces.)
(a) Show that generalized cones and cylinders are flat (Exs. 3 and 4 of Sec.
4.2).
(b) If b is a unit-speed curve in R3 with k > 0, the ruled surface

where T(u) = b¢(u), is called the tangent surface of b. Prove that x is regular
and the tangent surface is flat. (The surface is separated into two pieces by
the curve; Fig. 5.25 shows the v > 0 half.)

14. (Patch criterion for umbilics.)
(a) Show that a point x(u, v) is umbilic if and only if there is a number k
such that at (u, v),

(Then k is the principal curvature k1 = k2.)

15. Find the umbilic points, if any, on the following surfaces:
(a) Monkey saddle (Ex. 7).
(b) Elliptic paraboloid (Ex. 6), assuming a � b.

(Hint: Compute the “vectors” (E, F, G) and (, , ) for arbitrary (u, v), dis-
carding common factors if convenient. Then solve (E, F, G) ¥ (, , ) = 0
for (u, v).)
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16. (Loxodromes.) For a π 0, let fa: be the unique func-
tion such that 

If x is the geographical parametrization of a sphere, the curve la(t) = x(fa(t),t)
is a loxodrome.

(a) Prove that la¢ always makes a constant angle with the due-north vector
field xv. Thus la represents a trip with constant (idealized) compass
bearing.
(b) Show that the length of la from the south pole (0, 0, -r) to the north 
pole (0, 0, r) (limit values) is .

(c) (Computer.) Verify that fa(t) = a logtan , and plot l10 from
near the south pole to near the north pole on a unit sphere. (Require
smoothness, and keep the same scale on each axis.)

17. (Tubes.) If b is a curve in R3 with 0 < k � b, let

Thus the v-parameter curves are circles of constant radius e in planes orthog-
onal to b. Show that

(a) xu ¥ xv = -e(1 - ke cos v)(cos vN(u) + sin vB(u)).
(b) If e is small enough, x is regular. So x is at least an immersed surface,
called a tube around b.
(c) U = cos v N(u) + sin v B(u) is a unit normal vector on the tube.

(d)

(Hint: Use S(xu) ¥ S(xv) = K xu ¥ xv.)

The following exercises deal with use of the computer in patch com-
putations.

18. (Computer.) The Appendix gives computer commands for the functions
E, F, G, W, , ,  derived from a patch.

(a) Write the computer commands, based on Corollary 4.1, that give the
Gaussian curvature and mean curvature of a patch in terms of these 
functions.
(b) To test these commands, find E, F, G, W, , , , K, H for each of the
cases in Example 4.3. Compare with the text computations.

19. (Computer.) Make a save file containing the following patches or
parametrizations. (See Appendix for “save files” and format for parameters.)

(a) the patch in Exercise 4.
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(b) a single Monge patch—with parameters a, b, e—for the hyperboloids
in Exercise 6.
(c) a Monge patch for the monkey saddle (Ex. 7), in terms of (i) rectan-
gular coordinates u, v and (ii) polar coordinates r, J on R2.
(d) the parametrization of Enneper’s surface in Exercise 15 of Section 7.
(e) the geographical parametrization of a sphere of radius r.

20. (Computer formulas.)
(a) For a patch x in R3, show that Gaussian curvature can be expressed
directly in terms of x as

This formula gives the fastest general computer computation of K. The
Appendix has computer commands for it in the Mathematica and Maple
systems.

(b) Test this command on the two cases in Example 4.3 and the patches in
Exercise 19.

The derivation of the corresponding formula for mean curvature is rather
tedious. This formula may be found in Alfred Gray’s book [G].
(c) Find a computer formula for the Gaussian curvature of the graph of
a function f: R2 Æ R. (Hint: use Ex. 2.) Test this command on the Monge
patches referenced in Exercises 18 and 19.

21. (Computer.)
(a) Write commands that, given a curve a on some interval, plot the tube
of radius r around a. (See Ex. 17.)
(b) Use part (a) to plot the tube of radius around two turns of the helix

t Æ (3 cos t, 3 sin t, ).
(c) Plot the tube of radius around the curve t in Exercise 19 of Sec. 2.4.
(This makes it clear that t is a trefoil knot.)

5.5 The Implicit Case

In this brief section we describe a way to compute the geometry of a surface
M Ã R3 that has a nonvanishing normal vector field Z defined on the entire
surface. The main case is a surface given in implicit form M: g = 0, for then,
by Lemma 3.8 of Chapter 4, the gradient

is such a vector field.
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Let S be the shape operator on M derived from the unit normal

Write Then if V is a tangent vector field on M, Method 2 in
Section 1 gives

Hence, using a Leibnizian property of such derivatives,

(Fig. 5.26). The last term here, V[1/||Z||] Z, is evidently a normal vector field;
we do not care which one it is, so we denote it merely by -NV. Thus

Note that if W is another tangent vector field on M, then NV ¥ NW = 0, while
products such as NV ¥ Y are tangent to M for any Euclidean vector field Y
on M. Thus it is a routine matter to deduce the following lemma from Lemma
3.4.

5.1 Lemma Let Z be a nonvanishing normal vector field on M. If V and
W are tangent vector fields such that V ¥ W = Z, then
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To compute, say, the Gaussian curvature of a surface M: g = c using
patches, one must begin by explicitly finding enough of them to cover all of
M; a complete computation of K may thus be tedious, even when g is a rather
simple function. The following example shows to advantage the approach just
described.

5.2 Example Curvature of the ellipsoid

We write g = , and use the (nonvanishing) normal vector field

Then if is a tangent vector field on M,

since

Similar results for another tangent vector field W yield

where X is the special vector field used in Example 3.9 of Chapter 4.
It is always possible to choose V and W so that V ¥ W = Z. But then

Thus by Lemma 5.1 we have found

that is,
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For any oriented surface in R3, its support function h assigns to each point
p the orthogonal distance h(p) = p • U(p) from the origin to the Euclidean
tangent plane , as shown in Fig. 5.27 for the ellipsoid. Using the above-
mentioned vector field X (whose value at p is the tangent vector pp), we find
for the ellipsoid that

Thus a clearer expression of the Gaussian curvature of the ellipsoid is

Note that if a = b = c = r (so M is a sphere), then has constant
value r, and this formula reduces to 

Exercises

1. Show that the elliptic hyperboloids of one and two sheets (Ex. 2.9 of Ch.
4) have Gaussian curvatures respec-
tively, where both support functions h are given by the same formula as for
the ellipsoid in Example 5.2.

2. If h is the support function of an oriented surface M Ã R3, show that
(a) A point p of M is a critical point of h if and only if p • S(v) = 0 for 
all tangent vectors to M at p. (Hint: Write h as X • U, where )X xUi i= Â .
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(b) When K(p) π 0, p is a critical point of h if and only if p (considered
as a vector) is orthogonal to M at p.

3. (a) Use the preceding exercises to find the critical points of the Gauss-
ian curvature function K on the ellipsoid and on the hyperboloids of one and
two sheets (Ex. 2.9 of Ch. 4).

(b) Assuming a � b � c for these surfaces, find their Gaussian curvature
intervals.

4. Compute K and H for the saddle surface M: z = xy by the method of
this section. (Hint: Take V and W tangent to the rulings of M.)

5. Scherk’s minimal surface, M: ezcosx = cos y. Let R be the region in the
xy plane on which cosx cosy > 0. R is a checkerboard pattern of open squares,
with vertices Show that:

(a) M is a surface.
(b) For each point (u, v) in R there is exactly one point (u, v, w) in M. The
only other points of M are entire vertical lines over each of the vertices of
R (Fig. 5.28).
(c) M is a minimal surface with 
(Hint: V = cosx U1 + sinx U3 is a tangent vector field.)
(d) The patch in Exercise 4 of Section 4 parametrizes the part of M over
a typical open square. Show that the curvature K(u, v) calculated there is
consistent with (c).

K e e xz z= - +( )2 2 2 2
1/ sin .

p p p p/ ,  / .2 2+ +( )m n

FIG. 5.28



6. Let Z be a nonvanishing normal vector field on M. Show that a tangent
vector v to M at p is principal if and only if

(Hint: Recall that v is principal if and only if S(v) ¥ v = 0.)
The preceding equation together with the tangency equation Z(p) • v = 0

can be solved for the principal directions. Thus umbilics can be located using
these equations, since p is umbilic if and only if every tangent vector at p is
principal.

7. For the ellipsoid M: , show that:
(a) A tangent vector v at p is principal if and only if

(b) Assuming a1 > a2 > a3, there are exactly four umbilics on M, with 
coordinates

5.6 Special Curves in a Surface

In this section we consider three geometrically significant types of curves in
a surface M Ã R3.

6.1 Definition A regular curve a in M Ã R3 is a principal curve provided
that the velocity a ¢ of a always points in a principal direction.

Thus principal curves always travel in directions for which the bending of
M in R3 takes its extreme values. Neglecting changes of parametrization,
there are exactly two principal curves through each nonumbilic point of M—
and these necessarily cut orthogonally across each other. (At an umbilic point
p, every direction is principal, and near p the pattern of principal curves can
be quite complicated.)

6.2 Lemma Let a be a regular curve in M Ã R3, and let U be a unit
normal vector field restricted to a. Then

(1) The curve a is principal if and only if U¢ and a ¢ are collinear at each
point.
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(2) If a is a principal curve, then the principal curvature of M in the direc-
tion of a ¢ is 

Proof. (1) Exercise 1.1 shows that S(a ¢) = -U¢. Thus U¢ and a ¢ are
collinear if and only if S(a ¢) and a ¢ are collinear. But by Theorem 2.5,
this amounts to saying that a ¢ always points in a principal direction or,
equivalently, that a is a principal curve.

(2) Since a is a principal curve, the vector field consists entirely
of (unit) principal vectors belonging to, say, the principal curvature ki. Thus

where the last equality uses Lemma 2.1. ◆

In this lemma, (1) is a simple criterion for a curve to be principal, while (2)
gives the principal curvature along a curve known to be principal.

6.3 Lemma Let a be a curve cut from a surface M Ã R3 by a plane P. If
the angle between M and P is constant along a, then a is a principal curve
of M.

Proof. Let U and V be unit normal vector fields to M and P (respec-
tively) along the curve a, as shown in Fig. 5.29. Since P is a plane, V is
parallel, that is, V¢ = 0. The constant-angle assumption means that U • V
is constant; thus
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Since U is a unit vector, U¢ is orthogonal to U as well as to V. The same
is of course true of a ¢, since a lies in both M and P. If U and V are lin-
early independent (as in Fig. 5.29) we conclude that U¢ and a ¢ are collinear;
hence by Lemma 6.2, a is principal.

However, linear independence fails only when U = ±V. But then U ¢ = 0,
so a is (trivially) principal in this case as well. ◆

Using this result, it is easy to see that the meridians and parallels of a surface
of revolution M are its principal curves. Indeed, each meridian m is sliced from
M by a plane through the axis of revolution and hence orthogonal to M along
m, while each parallel p is sliced from M by a plane orthogonal to the axis,
and by rotational symmetry such a plane makes a constant angle with M
along p.

Directions tangent to M Ã R3 in which the normal curvature is zero are
called asymptotic directions. Thus a tangent vector v is asymptotic provided
k(v) = S(v) • v = 0, so in an asymptotic direction, M is (instantaneously, at
least) not bending away from its tangent plane.

Using Corollary 2.6 we can get a complete analysis of asymptotic direc-
tions in terms of Gaussian curvature.

6.4 Lemma Let p be a point of M Ã R3.
(1) If K(p) > 0, then there are no asymptotic directions at p.
(2) If K(p) < 0, then there are exactly two asymptotic directions at p, and

these are bisected by the principal directions (Fig. 5.30) at angle J such that

(3) If K(p) = 0, then every direction is asymptotic if p is a planar point;
otherwise there is exactly one asymptotic direction and it is also principal.
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Proof. These cases all derive from Euler’s formula

in Corollary 2.6.
(1) Since k1(p) and k2(p) have the same sign, k(u) is never zero.
(2) Here k1(p) and k2(p) have opposite signs, and we can solve the 

equation 0 = k1(p) cos2J + k2(p) sin2J to obtain the two asymptotic
directions.

(3) If p is planar, then

hence k(u) is identically zero. If just k2(p) = 0, then

is zero only when cos J = 0, that is, in the principal direction u = e2. ◆

We can get an approximate idea of the asymptotic directions at a point p
of a given surface M by picturing the intersection of the tangent plane 
with M near p. When K(p) is negative, this intersection will consist of two
curves through p whose tangent lines (at p) are asymptotic directions (Exer-
cise 5 of Section 53).

Figure 5.31 shows the two asymptotic directions A and A¢ at a point p on
the inner equator of a torus.
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FIG. 5.31

6.5 Definition A regular curve a in M Ã R3 is an asymptotic curve pro-
vided its velocity a ¢ always points in an asymptotic direction.

Thus a is asymptotic if and only if

k S¢( ) = ¢( ) ¢ =a a a• .0



Since S(a ¢) = -U¢, this gives a criterion, U¢ • a ¢ = 0, for a to be asymptotic.
Asymptotic curves are more sensitive to Gaussian curvature than are princi-
pal curves: Lemma 6.3 shows that there are none in regions where K is pos-
itive, but two cross (at an angle depending on K) at each point of a region
where K is negative.

The simplest criterion for a curve in M to be asymptotic is that its accel-
eration a ≤ always be tangent to M. In fact, differentiation of U • a ¢ = 0 gives

so U¢ • a ¢ = 0 (a asymptotic) if and only if U • a ≤ = 0.
The analysis of asymptotic directions in Lemma 6.4 has consequences for

both flat and minimal surfaces. First, a surface M in R3 is minimal if and only
if there exist two orthogonal asymptotic directions at each of its points. In fact,
H(p) = 0 is equivalent to k1(p) = -k2(p), and an examination of the possi-
bilities in Lemma 5.4 shows that k1(p) = -k2(p) if and only if either (a) p is
planar (so the criterion holds trivially) or (b)

which means that the two asymptotic directions are orthogonal.
Thus a surface is minimal if and only if through each point there are two

asymptotic curves that cross orthogonally. This observation gives geometric
meaning to the calculations in Example 4.3, which show that the helicoid is
a minimal surface. In fact, the u- and v-parameter curves of the patch x are
orthogonal since F = 0, and their accelerations are tangent to the surface
since  = U • xuu = 0 and  = U • xvv = 0.

Recall that a ruled surface is swept out by a line moving through R3 (Def-
inition 2.6 in Chapter 4). We have seen, for example, that the helicoid and
saddle surface in Example 4.3 are ruled surfaces. Thus it is no accident that
both these surfaces have K negative, since:

6.6 Lemma A ruled surface M has Gaussian curvature K � 0. Further-
more, K = 0 if and only if the unit normal U is parallel along each ruling of M
(so all points p on a ruling have the same Euclidean tangent plane ).

Proof. A straight line t Æ p + tq is certainly asymptotic since its acceler-
ation is zero and is thus trivially tangent to M. By definition a ruled surface
contains a line through each of its points, so there is an asymptotic direc-
tion at each point. Hence, by Lemma 6.4, K � 0.

Now let a(t) = p + tq be an arbitrary ruling in M. If U is parallel along
a, then S(a ¢) = -U¢ = 0. Thus a is a principal curve with principal curva-
ture k(a ¢) = 0, so K = k1 k2 = 0.

T Mp ( )

K p( ) < = ±0 4with ,J p

¢ ¢ + ¢¢ =U U• •a a 0,
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Conversely, if K = 0 we deduce from Case (3) in Lemma 6.4 that asymp-
totic directions (and curves) in M are also principal. Thus each ruling is
principal (S(a ¢) = k(a ¢)a ¢) as well as asymptotic (k(a ¢) = 0); hence 

U¢ = -S(a ¢) = 0, ◆

and U is parallel along each ruling of M.

We come now to the last and most important of the three types of curves
under discussion.

6.8 Definition A curve a in M Ã R3 is a geodesic of M provided its accel-
eration a ≤ is always normal to M.

Since a ≤ is normal to M, the inhabitants of M perceive no acceleration at
all—for them the geodesic is a “straight line.” A full study of geodesics is
given in later chapters, where, in particular, we examine their character as
shortest routes of travel. Geodesics are far more plentiful in a surface M than
are principal or asymptotic curves. Indeed, Theorem 4.2 of Chapter 7 will
show that given any tangent vector v to M there is a (unique) geodesic with
initial velocity v.

Because the acceleration a ≤ of a geodesic is orthogonal to M, it is orthog-
onal to the velocity a ¢ of a. Thus geodesics have constant speed, since dif-
ferentiation of ||a ¢||2 = a ¢ • a ¢ gives 2a ¢ • a ≤ = 0.

A straight line a(t) = p + tq contained in M is always a geodesic of M
since its acceleration a ≤ = 0 is trivially normal to M. Though they lack any
geometric significance, constant curves are also geodesics, but to avoid clutter
this case is often neglected.

6.9 Example Geodesics of some surfaces in R3.
(1) Planes. If a is a geodesic in a plane P orthogonal to u, then a ¢ • u = 0,

hence a ≤ • u = 0. But a ≤ is by definition normal to P, hence collinear with
u, so a ≤ = 0. Thus a is a straight line. Since as noted above, every such line
is a geodesic, we conclude that the geodesics of P are the straight lines in P.

(2) Spheres. A great circle in a sphere S Ã R3 is a circle cut from S by a
plane P through the center (Fig. 5.32). If a is a constant-speed parametriza-
tion of any circle, we know that its acceleration a ≤ points toward the center
of the circle. In the case of a great circle that center is also the center of the
sphere S. Thus a ≤ is normal to S, so a is a geodesic of S.

We can find such a geodesic with any given initial velocity vp (the required
plane P passes through p orthogonal to p ¥ v). Hence by the uniqueness
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feature mentioned earlier, this construction yields all the geodesics of S.
Explicitly, the geodesics of a sphere are the constant-speed parametrizations of
its great circles (Fig. 5.32).

(3) Cylinders. The geodesics of, say, the circular cylinder M: x2 + y2 = r2

are all curves of the form

To see this, write an arbitrary curve in M as

A vector normal to M must have z coordinate zero. Thus if a is a geodesic,
h≤ = 0, so h(t) = ct + d. Since the speed of a geodesic is constant, the speed
(r2J¢2 + h¢2)1/2 of a is constant, so J ¢ is constant. Hence J(t) = at + b.

When both constants a and c are nonzero, a is a helix on M. In extreme
cases, a parametrizes a ruling if a = 0 and a cross-sectional circle if c = 0.◆

A closed geodesic is a geodesic segment a : [a, b] Æ M that is smoothly
closed (g ¢(b) = g ¢(a)) and hence extendible by periodicity over the whole real
line. Thus closed geodesics and periodic geodesics are effectively the same
thing. In the surfaces above, every geodesic of the sphere is closed, while on
the cylinder only the cross-sectional circles are closed.

6.10 Remark Here is a simple geometric way to find examples of geo-
desics. If a unit-speed curve a in M lies in a plane P everywhere orthogonal
to M along a, then a is a geodesic of M. Proof. Since a has constant speed,
a ≤ is always orthogonal to a ¢, but these two vectors lie in a plane orthogo-
nal to M, and a ¢ is always tangent to M. Hence a ≤ must be orthogonal to
M, so a is geodesic.

Using this remark we could have found all the geodesics in the preceding
example except the helices in the cylinder. It shows at once that on a surface
of revolution M, all meridians are geodesics, since they are cut from M by
planes passing through the axis of rotation and hence orthogonal to M.

a J Jt r t r t h t( ) = ( ) ( ) ( )( )cos sin ., ,

a t r at b r at b ct d( ) = +( ) +( ) +( )cos sin ., ,

FIG. 5.32
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The essential properties of the three types of curves we have considered
can be summarized as follows:

Principal curves k(a ¢) = k1 or k2, S(a ¢) collinear a ¢,
Asymptotic curves k(a ¢) = 0, S(a ¢) orthogonal to a ¢, a ≤ tangent to M
Geodesics a ≤ normal to M

Exercises

1. Prove that a curve a in M is a straight line of R3 if and only if a is both
geodesic and asymptotic.

2. To which of the three types—principal, asymptotic, geodesic—do the fol-
lowing curves belong?

(a) The top circle a of a torus (Fig. 5.33).
(b) The outer equator b of a torus.
(c) The x axis in M: z = xy.

(Assume constant-speed parametrizations.)

3. (Closed geodesics.) Show:
(a) In a surface of revolution, a parallel through a point a(t) on the profile
curve is a (necessarily closed) geodesic if and only if a ¢(t) is parallel to the
axis of revolution.
(b) There are at least three closed geodesics on every ellipsoid (Ex. 9 of
Sec. 4.2).

4. Let a be an asymptotic curve in M Ã R3 with curvature k > 0.
(a) Prove that the binormal B of a is normal to the surface along a, and
deduce that S(T ) = tN.
(b) Show that along a the surface has Gaussian curvature K = -t 2.
(c) Use (b) to find the Gaussian curvature of the helicoid (Ex. 4.3).

5. Suppose that a curve a lies in two surfaces M and N that make a con-
stant angle along a (that is, U • V constant). Show that a is principal in M
if and only if principal in N.

FIG. 5.33
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6. If x is a patch in M, prove that a curve a (t) = x(a1(t), a2(t)) is
(a) Principal if and only if

(b) Asymptotic if and only if a1¢2 + 2a1¢a2¢ + a2¢2 = 0.

7. Let a be a unit-speed curve in M Ã R3. Instead of the Frenet frame field
on a, consider the Darboux frame field T, V, U—where T is the unit tangent
of a, U is the surface normal restricted to a, and V = U ¥ T (Fig. 5.34).

(a) Show that

where k = S(T ) • T is the normal curvature k(T ) of M in the T direction,
and t = S(T ) • V.
The new function g is called the geodesic curvature of a.

(b) Deduce that a is

8. If a is a (unit speed) curve in M, show that
(a) a is both principal and geodesic if and only if it lies in a plane every-
where orthogonal to M along a.
(b) a is both principal and asymptotic if and only if it lies in a plane every-
where tangent to M along a.
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9. On the monkey saddle M (see Fig. 5.19) find three asymptotic curves and
three principal curves passing through the origin 0. (This is possible only
because 0 is a planar umbilic point.)

10. Let a be a regular curve in M Ã R3, and let U be the unit normal of M
along a. Show that a is a principal curve of M if and only if the ruled surface
x(u, v) = a(u) + vU(u) is flat.

11. A ruled surface is noncylindrical if its rulings are always changing direc-
tions; thus for any director curve, d ¥ d ¢ π 0. Show that:

(a) a noncylindrical ruled surface has a parametrization

for which ||d || = 1 and s ¢ • d¢ = 0.
(b) for this parametrization,

The curve s is called the striction curve, and the function p is the distribution
parameter.

(c) Deduce from the behavior of K on each ruling that the route of the
striction curve is independent of parametrization, and hence that the dis-
tribution parameter is essentially a function on the set of rulings.

(Hint: For (a), find f such that s = a + fd. For (b), show that s ¢ ¥ d = pd ¢.)

12. In each case below, find the striction curve and distribution parameter,
and check the formula for K in (b) of the preceding exercise.

(a) the helicoid in Example 4.3.
(b) the tangent surface of a curve (Ex. 13 of Sec. 4).
(c) both sets of rulings of the saddle surface in Example 4.3.

(Hint: In the usual ruled parametrization (u, 0, 0) + v(0, 1, u), this last vector
must be replaced by a unit vector in order to apply Ex. 11. The curvature
formula in Ex. 4.3 will then change.)

13. If x(u, v) = a(u) + vd(u) parametrizes a noncylindrical ruled surface,
let L(u) be the ruling through a(u). Show that:

(a) If Je is the smallest angle from L(u) to L(u + e), and de is the orthog-
onal distance from L(u) to L(u + e), then 

Thus the distribution parameter is the rate of turning of L.
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(b) There is a unique point pe of L(u) that is nearest to L(u + e), and 

lim
eÆ0

pe = s(u)

(Fig. 5.35). (This gives another characterization of the striction curve s.)

(Hint: The common perpendicular to L(u) and L(u + e) is in the direction
of d(u) ¥ d(u + e) ª ed(u) ¥ d ¢(u).)

14. Let x(u, v) = a(u) + vd(u), with ||d || = 1, parametrize a flat ruled surface
M. Show that:

(a) If a¢ is always zero, then M is a generalized cone.
(b) If d¢ is always zero, then M is a generalized cylinder.
(c) If both a ¢ and d ¢ are never zero, then M is the tangent surface of its
striction curve. (Hint: Parametrize by s + vd as in Ex. 11, giving s unit
speed. Use K = 0 to show that T = s ¢ and d are collinear.)

These are only the extreme cases. For example, a flat piece of paper could be
bent cylindrically at one end and conically at the other. Note that of the three
types, only the cylinder has rulings that are entire straight lines.

15. (Enneper’s minimal surface.) Prove:
(a) The mapping x: R2 Æ R3 given by

though not one-to-one, is regular, and hence defines an immersed surface E.
(b) x is a principal parametrization of E, that is, the u- and v-parameter
curves are principal curves.
(c) E is a minimal surface.
(d) The asymptotic curves of E are u Æ x(u, ±u).

16. (Continuation by computer graphics.)
(a) Plot x(D) Ã E, for D: -3 � u, v � 3. (Note that by the preceding exer-
cise the parameter curves are principal.)
(b) Show that the Euclidean isometry (x, y, z) Æ (-y, x, -z) carries E to itself.

x u v u
u

uv v
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vu u v, , , ,( ) = - + - + -Ê
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2

3
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3 3
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Thus the z < 0 half of E is the mirror image of a 90° rotation of the z > 0
half. Further properties of E are developed in Exercise 10 of Section 6.8.

17. A right conoid is a ruled surface whose rulings all pass orthogonally
through a fixed axis (Fig. 5.36). Taking this axis as the z axis of R3, we find
the parametrization

where the u-parameter curves are the rulings. (This reversal of u and v from
earlier exercises makes it clear that the helicoid is a conoid.)

(a) Find the Gaussian and mean curvature of x.
(b) Show that the surface is noncylindrical if J¢ is never zero, and in this
case, find the striction curve and parameter of distribution.

18. (Computer graphics.)
(a) A right conoid has base curve a(v) = (0, 0, cos2v) and director curve
d (v) = (cosv, sinv, 0). For the resulting ruled parametrization (with u-
parameter curves as rulings), plot the portion with -2.5 � u � 2.5, 0 � v
� p.
(b) The axis of a right conoid is the z axis, and its rulings pass through
every point of the circle y2 + z2 = r2 in the plane x = c. Verify that 

x(u, v) = (uc, urcosv, rsinv) 

parametrizes this conoid, and for r = 2, c = 1 plot the portion between 
the axis and the circle.
(c) Same as (b) except that the circle is replaced by the curve y = sinz.
Find a ruled parametrization, and for c = 4, plot the region with 0 � z
� 4p and rulings running from x = -4 to x = +4.

19. For curves b and d in R3, let x(u, v) = b(u) + vd(u). Find, in simplest
terms:

x u v u v u v h v, cos sin( ) = ( ) ( ) ( )( )J J, , ,

FIG. 5.36



(a) A necessary and sufficient condition that x parametrize a (ruled)
surface in R3.
(b) A formula for the Gaussian curvature K of this surface. (Hint: Show
N = 0.)

5.7 Surfaces of Revolution

The geometry of a surface of revolution is rather simple, yet these surfaces
exhibit a wide variety of geometric behavior; thus they offer a good field for
experiment.

We apply the methods of Section 4 to study an arbitrary surface of revolu-
tion M, with the usual parametrization, given in Example 2.4 of Chapter 4 by

Here h(u) > 0 is the radius of the parallel at distance g(u) along the axis of
revolution of M, as shown in Fig. 4.14. This geometric significance for g and
h means that our results do not depend on the particular position of M rel-
ative to the coordinate axes of R3.

Because g and h are functions of u alone, we can write

and hence

Here E is the square of the speed of the profile curve and hence of all the
meridians (u-parameter curves), while G is the square of the speed of the par-
allels (v-parameter curves). Next we find, successively,

Taking second derivatives gives
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Hence

Since F =  = 0, x is a principal parametrization (Exercise 8 of Section 4),
and for the shape operator S derived from U,

This is an analytical proof that the meridians and parallels of a surface of
revolution are its principal curves. Furthermore, if the corresponding princi-
pal curvature functions are denoted by km and kp , instead of k1 and k2, we
have

(1)

Thus the Gaussian curvature of M is

(2)

This formula defines K as a real-valued function on the domain of the profile
curve

By the conventions of Section 4, K(u) is the Gaussian curvature K(x(u, v)) of
M at every point of the parallel through a (u). The same is true for the other
functions above. The rotational symmetry of M about its axis of revolution
means that its geometry is “constant on parallels”—completely determined
by the profile curve.

In the special case where the profile curve passes at most once over each
point of the axis of rotation, we can usually arrange for the function g to be
simply g(u) = u (Example 2.8 of Chapter 4). Then the formulas (1) and (2)
above reduce to

(3)
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7.1 Example Surfaces of revolution.
(1) Torus of revolution T. The usual parametrization x in Example 2.5 of

Chapter 4 has

for constants 0 < r < R. Although the axis of revolution is now the z axis,
formulas (1) and (2) above remain valid, and we compute

This gives an analytical proof that the Gaussian curvature of the torus is 
positive on the outer half and negative on the inner half. K has its maximum
value 1/r(R + r) on the outer equator (u = 0), its minimum value -1/r(R - r)
on the inner equator (u = p), and is zero on the top and bottom circles 
(u = ±p /2).

(2) Catenoid. The curve y = c cosh(x/c) is a catenary; its shape is that of
a chain hanging under the influence of gravity. The surface obtained by rotat-
ing this curve around the x axis is called a catenoid (Fig. 5.37). From the for-
mulas (3) we find,
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and hence

Since its mean curvature H is zero, the catenoid is a minimal surface. Its
Gaussian curvature interval is -1/c2 � K < 0, with minimum value K = -1/c2

on the central circle (u = 0). ◆

7.2 Theorem If a surface of revolution M is a minimal surface, then M
is contained in either a plane or a catenoid.

Proof. M is parametrized as usual by

with u in a (possibly infinite) interval I.

Case 1. g¢ is identically zero. Then g is constant, so M is part of a plane
orthogonal to the axis of revolution.

Case 2. g¢ is never zero. By Exercise 8 in Section 4.2, M has a parame-
trization of the form

The formulas for km and kp in (3) above then show that the minimality con-
dition is equivalent to

Because u does not appear explicitly in this differential equation, there is a
standard elementary way to solve it. We merely record that the solution is

where a π 0 and b are constants. Thus M is part of a catenoid.
Case 3. g¢ is zero at some points, nonzero at others. This cannot happen.

For definiteness, suppose that g¢(u) > 0 for u < u0 but g¢(u0) = 0. By 
Case 2, the profile curve (g(u), h(u), 0) is a catenary for u < u0. The shape 
of the catenary makes it clear that slope h¢/g¢ cannot approach infinity 
as u Æ u0. ◆
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This result shows that catenoids are the only complete nonplanar surfaces of
revolution that are minimal. (Completeness, discussed in Chapter 8, implies
that the surface cannot be part of a larger surface.)

Helicoids and catenoids are called the elementary minimal surfaces. Two
others are given in the exercises for this chapter (Exercise 5 in Section 5 and
Exercise 15 in Section 6). Soap-film models of an immense variety of minimal
surfaces can easily be exhibited by the methods given in [dC], where the term
“minimal” is explained.

The expression , which appears so frequently in the formulas
above, is just the speed of the profile curve a(u) = (g(u), h(u), 0). Thus we
can radically simplify these formulas by a reparametrization that has unit
speed. The surface of revolution is unchanged; it has merely been given a new
parametrization, called canonical.

7.3 Lemma For a canonical parametrization of a surface of revolution,

and the Gaussian curvature is

Proof. Since g¢2 + h¢2 = 1 for a canonical parametrization, these expres-
sions for E, F, and G follow immediately from those at the start of this
section. The formula for K in (2) becomes

But this can be simplified. Differentiation of g¢2 + h¢2 = 1 gives g¢ g≤ = -h¢
h≤, and when this is substituted above, we get K = -h≤/h. ◆

The effect of using a canonical parametrization is to shift the emphasis
from measurements in the space outside M (for example, along the axis of
revolution) to measurement within M. This important idea will be developed
more fully as we proceed.

7.4 Example Canonical parametrization of the catenoid (c = 1).
An arc length function for the catenary a(u) = (u, cosh u) is s(u) = sinh u.
Hence a unit-speed reparametrization is
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as indicated in Fig. 5.38. The resulting canonical parametrization of the
catenoid is given by

Hence by the preceding lemma,

This formula for K in terms of x̄ is consistent with the formula 

found in Example 6.1 for the parametrization x1. In fact, since s(u) = sinh u,
we have

The simple formula for K in Lemma 7.3 suggests a way to construct sur-
faces of revolution with prescribed Gaussian curvature. Given a function 

K = K(u) on some interval,

first solve the differential equation h≤ + Kh = 0 for h, subject to initial con-
ditions h(0) > 0 and |h¢ (0)| < 1. (The first of these conditions is a convenience;
the second is a necessity since we must have g¢2 + h¢2 = 1.)

To get a canonical parametrization, we need a function g satisfying the
equation g¢2 + h¢2 = 1. Evidently,

will do the job.
We conclude that for any interval around 0 on which the initial conditions
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both hold, revolving the profile curve (g(u), h(u), 0) around the x axis
produces a surface that has, by Lemma 7.3, Gaussian curvature 

A natural use of this scheme is to look for surfaces that have constant cur-
vature. Consider first the K positive case.

7.5 Example Surfaces of revolution with constant positive curvature.
We apply the procedure to the constant function K = 1/c2. The differential

equation h≤ + h/c2 = 0 has general solution

The constant b represents only a translation of coordinates so we may as well
set b = 0. As usual, nothing is lost by requiring h > 0; hence a > 0. Thus the
functions

give rise to a surface of revolution Ma with constant Gaussian curvature

As mentioned above, the conditions h > 0 and |h¢| < 1 determine the largest
interval I on which the procedure works. The constant c is fixed, but the con-
stant a is at our disposal, and it distinguishes three cases.

Case 1. a = c. Here

(4)

Thus the maximum interval I is and the profile curve (g(u),
h(u)) is a semicircle. Revolution about the x axis produces a sphere 
S of radius c—except for its two points on the axis.

Case 2. 0 < a < c. Here h is positive on the same interval as above and 
|h¢| < 1 is always true, so g is well defined. The profile curve has the same
length , but it now forms a shallower arch, which rests on the x axis at
±a*, where (Fig. 5.39). As a shrinks down from c to 0, one 
can check that a* increases from c to . The resulting surface of
revolution, round when a = c, first becomes football-shaped and then grows
ever thinner, becoming, for a small, a needle of length just less than .

By contrast with Case 1, the intercepts (±a*, 0, 0) cannot be added to M
now since this surface is actually pointed at each end (Fig. 5.39).
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The differential equation has delicately adjusted the shape
of Ma so that its principal curvatures are no longer equal but still give

Case 3. a > c. Here the maximum interval is shorter than in Case 1. The
formula for g(u) in (4) shows that the endpoints now are ±a*, where a* < c is
determined by . Thus,

As a increases from a = c, the resulting surface of revolution Ma is at first
somewhat like the outer half of a torus. But when a is very large, it becomes
a huge circular band (Fig. 5.40), whose very short profile curve is sharply
curved (km must be large since ).

A corresponding analysis for constant negative curvature leads to an 
infinite family of surfaces of revolution with (Exercises 7 and 8).
The simplest of these surfaces is

7.6 Example The bugle surface B. The profile curve of B (in the xy plane)
is characterized by this geometric condition: It starts at the point (0, c) and
moves so that its tangent line reaches the x axis after running for distance
exactly c. This curve, a tractrix, can be described analytically as

a(u) = (u, h(u)), u > 0,
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where h is the solution of the differential equation

such that h(u) Æ c as u Æ 0. The resulting surface of revolution B is called
a bugle surface or tractroid (Fig. 5.41). Using the differential equation above,
we deduce from the earlier formulas (3) that the principal curvatures of B are

Thus the bugle surface has constant negative curvature

This surface cannot be extended across its rim—not part of B—to form a
larger surface in R3 since km(u) Æ • as u Æ 0. ◆

When this surface was first discovered, it seemed to be the analogue, for K
a negative constant, of the sphere; it was thus called a pseudosphere. However,
as we shall see later on, the true analogue of the sphere is quite a different
surface and cannot be found in R3.

Exercises

1. Find the Gaussian curvature of the surface obtained by revolving the
curve around the x axis. Sketch this surface and indicate the regions
where K > 0 and K < 0.
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2. (a) Show that when y = f(x) is revolved around the x axis, the Gaussian
curvature K(x) has the same sign (-, 0, +) as -f ≤(x) for all x.
(b) Deduce that for a surface of revolution with arbitrary axis, the Gauss-
ian curvature K is positive on parallels through convex intervals on the
profile curve (where the curve bulges away from the axis) and negative on
parallels through concave intervals (where the curve sags toward the axis).

3. Prove that a flat surface of revolution is part of a plane, cone, or 
cylinder.

4. (Computer.)
(a) Write computer commands that, given a profile curve u Æ (g(u), h(u)),
(i) plot the resulting surface of revolution for a � u � b, and (ii) return its
Gaussian curvature K(u).
(b) Test (a) on the torus and catenoid in Example 7.1.

5. If is the usual polar coordinate function on the xy plane,
and f is a differentiable function, show the M: z = f(r) is a surface of revo-
lution and that its Gaussian curvature K is given by

6. Find the Gaussian curvature of the surface M: . Sketch this
surface, indicating the regions where K > 0 and K < 0.

7. (Surfaces of revolution with negative curvature ) As in the cor-
responding positive case, there is a family of such surfaces, separated into
two subfamilies by a special surface. Essentially all these surfaces are given,
using canonical parametrization, by solutions of as follows:

(a) If 0 < a < c, let Ma be the surface given by h(u) = a sinh , u > 0.
Show that its profile curve (g(u), h(u)) leaves the origin with slope

and rises to a maximum height of .
(b) If a = c, let B

–
be the surface given by h(u) = ceu/c, u < 0. Show that 

its mirror image B, given by h(u) = ce-u/c, u > 0, is the bugle surface in
Example 7.6.
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(c) If b > c, let Mb be the surface given by . Show that
as |u| increases from 0, its profile curve rises symmetrically from height b

to 

height .

Sample profile curves of all three types are shown in Fig. 5.42, where Ma and
Mb have been translated along the axis of revolution. Explicit formulas for
the profile curves in (a) and (b) involve elliptic integrals (see [G]).

8. (a) Taking c = 1 for simplicity, show that the tractrix has a parame-
trization (g, h) with

(b) (Computer graphics.) Plot a view of the resulting bugle surface similar
to that in Fig. 5.41.

9. In a twisted surface of revolution, as points rotate around the axis they
also move evenly in the axis direction. Explicitly, if the original surface has
a usual parametrization in terms of functions g(u) and h(u), then the twisted
surface has parametrization

where p is a constant.
(a) Find a parametrization of the twisted bugle surface D (Dini’s surface) 
with data as in the preceding exercise and .
(b) (Computer.) Plot the surface D in (a) for 0.01 � u � 2 and 0 � v � 6p.
(Impose smoothness and view the surface from a point with x < 0.)
(c) Show that D has constant negative curvature.

5.8 Summary

The shape operator S of a surface M in R3 measures the rate of change of a
unit normal U in any direction on M and thus describes the way the shape
of M is changing in that direction. If we imagine U as the “first derivative”
of M, then S is the “second derivative.” But the shape operator is an alge-
braic object consisting of linear operators on the tangent planes of M. And
it is by an algebraic analysis of S that we have been led to the main geomet-
ric invariants of a surface in R3: its principal curvatures and directions, and
its Gaussian and mean curvatures.
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Chapter 6

Geometry of Surfaces in R3

263

Now that we know how to measure the shape of a surface M in R3, the next
step is to see how the shape of M is related to its other properties. Near each
point of M, the Gaussian curvature has a strong influence on shape (Remark
3.3 of Chapter 5), but we are now interested in the situation in the large—
over the whole extent of M. For example, what can be said about the shape
of M if it is compact, or flat, or both?

In the early 1800s Gauss raised a question that led to a new and deeper
understanding of what geometry is: How much of the geometry of a surface
in R3 is independent of its shape? At first glance this seems a strange ques-
tion—what can we possibly say about a sphere, for example, if we ignore the
fact that it is round? To get some grip on Gauss’s question, let us imagine
that the surface M Ã R3 has inhabitants who are unaware of the space outside
their surface, and thus have no conception of its shape in R3. Nevertheless,
they will still be able to measure the distance from place to place in M and
find the area of regions in M. We shall see that, in fact, they can construct
an intrinsic geometry for M that is richer and no less interesting than the
familiar Euclidean geometry of the plane R2.

6.1 The Fundamental Equations

To study the geometry of a surface M in R3 we shall apply the Cartan
methods outlined in Chapter 2. As with the Frenet theory of a curve in R3,
this requires that we put frames on M and examine their rates of change along
M. Formally, a Euclidean frame field on M Ã R3 consists of three Euclidean
vector fields (Definition 3.7, Chapter 4) that are orthonormal at each point.
Such a frame field can be fitted to its surface as follows.



1.1 Definition An adapted frame field E1, E2, E3 on a region O in M Ã R3

is a Euclidean frame field such that E3 is always normal to M (hence E1 and
E2 are tangent to M) (Fig. 6.1).

Thus the normal vector field denoted by U in the preceding chapter now
becomes E3. For brevity we often refer to an adapted frame field “on M,” but
the actual domain of definition is in general only some region in M, since an
adapted frame field need not exist on all of M.

1.2 Lemma There is an adapted frame field on a region O in M Ã R3 if
and only if O is orientable and there exists a nonvanishing tangent vector
field on O.

Proof. This condition is certainly necessary, since E3 orients O, and E1

and E2 are unit tangent vector fields. To show that it is sufficient, let O be
oriented by a unit normal vector field U, and let V be a tangent vector field
that does not vanish on O. But then it is easy to see that

is an adapted frame field on O. ◆

1.3 Example Adapted frame fields.
(1) Cylinder M: x2 + y2 = r2. The gradient of g = x2 + y2 leads to the unit

normal vector field Obviously the unit vector field U3 is
tangent to M at each point. Setting E2 = U3 ¥ E3, we then get the adapted
frame field

E xU yU r3 1 2= +( ) .

E
V
V

E U E E U1 2 1 3= = ¥ =, ,
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on the whole cylinder M (Fig. 6.2).

(2) Sphere S: x2 + y2 + z2 = r2. The outward unit normal

is defined on all of S, but as we shall see in Chapter 7, every tangent vector
field on S must vanish somewhere. For example, the “due east” vector field
V = -yU1 + xU2 is zero at the the north and south poles (0, 0, ±r). Thus the
adapted frame field

(Fig. 6.3) is defined on the region O in S gotten by deleting the north and
south poles.
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Lemma 1.2 implies in particular that there is an adapted frame field on the
image x(D) of any patch in M; thus such fields exist locally on any surface 
in R3.

Now we shall bring the connection equations (Theorem 7.2 of Chapter 2)
to bear on the study of a surface M in R3. Let E1, E2, E3 be an adapted frame
field on M. By moving each frame E1(p), E2(p), E3(p) over a short interval on
the normal line at each point p, we can extend the given frame field to one
defined on an open set in R3. Thus the connection equations

are available for use. We shall apply them only to vectors v tangent to M. In
particular, the connection forms wij, become 1-forms on M in the sense of
Section 7 of Chapter 2. Thus we have

1.4 Theorem If E1, E2, E3 is an adapted frame field on M Ã R3, and v is
tangent to M at p, then

The usual interpretation of the connection forms may be read from these
equations, and it bears repetition: wij(v) is the initial rate at which Ei rotates
toward Ej as p moves in the v direction. Since E3 is a unit normal vector field
on M, the shape operator of M can be described by connection forms.

1.5 Corollary Let S be the shape operator gotten from E3, where E1, E2,
E3 is an adapted frame field on M Ã R3. Then for each tangent vector v to
M at p,

Proof. By definition, S(v) = -—vE3. The connection equation for i = 3 then
gives the result, since the connection form w = (wij) is skew-symmetric:
wij = -wji. ◆

In addition to its connection forms, the adapted frame field E1, E2, E3 also
has dual 1-forms q1, q2, q3 (Definition 8.1 of Chapter 2) that give the co-
ordinates qi(v) = v • Ei(p) of any tangent vector vp with respect to the frame
E1(p), E2(p), E3(p). As with the connection forms, the dual forms will be
applied only to vectors tangent to M, so they become forms on M. This
restriction is fatal to q3, for if v is tangent to M, it is orthogonal to E3, so
q3(v) = v • E3(p) = 0. Thus q3 is identically zero on M.

S E Ev v p v p( ) = ( ) ( ) + ( ) ( )w w13 1 23 2 .

— = ( ) ( ) £ £( )
=

Âv i ij j
j

E E iw v p
1

3

1 3 .

— = ( ) ( )Âv i ij jE Ew v p
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Because of the skew-symmetry of the connection form, we are left with
essentially only five 1-forms:

q1, q2 provide a dual description of the tangent vector fields E1, E2;
w12 gives the rate of rotation of E1, E2;
w13, w23 describe the shape operator derived from E3.

1.6 Example The sphere. Consider the adapted frame field E1, E2, E3

defined on the (doubly punctured) sphere S in Example 1.3. By extending 
this frame field to an open set of R3 we get the spherical frame field given 
in Example 6.2 of Chapter 2, provided the indices of the latter are shifted by
1 Æ 3, 2 Æ 1, 3 Æ 2. Thus, in terms of the spherical coordinate functions,
Example 8.4 of Chapter 2 gives

Because all forms (including functions) are now restricted to the surface S,
the spherical coordinate function r has become a constant: the radius r of
the sphere.

In general, the forms associated with an adapted frame field obey the fol-
lowing remarkable set of equations.

1.7 Theorem If E1, E2, E3 is an adapted frame field on M Ã R3, then its
dual forms and connection forms on M satisfy:

(1)

(2)

(3)

(4)

Proof. We merely apply the Cartan structural equations in Theorem 8.3
of Chapter 2. The first structural equation,

d i ij
j

jq w q= ŸÂ

d
d

First structural equations

Symmetry equation

d Gauss equation

d
d

Codazzi equations

q w q
q w q

w q w q

w w w
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yields (1) and (2) above. In fact, for i = 1, 2, we get (1), since q3 = 0 on the
surface M. But q3 = 0 implies dq3 = 0, so for i = 3 we get (2).

Then the second structural equation yields the Gauss (3) and Codazzi
(4) equations. ◆

Because connection forms are skew-symmetric and a wedge product of 1-
forms satisfies f Ÿ y = -y Ÿ f, the fundamental equations above can be
rewritten in a variety of equivalent ways. However we shall stick to the index
pattern used above, which, on the whole, seems the easiest to remember.

We emphasize that the forms introduced in this section describe not the
surface M directly, but only the particular adapted frame field E1, E2, E3 from
which they are derived: A different choice of the frame field will produce dif-
ferent forms. Nevertheless, the six fundamental equations in Theorem 1.7
contain a tremendous amount of information about the surface M Ã R3, and
we shall call on each in turn as we come to a geometric situation that it
governs. For example, since w13 and w23 describe the shape operator of M,
the Codazzi equations (4) express the rate at which the shape of M is chang-
ing from one point to another.

The first of the following exercises shows how the Cartan approach auto-
matically singles out the three types of curves considered in Chapter 5,
Section 6.

Exercises

1. Let a be a unit-speed curve in M Ã R3. If E1, E2, E3 is an adapted frame
field such that E1 restricted to a is its unit tangent T, show that

(a) a is a geodesic of M if and only if w12(T) = 0.
(b) If E3 = E1 ¥ E2, then

where g, k, and t are the functions defined in Exercise 7 of Section 5.6.
(Hint: If T = E1 along a, then Ei¢ = —E1Ei along a.)

2. (Sphere.) For the frame field in Example 1.6:
(a) Verify the fundamental equations (Thm. 1.7).
(b) Deduce from the formulas for q1 and q2 that

(c) Use Corollary 1.5 to find the shape operator S of the sphere.

E
r

E

E E
r

1 1

2 2

1
0

0
1

J
j

j

J j

[ ] = [ ] =

[ ] = [ ] =

cos
,
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,

,
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3. Give a new proof that shape operators are symmetric by using the sym-
metry equation (Thm. 1.7).

6.2 Form Computations

From now on, our study of the geometry of surfaces will be carried on mostly
in terms of differential forms, so the reader may wish to look back over their
general properties in Sections 4 and 5 of Chapter 4. Increasingly, we shall
tend to compare M with the Euclidean plane R2. Thus, if E1, E2, E3 is an
adapted frame field on M Ã R3, we say that E1, E2 constitutes a tangent frame
field on M. Any tangent vector field V on M may be expressed in terms of
E1 and E2 by the orthonormal expansion

To show that two forms are equal, we do not have to check their values on
all tangent vectors, but only on the “basis” vector fields E1, E2. (See the
remarks preceding Example 4.7 of Chapter 4). Explicitly: 1-forms f and y are
equal if and only if

2-forms m and v are equal if and only if

The dual forms q1, q2 are, as we have emphasized, merely another descrip-
tion of the tangent frame field E1, E2; they are completely characterized by
the equations

These forms provided a “basis” for the forms on M (or, strictly speaking, on
the region of definition of E1,E2).

2.1 Lemma (The Basis Formulas) Let q1, q2 be the dual 1-forms of E1,
E2 on M. If f is a 1-form and m a 2-form, then

(1) f = f(E1)q1 + f(E2)q2,
(2) m = m(E1, E2)q1 Ÿ q2.

Proof. Apply the equality criteria above, observing for (2) that by defin-
ition of the wedge product,

q di j ijE i j( ) = £ £( )1 2, .

m E E v E E1 2 1 2, ,( ) = ( ).

f y f yE E E E1 1 2 2( ) = ( ) ( ) = ( )and ;

V V E E V E E= ( ) + ( )• • .1 1 2 2
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◆

Assuming throughout that the forms q1, q2, w12, w13, w23 derive as in Section
1 from an adapted frame field E1, E2, E3 on a region in M, let us see what
some of the concepts introduced in Chapter 5 look like when expressed in
terms of forms. We begin with the analogue of Lemma 3.4 of Chapter 5.

2.2 Lemma (1) w13 Ÿ w23 = Kq1 Ÿ q2

(2) w13 Ÿ q2 + q1 Ÿ w23 = 2Hq1 Ÿ q2.

Proof. To apply the definitions K = det S, 2H = trace S, we shall find the
matrix of S with respect to E1 and E2. As in Corollary 1.5, the connection
equations give

Thus the matrix of S is

Now, using the second formula in Lemma 2.1, what we must show is that 
(w13 Ÿ w23) (E1, E2) = K and (w13 Ÿ q2 + q1 Ÿ w23) (E1, E2) = 2H. But

and a similar computation gives the trace formula. ◆

Comparing the first formula above with the Gauss equation (3) in Theorem
1.7, we get

2.3 Corollary dw12 = -Kq1 Ÿ q2.

We shall call this the second structural equation,† and derive from it a new
interpretation of Gaussian curvature: w12 measures the rate of rotation of
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tangent frame field E1, E2—and since K determined the exterior derivative
dw12, it becomes a kind of “second derivative” of E1, E2.

For example, on a sphere of radius r, the formulas in Example 1.6 give

But

Thus the second structural equation gives the expected result,
As we have emphasized, a frame field on a surface is most efficient when

it is derived in some natural way from the geometry of that surface, as with
the Frenet frame field in the analogous case of a curve. Here is an important
example.

2.4 Definition A principal frame field on M Ã R3 is an adapted frame
field E1, E2, E3 such that at each point E1 and E2 are principal vectors of M.

So long as its domain of definition contains no umbilics, a principal frame
field is uniquely determined—except for changes of sign—by the two princi-
pal directions at each point.

Occasionally it may be possible to get a principal frame field on an entire
surface. For example, on a surface of revolution, we can take E1 tangent to
meridians, E2 tangent to parallels. In general, however, about the best we can
do is as follows.

2.5 Lemma If p is a nonumbilic point of M Ã R3, then there exists a prin-
cipal frame field on some neighborhood of p in M.

Proof. Let F1, F2, F3 be an arbitrary adapted frame field on a neighbor-
hood N of p. Since p is not umbilic, we can assume (by rotating F1, F2 if
necessary) that F1(p) and F2(p) are not principal vectors at p. By hypothe-
sis k1(p) π k2(p); hence by continuity, k1 and k2 remain distinct near p. On
a small enough neighborhood N of p, all these conditions are thus in force.

Let Sij be the matrix of S with respect to F1, F2. It is now just a stan-
dard problem in linear algebra to compute—simultaneously at all points of
N—eigenvectors of S, that is, principal vectors of M. In fact, at each point
the tangent vector fields.

V S F k S F

V k S F S F

1 12 1 1 11 2

2 22 1 12 2

= + -( )
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,

2
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give eigenvectors of S. (This can be checked by a direct computation if
one does not care to appeal to linear algebra.) Furthermore, the function 
S12 = S(F1) • F2 is never zero on our selected neighborhood N, so ||V1|| and
||V2|| are never zero. Thus the vector fields

consist only of principal vectors, so E1, E2, E3 = F3 is a principal frame field
on N. ◆

If E1, E2, E3 is a principal frame field on M, then the vector fields E1 and
E2 consist of eigenvectors of the shape operator derived from E3. Thus we
can label the principal curvature functions so that S(E1) = k1E1 and 
S(E2) = k2E2. Comparison with Corollary 1.5 then yields

Thus the basis formula (1) in Lemma 2.1 gives

(*)

This leads to an interesting version of the Codazzi equations.

2.6 Theorem If E1, E2, E3 is a principal frame field on M Ã R3, then

Proof. The Codazzi equations (Theorem 1.7) read

The proof is now an exercise in the calculus of forms as discussed in
Chapter 4, Section 4. Substituting from (*) above in the first of these equa-
tions, we get

hence

If we substitute the structural equation dq1 = w12 Ÿ q2, this becomes
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Now apply these 2-forms to the pair of vector fields E1, E2 to obtain

hence

The other required equation derives in the same way from the Codazzi
equation dw23 = w21 Ÿ w13. ◆

Note that for a principal frame field, w12(v) tells how the principal direc-
tions are changing in the v direction.

Exercises

1. (Cylinder.) Restricting the cylindrical frame field (Example 6.2(1) in Ch.
2) to the cylinder x2 + y2 = r2 and reversing indices 1 and 3 gives the adapted
frame field in Example 1.3(1). In Chapter 2 we found that the only nonzero
connection forms of this frame field were w23 = -dJ = -w32 (new indices).

(a) Express the dual forms q1, q2 of this frame field in terms of cylindrical
coordinates r, J, z. (Hint: See end of Sec. 8, Ch. 2.)
(b) Verify the fundamental equations (Thm. 1.7) in this case.
(c) Express the shape operator of M in terms of cylindrical coordinates,
showing that the frame field in (a) is principal.
(d) Use Lemma 2.2 to find K and H.

2. (a) If E1, E2 is a tangent frame field on M with connection form w12,
show that

(Hint: Write w12 = f1q1 + f2q2, where fi = w12(Ei), and use Cor. 2.3.)
(b) Check this formula on the sphere in Example 1.6.

6.3 Some Global Theorems

We have claimed all along that the shape operator S is the analogue for a
surface in R3 of the curvature and torsion of a curve in R3. Simple hypothe-
ses on k and t singled out some important types of curves. Let us see now

K E E E E E E= ( )[ ] - ( )[ ] - ( ) - ( )2 12 1 1 12 2 12 1
2

12 2
2w w w w .

E k dk E k k E2 1 1 2 1 2 12 1[ ] = ( ) = -( ) ( )w .

0 01 2 2 1 12 1- ( ) = -( ) ( ) -dk E k k Ew ;
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what can be done with S in the case of surfaces. (Throughout this section,
surfaces are assumed to be connected.)

3.1 Theorem If its shape operator is identically zero, then M is part of
a plane in R3.

Proof. By the definition of shape operator, S = 0 means that any unit
normal vector field E3 on M is Euclidean parallel, and hence can be iden-
tified with a point of R3 (see Fig. 6.4).

Choose any point p in M. We will show that M lies in the plane through
p orthogonal to E3. If q is an arbitrary point of M, then since M is con-
nected, there is a curve a in M from a(0) = p to a(1) = q. Consider the
function

But then

hence f is identically zero. In particular,

so every point q of M is in the required plane (Fig. 6.4). ◆

We saw in Chapter 5, Section 3 that requiring a single point p of M Ã R3

to be planar (k1 = k2 = 0, or equivalently S = 0) produces no significant effect
on the shape of M near p. But the result above shows that if every point is
planar, then M is, in fact, part of a plane.

f E1 03( ) = -( ) =q p • ,

df
dt

E f= ¢ = ( ) =a • ;3 0 0 0and

f t t E( ) = ( ) -( )a p • .3
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Perhaps the next simplest hypothesis on a surface M in R3 is that at each
point p, the shape operator is merely scalar multiplication by some number—
which a priori may depend on p. This means that M is all-umbilic, that is,
consists entirely of umbilic points.

3.2 Lemma If M is an all-umbilic surface in R3, then M has constant
Gaussian curvature K � 0.

Proof. Let E1, E2, E3 be an adapted frame field on some region O in M.
Since M is all-umbilic, the principal curvature functions on O are equal,
k1 = k2 = k, and furthermore, E1, E2, E3 is actually a principal frame field
(since every direction on M is principal). Thus we can apply Theorem 2.6
to conclude that E1[k] = E2[k] = 0. Alternatively, we may write

so by Lemma 2.1, dk = 0 on O. But K = k1k2 = k2, so dK = 2k dk = 0 on
O. Since every point of M is in such a region O, we conclude that dK = 0
on all of M. It follows that K is constant (Exercise 4 of Section 4.7). ◆

3.3 Theorem If M Ã R3 is all-umbilic and K > 0, then M is part of a
sphere in R3 of radius .

Proof. Pick at random a point p in M and a unit normal vector E3(p) to
M at p. We shall prove that the point

is equidistant from every point of M. (Here k(p) = k1(p) = k2(p) is the prin-
cipal curvature corresponding to E3(p).)

Now let q be any point of M, and let a be a curve segment in M from
a(0) = p to a(1) = q. Extend E3(p) to a unit normal vector field E3 on a,
as shown in Fig. 6.5, and consider the curve

Here we understand that the principal curvature function k derives from
E3; thus k is continuous. But K = k2, and by the preceding lemma, K is
constant, so k is constant. Thus

¢ = ¢ + ¢g a
1

3k
E .

g a= +
1

3
3

k
E in R .

c p
p

p= + ( ) ( )1
3k

E

1/ K

dk E dk E1 2 0( ) = ( ) = ,
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But

since by the all-umbilic hypothesis, S is scalar multiplication by k. Thus

so the curve g must be constant. In particular,

so for every point q of M. Since K = k1k2 = k2, we have shown 
that M is contained in the sphere of center c and radius       

Using all three of the preceding results, we conclude that a surface M in
R3 is all-umbilic if and only if M is part of a plane or a sphere.

3.4 Corollary A compact all-umbilic surface M in R3 is an entire sphere.

Proof. By the preceding remark, we deduce from Exercise 12 of Section
4.7 that M must be an entire plane or sphere. The former is impossible,
since M is compact, but planes are not. ◆

We now find a useful geometric consequence of a topological assumption
about surfaces in R3.

1/ .K
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3.5 Theorem On every compact surface M in R3 there is a point at which
the Gaussian curvature K is strictly positive.

Proof. Consider the real-valued function f on M such that f(p) = || p ||2.
Thus in terms of the natural coordinates of R3, . Now, f is dif-
ferentiable, hence continuous, and M is compact. Thus by Lemma 7.3 of
Chapter 4, f takes on its maximum at some point m of M. Since f mea-
sures the square of the distance to the origin, m is simply a point of M at
maximum distance r = || m || > 0 from the origin. Intuitively, it is clear that
M is tangent at p to the sphere S of radius r—and that M lies inside S,
and hence is more curved than S (Fig. 6.6). Thus we would expect that

. Let us prove this inequality.
Given any unit tangent vector u to M at the maximum point m, pick a

unit-speed curve a in M such that a(0) = m, a ¢(0) = u. It follows from the
derivation of m that the composite function f(a) also has a maximum at 
t = 0. Thus

(1)

But Evaluating at t = 0, we find

Since u was any unit tangent vector to M at m, this means that m (consid-
ered as a vector) is normal to M at m.

Differentiating again, we get

d f
dt
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2 2
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By (1), at t = 0 this yields

(2)

The discussion above shows that may be considered as a unit normal
vector to M at m, as shown in Fig. 6.7. Thus is precisely 
the  normal curvature k(u) of M in the u direction, and it follows from (2)
that In particular, both principal curvatures satisfy this
inequality, so

◆

Thus there are no compact surfaces in R3 with K � 0.
Maintaining the hypothesis of compactness, we consider the effect of

requiring that Gaussian curvature be constant. Theorem 3.5 shows that the
only possibility is K > 0. Spheres are obvious examples of compact surfaces
in R3 with constant positive Gaussian curvature. It is one of the most remark-
able facts of surface theory that they are the only such surfaces. To prove this
we need a nontrivial preliminary result.

3.6 Lemma (Hilbert) Let m be a point of M Ã R3 such that
(1) k1 has a local maximum at m;
(2) k2 has a local minimum at m;
(3) k1(m) > k2(m).

Then K(m) � 0.

K
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For example, it is easy to see that these hypotheses hold at any point on
the inner equator of a torus or on the minimal circle (x = 0) of the catenoid.
And K is, in fact, negative in both these examples.

To convert hypotheses (1) and (2) into usable form in the proof that follows,
we recall some facts about maxima and minima. If f is a (differentiable) func-
tion on a surface M and V is a tangent vector field, then the first derivative
V [ f ] is again a function on M. Thus we can apply V again to obtain the
second derivative V [V [ f ]] = VV [ f ]. A straightforward computation shows
that if f has a local maximum at a point m, then the analogues of the usual
conditions in elementary calculus hold, namely,

For a local minimum, of course, the inequality is reversed.

Proof. Since k1(m) > k2(m), m is not umbilic; hence by Lemma 2.5 there
exists a principal frame field E1, E2, E3 on a neighborhood of m in M. By
the remark above, the hypotheses of minimality and maximality at m imply
in particular

(1)

and

(2)

Now we use the Codazzi equations (Theorem 2.6). From (1) it follows 
that

since k1 - k2 π 0 at m. Thus by Exercise 2(a) of Section 2,

(3)

Applying E1 to the first Codazzi equation in Theorem 2.6 yields

But at the special point m, we have w12(E2) = 0 and k1 - k2 > 0; hence
from (2) we deduce

(4)

A similar argument starting from the second Codazzi equation gives
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E k E k1 2 2 1 0[ ] = [ ] = at m

V f VV f[ ] = [ ] £0 0, at m.
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Using (4) and (5) in the expression (3) for the Gaussian curvature at m, we
conclude that K(m) � 0. ◆

3.7 Theorem (Liebmann) If M is a compact surface in R3 with constant
Gaussian curvature K, then M is a sphere of radius . (Theorem 3.5
implies K is positive.)

Proof. Since M Ã R3 is compact, Theorem 7.10 of Chapter 4 shows it is
orientable, so a unit normal exists with shape operators S that are smoothly
defined on the entire surface. Thus continuous principal curvature func-
tions k1 � k2 � 0 are also globally well-defined. By Lemma 7.3 of Chapter
4, k1 has a maximum at some point p of M. Since K = k1k2 is constant, k2

has a minimum there. Now it cannot be true that k1(p) > k2(p), for then
Hilbert’s lemma would give K � 0. Thus k1(p) = k2(p). By the choice of p,
it follows that M is all umbilic; hence it is a standard sphere of radius 

◆

Liebmann’s theorem is false if the compactness hypothesis is omitted, for
we saw in Chapter 5, Section 7 that there are many nonspherical surfaces with
constant positive curvature.

Exercises

1. If M is a flat minimal surface, prove that M is part of a plane.

2. Flat surfaces in R3 can be bent only along straight lines (see Fig. 6.9). If
k1 = 0 but k2 is never zero, show that the principal curves of k1 are line seg-
ments in R3. (Hint: With {Ei} principal and a≤ = —E1E1, use Thm. 1.4.)

3. Let M Ã R3 be a compact surface with K > 0. If M has constant mean
curvature H, show that M is a sphere of radius .

4. Prove that in a region free of umbilics there are two principal curves
through each point, these crossing orthogonally. (Hint: Use Ex. 14 of Sec.
4.8.)

5. If the principal curvatures of a surface M Ã R3 are constant, show that
M is part of either a plane, a sphere, or a circular cylinder. (In the case 
k1 π k2, assume there is a principal frame field on all of M.)

1/ H

r = 1/ .K

1/ K
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6.4 Isometries and Local Isometries

We remarked earlier that the inhabitants of a surface M in R3, unaware of
the space outside their surface, could nevertheless determine the distance in
M between any two points of M—just as distance on the surface of the earth
can be determined by its inhabitants. The mathematical formulation is as
follows.

4.1 Definition If p and q are points of M Ã R3, consider the collection
of all curve segments a in M from p to q. The intrinsic distance r(p, q) from
p to q in M is the greatest lower bound of the lengths L(a) of these curve
segments.

There need not be a curve a whose length is exactly r(p, q) (see Exercise 3).
The intrinsic distance r(p, q) will generally be greater than the straightline
Euclidean distance d(p, q), since the curves a are obliged to stay in M
(Fig. 6.8).

On the surface of the earth (sphere of radius about 4000 miles) it is, of
course, intrinsic distance that is of practical interest. One says, for example,
that it is 12,500 miles from the north pole to the south pole, though the
Euclidean distance through the center of the earth is only 8000 miles.

We saw in Chapter 3 how Euclidean geometry is based on the notion of
isometry, a distance-preserving mapping. For surfaces in M we shall prove the
distance-preserving property and use its infinitesimal form (Corollary 2.2 of
Chapter 3) as the definition.
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4.2 Definition An isometry F: M Æ of surfaces in R3 is a one-to-one
mapping of M onto that preserves dot products of tangent vectors. Explic-
itly, if F* is the derivative map of F, then

for any pair of tangent vectors v, w to M.

If F* preserves dot products, then it also preserves lengths of tangent
vectors. It follows that an isometry is a regular mapping (Chapter 4, Section
5), for if F*(v) = 0, then

hence v = 0. Thus by the remarks following Theorem 5.4 of Chapter 4, an
isometry F: M Æ is in particular a diffeomorphism, that is, has an inverse
mapping F-1: Æ M. Furthermore, F-1 is also an isometry.

4.3 Theorem Isometries preserve intrinsic distance: if F: M Æ is an
isometry of surfaces in R3, then

for any two points p, q in M.
(Here r and are the intrinsic distance functions of M and 

respectively.)

Proof. First note that isometries preserve the speed and length of curves.
The proof is just like the Euclidean case: If a is a curve segment in M,
then = F(a) is a curve segment in with velocity ¢ = F*(a¢). Since
F* preserves dot products, it preserves norms, so || a¢ || = || F*(a¢) || =
|| F(a)¢ || = || ¢ ||. Hence

Now, if a runs from p to q in M, its image = F(a) runs from F(p) to
F(q) in . Reciprocally, if b is a curve segment in from F(p) to F(q) in

, then F-1(b) runs from p to q in M. We have, in fact, established a 
one-to-one correspondence between the collection of curve segments used
to define r(p,q) and those used for (F(p),F(q)). But as was shown above,
corresponding curves have the same length, so it follows at once that 
r(p, q) = (F(p), F(q)). ◆r

r

M
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L t dt t dt L
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Thus we may think of an isometry as bending a surface into a different
shape without changing the intrinsic distance between any of its points. Con-
sequently, the inhabitants of the surface are not aware of any change at all, for
their geometric measurements all remain exactly the same.

If there exists an isometry from M to , then these two surfaces are said
to be isometric. For example, if a piece of paper is bent into various shapes
without creasing or stretching, the resulting surfaces are all isometric 
(Fig. 6.9).

To study isometries it is convenient to separate the geometric condition of
preservation of dot products from the one-to-one and onto requirements.

4.4 Definition A local isometry F: M Æ N of surfaces is a mapping that
preserves dot products of tangent vectors (that is, F* does).

Thus an isometry is a local isometry that is both one-to-one and onto.
If F is a local isometry, the earlier argument still shows that F is a regular

mapping. Then for each point p of M the inverse function theorem (5.4 of
Chapter 4) asserts that there is a neighborhood U of p in M that F carries
diffeomorphically onto a neighborhood V of F(p) in N. Now, U and V are
themselves surfaces in R3, and thus the mapping F |U: U Æ V is an isometry.
In this sense a local isometry is, indeed, locally an isometry.

There is a simple patch criterion for local isometries using the functions E,
F, and G defined in Section 4 of Chapter 5.

4.5 Lemma Let F: M Æ N be a mapping. For each patch x: D Æ M, con-
sider the composite mapping

x x= ( ) ÆF D N: .

M
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Then F is a local isometry if and only if for each patch x we have

(Here need not be a patch, but , and are defined for it as usual.)

Proof. Suppose the criterion holds—and only for enough patches to
cover all of M. Then by one of the equivalences in Exercise 1, to show that
F* preserves dot products we need only prove that

But as we saw in Chapter 4, it follows immediately from the definition
of F* that F*(xu) = u and F*(xv) = v. Thus the equations above follow
from the hypotheses E = , F = , G = . Hence F is a local isometry.

Reversing the argument, we deduce the converse assertion. ◆

This result can sometimes be used to construct local isometrics. In the sim-
plest case, suppose that M is the image of a single patch x: D Æ M.

Then if y: D Æ N is a patch in another surface, a mapping F: M Æ N is
defined by

If E = , F = , G = , then by the above criterion, F is a local isometry.

4.6 Example (1) Local isometry of a plane onto a cylinder. The plane 
R2 may be considered as a surface, with natural frame field U1, U2. If

x: R2 Æ M

is a parametrization of some surface, then Exercise 1 of this section shows
that x is a local isometry if

Since x*(U1) = xu, x*(U2) = xv, and Ui • Uj = dij, this is the same as requir-
ing E = 1, F = 0, G = 1.

To take a concrete case, the parametrization

of the cylinder M: x2 + y2 = r2 has E = 1, F = 0, G = 1. Thus x is a local
isometry that wraps the plane R2 around the cylinder, with horizontal lines
going to cross-sectional circles and vertical lines to rulings of the cylinder.

x u v r
u
r

r
u
r

v, ,  ,( ) = Ê
ËÁ

ˆ
¯̃cos sin

x x* • * • , .U U U U i ji j i j( ) ( ) = £ £for 1 2

GFE

F u v u v u v Dx y, , for , in( )( ) = ( ) ( ) .

GFE
xx

x x x x x x x xu u u v u v v vF F F F= ( ) = ( ) ( ) = ( )* , • * • * * .,

GFEx

E E F F G G= = =, , .
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(2) Local isometry of a helicoid onto a catenoid. Let H be the helicoid that
is the image of the patch

Furnish the catenoid C with the canonical parametrization y: R2 Æ C dis-
cussed in Example 7.4 of Chapter 5. Thus

Let F: H Æ C be the mapping such that

To prove that F is a local isometry, it suffices to check that

F carries the rulings (v constant) of H onto meridians of the surface of rev-
olution C, and wraps the helices (u constant) of H around the parallels of C.
In particular, the central axis of H (z axis) is wrapped around the minimal
circle x = 0 of C.

Figure 6.10 shows how a sample strip of H is carried over to C.

E E F F G u h G= = = = = + = =1 0 1 2 2, , .

F u v u vx y, ,( )( ) = ( ).

y u v g u h u v h u v

g u u h u u

, , , ,

h ,

( ) = ( ) ( ) ( )( )

( ) = ( ) = +-

cos sin

sin .1 21

x u v u v u v v, ,  ,( ) = ( )cos sin .
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Suppose that the helicoid H (or at least a finite region of it) has been
stamped like an automobile fender out of a flexible sheet of steel—the patch
x does this. Then H may be wrapped into the shape of a catenoid with no
further distortion of the metal (Exercise 5 of Section 5).

A similar experiment may be performed by cutting a hole in a ping-pong
ball representing a sphere in R3. Mild pressure will then deform the ball into
various nonround shapes, all of which are isometric. For arbitrary isometric
surfaces M and in R3, however, it is generally not possible to bend M
(through a whole family of isometric surfaces) so as to produce .

There are special types of mappings other than (local) isometries that are
of interest in geometry.

4.7 Definition A mapping of surfaces F: M Æ N is conformal provided
there exists a real-valued function l > 0 on M such that

for all tangent vectors to M. The function l is called the scale factor
of F.

Note that if F is a conformal mapping for which l has constant value 1,
F is a local isometry. Thus a conformal mapping is a generalized isometry for
which lengths of tangent vectors need not be preserved—but at each point p
of M the tangent vectors at p all have their lengths stretched by the same
factor.

The criteria in Lemma 4.5 and in Exercise 1 below may easily be adapted
from isometries to conformal mappings by introducing the scale factor (or
its square). In Lemma 4.5, for example, replace E = by E l2(x) = , and
similarly for the other two equations.

An essential property of conformal mappings is discussed in Exercise 8.

Exercises

1. If F: M Æ N is a mapping, show that the following conditions on its
tangent map at one point p are logically equivalent:

(a) F* preserves inner products.
(b) F* preserves lengths of tangent vectors, that is, || F*(v) || = || v || for all
v at p.
(c) F* preserves frames: If e1, e2 is a tangent frame at p, then

is a tangent frame at F(p).

F F* , *e e1 2( ) ( )

EE

F p p* v p v( ) = ( )l

M
M
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(d) For some one pair of linearly independent tangent vectors v and w at
p,

[Hint: It suffices, for example, to prove (a) fi (c) fi (d ) fi (b) fi (a).]
These are general facts from linear algebra; in this context they provide

useful criteria for F to be a local isometry.

2. Show that each of the following conditions is necessary and sufficient for
F: M Æ N to be a local isometry.

(a) F preserves the speeds of curves: || F(a)¢ || = || a ¢ || for all curves a in M.
(b) F preserves lengths of curves: L(F(a)) = L(a) for all curve segments a
in M.

3. Prove that intrinsic distance r for a surface M has the same general prop-
erties as Euclidean distance d (Ex. 2 of Sec. 2.1), namely,

(a) Positive definiteness: r(p, q) � 0; r(p, q) = 0 if and only if p = q,
(b) Symmetry: r(p, q) = r(q, p),
(c) Triangle inequality: r(p, r) � r(p, q) + r(q, r), for all points of M.
The only difficult case is r(p, q) = 0 fi p = q, which we postpone to Exer-
cise 1 of Section 8.1. (Hint for (c): Piecewise differentiable curves are
allowed in the definition of r.)

4. Give an example and a proof to show: Local isometries can shrink but
not increase intrinsic distance.

5. Let a, b: I Æ R3 be unit-speed curves with the same curvature function
k > 0. For simplicity, assume that the parametrization

of the u > 0 tangent surface of a is actually a patch. Find a local isometry
from this surface to:

(a) The u > 0 tangent surface of b.
(b) A region D in the plane.

6. Show that the preceding exercise applies to the u > 0 tangent surface of
a helix, and find the image region D in the plane.

7. Let M be the Euclidean plane R2 with the origin removed. Show that the
intrinsic distance from (-1, 0) to (1, 0) is 2, but that every curve joining these
points has length strictly greater than 2. (Hint: Ex. 11 of Sec. 2.2.)

8. (a) Modify the conditions in Exercise 1 so that they provide criteria for
F to be a conformal mapping.

x u v u vT u,( ) = ( ) + ( )a

F F F F* ,   * * • * • .v v w w v w v w( ) = ( ) = ( ) ( ) =and
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(b) Show that a parametrization x: D Æ M is a conformal mapping if and
only if E = G and F = 0.
(c) Prove that a conformal mapping preserves angles in this sense: If J is
an angle between v and w at p, then J is also an angle between F*(v) and
F*(w) at F(p).

9. If F: M Æ is an isometry, prove that the inverse mapping 
F -1: Æ M is also an isometry. If F: M Æ N and G: N Æ P are (local)
isometries, prove that the composite mapping GF: M Æ P is a (local) 
isometry.

10. Let x be a parametrization of all of M, a parametrization in N. If
F: M Æ N is a mapping such that F(x(u, v)) = (f(u), g(v)), then

(a) Describe the effect of F on the parameter curves of x.
(b) Show that F is a local isometry if and only if

(In the general case, f and g are functions of both u and v, and this crite-
rion becomes more complicated.)
(c) Find analogous conditions for F to be a conformal mapping.

11. Let M be a surface of revolution, and let F: H Æ M be a local isome-
try of the helicoid that (as in Example 4.6) carries rulings to meridians and
helices to parallels. Show that M must be a catenoid. (Hint: Use Ex. 10.)

12. Let M be the image of a patch x with E = 1, F = 0, and G a function
of u only (Gv = 0). If the derivative is bounded, show that there is
a local isometry of M into a surface of revolution.

Thus any small enough region in M is isometric to a region in a surface of
revolution.

13. Let x be the geographical patch in the sphere S of radius r (Example
2.2 of Ch. 4). Stretch x in the north-south direction to produce a conformal
mapping. Explicitly, let

and determine g such that y is conformal. Find the scale factor of y and the
domain D such that y(D) omits only a semicircle of S. (Mercator’s map of
the earth derives from y: its inverse is Mercator’s projection.)

14. Show that stereographic projection P: S0 Æ R2 (Example 5.2 of Ch. 4)
is conformal, with scale factor

y xu v u g v g, , with ,( ) = ( )( ) ( ) =0 0
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df
du
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dg
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15. Let M be a surface of revolution whose profile curve is not closed,
and hence has a one-to-one parametrization. Find a conformal mapping 
F: M Æ R2 such that meridians go to lines through the origin and parallels
go to circles centered at the origin.

6.5 Intrinsic Geometry of Surfaces in R3

In Chapter 3 we defined Euclidean geometry to consist of those concepts pre-
served by Euclidean isometries. The same definition applies to surfaces: The
intrinsic geometry of M Ã R3 consists of those concepts—called isometric
invariants—that are preserved by all isometries F: M Æ . For example,
Theorem 4.3 shows that intrinsic distance is an isometric invariant. We can
now state Gauss’s question (mentioned early in the chapter) more precisely:
Which of the properties of a surface M in R3 belong to its intrinsic geometry?
The definition of isometry (Definition 4.2) suggests that isometric invariants
must depend only on the dot product as applied to tangent vectors to M. But
the shape operator derives from a normal vector field, and the examples in
Section 4 show that isometric surfaces in R3 can have quite different shapes.
In fact, these examples provide a formal proof that shape operators, princi-
pal directions, principal curvatures, and mean curvature definitely do not
belong to the intrinsic geometry of M Ã R3.

To build a systematic theory of intrinsic geometry, we must look back at
Section 1 and see how much of our work there is intrinsic to M. Using the
dot product only on tangent vectors to M, we can still define a tangent frame
field E1, E2 on M. Thus from an adapted frame field we can salvage the two
tangent vector fields E1, E2—and hence also their dual 1-forms q1, q2. It is
somewhat surprising to find that these completely determine the connection
form w12.

5.1 Lemma The connection form w12 = -w21 is the only 1-form that 
satisfies the first structural equations

Proof. Apply these equations to the tangent vector fields E1, E2. Since
qi(Ej) = dij, the definition of wedge product gives

d dq w q q w q1 12 2 2 21 1= Ÿ = Ÿ, .

M

l p
p( ) = +

( )
1

4

2P
.
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Thus by Lemma 2.1, w12 = -w21 is uniquely determined by q1, q2. ◆

5.2 Remark In fact, this proof shows how to construct w12 = -w21

without the use of Euclidean covariant derivatives (as in Section 1). Given
E1, E2 and thus q1, q2, take the equations in the above proof as the definition
of w12 on E1 and E2. Then the usual linearity condition

makes w12 a 1-form on M, and one can easily check (by reversing the argu-
ment above) that w12 = -w21 satisfies the first structural equations.

If F: M Æ is an isometry, we can transfer a tangent frame field E1, E2

on M to a tangent frame field 1, 2 on : For each point q in there is
a unique point p in M such that F(p) = q. Then define

(Fig. 6.11).

In practice, we often abbreviate these formulas somewhat casually to

Because F* preserves dot products, 1, 2 is a frame field on , since
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5.3 Lemma Let F: M Æ be an isometry, and let E1, E2 be a 
tangent frame field on M. If 1, 2 is the transferred frame field on ,
then

(1) q1 = F*( 1), q2 = F*( 2);
(2) w12 = F*( 12).

Proof. (1) It suffices to prove that qi and F*( i) have the same value on
E1 and E2. But for 1 � i, j � 2 we have

(2) Consider the structural equation d 1 = 12 Ÿ 2 on . If we apply
F*, then by the results in Chapter 4, Section 5,

Hence, by (1), we have

The other structural equation,

gives a corresponding equation, so

But now (2) is an immediate consequence of the uniqueness property
(Lemma 5.1), since

◆

From this rather routine lemma we easily derive a proof of the celebrated
theorema egregium of Gauss.

5.4 Theorem Gaussian curvature is an isometric invariant. Explicitly, if
F: M Æ is an isometry, then

for every point p in M.
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Proof. For an arbitrary point p of M, pick a tangent frame field E1, E2

on some neighborhood of p and transfer via F* to 1, 2 on . By the
previous lemma, F*( 12) = w12. According to Corollary 2.3, we have

Apply F* to this equation. By the results in Chapter 4, Section 5, we get

where F*( ) is simply the composite function (F ). Thus by the preced-
ing lemma,

Comparison with dw12 = -Kq1 Ÿ q2 yields K = (F ); hence, in particular,
K(p) = (F(p)). ◆

Gauss’s theorem is one of the great discoveries of nineteenth-century 
mathematics, and we shall see in the next chapter that its implications are 
far-reaching. The essential step in the proof is the second structural equation

Once we prove Lemma 5.1, all the ingredients of this equation, except K, are
known to derive from M alone—thus K must also. This means that the 
inhabitants of M Ã R3 can determine the Gaussian curvature of their surface
even though they cannot generally find S and have no conception of the shape
of M in R3.

This remarkable situation is perhaps best illustrated by the formula 
K = k1k2: An isometry need not preserve the principal curvatures, nor their
sum, but it must preserve their product. Thus the shapes that isometric surfaces
may have—although possibly quite different—are by no means unrelated.

A local isometry is, as we have shown, an isometry on all sufficiently small
neighborhoods. Thus it follows from Theorem 5.4 that local isometries pre-
serve Gaussian curvature. For example, in Example 4.6 the plane and the cylin-
der both have K = 0. (This is why we did not hesitate to call the curved
cylinder “flat.” Intrinsically it is as flat as a plane.) In the second part of
Example 4.6, at corresponding points

both the helicoid and catenoid have Gaussian curvature: (see
Examples 4.3 and 7.4 of Chapter 5).

Gauss’s theorema egregium can obviously be used to show that given sur-
faces are not isometric. For example, there can be no isometry of the sphere
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S (or even a very small region of it) onto part of the plane, since their 
Gaussian curvatures are different. This is the dilemma of the mapmaker:
The intrinsic geometry of the earth’s surface is misrepresented by any flat
map.

The next section is computational; thereafter we will find more isometric
invariants.

Exercises

1. Geodesics belong to intrinsic geometry: In fact, if a is a geodesic in M
and F: M Æ N is a (local) isometry, then F(a) is a geodesic of N. (Hint:
Ex. 1 of Sec. 1)

2. Use Exercise 1 to derive the geodesics of the circular cylinder. General-
ize to an arbitrary cylinder.

3. For a connected surface, the values of its Gaussian curvature fill an inter-
val. If there exists a local isometry of M onto N (in particular, if M and N
are isometric), show that M and N have the same curvature interval. Give an
example to show that the converse is false.

4. Prove that no two of the following surfaces are isometric: sphere, torus,
helicoid, cylinder, saddle surface.

5. Bending of the helicoid into the catenoid (4.6). For each number t in the
interval , let xt: R2 Æ R3 be the mapping such that

where C = coshu, S = sinhu, c = cosv, and s = sinv.
Now x0 is a patch covering the helicoid, and is a parametrization of

the catenoid—these are mild variants of our usual parametrizations, and the
catenoid now has the z axis as its axis of rotation. If we imagine t to be the
time, then xt for describes a bending of the helicoid M0 that
carries it onto the catenoid through a whole family of intermediate sur-
faces Mt = xt(R2). Prove:

(a) Mt is a surface. (Show merely that xt is regular.)
(b) Mt is isometric to the helicoid M0 if . (Show that Ft: M0 Æ Mt

is an isometry, where

F u v u vt tx x0 , .( )( ) = ( ),

t < p /2
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Also show that for , is local isometry.)
(c) Each Mt is a minimal surface. (Compute xuu + xvv = 0.)
(d) Unit normals are parallel on orbits. Along the curve t Æ xt(u, v) by which
the point x0(u, v) of M0 moves to , the unit normals Ut of successive
surfaces are parallel.
(e) Gaussian curvature is constant on orbits. Find Kt(xt(u, v)), where Kt is
the Gaussian curvature of Mt.
A brilliant series of illustrations of this bending is given in Struik [S]. They
are not diminished by the following computer tour de force.

6. (Computer continuation.) (a) Plot the surface Mt for at least six values
of t from t = 0 (helicoid) to (catenoid).
(b) Animate the series of plots in (a).

7. Show that every local isometry of the helicoid H to the catenoid C must
carry the axis of H to the central circle of C, and the rulings of H to the
meridians of C, as in Example 4.6.

6.6 Orthogonal Coordinates

We have seen that the intrinsic geometry of a surface M Ã R3 may be
expressed in terms of the dual forms q1, q2 and connection form w12 derived
from a tangent frame field E1, E2. These forms satisfy—

the first structural equations:

the second structural equation:

In this section we develop a practical way to compute these forms—and hence
a new way to find the Gaussian curvature of M.

The starting point is an orthogonal coordinate patch x: D Æ M, one for
which F = xu • xv = 0. Since xu and xv are orthogonal, dividing by their
lengths will produce frames.

6.1 Definition The associated frame field E1, E2 of an orthogonal patch
x: D Æ M consists of the orthogonal unit vector fields E1 and E2 whose values
at each point x(u, v) of x(D) are

x xu vE G= =and

d Kw q q12 1 2= - Ÿ .

d

d

q w q

q w q

1 12 2

2 21 1

= Ÿ

= Ÿ

,

;

t < p /2

Mp 2

Fp 2t < p /2
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In Exercise 7 of Section 4.4, we associated with each patch x the coordi-
nate functions ũ and ṽ, which assign to each point x(u, v) the numbers u and
v, respectively. For example, for the geographical patch x of Example 2.2 of
Chapter 4, the coordinate functions are the longitude and latitude functions
on the sphere S. In the extreme case when x is the identity map of R2,
the coordinate functions are just the natural coordinate functions (u, v) Æ u,
(u, v) Æ v on R2.

For an orthogonal patch x with associated frame field E1, E2, we shall
express q1, q2, and w12 in terms of the coordinate functions ũ, ṽ. Since x is
fixed throughout the discussion, we shall run the risk of omitting the inverse
mapping x-1 from the notation. With this convention, the coordinate func-
tions ũ = u(x-1) and ṽ = v(x-1) are written simply u and v, and similarly xu

and xv now become tangent vector fields on M itself. Thus the associated
frame field of x has the concise expression

(1)

The dual forms q1, q2 are characterized by qi(Ej) = dij, and in the exercise
referred to above it is shown that

Thus we deduce from (1) that

(2)

By using the structural equations, we find analogous formulas for w12 and
K. Recall that for a function f, df = fu du + fv dv, where the subscripts indicate
partial derivatives. Hence

where we have used the alternation rule for wedge products and substituted
and from (2). Comparison with the first structural

equations dq1 = w12 Ÿ q2 and dq2 = -w12 Ÿ q1 shows that
du E= q1 /dv G= q 2 /

d d E du E dv du E
G

du

d d G dv G du dv G
E

dv

v
v

u
u

q q

q q

1 2

2 1
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= ( ) Ÿ = ( ) =
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(3)

The logic is simple: By the computations above, this form satisfies the first
structural equations; hence by uniqueness (Lemma 5.1), it must be w12.

6.2 Example Geographical coordinates on the sphere. For the geographi-
cal patch x in the sphere S (Example 2.2 of Chapter 4), we found E =
r2 cos2 v, F = 0, G = r2. Thus by formula (2) above,

Now and ; hence by (3),

The associated frame field of this patch is the same one obtained in
Example 1.6 from the spherical frame field in R3. With the notational shift 
u Æ J, v Æ j, the forms above are (necessarily) also the same. But now we
have a simple way to compute them directly in terms of the surface with no
appeal to the geometry of R3.

Finally, we derive a new expression for the Gaussian curvature. In this
context, exterior differentiation of w12 as given in (3) yields

From (2) we get

hence

Thus the formula above becomes

Now compare this with the second structural equation, dw12 = -Kq1 Ÿ q2. ◆

6.3 Proposition If x: D Æ M is an orthogonal patch, the Gaussian cur-
vature K is given in terms of x by

d
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This is perhaps the most elegant of the dozens of formulas that have been
found for Gaussian curvature. By contrast with the formula in Corollary 4.1
of Chapter 5, the functions , ,  (which describe the shape operator) no
longer appear. Indeed, since K is now expressed solely in terms of E, F, G,
by using Lemma 4.5 we get another proof of the isometric invariance of
Gaussian curvature.

Exercises

1. Compute the dual 1-forms, connection form w12, and Gaussian curva-
ture for the associated frame field of the following orthogonal patches:

(a) x(u, v) = (u cosv, u sinv, bv), helicoid.
(b) x(u, v) = (u cosv, u sinv, u2/2), paraboloid of revolution.
(c) x(u, v) = (u cosv, u sinv, au), cone.

2. A parametrization x: D Æ M is isothermal provided E = G and F = 0.
(Thus a fine network of parameter curves cuts M into small regions that are
almost square.) By Exercise 8 of Section 4, x is a conformal mapping with
scale function l such that E = G = l2. Prove:

(a) where D is the Laplacian: Df = fuu + fvv.

(b) The mean curvature H is zero if and only if xuu + xvv = 0.

3. If x is a principal patch (Ex. 8 of Sec. 5.4), prove

(a)

(b)

(Hints: For (a), compare Cor. 1.5 with Ex. 8 of Sec. 5.4. For (b), use (a) and
the Codazzi equations from Thm. 1.7.)

6.7 Integration and Orientation

A primary goal of this section is to define the integral of a 2-form over a
compact oriented surface. This notion does not involve geometry at all; it

L Nv v u uHE HG= =,  .

w w13 23= =
L N

E
du

G
dv,  .

K E E= - = - ( )D Dlog / log / ,l l2 2
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belongs to the integral calculus on surfaces (Chapter 4, Section 6). However,
we motivate the definition by considering some geometric applications. Ori-
entation will be involved, for its connection with integration is already shown 

by the elementary calculus formula 

Perhaps the simplest use of double integration in geometry is in finding the
area of a surface. To discover a proper definition of area, we start with a
patch x: D Æ M and ask what the area of its image should be. Let DR be a
small coordinate rectangle in D with sides Du and Dv. Now, x distorts DR into
a small curved region x(DR) in M, marked off by four segments of parame-
ter curves, as shown in Fig. 6.12.

We have seen that the segment from x(u, v) to x(u + Du, v) is linearly 
approximated by the vector Du xu evaluated at (u, v), and the segment 
from x(u, v) to x(u, v +Dv) is approximated by Dv xv. Thus the region x(DR) 
is approximated by the parallelogram in the tangent plane at x(u, v) that 
has these vectors as its sides. From Chapter 2, Section 1 we know that this
parallelogram has area

We conclude that the area of x(DR) should be approximately 
times the area DuDv of DR. So at each point of D, the familiar expression

gives the rate at which x is expanding area. Thus it would be
natural to define the area of the whole region x(D) to be

But since D is an open set, such integrals may well be improper. To avoid this
we must modify the definition of coordinate patch.

7.1 Definition The interior R° of a rectangle R: a � u � b, c � v � d is
the open set a < u < b, c < v < d. A 2-segment x: R Æ M is patchlike provided
the restricted mapping x: R° Æ M is a patch in M.

D
ED F du dv-ÚÚ 2 .

EG F- 2

EG F- 2

D D D D D Du v u v EG F u vu v u vx x x x¥ = ¥ = - 2 .

f x dx f x dx
b

a

a

b
( ) ( )Ú Ú= - .
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The continuous function is bounded on the closed rectangle
R, so the area of a patchlike 2-segment is well defined and finite, since in the
double integral above the open set, D will be replaced by R.

A patchlike 2-segment x: R Æ M is not required to be one-to-one on the
boundary of R, so its image may not be very rectangular.

7.2 Example Areas of surfaces. We begin with two familiar cases.
(1) The sphere of radius r. If the formula defining the geographical patch

is applied to the closed rectangle R: the result
is a 2-segment covering the whole sphere. Since

we get = r2 cos v. Thus the area of the sphere is

a result well known to Euclid.
(2) Torus of radii R > r > 0. From Example 2.5 of Chapter 4 we derive a

patchlike 2-segment covering the torus. Here

with -p � u, v � p, so the area of the torus is

(3) The bugle surface (Example 7.6 of Chapter 5). Every surface of revo-
lution M has a canonical parametrization with E = 1, F = 0, G = h2. On the
rectangle R: a � u � b, 0 � v � p, x is a patchlike 2-segment whose image
is the closed region Zab of M between the parallels u = a and u = b (Fig. 6.13).
Thus the area of the zone Zab is

In the case of the bugle surface, h(u) = ce-u/c. Hence

To find the area of the entire bugle—a noncompact surface—let Zab expand,
with a Æ 0 and b Æ •. The corresponding areas are positive and increasing,
and hence approach a limit. The limit of Aab as a Æ 0 and b Æ • is 2pc2.
Hence, in particular, the bugle has finite area. ◆

A c e du c e eab
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b
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To define the area of a complicated region, we follow the usual scheme
from elementary calculus: Break the region into simple pieces and add 
their areas.

7.3 Definition A paving of a region P in a surface M consists of a finite
number of patchlike 2-segments x1, . . . , xk whose images fill M in such a way
that each point of M is in at most one set x i(Ri

o).

In short, the images of the segments cover all of P, overlapping only on
their boundaries (see Fig. 6.14).

Not every region is pavable. Since pavings are finite, compactness is cer-
tainly necessary (Lemma 7.2 in Chapter 4). In fact, a compact region is
pavable if its boundary consists of a finite number of regular curve segments.
In particular, an entire compact surface is always pavable. The area of a
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pavable region is defined to be the sum of the areas of x1(R1), . . . , xk(Rk) for
any paving of P .

The preceding exposition shows that a treatment of area does not require
differential forms, but integration of 2-forms will give area and much more
besides (see Remark 7.8). The first question is this: Which 2-form should 
be integrated over a patchlike 2-segment to get the area of its image? By 
Definition 6.3 of Chapter 4,

Thus we need a 2-form whose value on xu, xv is

This suggests

7.4 Definition An area form on a surface M is a differentiable 2-form m
whose value on any pair of tangent vectors is

(The sign ambiguity cannot be avoided.)

Because forms are bilinear, it would be equivalent to require that 
m(E1, E2) = ±1 for every frame E1, E2 on M.

7.5 Lemma A surface M has an area form if and only if it is orientable.
On a connected orientable surface there are exactly two area forms, which
are negatives of each other. (These are denoted by ±dM.)

In fact, by Definition 7.4 of Chapter 4, M is orientable if and only if there
is a nonvanishing 2-form on it. So if M has an area form, it is certainly ori-
entable. The remainder of the proof follows the same pattern as for Propo-
sition 7.5 in Chapter 4. Indeed, for M Ã R3 there is a natural one-to-one
correspondence between unit normals U and area forms dM given by

To orient a connected orientable surface M is to choose one of its two area
forms—or equivalently, one of its two unit normals.

Finding area is not a typical integration problem, because area is always
positive. Thus to find area by integrating an area form dM we have to be

dM Uv w v w,( ) = ± ¥• .

m v w v v w w v w v w,( ) = ± ( )( ) - ( )( ) = ± ¥• • • .
2 1 2

x xu v EG F¥ = - 2 .

m m= ( )ÚÚ ÚÚx
u v

R
du dvx x, .
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careful about signs. Let x be a patchlike 2-segment in a surface oriented by
area form dM. By definition,

Now there are two cases:
(1) If dM(xu, xv) > 0, we say that x is positively oriented. Then by the def-

inition of area form,

hence is the area of x(R).

(2) If dM(xu, xv) < 0, we say that x is negatively oriented. Then

hence is minus the area of x(R).
Thus, to find the area of a pavable region P by integrating the area form,

we cannot use an arbitrary paving. The paving must be positively oriented,
that is, consist only of positively oriented patchlike 2-segments. Then

Now we replace the area form by an arbitrary 2-form to get the definition
we are looking for.

7.6 Definition Let v be a 2-form on a pavable oriented region P in a
surface. The integral of v over P is

where x1, . . . , xk is a positively oriented paving of P.

There is a consistency problem with this definition that appears already in
elementary calculus. Any two choices of paving for P must produce the same
value for the integral. A formal proof of this is not elementary and belongs
properly to analysis rather than to geometry.

Area forms make it easy to describe integration of functions. If f is a 
continuous function on a pavable region P, then its integral over P is defined 

to be . Evidently, this is an analogue of the usual integral 
of elementary calculus, since dx Ÿ dy is the area form of the Euclidean plane.

f dx dyÚÚf dM
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7.7 Remark Improper integrals. We have defined integration only over
compact regions; however, a positive function f > 0 can be integrated over an
arbitrary surface M (or open region) by defining its integral to be the least
upper bound of the integrals of f over all pavable regions P in M:

This becomes +• if no upper bound exists. Setting f = 1 gives the area of M,
as in Example 7.2(3). (For f < 0, switch to greatest lower bounds and -•.)

7.8 Remark Geometry uses two related notions of integration, distin-
guished by the effect of change of variables. Arc length, area, and even the
integral of a function belong to absolute integration (or measure theory),
which is independent of parametrization and involves the absolute value of
the relevant Jacobian. By contrast, integration of differential forms depends
on orientation and involves the signed Jacobian. This version has a crucial
advantage: Stokes theorem (Theorem 6.5 of Chapter 4) and its many 
consequences.

Exercises

1. For a Monge patch x(u, v) = (u, v, f(u, v)), show that the area of x(D) 
is given by the usual formula from elementary calculus. Deduce that 
A(x(D)) � A(D).

2. (Theorem of Pappus.) Let M be a surface of revolution whose profile
curve has finite length L. Find a formula for the area of M and interpret 
it as A = 2p L, where is the average distance of M from the axis of
revolution.

3. Let x be the usual parametrization of the torus of revolution T (Example
2.5 of Ch. 4), with T oriented by the outward unit normal U. Compute the 

integral where in each case, v is the 2-form on T such that:

(a) v(xu, xv) is the square of the distance from x(u, v) to the origin 0 in R3.
(b) v(xu, xv) = U • xu ¥ xv.

4. Let M be a compact surface oriented by dM, and let -M be the same
surface oriented by -dM. Prove

(a) (c1,c2 constant).

(b) (Hint: Use Ex. 5.)v v
M M-ÚÚ ÚÚ= - .

c v c v c v c v
M M M

1 2 2 1 1 2 21 +( ) = +ÚÚ ÚÚ ÚÚ

v
TÚÚ

hh

f dM dM
MÚÚ ÚÚ= lub .

P
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(c)

(d) If f � g, then 

(Note the effect of f = 0 or g = 0.)

5. If F: M Æ N is an orientation-preserving diffeomorphism of compact
oriented surfaces, show that

for any 2-form v on N. (Hint: Ex. 7 of Sec. 4.6.)

6. A diffeomorphism F: M Æ N is area-preserving provided the area of any
pavable region P in M is the same as the area of its image F(P ) in N. Prove:

(a) A diffeomorphism F: M Æ N is area-preserving if and only if

for all patchlike 2-segments x in M with = F(x) in N. (Here “all” can be
replaced by “sufficiently many to cover M.”)
(b) Isometries are area-preserving, isometric surfaces have the same area
(include the noncompact case).
(c) The cylindrical projection in Example 5.2(1) of Chapter 4 is area-
preserving but not an isometry. (Deduce the standard formula for the 
area of a zone in the sphere.)
(d) A mapping F: M Æ N is an isometry if and only if it is conformal and
area-preserving.

6.8 Total Curvature

One of the most important geometric invariants of a surface is gotten by inte-
gration of curvature.

8.1 Definition Let K be the Gaussian curvature of a compact surface M
oriented by area form dM. Then

is the total Gaussian curvature of M.

The same definition applies to any pavable region in M.
To compute total curvature of M we add the total curvatures of each

patchlike 2-segment x of a paving of M. With the usual notation for the
domain R of x,

K dM
MÚÚ

x

EG F EG F- = -2 2

F v v
M N

* ( ) =ÚÚ ÚÚ

f dM g dM
M MÚÚ ÚÚ£ .

f dM f dM
M MÚÚ ÚÚ= -( )

-
.

304 6. Geometry of Surfaces in R3



As before, K(x) can be computed explicitly using Corollary 4.1 of Chapter 5
or by Proposition 6.3.

8.2 Example Total curvature of some surfaces.
(1) Constant curvature. If the Gaussian curvature of M is constant, then

the total curvature of M is

Thus a sphere of radius r has total curvature , and the bugle 

surface has total curvature .
(2) Torus. Let x be the 2-segment in Example 7.2 that covers the torus T.

Then the area form dT has coordinate expression

In Example 7.1 of Chapter 5 we computed

Hence the torus has total Gaussian curvature

Thus the negative curvature of the inner half of the torus has exactly bal-
anced the positive curvature of its outer half.

(3) Catenoid. This surface is not compact, and its area is infinite; never-
theless, its total curvature is finite. When the parametrization in Example 7.1
of Chapter 5 is restricted to the rectangle R: -a � u � a, 0 � v � 2p, it
becomes a patch-like 2-segment covering the zone Za between the parallels 
u = -a and u = +a (Fig. 6.15). From this example we get

and . Hence the zone has total curvatureEG c u c= ( )cosh /2

K
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As a Æ •, Za expands to fill the whole surface. So the total curvature of the
catenoid is

The total curvatures computed above are all multiples of 2p, and none
depends on the particular parameters (radius r, constant c, . . .) of its surface.
This is no accident; a major reason appears in Section 6 of the next chapter,
but see also Exercise 6 of this section. ◆

8.3 Definition Let M and N be surfaces oriented by area forms dM and
dN. Then the Jacobian of a mapping F: M Æ N is the real-valued function
JF on M such that

The Jacobian has considerable geometric significance. Let v, w be tangent
vectors to M at a point p. Then

(*)

Suppose F is regular at p. Then if vectors v and w at p are independent, so
are their images F*v and F*w at F(p). Thus dM(v, w) and dN(F*(v), F*(w))
are both nonzero; hence JF(p) π 0. Evidently the converse is also true, so F
is regular at p if and only if JF (p) π 0.

The sign of JF (p) π 0 is also informative, because if dM(v, w) > 0, then
JF (p) and dN(F*(v), F*(w)) have the same sign. Thus F is

J dM F dN dN F FF p v w v w v w( ) ( ) = ( )( ) = ( ) ( )( ), , ,* * * .
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orientation-preserving at p if JF (p) > 0, and
orientation-reversing at p if JF (p) < 0.

Furthermore, taking absolute values in (*) gives

(**)

The discussion of area in Section 7 shows that the area of a small region
DM in M marked off by “short” vectors v and w is approximately |dM(v, w)|.
Since |dN(F*(v), F*(w)| approximates the area of the image region F(DM)
(Fig. 6.16), we interpret (**) as

Thus |JF(p)| is the rate at which F is expanding area at p.
In view of the pointwise definitions above, a mapping F: M Æ N of

oriented surfaces is said to be orientation-preserving if JF > 0, orientation-
reversing if JF < 0.

For preservation of area, see Exercise 6 of Section 7. A signed version of
area contains more information. We call

the algebraic area of F(M). The discussion above shows that roughly speak-
ing, each small region DM in M contributes to this total the signed area of
its image F(DM) in N, the sign being

(1) Positive, if the orientation of F(DM) agrees with that of N;
(2) Negative, if these orientations disagree (so F has turned DM over);
(3) Zero, if F collapses DM to a curve or point.

Let us consider what this means in the case of the Gauss map G of an ori-
ented surface M in R3. As defined in Exercise 4 of Section 5, G maps M to
the unit sphere S by moving the selected unit normal U(p) at p in M, by
distant parallelism, to the origin of R3—there it points to G(p) in S (see 
Fig. 6.17).

J dM F dNF
M M

= ( )ÚÚ ÚÚ *

J M F MF p( ) ( ) ª ( )area of area ofD D .

J dM dN F FF p v w v w( ) ( ) = ( ), ,* * .
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8.4 Theorem The Gaussian curvature K of an oriented surface M Ã R3

is the Jacobian of its Gauss map.

(Here the unit sphere is oriented, as usual, by its outward normal or the
corresponding area form dS.)

Proof. If U = SgiUi is the unit normal orienting M, then the Gauss map
is G = (g1, g2, g3). Note that if S is the shape operator determined by U,
then

and by Proposition 7.5 of Chapter 1,

Hence G*(v) and -S(v) are parallel for any tangent vector v to M, as sug-
gested in Fig. 6.17. (Recall that parallel here means having the same natural
Euclidean coordinates.)

To prove the theorem we must show that

so we evaluate these 2-forms on an arbitrary pair of tangent vectors to M.
Lemma 3.4 of Chapter 5 gives

On the other hand,

A triple scalar product depends only on the Euclidean coordinates of its
vectors, so we can replace G*(v), G*(w) by the vectors -S(v), -S(w) parallel
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U S S
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to them. Furthermore, by the definition of G and the special character of
the unit sphere S, the vectors U(p) and (G(p)) are also parallel (Fig. 6.17).

Thus the two triple scalar products above are the same—and the proof
is complete. ◆

8.5 Corollary The total Gaussian curvature of an oriented surface 
M Ã R3 equals the algebraic area of the image of its Gauss map G: M Æ S.

To prove this it suffices to integrate the form KdM = G*(dS) over M.
The following readily proved special case is easier to use since it involves

only ordinary area.

8.6 Corollary Let R be an oriented region in M Ã R3 on which
(1) the Gauss map G is one-to-one (the values of U at different points are

never parallel), and
(2) either K ≥ 0 or K £ 0 (K does not change sign).

Then the total curvature of R is ±area of G(R), where the sign is that of K.
(Evidently, this area does not exceed 4p.)

For example, consider the torus T as in Fig. 5.21. Its Gauss map G sends
the outer half O of T (where K � 0) in one-to-one fashion onto the whole
sphere S—and does the same for the inner half I (where K � 0). Thus the
torus has total curvature A(S) - A(S) = 0, as found in Example 8.2(2) by an
explicit integration.

Next, consider the catenoid C, with rotation axis the x axis as in Fig. 6.15.
Considering the normal vectors to the profile curve shows
that the Gauss map G carries this curve in one-to-one fashion onto an open
semicircle of S. Then, considering U on the parallels of C shows that G is a
one-to-one map onto S—omitting only the two points ±(1, 0, 0). Thus the
total curvature of the catenoid is -4p, as computed analytically in Example
8.2(3).

An unexpected application of total Gaussian curvature is to curves, where
it provides a proof of the main assertion of Fenchel’s Theorem (Exercise 18
in Section 2.4), namely,

Proof. Let M be a tube around a, with parametrization x as in 
Exercise 17 of Section 5.4. This exercise shows that the region B in M on
which Gauss curvature is nonnegative is x(D), where D is the rectangle 
0 � u � L, and L is the length of a.p p/ /2 3 2� �v

A simple closed curve in has total curvature dsa k p
a

R3 2Ú ≥ .

y c x c= ( )cosh /

U
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Using the formulas for K and W in that exercise, we find the remark-
able result

(*)

Next, we show geometrically that the total curvature of B is at least 4p.
Let II be the Euclidean tangent plane to the unit sphere S Ã R3 at a point
q, so II is the plane through q orthogonal to the vector from 0 to q. Take
a distant plane parallel to II and move it parallel to itself until it reaches
tangency to M—at, say, the point p (Fig. 6.18). This plane II¢ is tangent to
T, and M lies entirely on one side of it. Thus, of the curvature choices in
Remark 3.3 of Chapter 5, only K(p) < 0 is ruled out—hence K(p) � 0.

Evidently, the Gauss map G of M sends p to q in S. Thus G maps B
onto S. Then K(p) � 0 implies

In combination with (*), this proves the result. ◆

On an oriented surface the ambiguity in the measurement of angles men-
tioned in Section 1 of Chapter 2 can be decisively reduced. Let M be a surface
oriented by the unit normal U. If v is a vector tangent to M, then properties
of the cross product show that the tangent vector

is orthogonal to v and has the same length. So J is a linear operator on each
tangent space to M that rotates each vector through +90°. We call J the 
rotation operator of M.

8.7 Definition Let v and w be unit tangent vectors at a point of an ori-
ented surface M. A number j is an oriented angle from v to w provided

J Uv v( ) = ¥

K dM
B

≥ÚÚ 4p.

K dT ds v dv ds
B

L L

= - =ÚÚ Ú Ú Úk k
p

p

0 2

3 2

0
2cos .
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There is a unique choice of j in the interval 0 � j < 2p. Then every ori-
ented angle from v to w is given by j + 2pk for some integer k. The same
scheme gives angles for any pair of nonzero tangent vectors: Simply divide
each by its length to produce unit vectors.

8.8 Lemma Let a: I Æ M be a curve in an oriented surface M. If V
and W are nonvanishing tangent vector fields on a, there is a differentiable
function j on I such that for each t in I, j(t) is an oriented angle from V(t)
to W(t).

Proof. As just mentioned, angles are unchanged if V and W are reduced
to unit vector fields. Then V, J(V) is a frame field on a. Orthonormal
expansion gives W = fV + gJ(V), where

Since 1 = W • W = f 2 + g2, we can apply Exercise 12 of Section 2.1 to get
a differentiable function j on I such that

Evidently, j is the required function. ◆

We call j an angle function from V to W, and sometimes write 
j = –(V, W). The exercise mentioned in the proof also implies that j is
uniquely determined by its value at any one t0 Œ I. Thus any two choices of
j differ by a constant integer multiple of 2p. Many applications of angle
functions will appear later on.

Consistency is the essence of orientability. In studying a surface M
oriented by an area form dM, we prefer using positively oriented patches,
dM(xu, xv) > 0 and positively oriented frame fields, dM(E1, E2) = +1. (Recall
that the only possible values of an area form on a frame are ±1.)

When a frame field E1, E2 on M is positively oriented, then the wedge
product of its dual 1-forms is precisely the selected area form:

To prove this, it suffices to note that both sides have the value +1 on E1, E2.
A minus sign appears in this equation if the frame field is negatively oriented.

The properties of J show that if u is a unit tangent vector, then u, J(u) is
a frame—in fact, a positively oriented frame. Thus any nonvanishing vector
field V on M determines a positively oriented frame field, namely,

dM = Ÿq q1 2 .

f g= cos j j, = sin .

f W V g W J V= = ( )• • .and

w v v= + ( )cos sin .j j J
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We call this the associated frame field of V.

Exercises

1. Using the natural orientation of R2 given by the area form du Ÿ dv, prove:
(a) For a mapping F = (f, g): R2 Æ R2, the definition of Jacobian in the
text gives the usual formula J = fugv - fvgu.
(b) The Jacobian of a patch x: D Æ M in an oriented surface M is

, where the sign depends on whether x is positively or nega-
tively oriented.

2. Let D be a small disk in M centered at p, and let a parametrize its bound-
ary ∂D. By drawing a few unit normals to M along a, sketch the image of a
under the Gauss map of M if:

(a) p is any point of an ellipsoid M.
(b) p is any point of a circular cylinder.
(c) p is the origin in M: z = xy.

3. (a) Prove that the Gauss map of a surface M Ã R3 is conformal if and
only if its principal curvature functions satisfy k2

1 = k2
2 > 0.

(b) Deduce that the Gauss map of a surface M is conformal if and only if
M is either (i) a minimal surface without planar points or (ii) part of a
sphere.

4. (a) Show that total curvature is an isometric invariant for compact ori-
entable surfaces. (Hint: Use Ex. 5 of Sec. 7.)
(b) Extend (a) to the noncompact case, assuming K � 0 or K � 0.

5. (Total curvature of surfaces of revolution.) On a surface of revolution with
profile curve a, let Zab, as usual, be the zone bounded by the paral-
lels through a(a) and a(b), a < b. Show that the total curvature of Zab is 
2p(sinja - sinjb), where ja and jb are the slope angles of a at a and b—
measured relative to the axis of revolution. (See Fig. 6.19.)

For a on an open interval, -• � A < u < B � •, the total curvature can
be treated as an improper integral, giving the (possibly infinite) result

provided both limits exist.

2p j jlim sin lim sin
a A

a
b B

b
Æ Æ

-( )

± -EG F 2

E
V
V

E J E
J V
V1 2 1= = ( ) =
( )

, .
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6. (Continuation.)
(a) Show that every surface of revolution with closed profile curve has total
curvature zero, and every augmented surface of revolution with two inter-
cepts has total curvature 4p.
(b) Find the total curvatures of (i) paraboloid of revolution, (ii) catenoid,
(iii) bugle surface.

7. Let F: M Æ N be a mapping of oriented surfaces. Prove:
(a) F is area-preserving (Ex. 6 of Sec. 7) if and only if F is a diffeomor-
phism with Jacobian JF = ±1.
(b) If F is an isometry, then it is area-preserving, but not conversely.

8. Let M be a noncylindrical ruled surface whose rulings are entire straight
lines; assume K < 0.

(a) Show that the total curvature of M is -2L(d), where d is a director curve
with ||d || = 1. (Hint: See Ex. 11 of Sec. 5.6.)
(b) Find the total curvature of the saddle surface z = xy by this method
(see Ex. 12).

9. (Gauss maps of some minimal surfaces.) In each case show that the Gauss
map covers the sphere omitting exactly n points.

(a) Catenoid: n = 2.
(b) Helicoid: n = 2.
(c) Scherk’s surface (Ex. 5 of Sec. 5.5): n = 4.
What are the total curvatures of these surfaces?

10. Let E = x(R2) be Enneper’s minimal surface (Ex. 15 of Sec. 5.6). (The
formula for x is that of x1 in the next exercise.)

(a) Compute the unit normal

U
u v

u v u v=
1

+ +
- - -( )

1
2 2 1

2 2
2 2,  ,  .
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(b) Express U in terms of polar coordinates on R2, and show that (i) the
Gauss map G ª U is one-to-one and (ii) G maps E onto the unit sphere S
minus the south pole (0, 0, -1).
(c) Deduce that E has total curvature -4p.
It is known that every complete nonflat minimal surface has total curva-
ture -4pm for some 1 � m � •, and that only the catenoid and Enneper’s
surface have the extreme value -4p. (See R. Osserman, A Survey of
Minimal Surfaces, Dover, New York, 1986.)

11. (Computer continuation.)
(a) On the domain -2.5 � u, v � 2.5, plot the surface given by

for at least six values of t from t = 0 (saddle surface) to t = 1 (Enneper’s 
surface E ). Animate this series of plots, observing the formation of the two
curves at which E cuts across itself.

(b) Plot E, on the domain given in (a), as viewed successively from along
the x axis, y axis, and z axis.

12. Parametrize the saddle surface S using polar coordinates r, J (instead
of rectangular u, v). Then

(a) Find the total curvature of S by an explicit integration.
(b) Express the unit normal U to S in terms of polar coordinates. Show
that the resulting Gauss map is one-to-one. Determine its image and use
Corollary 8.6 to check the result in (a).

13. (Computer optional.) (a) Find a parametrization of the monkey saddle
M by polar coordinates (see Ex. 19 of Sec. 5.4).

(b) Plot the region r � 1.
(c) Find the total curvature of M.

6.9 Congruence of Surfaces

Two surfaces M and in R3 are congruent provided there is an isometry F
of R3 that carries M exactly onto . Thus congruent surfaces differ only in
their positions in R3. For example, the surfaces

are congruent under a 45° rotation about the z axis.

M z xy M z
x y

: =
-

and : =
2 2

2

M
M

x t u v u v u v t
u

uv
v

vu, , , , ,( ) = -( ) + - + - +Ê
ËÁ

ˆ
¯̃

2 2
3

2
3

2

3 3
0 .
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To simplify the exposition, we assume that the surfaces in this section are
orientable as well as connected.

9.1 Theorem If F is a Euclidean isometry such that F(M) = , then the
restriction of F to M is an isometry of surfaces,

Furthermore, if M and are suitably oriented, then F preserves shape oper-
ators, that is,

for all tangent vectors v to M.

In short, congruent surfaces are isometric and have essentially the same
shape operators.

Proof. We know from Chapter 4, Section 5, that the restriction

is a smooth mapping. Also, the differential maps of F and F agree on
tangent vectors v to M. In fact, such a v is the initial velocity of a curve a
that lies in M; hence F(a) = F(a). Thus

It follows that F* preserves dot products of tangent vectors to M, since F*
has this property for all pairs of tangent vectors. Furthermore, F: M Æ
is one-to-one (since F is) and onto (by hypothesis). Hence F is an isome-
try of surfaces.

To show that F preserves shape operators, we arrange to have corre-
sponding unit normals on M and . Let U be a unit normal to M. Since
F* preserves dot products and F carries M to , it follows that F*(U) is
a unit vector field everywhere normal to . Thus F*(U ) is one of the two
unit normals on , say,

(See Fig. 6.20.)
If S and are the shape operators of M and derived from U and ,

we will show first that

F v F v* *S S( )( ) = ( )( )

UMS

F p F p* .U U( )( ) = ( )( )

M
M

M
M

M

F F* * .v F F v( ) = ( )¢ ( ) = ( )¢ ( ) = ( )a a0 0

F M M M= ÆF :

F S S F* *v v( )( ) = ( )( )

M

F M M M= ÆF : .

M
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for all tangent vectors to M.
Again, let a be a curve in M with initial velocity v. Then F(a) is a curve

in with initial velocity F*(v). For U restricted to a and restricted to 
F(a), we have F(U) = (Fig. 6.20). Since F* preserves derivatives of vector
fields,

But v and S(v) are tangent to M, so F* can be replaced here by F*. ◆

Although congruent surfaces are isometric, it is not usually true that 
isometric surfaces are congruent. For example, the surfaces in Fig. 6.9 
are all isometric to a plane rectangle, but evidently no two of them are 
congruent.

Our goal now is to prove the converse of the preceding theorem, namely,
if M and are isometric and have essentially the same shape operators, then
they are congruent. This is the analogue of the basic congruence theorem for
curves (Theorem 5.3 of Chapter 3). The condition M isometric to corre-
sponds to the hypothesis that a and b are unit-speed curves defined on the
same interval, and “same shape operators” corresponds to

9.2 Theorem Let M and be oriented surfaces in R3. Let F: M Æ
be an isometry of oriented surfaces in R3 that preserves shape operators, so

F S S F* *v v( )( ) = ( )( )

MM

k k t t= =, .

M

M

F v F FS U U S v( )( ) = - ¢( )( ) = - ¢( ) = ( )( )0 0 * .

U
UM
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for all tangent vectors to M. Then M and are congruent; in fact, there is
a Euclidean isometry F such that F|M = F.

(If it should happen that F*(S(v)) = - (F*(v)) for all tangent vectors, then
reversing the orientation of either M or will give the hypothesis as stated.)

Proof. There is only one candidate for F, which we describe as follows.
Fix a point p0 in M and a tangent frame e1, e2 at p0. Let E3 and 3 be the
unit normals to M and that give S and . By Theorem 2.3 of Chapter
3, there is a unique Euclidean isometry F such that

These conditions imply that (F|M)* = F* at p0—a necessary condition for 
F|M = F.

Since M is connected, if p is an arbitrary point of M, there is a curve
a in M from a(0) = p0 to p. It will suffice to show that F(a) = F(a), for then
certainly F(M) = and F|M = F.

There is no loss of generality in assuming that a lies in the domain of a
tangent frame field E1, E2 on M. If not, we could break up a into segments
for which this is true and in sequence repeat essentially the following proof.

We adjust this frame field, using the same constant rotation (and
perhaps reflection) at each point, so that its value at p0 is the selected frame
e1, e2. This precaution is necessary in order that all choices of p in M will
relate properly to the Euclidean isometry F defined above.

Next, this frame field is transferred, by the isometry F, to a frame field 
1, 2 on . Appending the selected unit normals gives an adapted frame

field E1, E2, E3 on a domain in M, and correspondingly 1, 2, 3 on .
Preparations are completed by restricting these frame fields to the curves 
a and = F(a), respectively, as shown in Fig. 6.21.

The proof consists in applying Theorem 5.7 of Chapter 3 to the curves
a and . So we must verify the conditions (1) and (2) in that theorem.

Since the isometry F preserves velocities of curves and covariant deriv-
atives of vector fields,

Being tangent to M, a¢ is orthogonal to E3; similarly for ¢ and 3. Thus 
¢ • E3 = 0 = ¢ • 3. So we now have

(1)

Let wij and ij be the connection forms of the adapted frame fields {Ei}
and { i}. By Lemma 5.3, F*( 12) = w12, and we computewE

w

¢ = ¢ ( )a a• • .E E ii i 1 3� �

Eaa
Ea

¢ = ¢( ) ( ) = ( )¢ = ¢ =( )a a a a• * • * • • , .E F F E F E E kk k k k 1 2
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Since F preserves shape operators,

The same result holds with 1 replaced by 2, so E2¢ • E3 = 2¢ • 3. By skew-
symmetry in i and j, we conclude that

(2)

Equations (1) and (2) above are those of Theorem 5.7 in Chapter 3 (with
b replaced by ). Furthermore, by construction, the Euclidean isometry
produced by the theorem is the isometry F defined above. ◆

This theorem provides a formal proof that the shape operators of a surface
in R3 do, in fact, completely describe its shape.

Exercises

1. A surface M Ã R3 is rigid provided every surface in R3 isometric to M is
congruent to M (thus M has only one possible shape in R3).

Deduce from Liebmann’s theorem that spheres are rigid, that is, if M Ã R3

is isometric to a “round” sphere S: || p - p0|| = r, then M is a round sphere.

2. If a,b: I Æ R3 are unit-speed curves with the same curvature k > 0 and
torsion t, show that their tangent surfaces are congruent. (Compare Ex. 5 in
Sec. 4, where only k is the same.)

3. Let M and N be congruent surfaces in R3, with F a Euclidean isometry
such that F(M) = N. Prove that the isometry F|M preserves Gaussian and
mean curvature, principal curvatures, principal directions, umbilics, asymp-

a

¢ = ¢ £ £( )E E E E i ji j i j• • , .1 3
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¢ = — = -— = ¢( )
= ¢( )( ) = ¢( ) = — = ¢

¢ ¢

¢

E E E E E E S E
F S F E S E E E E E
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1 1 1 3 1 3

• • • •

* • * • • • .
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totic and principal curves, and geodesics. Which of these are preserved by
arbitrary isometries F: M Æ N?

4. For the sphere S Ã R3, show:
(a) If F: S Æ S is an isometry, there is a Euclidean isometry F such that
F = F|S.
(b) Same as (a), with F : S Æ S replaced by F : S Æ M Ã R3.

5. In each of the following cases, show that the surfaces are congruent by
finding an explicit Euclidean isometry F = TC that carries one surface to the
other.

(a) z = xy and y = xz.
(b) x2 - y2 - z2 = 1 and 2yz - x2 = 1.

6. If M is a surface in R3, a Euclidean isometry F such that F(M) = M is
called a Euclidean symmetry of M. Show that

(a) The set of all Euclidean symmetries of M forms a subgroup S(M) of
the group E (3) of all isometries of R3 (Ex. 7 of Sec. 3.1). S(M) is called
the Euclidean symmetry group of M.
(b) The Euclidean symmetric groups of congruent surfaces are isomorphic.

7. (a) Show that every Euclidean symmetry of the saddle surface 

M: z = xy

is an orthogonal transformation C.
(b) By considering the effect of C on the asymptotic unit vectors ±Ux and
±Uy of M at 0, show that M has exactly eight Euclidean symmetries and
find their matrices.

8. Find all the Euclidean symmetries of the ellipsoid

where a > b > c.

(Hint: For the Gaussian curvature of the ellipsoid, see Example 5.2 of Ch. 5.)

6.10 Summary

The geometrical study of a surface M in R3 separates into three distinct 
categories:

(1) The intrinsic geometry of M.
(2) The shape of M in R3.
(3) The Euclidean geometry of R3.

x
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2

2

2
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We saw in Chapters 2 and 3 that the geometry of R3 is based on the dot
product and consists of those concepts preserved by the isometries of R3. We
have now found that the geometry of M is also based on the dot product—
applied only to vectors tangent to M—and that it consists of those features
preserved by the isometries of M.

The shape of M in R3 is the link between these two geometries. For
example, Gaussian curvature K is a crucial invariant of the intrinsic geome-
try of M and (as Theorem 9.2 shows) the shape operator S dominates cate-
gory (2). Thus the equation

K = det S

shows that the geometries (1) and (3) can be harmonized only by means of
restrictions on (2). Stated bluntly: Only certain shapes in R3 are possible for a
surface M with prescribed Gaussian curvature. A strong result of this type is
Liebmann’s theorem, which asserts that a compact surface in R3 with K con-
stant has only one possible shape—spherical.
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Chapter 7
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In studying the geometry of a surface in R3 we found that some of its most
important geometric properties belong to the surface itself and not to the
surrounding Euclidean space. Gaussian curvature is a prime example;
although defined in terms of shape operators, it beongs to this intrinsic
geometry since it passes the test of isometric invariance. In the 1850s
Riemann drew the correct conclusion: There must exist a geometrical theory
of surfaces completely independent of R3, a geometry built from the start
solely of isometric invariants. In this chapter, we describe the fundamentals
of the resulting theory, concentrating on its dominant features: Gaussian cur-
vature and geodesics. Our constant guides will be the two special cases that
led to its discovery: the intrinsic geometry of surfaces in R3 and Euclidean
geometry—particularly that of the plane R2.

7.1 Geometric Surfaces

Evidence from earlier work on the intrinsic geometry of surfaces in R3 sug-
gests that what is needed to do geometry on a surface is a dot product on
tangent vectors. But to escape from confinement in R3, we must begin with
an abstract surface M (Section 8 of Chapter 4). Since M need not be in R3

there is no dot product, and hence no geometry. However, the dot product is
just one instance of the general notion of inner product, and Riemann’s idea
was to replace the dot product by an arbitrary inner product on each tangent
plane of M.

1.1 Definition An inner product on a real vector space V is a function
that assigns to each pair of vectors v, w in V a number ·v, wÒ with the 
following properties.



(1) Bilinearity:

(2) Symmetry: ·v, wÒ = ·w, vÒ.
(3) Positive Definiteness:

On the vector space R2 the dot product v • w = v1w1 + v2w2 is, of course, an
inner product, but there are infinitely many others; for instance,

·v, wÒ = 3v1w1 + 2v2w2.

(See Exercise 4.)
Basic features of the dot product remain valid for arbitrary inner products.

The length of a vector v is ||v|| = , and vectors are orthogonal if
·v, wÒ = 0. The Schwarz inequality

allows the angle 0 £ J £ p between vectors to be defined by

Replacing surfaces in R3 by abstract surfaces and dot products by arbitrary
inner products yields the following fundamental result.

1.2 Definition A geometric surface is an abstract surface M furnished
with an inner product · , Ò on each of its tangent planes. These inner prod-
ucts are required to vary smoothly in the sense that if V and W are differen-
tiable vector fields on M, then ·V,W Ò is a differentiable real-valued function
on M.

We emphasize that each tangent plane Tp(M) of M has its own inner
product, and these are unrelated except for the differentiability requirement—
an obvious necessity for a theory founded on calculus. Here ·V,W Ò has its
usual pointwise meaning as the function assigning to each point p the number
·V(p),W(p)Ò.

The geometric structure provided by this collection of inner products can
be described as a metric tensor g on M, that is, a function on all ordered pairs
of tangent vectors v, w at points p of M such that

gp p
v w v w, ,( ) = .

cos .J =
v w
v w

,

v w v w, £

· , Òv v
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Thus g is analogous to a differential 2-form on M (Definition 4.1 of Chapter
4). But forms are skew-symmetric, w (w, v) = -w(v, w), while the metric tensor
is symmetric, g(w, v) = g(v, w). (Informally, metric tensor is often shortened
to just metric.)

Definition 1.2 can be summarized as

We emphasize that the same surface furnished with two different metric
tensors constitutes two different geometric surfaces.

The Euclidean plane R2, with its usual dot product, is the best-known geo-
metric surface. Simple though it may be, R2 is the basic testing ground for
the geometry of surfaces. Of course, a surface M in R3 is a geometric surface,
with the dot product of R3 applied, as usual, to tangent vectors on M. This
gives the so-called induced metric on M, and unless some other geometric
structure is explicitly mentioned, it is always assumed that a surface in R3 has
the induced metric.

1.3 Remark Construction methods.
(1) Conformal Change. A simple way to get new geometric structures is to

distort old ones. For example, if h > 0 is a differentiable function on a region
in the Euclidean plane R2, define an inner product at each point p by

The resulting geometric surface M is said to be conformal with ruler function
h. In fact, the inner product of M gives the same angle measurements as the
dot product on the Euclidean plane.

We call h > 0 a ruler function since larger values of h give smaller values
for the length of vectors (see Section 2). Examples will soon show that unless
h is quite special, the surface M has properties quite different from the Euclid-
ean plane. In fact, locally every geometric surface can be so expressed.

(2) Pullback. A metric tensor g can be pulled back by a suitable mapping
in the same way as differential forms are. Here is an important application.
Let F: M Æ N be a regular mapping from an abstract surface M to a geo-
metric surface N with metric tensor g = · , Ò. The pullback F*(g) of g to M is
given in terms of inner products as

By definition, each tangent map F* is a linear isomorphism (linear, one-to-
one, and onto), so it is easy to check that this definition gives an inner product

v w v w, * , *M N
F F= ( ) ( ) .

v w
v w

p
, = ( )

•
.

h2

surface metric tensor geometric surface+ = .
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on each tangent space Tp(M). (The differentiability condition follows from
the fact that F is a diffeomorphism on small enough neighborhoods.) Thus
F*(g) is a metric tensor on M—in fact, it is the unique one that makes F a
local isometry.

(3) Coordinate description. Let x be a coordinate patch in an abstract
surface M (without geometry). If M were geometric, the functions

would be defined as before. But reversing this logic, if suitable functions E,
F, G are given, then these equations determine a unique metric tensor · , Ò on
the image of x (see Exercise 4).

Many examples of these methods appear later on.
From the modest beginning in Definition 1.2, a geometric theory can be

built that vastly enlarges that of Chapters 5 and 6. Definitions and theorems
from before that are clearly intrinsic in character will be used without further
discussion. In particular, an isometry F: M Æ N of geometric surfaces is still
defined by Definition 4.2 of Chapter 6, and the geometry of a geometric
surface M consists by definition of its isometric invariants.

Now that the calculus of R3 is gone, frame field computations on a surface
itself become more important. A frame field on an arbitrary geometric
surface M consists, as usual, of two orthogonal unit vector fields E1, E2

defined on some open set in M. The orthonormality conditions

are now expressed, of course, in terms of the metric tensor of M. Two ways
to construct frame fields are given in Exercises 7 and 9 of Section 2.

As before, dual 1-forms q1, q2 are uniquely determined by qi(Ej) = dij, and
by Lemma 5.1 of Chapter 6, the connection form w12 = -w21 is uniquely char-
acterized by the first structural equations

We emphasize that these forms q1, q2, w12 are not invariants of the surface
M; a different choice of frame field , will produce different forms 1,

2, . To obtain invariant results we will need to know how two such sets
of forms are related.

On a small enough neighborhood of a point p Œ M, careful use of the
inverse functions cos-1 and sin-1 will yield a differential angle function j such
that

E E E1 1 2= +cos sin .j j

w12q
qE 2E1

d dq w q q w q1 12 2 2 21 1= Ÿ = Ÿ, .

E E E E E E1 1 1 2 2 21 0 1, , , , ,= = =

E F Gu u u v v v= = =x x x x x x, , , , ,
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As Fig. 7.1 indicates, there are now two choices for E2. Either

so E1, E2 and , have the same orientation, or

and they have opposite orientation.
In working in an oriented region, it is natural to use positively oriented

frame fields. Evidently any two such have the same orientation.

1.4 Lemma Let E1, E2 and , be frame fields on the same region in
M. If these frame fields have

(1) the same orientation, then

(2) opposite orientation, then

Proof. We prove only (1), since (2) follows by changes of sign. By the
basis formulas in Lemma 2.1 of Chapter 6, the equations

yield

(*)

Taking the exterior derivative of the first of these gives

q j q j q q j q j q1 1 2 2 1 2= - = +cos sin sin cos .,

E E E

E E E

1 1 2

2 1 2

= +

= - +

cos sin

sin cos

j j

j j

,

w w j q q q q12 12 1 2 1 2= - +( ) Ÿ = - Ÿd , and .

w w j q q q q12 12 1 2 1 2= + Ÿ = Ÿd , and ;

E 2E1

E E E2 1 2= -sin cosj j ,

E 2E1

E E E2 1 2= - +sin cosj j ,
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Now substitute the first structural equations for , to obtain

In the same way, we get

Because the form w12 = -w21 uniquely satisfies the first structural equa-
tions, we conclude from the last two equations that = w12 + dj, as
required. Then direct computation of q1 Ÿ q2 using (*) shows that this 2-
form equals 1 Ÿ 2. ◆

In this chapter, as earlier, the restriction to low dimensions is not essential.
A surface is the 2-dimensional case of the general notion of manifold
(Chapter 4, Section 8). A manifold of arbitrary dimension furnished with a
metric tensor is called a Riemannian manifold. Euclidean geometry, as dis-
cussed in Chapter 3, is the special case of Riemannian geometry produced
on Rn by the usual dot product.

Thus a geometric surface is the same thing as a 2-dimensional Riemannian
manifold, and the subject of this chapter is 2-dimensional Riemannian 
geometry.†

Exercises

1. In a conformal geometric surface with ruler function h (Remark 1.3(1)),
show that:

(a) The speed of a curve a = (a1, a2) is 
(b) hU1, hU2 is a frame field with dual 1-forms 
(c) The area forms are 
(d) The identity map from the Euclidean plane to this surface is a confor-
mal map with scale factor (Def. 4.7 of Ch. 6). (Using h rather than
l as the descriptive function leads to simpler formulas.)

2. The Poincaré half-plane is the upper half-plane v > 0 in R2 with metric
tensor . If a is the curve a(t) = (rcos t, r sin t), 0 < t < p,
with constant r > 0,

v w v w p, • /= ( )v 2

l = 1/h

± Ÿdu dv h/ 2

du h dv h/ , / .
¢ + ¢ ( )a a a1

2
2

2 / .h

qq

w12

d dq w j q2 12 1= - -( ) Ÿ .

d d

d

q w j j q j q

w j q

1 12 1 2

12 2

= -( ) Ÿ +( )
= -( ) Ÿ

sin cos

.

dq2dq1

d d d d dq j j q j q j j q j q1 1 1 2 2= - Ÿ + - Ÿ -sin cos cos sin .
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(a) Show that the speed of a is csc t.
(b) Deduce that although the Euclidean length of a is pr, its Poincaré
length is infinite.
(c) Find the area of the region between a and the u axis.

For a surface M in R3 oriented by a unit normal U, the rotation operator
J was defined by J(v) = U ¥ v. Thus if M is an arbitrary geometric surface,
we need a new definition for J so that the results at the end of Section 8,
Chapter 6, will remain valid on M.

3. (Rotation operator.) Let M be a geometric surface oriented by an area
form dM. Prove:

(a) On each tangent space to M there exists a unique “rotation by +90°,”
that is, a linear operator J: Tp(M) Æ Tp(M) such that

(Hint: If J is the linear operator such that J(e1) = e2, J(e2) = -e1 holds for
one positively oriented frame, show that these relations hold for every such
frame.)
(b) J is differentiable (that is, V differentiable implies J(V) differentiable),
skew-symmetric (that is, ·J(v), wÒ = -·v, J(w)Ò), and J 2 = -I, that is,
J(J(v)) = -v for all v.
(c) If M is oriented instead by -dM, then its rotation operator is -J.
(d) If M is a surface in R3 oriented by a unit normal U and dM is the area
form such that dM(v, w) = U • v ¥ w, then for J as in (a), J(z) = U ¥ z
for all z.

4. (Coordinate definition of a metric.)
(a) If a, b, and c are numbers such that a > 0, c > 0, ac - b2 > 0, then the
formula

defines an inner product on R2. (Hint: .)

(b) Let x: D Æ M be a coordinate patch in an abstract surface M (without
geometry). Given differentiable functions E, F, and G on D such that

prove that there is a unique metric tensor · , Ò on the image of x such that

E F Gu u u v v v= = =x x x x x x, , , , , .

E G EG F> > >0 0 2, ,

av cv1 2

2

0±( ) ≥

x xu v av w b v w v w cv w, = + +( ) +1 1 1 2 2 1 2 2

J J dM Jv v v v v v v( ) = ( ) = ( )( ) > π( ), , , , if0 0 0 .
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5. (Line-element.)
(a) For an arbitrary inner product, prove the polarization identity

(b) Deduce that the metric tensor of a geometric surface M is completely
determined by the function q whose value on each tangent vector v is ||v||2.

Classically, q is called the line-element, or first fundamental form, of M and
is expressed in coordinates as

(Here du dv, for example, is ordinary multiplication, not wedge product.)
(c) Account for the unusual notation ds2 by finding the relevant formula
for the speed ds/dt of a curve a(t) = x(u(t), v(t)) (compare Ex. 5 of Sec.
5.4).

6. If F: M Æ N is a regular mapping of oriented geometric surfaces, show
that the following are equivalent:

(a) F is orientation-preserving and conformal (Def. 4.7 of Ch. 6).
(b) F preserves rotation operators; that is, for all tangent vectors v,

(c) F preserves oriented angles; that is, if j is an oriented angle from v to
w, then it is also an oriented angle from F*(v) to F*(w).

7. Prove that a regular mapping F = ( f,g) from a region U Ã R2 into R2 is
conformal and orientation-preserving if and only if the Cauchy-Riemann
equations fu = gv, fv = -gu hold.

If R2 is considered as the complex plane, with z = (u, v) = u + iv, these 
equations are necessary and sufficient for z Æ F(z) to be a complex analytic
function. Show also that the scale factor of the resulting conformal map is

8. (Continuation.) If the origin is deleted from R2, show that the 
mapping F in (2) of Example 7.3 of Chapter 1 is conformal and orientation-
preserving. What is the complex function in this case?

9. Let M be a region U Ã R2 furnished with a conformal metric given by
ruler function h. If F is a Euclidean isometry U Æ U that preserves h (that
is, h(F ) = h), show that F is an isometry M Æ M.

dF dz/ .

F J J FM N* *v v( )( ) = ( )( ).

q ds E du F du dv G dv= = + +2 2 22 .

v w v w v w, = + - -( )1
4

2 2 .
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7.2 Gaussian Curvature

For geometric surfaces we need a new definition of Gaussian curvature. The
definition K = det S for surfaces in R3 is meaningless now, since it uses shape
operators. But this original definition made K an isometric invariant, so it is
reasonable to look at the proof of the theorema egregium—specifically to
Corollary 2.3 of Chapter 6—to find a satisfactory generalization.

2.1 Theorem On a geometric surface M there is a unique real-valued
function K such that for every frame field on M the second structural 
equation

holds. K is called the Gaussian curvature of M.

Proof. For a frame field E1, E2, it follows from the basis formulas in
Lemma 2.1 of Chapter 6 that there is a unique function K such that 

dw12 = -Kq1 Ÿ q2.

But a priori this function depends on the particular frame field: Another
frame , might have a different function for which

Evidently we must show that where the domains of the frame fields overlap,
K = . Such domains cover all of M, so we will then have a single func-
tion K with the required property.

Suppose first that the two frame fields have the same orientation. By
Lemma 1.4, = w12 + dj. Hence d = dw12, since d 2 = 0. But then

Since

we conclude that = K.
When the orientations are opposite, we get d = -dw12, but still find
= K, since

◆

As mentioned above, Corollary 2.3 of Chapter 6 shows that this general def-
inition of Gaussian curvature agrees with the definition K = det S when M
is a surface in R3. The proof of isometric invariance presented there is entirely

q q q q1 2 1 2Ÿ = - Ÿ .

K
w12

K

q q q q1 2 1 2 0Ÿ = Ÿ π ,

K Kq q q q1 2 1 2Ÿ = Ÿ .

w12w12

K

d Kw q q12 1 2= - Ÿ .

KE 2E1

d Kw q q12 1 2= - Ÿ
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intrinsic in character and thus holds for arbitrary geometric surfaces. Fur-
thermore, the orthogonal curvature formula in Proposition 6.3 of Chapter 6
was derived from dw12 = -Kq1 Ÿ q2, without reference to the shape operator;
hence it is valid for any geometric surface.

To summarize: Geometrical investigations in terms of a frame field E1, E2

are expressed in terms of its structural equations

The first structural equations determine the connection form w12 = -w21 of
the frame field, but the second structural equation defines the Gaussian 
curvature of the geometric surface—independent of choice of frame field.
Chapter 6, Section 6 showed how w12 and K can be explicitly computed from
these implicit definitions.

Gaussian curvature is the central property of a geometric surface M. We
will see that it influences—often decisively—virtually every aspect of the
geometry of M.

Let us make certain that the new definition of curvature gives the 
correct result for the Euclidean plane R2. Its natural frame field 
U1 = (1, 0), U2 = (0, 1) has dual 1-forms q1 = du, q2 = dv. Then dq1 = dq2 = 0,
so the identically zero 1-form w12 = 0 satisfies the first structural equations
and hence is the connection form of U1, U2. Obviously, dw12 = 0, so by the
preceding theorem, K = 0. It can be no surprise that the Euclidean plane is
flat, for R2 is isometric to, say, the xy plane in R3, which has K = 0 since its
shape operators all vanish.

2.2 Example A flat torus. Let T be a torus of revolution considered as
an abstract surface, without geometry. If x is its usual parametrization
(Example 2.5 of Chapter 4), then the definitions

determine a unique inner product on each tangent plane of T. The resulting
geometric surface T0 is certainly different from the torus of revolution: it is
flat. To see this, recall that

Thus x* carries frames to frames, and consequently x is a local isometry of the
Euclidean plane R2 onto T0—and local isometries preserve curvature. ◆

In effect, T0 is constructed by gluing opposite sides of a Euclidean rectan-
gle, as specified by the map x. This metric on the flat torus is not the induced

x x x x* and *U Uu v1 2( ) = ( ) = .

x x x x x xu u u v v v, , , , ,= = =1 0 1

d d

d K

q w q q w q

w q q
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metric derived, as usual, from the dot product of R3. If it were, then since T0

is compact, by Theorem 3.5 of Chapter 6 it would have to have positive cur-
vature somewhere. Thus T0 can never be found in R3.

This shows that the class of all geometric surfaces is larger than that of
surfaces in Euclidean 3-space—in fact, it is immensely larger. In the course
of this chapter and the next, we hope to persuade the reader that geometric
surfaces are the natural objects to study and that surfaces in R3—however
visually appealing—are only an interesting special case.

We now find a formula for the Gaussian curvature of the conformal geo-
metric surfaces described in Remark 1.3.

2.3 Corollary For the plane R2 with metric tensor ,
the Gaussian curvature is

Proof. Let M denote the plane with its new metric. Then the identity
map R2 Æ M is a patch with and F = 0. Thus the result
follows directly from the orthogonal curvature formula in Proposition 6.3 
of Chapter 6. (Since the patch is conformal, we could also get K as 
h2 D(log h) from Exercise 2 of Section 6.6) ◆

2.4 Example (1) The stereographic sphere. It was shown in Example 5.5
of Chapter 4 that stereographic projection P is a diffeomorphism of the 
punctured sphere S 0 onto the Euclidean plane R2. Now consider S 0 as 
merely an abstract surface, and assign it the pullback metric tensor of
Remark 1.3(2) that makes P an isometry. If S 0 appears round in Fig. 7.2, it
is only because we look at it with Euclidean eyes—intrinsically, this S 0 is as
flat as the plane.

(2) The stereographic plane. Now reverse the process in (1). Consider S 0

with its usual geometric structure as a surface in R3 and ignore the geometry
of R2.

E G h= = 1 2/

K h h h h huu vv u v= +( ) - +( )2 2 .

v w v w p, • /= ( )h2
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The inverse P-1: R2 Æ S 0 of stereographic projection is a diffeomorphism
since P is. Hence the pullback operation makes R2 a geometric surface—the
stereographic plane—that is isometric to S 0 Ã R3 and hence has curvature 
K = 1.

We examine this stereographic plane more closely. If v and w are tangent
vectors to R2 at q = P(p), let and be the unique tangent vectors to S 0 that
P* carries to v and w, respectively. By Exercise 4.14 of Chapter 6, we know
that in terms of Euclidean dot products,

But (P-1)* = (P*)-1 carries v and w back to and , so for the pulled back
inner product on R2 we find

It follows immediately that the new metric on the stereographic plane is con-
formal as in Remark 1.3, with ruler function

To visualize this unusual plane, it helps to imagine that rulers get longer as
they move farther from the origin. Since P is now an isometry, the intrinsic
distance from p to q in Fig. 7.3 is exactly the same as the distance from p* to
q*. Also, circles u2 + v2 = r2 with r very large actually have very small stereo-
graphic radii, since they correspond under P to small circles about the
(missing) north pole of S 0.
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2.5 Example The hyperbolic plane. Let us experiment with a change of
sign in the stereographic inner product above, setting



Since h > 0 is necessary, this hyperbolic inner product is used
only on the open disk u2 + v2 < 4 of radius 2 in R2. The resulting geometric
surface is the Poincaré disk model of the hyperbolic plane H. It follows easily
from Corollary 2.3 that the hyperbolic plane has constant Gaussian curvature
K = -1. ◆

As a point (u, v) approaches the rim of H, that is, the circle u2 + v2 = 4 (not
part of H!), h(u, v) approaches zero. In the language used above, rulers shrink
as they approach the rim, so H is a good deal bigger than Euclidean intu-
ition may suggest.

To verify this, let us find the arc length function s(t) of the Euclidean ray

which runs, at angle J, from the center of H out to the rim. On g, the ruler
function becomes 1 - t2/4. Since g ¢ = (cosJ, sinJ),

Then

Thus, as t approaches 2, s(t) approaches •. This “short” segment has infinite
hyperbolic length. (Although distance in H is quite non-Euclidean, recall that
by conformality, angle measurement is the same.)

Further properties of the hyperbolic plane will be developed as we go
along. We will see that it—and not the bugle surface (Example 7.6 in Chapter
5)—is the true analogue of the sphere for constant negative curvature.

Any regular mapping F: M Æ N can be used to pull a metric tensor on N
back to M, but unless F is a diffeomorphism, it is usually not possible to push
forward a metric from M to N. The trouble is that when F carries points 
p1 π p2 of M to the same point of N, the inner products at these points may
transfer differently to F(p1) = F(p2). This difficulty can be eliminated by impos-
ing a consistency condition, as follows.

2.6 Proposition Let F be a regular mapping of a geometric surface M
onto a surface N without geometry. Suppose that whenever F(p1) = F(p2) there
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is an isometry G12 from a neighborhood of p1 to a neighborhood of p2 such
that

Then there is a unique metric tensor on N that makes F a local isometry.

Proof. If F is to be a local isometry, there is no choice in defining the
inner product of tangent vectors v, w at q in N. F is regular, so at any point
p1 in M such that F(p1) = q there are unique vectors v1, w1 such that

Hence we must define ·v, wÒN to be ·v1, w1ÒM.
For this to be a valid definition, it must not depend on the choice of p1.

Explicitly, if p2 is another point such that F(p2) = q and if v2, w2 are the
unique vectors there such that

then we require

(*)

To prove this, let G = G12 be an isometry as in the statement of the propo-
sition. Since FG = F, the chain rule gives F*G* = F*. Consequently, G*
carries the vectors v1, w1 to the vectors at p2 that F* carries to v, w, namely,
to v2, w2. Since G is an isometry, (*) holds. ◆

2.7 Example The projective plane. Example 8.2 of Chapter 4 defined the
projective plane P as an abstract surface by identifying antipodal points of a
unit sphere S Ã R3. Now we give P a geometric structure. Recall that the pro-
jection F: S Æ P is related to the antipodal map A(p) = -p by FA = F. Since
A is an isometry, the preceding result applies, with all maps G12 being A. The
resulting local isometry S Æ P shows that like the sphere, P has constant
positive curvature K = 1 and all its geodesics are closed.

The same scheme, applied when S has radius r, gives the projective plane
of radius r, with curvature ◆

Like the flat torus, P cannot be found in R3. For the flat torus this failure
could be blamed on its geometry, since tori of revolution abound in R3. But
for P the obstruction is topological, because (by Theorem 7.10 of Chapter 4)
compact surfaces in R3 must be orientable—and P is not.

K r= -1 2/ .
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Now that we have a geometry for surfaces that may not occur in R3, a
natural place to look for them is in higher-dimensional Euclidean spaces. In
the simplest case, let x: D Æ Rn, n ≥ 3, be a regular map, so x(D) is at least
an immersed surface. Then pullback of the dot product metric of Rn makes
D a geometric surface, with

We think of D as a geometric description of x(D), as in the n = 3 case.

2.8 Example Tangent surfaces. For any n ≥ 3, let b be a unit-speed curve
in Rn with k = ||T ¢|| > 0. The tangent surface is given as before by the formula
x(u, v) = b(u) + vT(u), with v π 0. Then xu = T + vT ¢ and xv = T, so

Since EG - F 2 = v2k2(u) > 0, x is regular. The resulting immersed surface is
flat, just as in the R3 case. This follows from the general curvature formula in
Exercise 9, but it is clear without computation since we know that K derives
solely from E, F, and G, and these are given by the same expressions as in
the 3-dimensional case (Exercise 13 in Section 5.4). ◆

Exercises

1. Show that the Poincaré half-plane (Ex. 2 of Sec. 1) has constant nega-
tive Gaussian curvature K = -1.

2. For the conformal structure (Rmk. 1.3) on the entire plane with ruler
function h = sech(uv), find the dual forms and connection forms of the frame
field hU1, hU2 and derive the Gaussian curvature K. Check by finding K from
Corollary 2.3.

3. Find the area of the disk u2 + v2 � a2 in the hyperbolic plane. (Hint: Use
polar coordinates x(r, v) = (rcosv, r sinv).) What is the area of the entire
hyperbolic plane?

4. The hyperbolic plane H(r) of pseudo-radius r is the disk u2 + v2 < 4r2 with
conformal metric given by the ruler function

Thus the hyperbolic plane of Example 2.5 is H(1). Show that H(r) has  con-
stant Gaussian curvature K r= -1 2/ .
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5. In Example 2.2 suppose the flat torus T0 is constructed from a torus of
revolution T with radii R > r > 0. Find the area of T0. How does this compare
with the area of T with its usual geometry as a surface in R3?

6. (a) Show that the geometric surface in Exercise 2 is isometric to a heli-
coid. (Hint: Use x(u, v) = (f(u) cosv, f(u) sinv, v) for a suitable function f(u).)
(b) Check that the two surfaces have the same Gaussian curvature at cor-
responding points.

7. A scale change of M stretches every dimension of M by a constant factor
c > 0. Formally, if M is a geometric surface with inner product · , Ò, let be
the same abstract surface with inner product

We say that is M scaled by c > 0. Show that:

(a) ||v||- = c||v|| for all v, but angles between vectors are the same.
(b) For any curve segment a, (a) = cL(a).

(c) Frame fields E1, E2 on M and on have dual 1-forms 
i = cqi, but their connection forms are equal.

(d) A region R has M area A if and only if it has area c2A.
(e)

Taking c > 1 for definiteness, the scale change expands every dimension of M
by the factor c—which produces smaller curvature (compare a sphere of
radius 2 with a unit sphere). It will follow from Lemma 4.5 that M and 
have the same geodesics—though speeds differ.

8. Prove:
(a) The sphere S(r) Ã R3 of radius r is isometric to the unit sphere S scaled
by r.
(b) The hyperbolic plane H(r) of Exercise 4 preceding is isometric to 
H = H(1) scaled by r.

Because the geometric effects of scale change are so simple, it usually suffices
to work with standard models such as S and H.

9. (Classical tensor formula for Gaussian curvature.) For an arbitrary patch
x, the associated frame field is

where as usual, .W EG F= - 2
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(E2 is found by subtracting from xv its E1 component and reducing the
result to unit length—the so-called Gram-Schmidt process.)

(a) Check that E1, E2 is orthonormal.
(b) Express the dual 1-forms q1, q2 in terms of du and dv.
(c) Find the functions P and Q such that w12 = Pdu + Qdv.
(d) Deduce the curvature formula

This formula is usually stated in terms of Christoffel symbols Gk
ij, a set of

functions derived from E, F, and G.
(e) For an orthogonal patch, show that (d) reduces to Proposition 6.3 of
Chapter 6.
(f) Test (d) for the saddle surface in Example 4.3(2) of Chapter 5.

10. (Continuation.) If the parameter curves of a patch all have unit speed,
show that Gaussian curvature is given by , where 0 < J < p is
the coordinate angle.

11. (a) Show that the mapping x: R2 Æ R4 given by

is conformal, hence regular. (In fact, x parametrizes a surface in R4.)
(b) Find its Gaussian curvature. (Hint: Ex. 2 of Sec. 6.6.)

12. (Double saddle.) The image of the patch 
is a surface in R4. Find:

(a) its Gaussian curvature;
(b) the area of the region for which 0 � u, v � 1.

13. (Computer.)
(a) Write the computer command based on Exercise 9 that, given the func-
tions E, F, G, returns K.
(b) Show how (a) can be used to find the curvature of x: D Æ Rn for 
arbitrary n.
(c) Test (a) on the three preceding exercises and on Example 2.8.

7.3 Covariant Derivative

The covariant derivative — of R3 (Chapter 2, Section 5) is an essential part
of Euclidean geometry. It is used, for example, to define the shape operator

x u v u v uv u v, , , , /( ) = -( )( )2 2 2

x u v u v u v u v u v, , , ,( ) = ( )cosh cos cosh sin sinh cos sinh sin

K uv= -J J/sin

K
W u

FE EG
EW v

EF FE EE
EW

v u u u v=
∂

∂
-Ê

ËÁ
ˆ
¯̃ +

∂
∂

- -Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

1
2

2
.
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of a surface in R3 and, in modified form, to define the acceleration of a curve
in R3 (Chapter 2, Section 2). In this section we show that each geometric
surface has its own notion of covariant derivative.

As in Euclidean space, a covariant derivative — on a geometric surface M
assigns to each pair of vector fields V, W on M a new vector field —VW. Intu-
itively, the value of —VW at a point p will be the rate of change of W in the
V(p) direction. We must certainly require that — have the familiar linear and
Leibnizian properties (1)–(4) in Corollary 5.4 of Chapter 2—of course, with
the Euclidean dot product replaced by the inner product of M.

Furthermore, since the connection form w12 of a frame field E1, E2 mea-
sures the rate at which E1 is turning toward E2, we must also require

(*)

These conditions are enough to completely determine —.

3.1 Lemma Assume that there is a covariant derivative — on M with the
usual linear and Leibnizian properties, and such that (*) holds for frame fields
E1, E2. Then — obeys the connection equations

Furthermore, for a vector field W = f1E1 + f2E2,

We call this last equation the covariant derivative formula. Note that in this
formula, V [ f1] and V [ f2] only tell how W is changing relative to the frame
field. The other two terms tell how the frame field itself is rotating, so the
combined formula makes —VW an absolute rate of change.

Proof. By orthonormal expansion,

The first summand vanishes since ·E1, E1Ò is constant. In fact, by a famil-
iar Leibnizian argument,

Using (*) in the second summand gives —VE1 = w12(V)E2, as required. The
other connection equation is derived similarly.

Finally, the properties of — yield

0 21 1 1 1= [ ] = —V E E E EV, , .

— = — + —V V VE E E E E E E1 1 1 1 1 2 2, , .

— = [ ] + ( )( ) + [ ] + ( )( )VW V f f V E V f f V E1 2 21 1 2 1 12 2w w .

— = ( ) — = ( )V VE V E E V E1 12 2 2 21 1w w, .

w12 1 2V E EV( ) = — , .
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Substituting the connection equations then gives the covariant derivative
formula. ◆

This lemma shows how to define the covariant derivative of M. The fol-
lowing result (here stated for dimension 2) has been called the fundamental
theorem of Riemannian geometry.

3.2 Theorem On each geometric surface M there exists a unique covari-
ant derivative — with the linear and Leibnizian properties (1)–(4) in Corol-
lary 5.4 of Chapter 2 and satisfying equation (*) for every frame field.

Proof. The preceding lemma shows that there is at most one such covari-
ant derivative since it gives an explicit formula for —VW. The proof that
there is at least one splits into two parts.

Local Definition. For a frame field E1, E2 on a region U in M, use the
covariant derivative formula in Lemma 3.1 as the definition of —VW. It is
a routine exercise in calculus on a surface to verify that — has the required
properties. The linearity conditions (1) and (2) are simple, so we will prove
the Leibnizian property (3), namely,

Write Y = g1E1 + g2E2. Then fY = fg1E1 + fg2E2, and by the covariant
derivative formula,

The Leibnizian product rule V [ fgi] = fV[gi] + giV [ f ] yields

But the right side here is f —VY + V [ f ]Y, as required.
To prove (*), use the covariant derivative formula with W = E1. Then 

f1 = 1 and f2 = 0, so the formula collapses immediately to (*).

Consistency. For two different frame fields, do the local definitions
agree? If so, we have a single covariant derivative well-defined on all of M.
So let derive from a frame field , on a domain . We must showUE 2E1—

— ( ) = [ ] + ( )( ) + [ ] + ( )( )
+ [ ] + [ ]

V fY f V g g V E f V g g V E

g V f E g V f E

1 2 21 1 2 1 12 2

1 1 2 2

w w

.

— ( ) = [ ] + ( )( ) + [ ] + ( )( )V fY V fg fg V E V fg fg V E1 2 21 1 2 1 12 2w w .

— ( ) = [ ] + —V VfY V f Y f Y .

— = — +( ) = — ( ) + — ( )
= [ ] + — + [ ] + —

V V V V

V V

W f E f E f E f E

V f E f E V f E f E

1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2 .
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that —vW = VW on the intersection of U and . Because of the prop-
erties of —, it will suffice to show

We use Lemma 1.4, assuming for simplicity that the two frame fields have
the same orientation. When —V is applied to the equation

the covariant derivative formula gives

By Lemma 1.4, = w12 + dj. Since dj(V) = V [j], substituting 
w12 = - dj into the preceding equation reduces it to

In the same way, —V = V follows from = -sinjE1 + cosjE2. ◆

3.3 Example The covariant derivative of R2. The natural frame field U1,
U2 has w12 = 0. Thus, for a vector field W = f1U1 + f2U2, the covariant deriv-
ative formula (Lemma 3.1) reduces to

This is just Lemma 5.2 of Chapter 2, applied on R2 instead of R3, so our
abstract definition of covariant derivative produces correct Euclidean results.

Note that the covariant derivative formula shows that (as in the Euclidean
case) the value of the vector field —VW at a point p depends only on W and
the tangent vector V(p). Thus —vW is meaningful for an individual tangent
vector.

The covariant derivative on a geometric surface M can be adapted to a
vector field Y along a curve a: I Æ M. (Recall that Y assigns a vector Y(t)
in Ta(t)(M) for each t in I.) The covariant derivative Y¢ of Y ought to be 
—a ¢Y, but neither a ¢ nor Y is defined on an open set of M as required by the
definition of —. The simplest solution is to define Y¢ by a frame field formula
modeled on the covariant derivative formula in Lemma 3.1.

So for a frame field E1, E2, write Y = f1E1 + f2E2, and then define

— = [ ] + [ ]VW V f U V f U1 1 2 2 .

E 2E 2—E 2

— = ( ) - +( )
= ( ) = —

V

V

E V E E

V E E

1 12 1 2

12 2 1

w j j

w

sin cos

.
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w12

— = - [ ] + ( )( )
+ [ ] + ( )( )

V E V V E
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sin

cos .

j j w
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E E E1 1 2= +cos sinj j ,
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(d)

Standard proofs show that this definition is independent of the choice of
frame field and has the same linear and Leibnizian properties as in the Euclid-
ean case.

The velocity a ¢ of a curve in M is a vector field on M, so we can take its
covariant derivative to get the acceleration a ≤ of a.

In the frequently occurring case of vector fields of constant length, there
is a more intuitive description of the covariant derivative along a curve—one
that relates more directly to other geometric invariants.

3.4 Lemma Let E1, E2 = J(E1) be a positively oriented frame field on M,
where J is the rotation operator from Exercise 3 of Section 7.1. Let Y be a
vector field of constant length c > 0 along a curve a in M. If j is an angle
function from E1 to Y, then

Again, j ¢ tells the rate at which Y is rotating relative to the frame field,
and the connection term tells how the frame field is rotating along a, so their
sum gives an absolute rate for Y.

Proof. We write Then applying the covariant
derivative formula gives

Multiplication by c completes the proof. ◆

A distinctive feature of Euclidean geometry is the ability to move a tangent
vector v at one point to a parallel vector at any other point by simply keeping
the same natural coordinates for v. As we shall see, this phenomenon of
“distant parallelism” rarely occurs on an arbitrary geometric surface.
However, it is always possible to define parallelism of a vector field along a
curve.

3.5 Definition A vector field V on a curve a in a geometric surface is 
parallel provided its covariant derivative vanishes: V¢ = 0.

¢ = - ¢ + ¢( )( ) + ¢ + ¢( )( )
= ¢ + ¢( )( ) -( ) = ¢ + ¢( )( ) ( )

Y c E E

E E J Y c

/ sin cos

cos sin / .

j j w a j j w a

j w a j j j w a

21 1 12 2

12 2 1 12

Y c E E/ cos sin .= +j j1 2

¢ = ¢ + ¢( )( ) ( )Y J Yj w a12 .

¢ = ¢+ ¢( )( ) + ¢+ ¢( )( )Y f f E f f E1 2 21 1 2 1 12 2w a w a .
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As in the Euclidean case, a parallel vector field has constant length, since
||V ||2 = ·V, V Ò and ·V, V Ò¢ = 2·V ¢, V Ò = 0.

3.6 Lemma Let a be a curve in a geometric surface M, and let v be a
tangent vector at p = a (t0). Then there is a unique parallel vector field V on
a such that V(t0) = v (see Fig. 7.4).

Proof. The vector field V must satisfy the conditions

The existence and uniqueness of V is assured by differential equations
theory, but the following explicit proof may be more illuminating.

We can suppose that a lies entirely in the domain of a positively ori-
ented frame field E1, E2 = J(E1) on M, for otherwise a could be broken into
subsegments for which this is true. Since V must have constant length 
c = ||v||, we can write

where the angle function j = j (t) is to be determined.
By the preceding lemma, V will be parallel, that is, V¢ = 0, if and only if

j¢ + w12(a ¢) = 0. Furthermore, V(t0) = v will hold if j (t0) is an angle from
E1(p) to v. There is exactly one function j satisfying these conditions, namely

◆

For a parallel vector field V on a, we say that the vector V(t) at each point
a(t) is gotten from v at p = a(t0) by parallel translation along a.

In Euclidean space, parallelism means keeping the same natural coordi-
nates, so parallel translation is path-independent. But in a geometric surface,
parallel translation from p to q along different paths usually gives different

j j w at t du
t

t
( ) = ( ) - ¢( )Ú0 12

0

.

V c E c E= +cos sinj j1 2,

¢( ) = ( ) =V t t V t0 0for all , and v.
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results. Equivalently, if a vector v at p is parallel-translated around a closed
curve, the result v* need not be v—a phenomenon called holonomy.

If a: [a,b] Æ M is a closed curve in the domain of a frame field, the formula
j¢ + w12(a ¢) = 0 in Lemma 3.6 shows that all parallel vector fields along a are
rotated through the angle

We call this the holonomy angle ya of a. (Additive multiples of 2p can be
ignored in ya since they do not affect the determination of v*.)

3.7 Example Holonomy on a sphere S of radius r. Suppose the closed
curve a parametrizes a circle on S . There is no loss of generality in assum-
ing that a is a circle of latitude, say the u-parameter curve

where x is the geographical parametrization of S . For the associated frame 
field , E2 = J(E1) of x, Example 6.2 of Chapter 6 shows that 
w12 = sin vdu. Since v has constant value v0 on a, the holonomy angle ya of
a is

Thus only on the equator v = 0 does a vector v return to itself after parallel
translation around a. If a is in the northern hemisphere (v0 > 0), then j¢ < 0,
so an initially north-pointing parallel vector rotates eastward as it traverses
a (Fig. 7.5).

Up to this point, everything in this section belongs to the geometry of an
arbitrary surface, so it may be well to look back at the case of a surface M
in R3. There we now have two ways to take covariant derivatives: one from
the intrinsic geometry of M as a geometric surface, the other the Euclidean
covariant derivative of R3. The two are usually different, but there is a simple
relationship between them. In the following lemma, — denotes the covariant
derivative of M as a geometric surface and is the Euclidean covariant 
derivative.

3.8 Lemma If V and W are tangent vector fields on a surface M in R3,
then, as in Fig. 7.6,

(1) —VW is the component of VW tangent to M.
(2) If S is the shape operator of M derived from a unit normal U, then

—̃

—̃

j p j p
a

p

2 0 20
0

2

0( ) - ( ) = - = - = -Ú Úsin sin sin .v du v du v

E E1 = ¢a

a pu u v u( ) = ( )x , for ,0 0 2� �

j j w
a

b a( ) - ( ) = -Ú 12.
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Proof. Since (2) implies (1), we need only prove (2). Let E1, E2, E3 = U
be an adapted frame on M. Suppose first that W is the vector field E1. By
the Euclidean connection equations (Theorem 7.2 of Chapter 2),

The connection equations for M (Lemma 3.1) give

Since E3 = U, the definition of wij in Section 7 of Chapter 2 gives

Substitution then gives (2) for W = E1. The same result holds for E2.
In the general case, write W = f1E1 + f2E2. Then (2) follows, by a routine

computation, from the special cases above. ◆

Evidently we have been using the intrinsic covariant derivative of M Ã R3

all along, without giving it formal recognition.
For a patch x in an arbitrary geometric surface M, we shall inevitably use

the notation xuu for the covariant derivative of the vector field xu along 
u-parameter curves—with corresponding meanings for xuv = xvu and xvv. Thus
when M is a surface in R3 we will need a new notation, say uu, . . . for the
corresponding Euclidean covariant derivatives.

x̃

w13 3 1 3 3 3 1 3 1V E E E E E E E S V E UV V( ) = —( ) = - —( ) = ( )( )˜ • ˜ • • .

— = ( )V E V E1 12 2w .

˜ .— = ( ) = ( ) + ( )
=

ÂV j j
j
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1

3

12 2 13 3w w w
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Exercises

1. In the Poincaré half-plane,
(a) show that the connection form of the frame field E1 = vU1, E2 = vU2 is

Then for each of the following curves, express velocity and acceleration in
terms of this frame field:
(b) The curve a in Exercise 2 of Section 1. (Hint: a ¢ and a ≤ are collinear.)
(c) The Euclidean straight line

where c and s are constants such that c2 + s2 = 1. Check results using the
formula ·b ¢, b ¢Ò¢ = 2·b ¢, b≤Ò.

2. Let V be a parallel vector field on a curve a in M. Show that a vector
field W on a is parallel if and only if it has constant length and the angle
between V and W is constant.

3. Let a be a curve in M Ã R3. If Y is a vector field on a tangent to M,
prove this analogue of Lemma 3.8:

where Y· denotes the Euclidean derivative of Y. Hence the Euclidean accel-
eration of a is ä = a ≤ + (S(a ¢) •a ¢)U.

4. Let x be the geographical parametrization of a sphere S of radius r, and
let a be the circle of latitude

(In view of the symmetry of S this is a typical circle on S .)
(a) Show that a has intrinsic acceleration

where 

(b) Compute separately the Euclidean acceleration of a and S(a ¢). Then
check the last formula in Exercise 3.

5. (Curvature and Holonomy.) Let a be a closed curve in a geometric surface M.
(a) If a is the boundary curve of a smooth oriented disk D in M, show

that the holonomy angle ya of a is (Hint: There is always a frame

field on D.)

KdM.
DÚÚ

E Gv2 = x / .

¢¢ =a r v v Ecos sin0 0 2,

a pu u v u( ) = ( )x , , for0 0 2� � .

˙ •Y Y S Y U= ¢ + ¢( )( )a ,

b t ct st t st( ) = ( ) >, for all such that ,0

w q12 1= =du v/ .
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(b) With notation as in (a), deduce the following characterization of the
Gaussian curvature of M at a point p:

6. If there is a nonvanishing vector field W on M such that —VW = 0 for all
V, show that M is flat. (Hint: There is a frame with .)

7. (Isometries preserve covariant derivatives.) For an isometry F: M Æ N,
prove the following two cases:

(a) If V and W are vector fields on M and and are their transferred
vector fields on , then

(Hint: By the linearity of — it suffices to assume W = fE1 for a frame field
E1, E2. Strictly speaking, the transferred vector field is (F* (V))(F -1), but
to avoid clutter, write simply = F* (V).)
(b) If Y is a vector field on a curve a in M, then

where is the vector field F* (Y) on the curve = F(a) in . Hence in
particular, acceleration is preserved: F* (a ≤) = F(a)≤.
This is the analogue of the Euclidean result, Corollary 4.1 of Chapter 3.

8. Let x be an orthogonal patch in a geometric surface M. Prove that
xuv = xvu by first showing that for the associated frame field ,

we have:

(a) . (Hint: Use the (*) property of —.)

(b) . (Hint: Use the formula for w12 in Sec. 6 of Ch. 6.)

9. (Continuation.) To show that yuv = yvu for an arbitrary patch, write 
y(u, v) = x( (u, v), (u, v)) with x orthogonal, and compute yuv - yvu.

7.4 Geodesics

Geodesics in an arbitrary geometric surface generalize straight lines in
Euclidean geometry. We have seen that a Euclidean straight line g (t) = p + tq
is characterized infinitesimally by vanishing of acceleration; thus
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4.1 Definition A curve g in a geometric surface is a geodesic provided its
acceleration is zero, g ≤ = 0.

In other words, the velocity g ¢ of a geodesic is parallel: Geodesics never
turn. In particular, since g parallel implies ||g ¢|| constant, geodesics have con-
stant speed.

Acceleration is preserved by isometries (Exercise 7 of Section 3), so it
follows that geodesics are isometric invariants. In fact, if F: M Æ N is merely
a local isometry, then F carries each geodesic g of M to a geodesic F(g) of N.
(This follows since F is an isometry on small enough neighborhoods.)

For a surface M in R3, a curve in M was defined to be a geodesic if its
Euclidean acceleration is always normal to M. This is consistent with the
general definition above, for by Exercise 3 of Section 3 the intrinsic acceler-
ation of a curve in M Ã R3 is the component tangent to M of its Euclidean
acceleration. Thus the former is zero if and only if the latter is normal to M.

Now we find coordinate conditions for a curve a in a geometric surface M
to be a geodesic. If E1, E2 is a frame field on M, then throughout this section
we write the velocity and acceleration of a as

This means that a is a geodesic if and only if A1 = A2 = 0. (Note that v1, v2,
A1, and A2 are real-valued functions on the domain I of a.)

From Section 3 these components of acceleration can be expressed in terms
of the connection form of E1, E2 as

Now we describe A1 and A2 in coordinate terms.

4.2 Theorem Let x be an orthogonal coordinate patch in a geometric
surface M. A curve a(t) = x(a1(t), a2(t)) is a geodesic of M if and only if

Note the symmetry of these two equations under the reversals 1 ´ 2,
u ´ v, E ´ G. In this context we always understand that the functions E and

A a
G

E a G a a G av u v2 2 1
2

1 2 2
21

2
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G and their partial derivatives Eu, Ev, . . . are evaluated on (a1, a2) and hence
become functions on the domain I of a.

Proof. The velocity of a is a ¢ = a ¢1xu + a ¢2xv, so in terms of the associ-
ated frame field of x (Chapter 6, Section 6),

Thus the acceleration components A1, A2 become

(1)

The formula for w12 in Section 6 of the Chapter 6 gives

(2)

When this is substituted into (1), we get

(3)

Standard calculus computations transform (3) into the form stated in the
proposition. We remind the reader that in a Leibnizian expansion such as

the notation E is short for E(a1, a2), so

◆

4.3 Theorem Given a tangent vector v to M at a point p, there is a unique
geodesic g, defined on an interval I around 0, such that

g g0 0( ) = ¢( ) =p v, and .

¢ = ¢ + ¢E E a E au v1 2.
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Thus there are plenty of geodesics in any geometric surface—each deter-
mined by its initial position and velocity. In R2, for example, the geodesic
determined by v at p is g (t) = p + tv.

Proof. Let x be an orthogonal patch around p = x(u0, v0), and write 
v = cxu + dxv. The geodesic equations in Theorem 4.2 have the form

(1)

for differentiable functions f2 and f2. Furthermore, the initial conditions in
the present theorem are equivalent to

(2)

The fundamental existence and uniqueness theorem of differential equa-
tions theory asserts that there is an interval I around 0 on which unique
functions a1, a2 are defined that satisfy (1) and (2). Thus g = x(a1, a2) is the
unique geodesic defined on I such that g (0) = p and g ¢ (0) = v. ◆

This result is not entirely satisfactory since the interval I may be unneces-
sarily small. However, it is easy to make it as large as possible. Suppose 
g1: I1 Æ M and g2: I2 Æ M are geodesics that both satisfy the initial condi-
tions in the theorem. The uniqueness theorem for differential equations
implies that g1 = g2 on the intersection of I1 and I2. Applying this consistency
result to all such geodesics gives a single maximal geodesic g : I Æ M satis-
fying the initial conditions. (The interval I is the largest possible.) Intuitively,
this simply means we let the geodesic run as far as it can.

We ordinarily assume that geodesics are maximal, and denote by gv the one
with initial velocity v.

4.4 Definition A geometric surface M is complete provided every maxi-
mal geodesic in M is defined on the whole real line R.

Briefly: geodesics run forever. A constant curve is trivially a geodesic, but
excluding this case, every geodesic has constant nonzero speed. Thus com-
pleteness is equivalent to the requirement that all nonconstant geodesics have
infinite length—in both directions. For example, R2 is certainly complete, and
the explicit computations in Example 6.9 of Chapter 5 show that spheres in
R3 are complete as well. More generally, all compact geometric surfaces are
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complete (Ch. 8), as are all surfaces in R3 of the form M: f = c. Removal of
even a single point from a complete surface destroys the property, since geo-
desics that formerly passed through the point will be obliged to stop.

It is rarely possible to find explicit solutions to the geodesic differential
equations A1 = 0, A2 = 0 in Theorem 4.2, but the situation can often be
improved by the following result, which shows that either one of these 
equations can be replaced by a simpler equation. For definiteness, we will
replace A2 = 0.

4.5 Lemma Let E1, E2 be a frame field, and let a be a constant speed
curve such that a ¢ and E2 are never orthogonal. If A1 = 0, then A2 = 0; hence
a is a geodesic.

Proof. Taking the derivative of ·a ¢, a ¢Ò = const gives ·a≤, a ¢Ò = 0. Hence

By hypothesis, A1 = 0 and ·E2, a ¢Ò π 0, so A2 = 0. ◆

In coordinate terms this means that the rather complicated second-order
differential equation A2 = 0 in Theorem 4.2 has been replaced by the first-
order differential equation.

Note that by continuity the lemma remains valid if a ¢ and E1 are orthogo-
nal at isolated points.

There is a Frenet theory of curves in a geometric surface that generalizes
that for curves in the Euclidean plane (Exercise 8 in Section 2.3). Since M
has only two dimensions, torsion cannot be defined. But when M is oriented,
curvature can be given a geometrically significant sign as follows.

If b: I Æ M is a unit-speed curve in an oriented surface, then as usual,
T = b ¢ is the unit tangent vector field of b. But to get the principal normal
vector field of b, we “rotate T through +90°,” defining N = J(T), where J is
the rotation operator in Exercise 3 of Section 1 (see Fig. 7.7). Then the geo-
desic curvature kg of b is the unique real-valued function on I for which the
Frenet formula

holds. Explicitly, kg = ·T ¢, N Ò. Thus kg is not restricted to nonnegative values
as in the case of curves in R3: kg > 0 means that T—hence b—is turning in

¢ =T Ngk

Ea Ga¢ + ¢ =1
2

2
2 const.

0 1 1 2 2 1 1 2 2= + ¢ = ¢ + ¢A E A E A E A E, , ,a a a .
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the positive direction (that is, toward N = J(T)), while kg < 0 means negative
turning (toward -N).

4.6 Corollary Let b be a unit-speed curve in a region oriented by a frame
field E1, E2. If j is an angle function from E1 to b ¢ along b, then

Proof. Setting Y = T and a = b in Lemma 3.4 gives

Since J(T) = N, the result follows by comparison with T ¢ = kgN. ◆

In R2 the natural frame field has w12 = 0, so j is the usual slope angle of
the curve b. Then the result above—called Liouville’s formula—reduces to

In R2 this is often taken as the definition of curvature (see 
Exercise 8 of Section 2.3).

For an arbitrary-speed regular curve a in M, the present modest Frenet
apparatus is defined—just as in Section 4 of Chapter 2—by reparametriza-
tion. The same proof as before shows

(*)

where v = ||a ¢|| is the speed function of a.

4.7 Lemma A regular curve a in M is a geodesic if and only if a has 
constant speed and geodesic curvature kg = 0.

Proof. In (*), since v > 0, we have a ≤ = 0 if and only if ◆
dv
dt g= =k 0.

¢ = ¢¢ = +a a kvT
dv
dt

T v Ng, ,2

k jg d ds= / .

¢ = ¢ + ¢( )( ) ( )T J Tj w b12 .

k
j

w bg

d
ds

= + ¢( )12 .

7.4 Geodesics 351

FIG. 7.7



The equations (*) also show that a regular curve a has geodesic curvature
zero if and only if its velocity a ¢ and acceleration a≤ are always collinear. Such
curves a are sometimes called geodesics; to get a geodesic in the strict sense
of Definition 4.1, it suffices to reparametrize a to give it constant speed. In
contexts where parametrization may be important, we call a curve with 
kg = 0 a pregeodesic.

4.8 Remark Abbreviations. In computations involving curves, where
there are fixed coordinates, say u and v, it is often convenient to use abbrevi-
ations such as u(t) for a1(t) = u(a(t)), and hence u¢(t) for a¢1(t). This is helpful
in computing with differential equations—in particular, with the geodesic 
differential equations.

Exercises

1. Show that a reparametrization t Æ a( f(t)) of a nonconstant geodesic a
is again a geodesic if and only if f has the form f(t) = at + b.

2. If gv is the unique geodesic in M with initial velocity v, show that for any
number c, gcv (t) = gv (ct) for all t.

3. Find the routes of the geodesics in the stereographic sphere in (1) of
Example 2.4. (Hint: No computation is needed.)

4. Let p1 and p2 be points on the equator of a sphere S. Let b be the closed
curve that starts at the north pole n, follows a meridian to p1, the equator to
p2, then a meridian back to n. Prove that the holonomy angle of b is the angle
at n between the two meridians.

5. (Closed geodesics.)
(a) If the boundary curve b: [a, b] Æ M of a smooth disk D is a geodesic,

prove is an integer multiple of 2p. (Sec. 7 shows that it is 

exactly 2p.)
(b) Deduce that there are no smoothly closed geodesics (equivalently, peri-
odic geodesics) on the following surfaces. Use this version of the Jordan
curve theorem: Any piecewise-smooth closed curve in a simply connected
surface is the boundary of a simple region.

(i) A simply connected surface with K � 0.
(ii) A paraboloid of revolution.

6. In the projective plane P(r) of radius r (Example 2.7), prove:
(a) The geodesics are simple closed curves of length pr.

KdM
DÚÚ
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(b) There is a unique geodesic route through any two distinct points.
(c) Two distinct geodesic routes meet in exactly one point.
(Hint: The projection F: S(r) Æ P(r) is a local isometry.)

7. At each point p of a geometric surface M there is an e > 0 such that every
geodesic starting at p runs for at least length e. This follows from differential
equations theory (see Sec. 1 of Ch. 8).

(a) Deduce that in a connected surface M, any two points can be joined
by a broken geodesic segment (that is, a piecewise differentiable curve
whose smooth subsegments are geodesic). (Hint: Use the open set criterion
for connectedness, Ex. 9 of Sec. 4.7.)
(b) Give an example of a connected surface M for which broken geodes-
ics with at least three geodesic subsegments will be needed in order to
connect all pairs of points. Find M such that arbitrarily many breaks will
be necessary to connect all pairs.

8. Let a be a curve with speed function v > 0 in an oriented surface M.

(a) Show that the geodesic curvature kg of a is 

(b) Deduce that if M is an oriented surface in R3, then

where J = –(B, U). Here k is the curvature and B the binormal vector of
a as a curve in R3.

7.5 Clairaut Parametrizations

We consider a special situation where extensive information about geodesics
can be obtained with a minimum of computation.

5.1 Definition A Clairaut parametrization x: D Æ M is an orthogonal
parametrization for which both E and G depend only on u, that is, F = 0 
and Ev = Gv = 0.

For example, the usual parametrization of a surface of revolution is of
this type.

5.2 Lemma If x is a Clairaut parametrization, then

(1) All the u-parameter curves of x are pregeodesics, and
(2) A v-parameter curve u = u0 is a geodesic if and only if Gu(u0) = 0.

k
a a

kg

U
v

=
¢ ¥ ¢¢

=
•

cos ,
3

J

¢¢ ¢( )a a, J
v3
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Proof. For (1) it suffices by a remark in Section 4 to show that xu and 
xuu are collinear. Since xu and xv are orthogonal, this is equivalent to 
·xv, xuuÒ = 0. The following equations imply this result.

Similarly, for (2) the v-parameter curve u = u0 is pregeodesic if and only if

The following equations show that this is true if and only if Gu(u0) = 0:

(Recall that xuv = xvu. ) So far, we have not used the condition Gv = 0; its
effect is to show that the v-parameter pregeodesics are in fact geodesics,
since it means that they have constant speed. ◆

In the case of a surface of revolution, for example, this lemma provides
another proof that the meridians are geodesics and that a parallel u = u0 is
geodesic if and only if h¢(u0) = 0. (See Exercise 3 of Section 5.6.)

A surface M that has a Clairaut parametrization need not be a surface of
revolution, but we continue to call its u-parameter geodesics meridians. Ignor-
ing the parametrization of these meridians, we can think of them as fibers of
which M is composed—and measure the behavior of arbitrary geodesics 
relative to them.

5.3 Theorem Let a = x(a1, a2) be a unit-speed geodesic with x a Clairaut
parametrization. If j is the angle from xu to a ¢, then the function

is constant along a. Hence a cannot leave the region where G � c2.

We call the constant c = c(a) thus associated with each geodesic a the slant
of a since—in combination with G—it determines the angle j at which a
cuts across the meridians of x (see Fig. 7.8).

Proof. Because Ev = Gv = 0 for a Clairaut parametrization, the geodesic
equation A2 = 0 of Theorem 4.2 reduces to

c G a a G a= ( ) ¢ = ( )1 2 1 sin j

0

20 0 0 0
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This is equivalent to the constancy of c = Ga¢2, since

To show that sinj, compare the two equations

It follows immediately from |sinj| � 1 that G � c2. ◆

A geodesic with c = 0 has j = 0 or p, and hence it is one of the geodesic
meridians, so we may as well assume c π 0. Moving along a in a direction in
which G is increasing, the meridians are spreading apart and the constancy
of c2 = G(a1) sin2 j shows that |sinj | is decreasing, thus forcing a to turn more
toward the direction of the meridians. On the other hand, if G is decreasing
along a, then a cuts across the meridians at ever-increasing angles. Note that
sin j cannot change sign, for if it is zero even at a single point, then the geo-
desic a is tangent to the meridian; hence by the uniqueness of geodesics it
parametrizes that meridian.

Such considerations give remarkable information about the general global
behavior of geodesics in a Clairaut parametrization.
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ËÁ
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5.4 Example (Global trajectories.) What happens to the geodesics
passing through an arbitrary point p0 on the paraboloid of revolution M:
z = x2 + y2? The parametrization x(u, v) = (ucosv, u sinv, u2)—for which u is
distance to the z axis—is Clairaut with E = 1 + 4u2, F = 0, G = u2. Thus the
slant of a unit-speed geodesic a (t) = x(a1(t), a2(t)) is

where j(t) is the oriented angle from xu to a ¢(t) (see Fig. 7.9).
Suppose a starts upward from p0, that is, with initial angle 0 < j0 < p/2 (by

symmetry, we may as well take j � 0). Then a1 increases; hence |sin j |
decreases, so a ¢ turns steadily toward xu, and a escapes to z = •.

If j0 = p, then a parametrizes a meridian of this surface of revolution, so
a runs directly down through the vertex 0 of M and back up to z = •.

The interesting case is p/2 < j0 < p. Now a starts downward, but it never
reaches 0—only meridians can do that. It is easy to predict at the start how
low a gets. Initially, since u = a1 is decreasing, |sinj | is increasing, so a ¢ is
turning away from the meridians. These changes continue until j reaches p/2.
This will occur precisely when c = u0 sinj0 = u1, hence at height

The geodesic a cannot asymptotically approach the nongeodesic 
v-parameter curve at this height, any more than a straight line in the plane 
can asymptotically approach a circle. So a meets and bounces off the 
v-parameter curve (Fig. 7.9) and turning steadily back toward xu, escapes to 
z = •, as does every geodesic on M.

Not only does the notion of slant give remarkable qualitative information
about where geodesics can go in a Clairaut surface, but more than that, it

z u umin sin .= = >1
2

0
2

0
2 0j

c G a t t a t t= ( )( ) ( ) = ( ) ( )1 1sin sinj j ,
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leads to a single integral formula for pregeodesics. Thus the routes followed
by the geodesics are specified—though not their geodesic parametrizations.

5.5 Proposition If x is a Clairaut parametrization, then every geodesic
a such that a ¢ is never orthogonal to meridians can be parametrized as 
b(u) = x(u, v(u)), where

with c the slant of a. Hence, by the fundamental theorem of calculus,

Proof. Since a has unit speed,

By Theorem 5.3,

(C-2)

Now substitute (C-2) into the preceding equation, and solve for

(C-1)

The nonorthogonality condition means that a¢1 is never zero on the
domain I of a. Thus, as in elementary calculus, the functions u = a1(s),
v = a2(s) can be reparametrized by s = (a1

-1)(u) to give u = u, v = v(u). Then
(C-1) and (C-2) give

as required. ◆

In the Clairaut case, one can check that equations (C-1) and (C-2) above
are not only necessary but also sufficient for a = x(a1(s), a2(s)) to be a unit-
speed geodesic. Note that dropping the plus-or-minus sign from (C-1) loses
only a reverse parametrization, since c can have either sign. These equations
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are convenient for numerical computation (see Exercises 9–12), although they
fail at turning points since there G = c2. They are, of course, much simpler
than the second-order differential equations in Theorem 4.2.

5.6 Example Routes of geodesics.
(1) The Euclidean plane. To illustrate the preceding proposition, we 

find the routes of the well-known geodesics of R2 in terms of a polar 
parametrization

Since E = 1, F = 0, G = u2, this is a Clairaut parametrization. The u-
parameter geodesics are just straight lines through the origin. By Proposition
5.5, all the others can be parametrized as b(u) = x(u, v(u)), where

Hence or equivalently, ucos(v - v0) = c, which is the
polar equation of a straight line. Here the slant has geometric significance as
the shortest distance from the origin to the line, and the point on the line
nearest the origin is a turning point.

(2) The hyperbolic plane. Again we try the polar parametrization. The 
ruler function h that describes the conformal geometric structure of
H depends only on Euclidean distance u to the origin 0; in fact,

Thus

As in (1), x is a Clauraut parametrization, so the u-parameter curves—
Euclidean lines through the origin—are the routes of geodesics. By Pro-
position 5.5, the routes of all other geodesics are parametrized by 
b(u) = x(u, v(u)), where

(1)

This equation can be integrated explicitly by setting
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Then a straightforward computation gives

(2)

Hence v - v0 = ±cos-1 w, that is,

which we rearrange as

(3)

The Euclidean law of cosines, A2 + B2 - 2ABcosv = C 2, applied to a diagram
like Fig. 7.10, shows that the polar equation of a circle of radius r with center
at x(u0, v0) is

Comparison with equation (3) shows that the route of b is a Euclidean circle
C with u0 = r 2 + 4. Since u0 > 2, the center of the circle lies outside the hyper-
bolic plane H: x2 + y2 < 4. As can be seen from Fig. 7.10, the relation 
u0 = r2 + 4 implies that C is orthogonal to the rim x2 + y2 = 4 of H. Of course,
b is restricted to the open arc of C inside the rim.

Conclusion: The routes of the geodesics of the hyperbolic plane are the por-
tions in H of (1) all Euclidean straight lines through the origin 0 and (2) all
Euclidean circles orthogonal to the rim of H (Fig. 7.11). ◆
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As these examples show, the geodesics of the hyperbolic plane bear com-
parison with those of the Euclidean plane. Around 300 .., Euclid estab-
lished a remarkable set of axioms for the straight lines of his plane. The goal
was to derive its geometry from axioms so overwhelmingly reasonable as 
to be “self-evident.” The most famous of these is equivalent to the parallel
postulate: If p is a point not on a line a, then there is a unique line b through
p that does not meet a.

From the beginning this postulate was regarded as somewhat less certain
than the others. For example, the axiom that two points determine a unique
straight line might be checked by laying down a (perhaps long, but still finite)
straightedge touching both points. But for the parallel postulate, one would
have to travel the whole infinite length of b to be sure it never touches a.
Thus, over the centuries, tremendous efforts were expended in trying to
deduce the parallel postulate from the other axioms. The hyperbolic plane H
offers the most convincing proof that this cannot be done. For if “straight
line” is replaced by “route of a geodesic,” then every Euclidean axiom holds
in H except the parallel postulate. For example, given any two points it is easy
to see that one and only one geodesic route runs through them. But it is clear
from Fig. 7.11 that in H there are an infinite number of geodesic routes
through p that do not meet a.

When the implications of this discovery were worked out, what was
destroyed was not the modest hope of proving the parallel postulate, but the
whole idea that the Euclidean plane is, in some philosophical sense, an
Absolute, whose properties are self-evident. It had become just one geomet-
ric surface among the infinitely many discovered by Riemann.
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Exercises

1. In the Poincaré half-plane, show that the routes of geodesics are all 
vertical lines and all semicircles with centers on the u-axis (see Fig. 7.12).
(Hint: x (u, v) = (u, v) is a Clairaut patch “relative to v,” so in the text equa-
tions, reverse u and v, and E and G.)

2. (Barrier curves.) Let x be a Clairaut parametrization, and let 
a = x(a1, a2) be a unit-speed geodesic with slant c. Suppose that a starts at
the point p0 = x(u0, v0) and, for definiteness, that a¢1(0) > 0. If there is a number 
u > u0 such that G(u) = c2, let u1 be the smallest such number. Then the v-
parameter curve b(v) = x(u1, v) is called a barrier curve for a. Prove:

(a) a comes arbitrarily close to b.
(b) If b is a geodesic (that is, if Gu(u0) = 0), then a does not meet b—hence
asymptotically approaches it. (See Ex. 11.)

3. (Continuation.) If the barrier curve is not a geodesic, it can be shown that
a does meet b, say at the point a(t*). Prove that a¢(t*) = 0 and that a¢ changes
sign at t*. Thus a has a turning point at a(t*), bouncing off b as in Fig. 7.13.
(Hint: Show that a≤(t*) π 0.)

In Example 5.6, what are the barrier curves for the geodesics of R2? the
geodesics of H?
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4. Let a be a geodesic on a surface of revolution.
(a) Show that the slant of a is c = h sinj, where h(t) is the distance to the
axis of revolution, and j gives the angles at which a cuts the meridians.
(b) Deduce that a cannot cross a parallel of radius |c|.

5. On a torus of revolution T with the usual parametrization, prove:
(a) If a geodesic a is, at some point, tangent to the top circle (u = ),
then a remains always on the outer half of T ( � u � ) and travels
around T, oscillating between the top circle and bottom circle.
(b) Every geodesic of T that crosses the inner equator (u = -p) also crosses
the outer equator (u = 0), and furthermore, unless it is a meridian, it will
spiral around the torus, crossing both equators infinitely many times.
(c) Every geodesic of T—except a parametrization of the inner or outer
equator—crosses the outer equator.

6. Let M be the catenoid in Example 7.1 of Chapter 5, with c = 1. Let C
be its central circle x = 0. If a is a unit-speed geodesic starting at a typical
point, say p0 = (u0, cosh u0, 0), u0 > 0, let j(t) be the angle from the positive
direction on meridians to a ¢(t). In each of the following cases, find initial
values 0 � j0 � p of j (if any) such that a:

(a) stays in the region u > u0.
(b) starts toward the central circle C, but turns back before reaching it.
(c) asymptotically approaches C.
(d) bounces off C and returns to approach x = +•.
(e) crosses C at least twice.
(f) crosses C once and continues to x = -•.
(Hint: Compare with Ex. 4.)

7. Prove that no geodesic on the bugle surface (Example 7.6 of Ch. 5) can
be defined on the whole real line.

It is often convenient to regard a point of R2 as a complex number

Thus the hyperbolic plane can be described as the disk |z| < 2 with 
conformal structure given by the ruler function Here |z| is the
magnitude of z, characterized by

8. (The Poincaré half-plane P is isometric to the hyperbolic plane H.) In
terms of complex numbers, P is the half-plane Iz > 0, with conformal struc-
ture given by h(z) = Iz. (Iz is the imaginary part v of z = u + iv.) Let 
F: H Æ P be the mapping

z zz u v2 2 2= = + .

h z z( ) = -1 42 / .

z u iv u v= + = ( ), .

p /2-p /2
p /2
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Show that:
(a)
(b) F is a diffeomorphism of H onto P. (Compute F -1 explicitly.)
(c) Relative to Euclidean geometry, F is conformal, with scale factor

(See Ex. 7 of Sec. 1.)
(d) F: H Æ D is an isometry.

Make a sketch of H and P indicating the images in P of each of the four
quadrants of H. (Hint: the u and v axes in H are the routes of geodesics.)

9. (Numerical integration, computer graphics.) (a) Let x(u, v) be a Clairaut
parametrization with metric components E(u), G(u). Write the computer
commands that produce:

(a) Numerical solution of the first-order geodesic equations (C-1) and 
(C-2) in the proof of Proposition 5.5 (changing a1 to u(t), etc.). Use initial
conditions u(0) = u0, v(0) = v0, with slant c, on the interval tmin � t � tmax.
(b) A plot of the geodesic given in (a).
(Dropping the ± in (C-1) costs only a reverse parametrization. The differ-
ential equations behave badly when the geodesic meets a barrier.)

10. (Continuation.) Let x(u, v) = (ucosv, u sinv) be the Clairaut parame-
trization of the hyperbolic plane H(1) as in Example 5.6.

(a) Plot the geodesic that starts at u(0) = 1, v(0) = 0 with slant c = 1.330
(avoiding the turning point problem of c = 4/3) and runs to near the rim
of H.
(b) Show the following on a single plot: the geodesic of (a), its other branch
with c = -1.330, the relevant arc of its barrier curve u = 1, and the rim 
u = 2. (Hint: See Fig. 7.11.)

11. (Continuation.) Let M be the surface of revolution with parametriza-
tion x(u, v) = (u, f(u) cosv, f(u) sinv), where 

(a) Plot the zone of M between u = -5 and u = 2.
(b) Using Exercise 9, plot the geodesic g that starts at x(-4, 0) and asymp-
totically approaches the neck u = 0 of M on an interval 0 � t � b, where
b is 20 or more.

12. (Continuation.) On the paraboloid given by x(u, v) = (ucosv, u sinv, u2),
let g be the geodesic that has a turning point (meets its barrier curve) at 
u(0) = 1, v(0) = 0. Plot:

(a) The xy projection (ucosv, u sinv) of one branch of g, defined on an
interval 0 � t � b, with b large.
(b) On a single figure, the branch in (a) and its symmetrical branch.
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13. A Liouville parametrization x: D Æ M is an orthogonal parametriza-
tion for which E = G = U(u) + V(v). (Thus Clairaut parametrization is the
special case where U or V is zero.) If a = x(a1, a2) is a unit speed geodesic,
with x Liouville, prove that

is constant along a, where j is the angle from xu to a ¢.
(Hint: First show that sin2 j = (U(a1) + V(a2))a¢12 and cos2 j =

(U(a1) + V(a2))a¢22.)

14. (Continuation of Exercise 8.) (a) Show that the restriction to H of any 
orthogonal transformation of R2 (e.g., a Euclidean rotation about 0) is an
isometry of H, and that for any real number a, the Euclidean translation 
Ta (z) = z + a is an isometry of P. (Hint: See Ex. 9 of Sec. 1.)

(b) If F: H Æ P is the isometry in Exercise 8, show by explicit computtion
that the isometry F -1TaF: H Æ H carries 0 to a point wa in H with

(c) Deduce that given any point w of H there is an isometry of H that
sends 0 to w.

Thus, all points of the hyperbolic plane are geometrically equivalent. A mild
extension of (c) shows that all frames are geometrically equivalent.

7.6 The Gauss-Bonnet Theorem

We have seen that the Gaussian curvature K of a geometric surface M has a
strong influence on other properties of M, notably the shape of M when it
is a surface in R3. Now we will show that the influence of Gaussian curva-
ture penetrates to the topological conformation of M—to properties inde-
pendent of the geometry of M.

To show this, the main step is a theorem that relates the total curvature of
a 2-segment to the total amount its boundary curve turns. The geodesic cur-
vature of a curve a in an oriented surface M tells its rate of turning relative
to arc length s. So to find the total turning, we integrate with respect to arc
length, adjusting suitably when a is merely a regular curve.

6.1 Definition Let a: [a, b] Æ M be a regular curve segment in an 
oriented geometric surface M. The total geodesic curvature of a is

k k
a

g g
s a

s b

ds s t
ds
dt

dtÚ Ú= ( )( )
( )

( )
.

w a aa = +( )4 42 2/ .

U a V a1
2

2
2( ) - ( )sin cosj j
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For example, if a makes one counterclockwise trip around a circle C of
radius r in the plane R2, then a has constant geodesic curvature 
Thus, regardless of the size of r,

The usual orientation of R2 makes kg > 0 for a (left-turning) counterclock-
wise trip, but kg < 0 for a (right-turning) clockwise trip. So a clockwise trip
around C would have total curvature -2p.

Integrating the formula in Corollary 4.6 gives

6.2 Lemma Let a: [a, b] Æ M be a regular curve segment in a region of
M oriented by a frame field E1, E2. Then

where j is an angle function from E1 to a ¢ along a, and w12 is the connec-
tion form of E1, E2.

For integration we have used 2-segments x: R Æ M that are one-to-one
and regular only on the interior R° of R, since 2-dimensional integration can
afford to neglect 1-dimensional sets. But now the boundary of x becomes
important, so we require x to be one-to-one and regular on the entire rec-
tangle R. Equivalently, x: R Æ M is the restriction to R of a patch defined
on some open set containing R.

Then the edge curves a, b, g, d of x (Definition 6.4 of Chapter 4) are one-
to-one regular curve segments, and the boundary of x,

is a single piecewise regular curve enclosing the rectangular region x(R) Ã M.
Now we want to define the total geodesic curvature of ∂ x. If (contrary 

to fact) ∂ x were a single smoothly closed curve g, this total would be just

But since ∂ x has corners, it is not enough to get the total turning on

the edge curves, namely,

We must also add the angles through which a unit tangent on ∂ x would have
to turn at the four corners of the rectangular region x(R). These angles replace

k k k k k

k k k k

a b g d
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g g g g g
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the total curvature of small curved segments needed to round off the corners
and make ∂ x a single smooth curve.

For R: a � u � b, c � v � d these corners,

are called the vertices of x(R).
In general, if a regular curve segment a ends at the starting point of

another segment b, say a(1) = b(0), then the turning angle e from a to b is
defined to be the oriented angle from a ¢(1) to b ¢(0) that is smallest in absolute
value. For a 2-segment—if no other orientation has been specified—we use
the orientation determined by x, represented by the area form dM such that
dM(xu, xv) > 0. The following terminology is familiar in the case of a polygon
in the Euclidean plane.

6.3 Definition Let x: R Æ M be a one-to-one regular 2-segment with ver-
tices p1, p2, p3, p4. The exterior angle ej of x at pj (1 � j � 4) is the turning
angle at pj derived from the edge curves a, b, -g, -d, a, . . . in order of occur-
rence in x (Fig. 7.14). The interior angle ij at pj is p - ej.

This general definition will be needed later, but in the case at hand, exte-
rior angles can be expressed directly in terms of the usual coordinate angle
0 < J < p from xu to xv as

where Jj is the coordinate angle at pj. For example, in Fig. 7.15 consider the
situation at p3. By the definition of edge curves, b ¢ is xv, but (-g)¢ is -xu, since
-g is an orientation-reversing reparametrization of g. Thus e3 + J3 = p.

e p J e J e p J e J1 1 2 2 3 3 4 4= - = = - =, , , ,

p x p x p x p x1 2 3 4= ( ) = ( ) = ( ) = ( )a c b c b d a d, , , , , , , ,
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We can now prove one of the fundamental theorems of differential 
geometry.

6.4 Theorem Let x: R Æ M be a one-to-one regular 2-segment in a geo-
metric surface M. If dM is the area form determined by x, then

where ej is the exterior angle at the vertex pj of x (1 � j � 4).

We emphasize that the 2-segment x supplies the necessary orientation;
M itself need not be oriented—or even orientable.

This result is called the Gauss-Bonnet formula with exterior angles. Since 
ej = p - ij for 1 � j � 4, the formula can be rewritten in terms of the interior
angles of x(R) as

Proof. The associated frame field E2 = J(E1) of x has
dM(E1, E2) = +1. Then the second structural equation becomes

The power for this proof is supplied by Stokes’ theorem (6.5 of Ch. 4),
which gives

(1)K dM
x xÚÚ Ú+ =w12 0

∂
.

d K K dMw q q12 1 2= - Ÿ = - .

E Eu1 = x / ,

KdM dsg
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∂
1 2 3 4 2 .

KdM dsg
X XÚÚ Ú+ + + + + =k e e e e p
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1 2 3 4 2 ,
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Now we use Lemma 6.2 to evaluate

(2)

Beginning with a, we have E1, so the angle from E1 to a ¢ is
identically zero. Thus by Lemma 6.2,

(3)

Now we try a harder case, say Here the angle from to 

d ¢ = xv is just the coordinate angle J from xu to xv. (See Fig. 7.16.) Hence
by Lemma 6.2,

where Jj is the coordinate angle at the vertex pj (1 � j � 4). But since J1 =
p - e1 and J4 = e4, this becomes

(4)

In an entirely similar way we find

(5)

and

(6)

Equations (3)–(6) turn (2) into

Substitution in (1) then yields the required formula. ◆
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Our goal now is to extend the reach of the Gauss-Bonnet formula to an
entire surface.

A rectangular decomposition D of a surface M is a finite collection of one-
to-one regular 2-segments x1, . . . , xf whose images cover M in such a way
that if any two intersect, they do so in either a single common vertex or a
single common edge.

Evidently, a rectangular decomposition is a special kind of paving (Defin-
ition 7.3 of Chapter 6), but the regions xi(Ri) now have well-defined regular
edges. Furthermore, they are required to fit together very neatly, as in Fig.
7.17. (Compare the more casual paving in Fig. 6.14.)

6.5 Theorem Every compact surface M has a rectangular decomposition.

This result is certainly plausible, for if M were made of paper, we could
just take a pair of scissors and cut out rectangular pieces until all of M was
gone. In fact, any compact region bounded by a finite number of piecewise
regular curve segments has a rectangular decomposition. A rigorous proof
would be tedious and not very instructive.

The topological analogue of a diffeomorphism is a homeomorphism, a con-
tinuous mapping F: M Æ N that has a continuous inverse map F -1: N Æ M.
When such an F exists, M and N are said to be homeomorphic. A topological
invariant is a property that is preserved by homeomorphisms, hence shared
by homeomorphic surfaces. These are the properties that can be defined solely
in terms of open sets.

Every diffeomorphism is a homeomorphism, because differentiable func-
tions are continuous. But the converse is false; indeed, it is already clear in
elementary calculus that a continuous function f: R Æ R can have a jagged
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graph, while differentiability requires smoothness. Nevertheless, in dimension
2 we have the remarkable result that two surfaces are diffeomorphic if and only
if they are homeomorphic. This is a considerable simplification, since it allows
many topological invariants to be discussed in differentiable terms. Here is a
famous instance.

We shall understand that a rectangular decomposition D carries with it not
only its rectangular regions xi(Ri)—called faces—but also the vertices and
edges of these regions.

6.6 Theorem If D is a rectangular decomposition of a compact surface
M, let v, e, and f be the numbers of vertices, edges, and faces in D. Then the
integer v - e + f is the same for every rectangular decomposition of M. This
integer c(M) is called the Euler characteristic of M.

An elementary topological proof of this famous theorem is outlined in
Chapter 1, Section 8 of [Ma].

The fact that the decomposition D is based on rectangles is merely a con-
venience for integration. We could just as well cut M into arbitrary polygons
(see Exercise 5 of Section 6). In the resulting polygonal decomposition, the dif-
ferent polygons of course are still required to fit neatly, but (as in Fig. 7.18)
they need not have the same number of sides. When only triangles are used,
the decomposition is called a triangulation of M.

6.7 Example Euler characteristic.
(1) Any sphere S has c(S ) = 2. The surface of a tetrahedron provides a tri-

angulation of S , and we count v = 4, e = 6, f = 4; hence c(S ) = 2. By inflat-
ing a cube, as in Fig. 7.18, we get a rectangular decomposition of S with 
v = 8, e = 12, f = 6, so again c(S ) = 2. Inflating a prism gives a polygonal
decomposition with v = 6, e = 9, f = 5, but still c(S ) = 2.

(2) A torus T has c(T) = 0. Picture T as a torus of revolution, and cut it
along any three meridians and three parallels. This gives a rectangular decom-
position with v = 9, e = 18, f = 9; hence c = 0.
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(3) Adding a handle to a compact surface reduces its Euler characteristic
by 2.

This last assertion requires explanation. A handle is a torus with the inte-
rior of one face removed. To add a handle to a surface M—also in some rec-
tangular decomposition—remove the interior of a face of M, and to the
resulting rim, smoothly attach the rim of the handle, with the vertices and
edges of the two rims coinciding (Fig. 7.19).

This operation produces a new surface M¢ already furnished with a rec-
tangular decomposition. Its Euler characteristic is

In fact, the decomposition has exactly two faces fewer than M and the torus
combined. Coalescing the two rims has also eliminated four vertices and four
edges, but this has no effect on c.

It is easy to see that diffeomorphic surfaces have the same Euler character-
istic, for if x1, . . . , xf is a decomposition of M and F: M Æ N, then F(x1),
. . . , F(xf) is a decomposition of N with the same v, e, and f.

For example, no matter how wildly we distort the “round” sphere

the resulting surface will still have Euler characteristic 2.
Suppose we start from a sphere S and successively add h handles (h � 0)

to obtain a surface S [h]. What the handles look like and where they are
attached is irrelevant in view of the following remarkable result.

6.8 Theorem If M is a compact, connected, orientable surface, there is
a unique integer h � 0 such that M is diffeomorphic to S [h].

In this case, we say that M itself is a sphere with h handles. The theorem
is proved in Chapter 1 of [Ma], where by a remark above, homeomorphism
can everywhere be replaced by diffeomorphism.

In Fig 7.20 the surfaces all have just one handle, so they are all diffeo-
morphic. If M has h handles, then by (1) and (3) of the preceding example,
c(M) = 2 - 2h, since

S :  x y z2 2 2 1+ + = ,

c c¢( ) = ( ) -M M 2.
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6.9 Corollary Compact orientable surfaces M and N have the same Euler
characteristic if and only if they are diffeomorphic.

Proof. If c(M) = c(N), then M and N have the same number of handles;
hence by the theorem they are diffeomorphic. The converse was noted
above. ◆

This is the sense in which c(M) is characteristic of M. Though the number
of handles (or genus) of M is visually appealing, c(M) is usually easier to
compute and in the long run turns out to be more fundamental.

Returning to geometric surfaces, we can now prove this spectacular con-
sequence of the Gauss-Bonnet formula.

6.10 Theorem (Gauss-Bonnet) The total Gaussian curvature M of a
compact orientable geometric surface M is 2p times its Euler characteristic:

Proof. Orient M by an area form dM, and let D be a rectangular decom-
position of M whose 2-segments are all positively oriented. (A wrong ori-
entation of x can be corrected by reversing u and v.) Then D is an oriented
paving of M as defined in Chapter 6, Section 7. By definition, the total cur-
vature of M is

K dM M
M

= ( )ÚÚ 2pc .

c c cM h h h( ) = [ ]( ) = ( ) - = -S S 2 2 2 .
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(1)

Apply the Gauss-Bonnet formula to each summand. In terms of inte-
rior angles, the result is

(2)

Now consider what happens when (2) is substituted into (1).
Because M is a surface—locally like R2—each edge of the decomposi-

tion D will occur in exactly two faces, say xi(Ri) and xj(Rj). Let ai and aj

be the parametrizations of this edge occurring in the oriented boundaries
∂xi and ∂xj, respectively.

By construction, the regions xi(Ri) and xj(Rj) have the same orientation
as M, so ai and aj are orientation-reversing reparametrizations of each
other, as shown in Fig. 7.21(a). Thus

It follows that summing over all faces yields

(3)

In fact, we have just seen that the integrals over edge curves cancel in 
pairs.

As usual, v, e, and f are the numbers of vertices, edges, and faces in the
decomposition. Substituting (2) into (1) gives

(4)

where I is the sum of all interior angles of all the 2-segments in the decom-
position. But the sum of the interior angles at each vertex is just 2p (Fig.
7.21(b)), so I = 2pv. Thus
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(5)

A simple combinatorial observation will complete the proof. The faces 
of the decomposition D are rectangular: Each face has four edges. But each
edge belongs to two faces. Thus 4f counts e twice; that is, 4f = 2e. Equiva-
lently, -f = f - e, so (5) becomes

◆

The most striking aspect of the Gauss-Bonnet theorem is that it directly
links topology and geometry. Because the Euler characteristic is a topologi-
cal invariant, the theorem shows that total Gaussian curvature is a topologi-
cal invariant.

For example, the flat torus in Example 2.2 has K = 0, hence total curva-
ture zero. Earlier, an explicit calculation showed that although the (diffeo-
morphic) torus of revolution in R3 has variable curvature, its total curvature
is also zero. The Gauss-Bonnet theorem makes this evident without calcula-
tion—and if the various tori in Fig. 7.20 were realized formally, they too
would have total curvature zero.

The Gauss-Bonnet theorem provides a way to attack some seemingly for-
midable problems. For instance, Example 2.4(1) shows that if a single point
is removed from a sphere S, there exists a metric on the punctured sphere
with K = 0. But

There can be no metric on an entire sphere for which K � 0.

Indeed, K � 0 would imply but we know that 2pc(S) > 0.

Reversing this argument,

If a compact orientable geometric surface M has K > 0, then M is diffeo-
morphic to a sphere.

Since K > 0, M has positive total curvature, hence positive Euler charac-
teristic. But c(M) = 2 - 2h, so h = 0, and hence M is diffeomorphic to 
S [0] = S .

Further applications of the Gauss-Bonnet theorem are given in the next
section.

Exercises

1. Find the total Gaussian curvature of:
(a) An ellipsoid. (b) The surface in Fig. 4.8.
(c) M: x2 + y4 + z6 = 1.

KdS
SÚÚ � 0,

K dM v e f M
MÚÚ = - +( ) = ( )2 2p pc .

K dM f v
MÚÚ = - +2 2p p .
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2. Prove that for a compact orientable geometric surface M:

K > 0 fi M is diffeomorphic to a sphere,

K = 0 fi M is diffeomorphic to a torus,

K < 0 fi M is diffeomorphic to a sphere with h � 2 handles.

3. Let M be a compact orientable geometric surface with h handles. Prove
that there exists a point p in M at which

4. If M is a compact orientable geometric surface in R3 that is not diffeo-
morphic to a sphere, show that there is a point p of M at which K(p) < 0.
(Compare Thm. 3.5 of Ch. 6.)

5. In each case, show that the change in polygonal decomposition of a
compact surface M does not change the Euler characteristic v - e + f of
M:

(a) Given a rectangular decomposition of M, cut each rectangle along a
diagonal to form two triangles, thus producing a triangulation of M.
(b) Given a triangulation of M, cut each triangle into three rectangles by
lines from a central point to a midpoint of each side, thus producing a rec-
tangular decomposition of M.
(c) Given an arbitrary polygonal decomposition of a compact surface M,
cut each polygon into triangles, thus producing a triangulation of M.

6. (a) For a regular curve segment a: [a, b] Æ M, show that the total 

geodesic curvature is

(Hint: Ex. 8 of Sec. 4.)
(b) Let x be a positively oriented orthogonal patch in M. Deduce the fol-
lowing formulas for the total geodesic curvature of the parameter curves:

Assume for simplicity that M is in R3. Thus 

where either intrinsic or Euclidean derivatives give the same result.
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7. Let x: R Æ S (r) be the restriction of the geographical patch (Ex. 2.2 of
Ch. 4) to the rectangle R: 0 � u, v � Check the Gauss-Bonnet formula
by computing separately each of its terms.

8. If F: M Æ N is a mapping of compact oriented surfaces, the degree dF

of F is the algebraic area of F(M) divided by the area of N. Thus dF gives the
total algebraic number of times F wraps M around N. (It can be shown that
dF is always an integer.)

Prove the Hopf theorem: If M is a compact oriented surface in R3, the
degree of its Gauss map is 

9. Consider a polygonal decomposition whose faces are hexagons, with
exactly three edges meeting at each vertex. Is there such a decomposition on
the sphere? the torus?

7.7 Applications of Gauss-Bonnet

The Gauss-Bonnet theorem (6.10) was proved by cutting an entire surface M
into rectangular regions and applying the Gauss-Bonnet formula (6.4) to
each. The scheme works because these rectangles are all consistently oriented
by an orientation of M, and thus the integrals Úkgds on their boundaries
cancel in pairs. Here in essence is the fundamental idea of algebraic topol-
ogy—specifically, homology theory. (Indeed, considerations of this kind led
Poincaré to its invention.) By applying this scheme to suitable regions in M
we can extend the range of the Gauss-Bonnet theorem.

7.1 Definition An oriented polygonal region P in a surface M is a (nec-
essarily compact) oriented region furnished with a positively oriented rec-
tangular decomposition x1, . . . , xf.

A boundary segment of P is a curve segment b that is an edge curve of
exactly one of the rectangles xi(Ri). For simplicity, we add the requirement
that a vertex of the decomposition cannot belong to more than two bound-
ary segments.

We will define the boundary of the region P as a generalization of the
boundary of a single 2-segment. Each boundary segment s of P is an edge
curve of exactly one rectangle, say x(R), and has an orientation given by the
definition of the boundary ∂x (Definition 6.4 in Chapter 4). Recall that in

∂ x = + - -a b g d ,

c M( ) / .2

p / .4
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the parametrizations that g and d inherit from x determine the “wrong” ori-
entation (see Fig. 4.37). The minus signs correct this—as would an orienta-
tion-reversing reparametrization.

With the proper orientations, the boundary segments of P comprise a finite
number of simply closed polygonal curves b1, . . . , bk. As in the case of a
single rectangle, these orientations obey the informal rule, “Travel around the
boundary keeping the region always on the left.”

7.2 Definition The oriented boundary ∂P of an oriented polygonal region
P is the formal sum of the simple closed, oriented polygonal curves bi

described above:

This care with orientation is needed to reach the simplicity of the follow-
ing generalized Stokes’ theorem.

7.3 Theorem If f is a 1-form on an oriented polygonal region P, then

In particular, if P is an entire compact oriented surface M, then 

Proof. By definition,

Then Stokes’ theorem for rectangles (Theorem 6.5 of Chapter 4) gives

(*)

As in the proof of the Gauss-Bonnet theorem, those edges that belong to
two rectangles acquire opposite orientations from them, so the resulting
two integrals cancel. These double edges can thus be ignored, leaving
exactly the edges in the oriented boundary ∂P. Hence

Substituting this into (*) gives the primary result. If P = M, there are no
boundary edges, so all edge contributions cancel. ◆

The following result suggests a new meaning for the Euler characteristic.
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7.4 Corollary The following properties of a compact orientable surface
are equivalent.

(1) There is a nonvanishing tangent vector field on M.
(2) c(M) = 0.
(3) M is diffeomorphic to a torus.

Proof. (1)Æ(2) Let V be a nonvanishing vector field on M. Then for any
geometric structure on M, the associated frame field

is defined on the entire surface. If w12 is its connection form, we know that
dw12 = -KdM. Using both the Gauss-Bonnet theorem and Stokes’ theorem,
we find

(2)Æ(3) From the preceding section, c(M) = 0 implies that M has exactly
one handle, and hence is a torus.

(3)Æ(1) Use xu or xv from the usual parametrization of a torus of
revolution. ◆

The following result generalizes the Gauss-Bonnet formulas and theorem.

7.5 Theorem If P is an oriented polygonal region in a geometric surface,
then

where Sej is the sum of the exterior angles (Definition 6.3) of all the closed
boundary curves comprising ∂P.

The proof is virtually the same as for the Gauss-Bonnet theorem (6.10),
but now the boundary curves survive and give the additional terms. (See 
Fig. 7.22.)

The simplest case of this theorem occurs when the polygonal region is a
single triangle (hence has Euler characteristic 1).

7.6 Corollary If D is a triangle in an oriented geometric surface M,
then

K dM dsg
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If the edges of the triangle are geodesics, then of course the geodesic curva-
ture terms vanish. If, further, Gaussian curvature K is constant, this result
reduces to

where A is the area of the triangle. Thus the celebrated theorem of plane
geometry that the sum of the interior angles of a triangle is p depends on the
fact that R2 is flat. Indeed, for constant K π 0, the sum of the angles is deter-
mined by the area of the triangle—and vice versa. Fig. 7.23 shows how a geo-
desic triangle manages to have i1 + i2 + i3 greater than p on a sphere (K > 0)
and less than p on a hyperbolic plane (K < 0).

KA = + + -i i i p1 2 3 ,
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Corollary 7.4 linked Euler characteristic zero to the existence of nonvan-
ishing vector fields. Now we look for a generalization. On an arbitrary
compact surface M it is always possible to define a vector field that is differ-
entiable and nonvanishing except at a finite number of points. If we think of
the vectors of the field as the velocity vectors of the smooth steady-state flow
of a fluid, then these points are singularities, where the flow stops or is tur-
bulent. We want to assign to each such point a number, called its index, that
measures how bad the singularity is.

A point p is an isolated singular point of a vector field V if V is nonvan-
ishing and differentiable on some neighborhood N of p—except at the point
p itself.

For example, on a sphere S Ã R3, let N be the unit tangent vector field that
everywhere points due north. Evidently, there is no way to define V differen-
tiably at the poles (0, 0, ±1), so they are isolated singular points. We view the
south pole (0, 0, -1) as the source of a fluid flowing toward a sink at the north
pole (0, 0, 1).

To define the index of an isolated singular point p of V, let D be an ori-
ented disk centered at p in a coordinate patch of M and small enough so that
it contains no other singular points of V. Then the behavior of V on the
boundary C of D is already enough to tell how bad the singularity is. The idea
is to compare V on C with the restriction to C of a smooth vector field X
that has no singularities anywhere in D (for example, one of the partial veloc-
ities of the patch).

Let a: [a, b] Æ C be a parametrization of C as the oriented boundary ∂D

of D. Let j = –a(X, V) be an angle function from Xa to Va (these vector fields
restricted to a).

As Va tranverses C, changes in the angle j measure the rotation of Va rel-
ative to Xa. After one circuit these vectors return to their initial values; hence
the total rotation j(b) - j(a) is an integer multiple of 2p. For example, in
Fig. 7.24, where Va and Xa are initially equal, the total rotation is 2p.

7.7 Definition With notation as above, the index of V at p is the integer

We will soon see that this definition depends only on V and p (and the 
orientation of D), but not on the other choices involved. This can be ob-
served experimentally in Fig. 7.25. There, in each case, the general character
of the vector field V near the singularity is described by drawing some of
its integral curves (Exercise 13 of Section 4.8) since V supplies all their veloc-
ity vectors.

ind ,V
b a

p( ) =
( ) - ( )j j

p2
.
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Picture X as a unit vector field in the positive x-direction, and count the
number of counterclockwise rotations of V relative to X on any circle around
the central singularity. For example, Fig. 7.25 indicates that sources have
index +1. Reversing the direction of the vectors in this figure shows that sinks
have the same index, +1.

Indices are just what is needed to generalize Corollary 7.4.

7.8 Theorem (Poincaré-Hopf) Let V be a vector field on a compact ori-
ented surface M. If V is differentiable and nonvanishing except at isolated
singular points p1, . . . , pk, then the Euler characteristic of M is the sum of
their indices.

c M V i
i

k

( ) = ( )
=

Â ind , p
1

.
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Proof. The theorem is topological, but to simplify the proof we can
assume, without loss of generality, that M is a geometric surface.

The case k = 0 is just Corollary 7.4, so suppose k > 0. Since the points
pi are isolated, by the Hausdorff axiom there is a coordinate disk Di around
each such that no two disks meet. Let M be the polygonal region that
remains when the interiors of all the disks are removed from M. Thus

(1)

Since V has no singularities on M, it has an associated frame field
E2 = J(E1) on M. If is the connection form of this frame

field, then by Stokes’ theorem,

(2)

The initial minus sign disappears because by the definition of index, each
Ci derives its orientation from Di Ã M, so M gives it the reverse orientation.

For each i = 1, . . . , k, let Xi be a differentiable unit vector field defined
on the disk Di. Again, for each i, we have a frame field Xi, J(Xi) on the disk
Di. Denote their connection forms collectively by w12.

Let gi: [a, b] Æ Ci be a positively oriented parametrization of Ci = ∂Di.
By Stokes’ theorem,

(3)

Substituting (2) and (3) into (1) gives

(4)

Now let Pi be a parallel unit vector field along gi. Oriented angles are
determined only up to addition of a multiple of 2p ; at the initial point a
we choose them so that

(5)

By continuity, this relation persists along gi. Write j = –(Xi,Pi) and =
–(V, Pi) = - –(Pi, V). Then integrating (5) shows that

(6)

is the total rotation of V relative to Xi along Ci. We saw in Section 3 that
since Pi is parallel, the integrand here equals (g ¢) - w12(g ¢). The rota-
tion term is just 2p ind(V, pi), so (6) becomes

w w p
g

12 12 2-( ) = ( )Ú
i

V iind , p .
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¢ - ¢( )Ú j j
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dt

j
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Substituting this into (4) gives

The Gauss-Bonnet theorem then completes the proof. ◆

Thus for any choice of vector field on M with only finitely many singular-
ities (necessarily isolated), the sum of their indices is the same—and depends
only on the topology of M.

To see that the index is independent of the various choices involved 
in its definition, suppose that in the theorem we use different ingredients 
D, X, a at one singular point, say p1. In the Poincaré-Hopf equation,

ind(V, pi), every term except ind(V, p1) is unchanged—hence 

ind(V, p1) is unchanged.

7.9 Example The Poincaré-Hopf theorem provides an efficient way to
compute Euler characteristics. For instance, we saw earlier that the due north
vector field N on the sphere S has two singularities: a source and a sink. Each
has index +1, so we find again that c(S ) = 2.

Fig. 7.26 shows a top view of a double torus, that is, a sphere with two
handles. A few integral curves are drawn for a vector field V on M with one
visible singularity. There is a symmetrical pattern of curves on the bottom
half of M, with a corresponding singularity. Both singularities are of the
meeting of two streams type, which has index -1. Hence c(M) = -2, as found
in Section 6 by quite different means.

The definition of index makes sense for a point p where the vector field V
is nonsingular, that is, differentiable and nonzero. But then the index is zero,
since we can use V itself as the base vector field X in the definition of index;
so the angle j is identically zero.

The converse is not true, that is, ind(V, p) = 0 does not imply that V is non-
singular at p. But it is almost true, for it can be shown that V can be modi-

x M
i

( ) = Â

K dM V
M

i
i

k

ÚÚ = ( )
=
Â2

1

p ind , p .
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fied near p so as to eliminate all singularities there and introduce no new ones
elsewhere. Thus isolated singular points with index zero are said to be remov-
able. From the viewpoint of Theorem 7.8, a vector field whose singularities
are all removable is as good as one with no singularities at all.

7.10 Remark The vector fields in this section have been assumed to be
differentiable, but only continuity is actually required. In general, continuous
consequences can often be derived from differentiable theorems since
(roughly speaking) continuous functions can always be approximated by dif-
ferentiable functions. In Corollary 7.4, for example, we need only assume that
the nonvanishing vector field V in assertion (1) is continuous, since a suffi-
ciently close differentiable approximation will also be nonvanishing.

Exercises

1. If P is an oriented geodesic n-polygon (that is, the sides of P are geo-
desics), show that

where ej and ij are the exterior and interior angles of P, respectively.

2. On a surface M with K � 0, prove that there exist no geodesic n-
polygons with n = 0, 1, or 2. (In other words, in M, a smoothly closed geo-
desic or a broken geodesic with either one or two corners cannot bound a
simple region.)

3. On the standard sphere S Ã R3, since geodesics follow great circles they
are simply closed, and any two must meet.

(a) If M is a compact surface with K > 0, prove that any two simply closed
geodesics must meet.
(b) Describe an example where M is diffeomorphic to S and K � 0 but the
conclusion of (a) fails.

4. (a) If P is a geodesic n-polygon in the Euclidean plane, show that 
n � 3 and the sum of the exterior angles is 2p, independent of n.

(b) On a sphere S , for which values of n � 0, do there exist closed broken
geodesics with n corners?

5. As in the definition of index, let a parametrize a curve surrounding a
common isolated singularity p of vector fields V and W. Prove that V and W
have the same index at p if either:

K dM n
P

j
j

n

j
j

n

ÚÚ = - = -( ) +
= =

Â Â2 2
1 1

p e p i ,
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(a) There is a continuous family of vector fields Vs, for 0 � s � 1, nonvan-
ishing on a, such that V0 = V and V1 = W, or
(b) 0 < –(V, W) < 2p. (In particular, ±V and ±J(V) all have the same index.)

6. In each case, sketch and describe a vector field on the sphere S Ã R3 that
has (a) exactly two singular points, but no sources or sinks; (b) only one sin-
gular point (Hint: stereographic projection); (c) six singular points (index zero
not allowed).

7. In the hyperbolic plane with let Pn be a geodesic n-polygon
whose n � 3 vertices are on the rim of H—hence not actually in H (Fig. 7.27).
Find the area of Pn. (b) Deduce that the area of H(r) is infinite.

8. Stand the double torus M of Fig. 7.26 on end, and at each point, let V
be the component of Uz = (0, 0, 1) that is tangent to M.

(a) Determine the indices of the singularities of V, and check that their
sum is c(M).
(b) Do the same for a vector field whose integral curves are the level curves
z = const in M.

9. Use notation as in the definition of index of a vector field at an isolated
singularity p (Def. 7.7), so j = –(Xa, Va) on [a, b].

(a) If ||Xa|| = 1, show that

where f = ·Va , XaÒ, g = ·Va, J(Xa)Ò.
(b) Deduce that the index of V at p is the winding number of the plane
curve (f, g): [a, b] Æ R2 - 0 (Ex. 5 of Sec. 4.6).

10. Referring to Fig. 7.25: (a) Sketch some integral curves of the meeting
of three streams and find the index of the central singularity. What is the
index for the meeting of n > 3 streams?

j jb a
fg gf
f g

dt
a

b

( ) - ( ) =
¢ - ¢

+Ú 2 2
,

K r= -1 2/ ,
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(b) Do the same for the singularity with three leaves. What is the index for
n > 3 leaves?
(c) Deduce that there exist isolated singularities of every integer index.

11. For the vector field V = -uU1 + vU2 on R2,
(a) Solve the differential equations u¢ = -u, v¢ = v explicitly to find the inte-
gral curve of V starting at an arbitrary point (a, b) in R2. (For integral
curves, see Ex. 13 of Sec. 4.8.)
(b) Sketch sufficiently many of these integral curves to decide what the
index of V at (0, 0) is.
(c) Verify the index in (b) by using the integral in Exercise 9 above. (Hint:
Take X = (1, 0).)

12. (Continuation by computer.) For the vector field V = (2u2 - v2)U1 + 3uvU2

on R2,
(a) Numerically solve the differential equations for the integral curves of
V, and plot sufficiently many to decide what the index of V is at (0, 0).
(Hint: Try the integral curve starting at the point (0, 1). See the Appendix
for numerical solution of differential equations.)
(b) Verify the index in part (a) by a numerical integration derived from
Exercise 9.

13. (Computer.) Same as the preceding exercise but with one sign changed:
V = (2u2 - v2)U1 - 3uvU2.

7.8 Summary

A geometric surface—that is, a 2-dimensional Riemannian manifold—con-
sists of an abstract surface furnished with an inner product on each tangent
space. The simplest case is a surface in R3, using the dot product of R3. Many
geometric features of surfaces in R3 survive unchanged in the more general
setting (e.g., length of a curve, area of a surface). Others must have their
earlier definitions modified (e.g., geodesics, Gaussian curvature K). Still
others, that involve R3 in an essential way, cannot be generalized at all (e.g.,
mean curvature H).

The new definitions are not revolutionary. They appear naturally when
vectors normal to M Ã R3 are ignored. Previously, a geodesic had accelera-
tion normal to M, so now it has acceleration zero. When the normal vector
E3 is dropped from an adapted frame E1, E2, E3, the connection forms reduce
to a single 1-form w12, and the elegant formula dw12 = -K dM serves to define
Gaussian curvature K.
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The Gaussian curvature of a surface is its dominant geometric property,
and as we have seen, curvature enters into almost every geometrical investi-
gation. But its deepest consequence is the link between geometry and topol-
ogy established by the Gauss-Bonnet theorem: The curvature of a compact
surface completely determines its topological structure.
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▲
Chapter 8

Global Structure of Surfaces

388

In this chapter we investigate the global structure of geometric surfaces, that
is, 2-dimensional Riemannian manifolds. We want to know what the possi-
ble surfaces are and what they are like. In maximum generality this goal is
unrealistic, but under reasonable hypotheses, good results can be obtained.

The central theme of this chapter is the influence of Gaussian curvature on
geodesics. A significant preliminary result is that in any surface, the geome-
try of a neighborhood of a point is completely described by curvature and
the geodesics radiating out from that point.

This local result can be extended to show that geodesics can grip an entire
surface. The first step is to show that geodesics starting at any point p of
a complete surface eventually reach every point of that surface (Section 2).
Gaussian curvature controls the spreading and contracting of these geodes-
ics as they radiate out to cover the surface, but their global pattern can be
quite complicated.

Nevertheless, by using topological methods (Section 4), considerable global
information can be derived from this pattern. In particular, we give detailed
results in two broad cases: surfaces with constant curvature and surfaces
whose curvature obeys either K � 0 or K � k > 0.

8.1 Length-Minimizing Properties of Geodesics

The preceding chapters viewed geodesics as straightest curves (no turning);
now we examine their character as shortest curves. For the Euclidean plane,
the general problem of shortest routes is simple: Given any two points p and
q in R2, there is a unique straight-line segment (geodesic) from p to q, and
this is shorter than any other curve from p to q.



For an arbitrary geometric surface the situation is more interesting. In the
first place, there may be no shortest curve from p to q (Exercise 7 in Section
6.4). And even if there is one, it may not be unique. For example, we will
soon prove the expected result that on the sphere, every semicircle from, say,
the north pole to the south pole is shortest.

1.1 Definition Let a be a curve segment from p to q in M. Then
(1) a is a shortest curve segment from p to q provided that if b is any other

curve segment from p to q, then

(2) a is the shortest curve segment from p to q provided it is a shortest
curve and any other shortest curve segment from p to q is a reparametriza-
tion of a.

In case (1) we also say that a minimizes arc length from p to q. In terms of
intrinsic distance r in M (Definition 4.1 in Chapter 6), an equivalent defini-
tion is L(a) = r(p, q).

In case (2) we say that a uniquely minimizes arc length from p to q. Unique-
ness must be interpreted liberally here, since monotone reparametrization
does not change arc length (Exercise 7 in Section 2.2).

All such shortest curves will turn out to be geodesics, and our goal in this
section is to show that “short” geodesic segments in an arbitrary geometric
surface M behave as well as geodesics in R2. To do so we use a remarkable
mapping that compares the region around any point p in M with the Euclid-
ean plane. The tangent plane Tp(M) at p provides the plane, and the mapping
is defined as follows, with gv, as usual, denoting the geodesic of M whose
initial velocity is v.

1.2 Definition For a point p of a geometric surface M, the exponential
map expp is given by

for all v in Tp(M) such that gv is defined on the interval [0, 1].

The exponential map is differentiable and is defined at least on a neigh-
borhood of 0 in Tp(M)—a consequence of the fact that solutions of ordinary
differential equations depend differentiably on initial conditions as well as on
the parameter.

The geometrical meaning of expp is clarified by

exp p vv( ) = ( )g 1

L Lb a( ) ( )� .
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1.3 Lemma The exponential map expp: Tp(M) Æ M carries radial lines
from 0 in Tp(M) to geodesics starting at p in M. Explicitly,

for all t such that expp(tv) is well-defined (Fig. 8.1).

Proof. For fixed t in R and v in Tp, the geodesic s Æ gv(ts) has initial veloc-
ity tg ¢v(0). So does the geodesic gtv. Hence by the uniqueness of geodesics
(Theorem 4.3 of Chapter 7), these geodesics are equal, that is, gv(ts) = gtv(s)
whenever both sides make sense. In particular, setting s = 1 gives

◆

Thus the exponential map at p collects all the geodesics starting at p into
a single mapping. The best case is when the exponential map is defined on
the whole tangent space, as discussed in the next section. But in any case, the
exponential map expp is well behaved near p.

1.4 Lemma For each p in M the exponential map at p carries some neigh-
borhood U of 0 in Tp(M) diffeomorphically onto a neighborhood N of p in
M (Fig. 8.1).

Here N is called a normal neighborhood of p. When U is an open disk 
||v|| < e, the normal neighborhood is written as Ne and is said to have 
radius e.

Proof. (For the first time we treat the tangent plane as a surface in its
own right—and work with vectors tangent to it.) In view of the inverse
function theorem, it will suffice to show that the tangent map of expp at 0
is a linear isomorphism, for then expp will be diffeomorphism on some
neighborhood of 0.

g gv tv pt t( ) = ( ) = ( )1 exp .v

exp p vt tv( ) = ( )g

FIG. 8.1
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A tangent vector v0 to Tp(M) at 0 is the initial velocity of the ray 
r(t) = tv, and we saw above that

Since tangent maps preserve velocities,

Thus the tangent map of expp at 0 is just the natural isomorphism 
v0 Æ v. ◆

Note that for a given point p there is always a largest—possibly infinite—
normal radius e.

Now we apply the exponential map to the problem at hand. In the Euclid-
ean plane, if one is interested in distance to the origin, it is natural to use
polar coordinates, since the distance from (0, 0) to (ucosv, usinv) is simply
u. Polar coordinates can be installed in an arbitrary geometric surface M with
any point p as the pole. The first step is to put these coordinates into the
tangent plane at p by choosing a frame e1, e2 at p and defining

Then the exponential map at p moves this parametrization into M.

1.5 Definition (1) Let e1, e2 be a frame at a point p of M. The mapping

is called a geodesic polar mapping.
(2) If Ne is a normal e-neighborhood of p in M, and the mapping x(u, v)

is defined only for 0 � u < e, then x is called a geodesic polar parametrization
of Ne with pole p (Fig. 8.2).

x x e eu v u v u v u vp p, ,( ) = ( )( ) = +( )exp ˜ exp cos sin1 2

˜ cos sin .x e eu v u v u v u,( ) = + ( )1 2 0 � � e

exp * exp * .p p vv v0 0 0( ) = ¢( )( ) = ¢( ) =r g

exp .p vt tr g( )( ) = ( )

FIG. 8.2



Even though the full mapping x in (1) is usually neither one-to-one nor
regular, we will be able to use it along particular radial geodesics. Restricted
in (2) to a normal e-neighborhood, x is strictly speaking only a parame-
trization of the punctured neighborhood Ne - p. However, the ambiguities
when u = 0 are familiar from Euclidean polar coordinates—and we need 
u = 0.

The u-parameter curve v = v0 of x is the radial geodesic with initial veloc-
ity v = cosv0e1 + sinv0e2 since, using Lemma 1.3,

Since ||v|| = 1, this geodesic has unit speed, so its length from p = x(u, v) 
is just u.

The v-parameter curve u = u0 > 0,

parametrizes a closed curve called the polar circle of radius u0 and pole p (see
Fig. 8.2).

Note that if q = x(u0, v0) is any point of Ne except p, then (but for repa-
rametrization) there is only one unit-speed geodesic from p to q that lies
entirely in Ne, namely, the radial geodesic

1.6 Lemma For a geodesic polar parametrization,

Proof. Since the u-parameter curves are unit-speed geodesics,

Thus

Thus F is constant on each u-parameter curve.
The v-parameter curve v Æ x(0, v) is the constant curve at p, so 

xv(0, v) = 0 for all v. This means that F(0, v) = 0 for all v. Since Fu = 0,
we conclude that F is identically zero.

The results so far—that E = 1, F = 0—are valid if x is merely a geo-
desic polar mapping. But now we assume that x is a parametrization of an
e-neighborhood. Thus, restricted to 0 < u < e, x is a regular mapping, so

F Eu u v u u vu u uv v= = = = =x x x x x x, , , .
1
2

0

E u u uu= = =x x x, .1 0,

E F G= = ( ) >1 0 0, , and except at the pole .

g u u v u u( ) = ( ) ( )x , 0 00 � � .

x e eu v u v u vp0 0 1 0 2, ,( ) = +( )exp cos sin

x e eu v u v u v up v, 0 0 1 0 2( ) = +( ) = ( )exp cos sin .g
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◆

Here E = 1 means that the exponential map preserves radial distances,
and F = 0 means that polar circles are always orthogonal to radial geodes-
ics (Fig. 8.2). Only G can be non-Euclidean, that is, π 1. So a normal neigh-
borhood in any surface M can be manufactured from a (flat) neighborhood
of 0 in R2 ª Tp(M) merely by stretching the polar circles u = const.

1.7 Example We explicitly work out geodesical polar parametrizations
in two classic cases.

(1) The unit sphere S in R3. For simplicity, we take the pole p to be the
north pole (0, 0, 1). (By a scale change and a Euclidean rotation of S, essen-
tially the same results will hold for any point in a sphere of any radius.) To
get geodesics radiating out from p, we change the geographical parametriza-
tion to

Each u-parameter curve is a unit-speed parametrization of a circle of longi-
tude through p, and hence is geodesic. The initial velocity of these radial geo-
desics is

So for the frame e1 = U1, e2 = U2 (Fig. 8.3), the uniqueness of geodesics
implies that

Hence x is indeed a polar geodesic parametrization. It is clear that the largest
normal neighborhood of p has radius p and fills all of S except the south
pole (0, 0, -1). The radial geodesics are longitudinal semicircles, and the polar
circles are the circles of latitude.

x e ee eu v u u v u vv v p,( ) = ( ) = +( )+g cos sin exp cos sin .1 2 1 2

xu v v v vU vU0 0 1 2, , ,( ) = ( ) = +cos sin cos sin .

x u v u v u v u, , ,( ) = ( )sin cos sin sin cos .

G EG F= - >2 0.

FIG. 8.3



(2) The hyperbolic plane H (Example 2.5 of Chapter 7). We take the pole
to be the origin 0 and let e1, e2 be the natural frame U1, U2. (Since h(0, 0) =
1, this Euclidean frame is also a hyperbolic frame.) According to Example
5.6 of Chapter 7, the geodesics of H through the origin follow Euclidean
straight lines. Thus for any number v, the curve

is at least a pregeodesic, and we found the arc length function of a to be

Thus, shifting notation from s to u, all the radial unit-speed geodesics can be
collected in the mapping

Since

it follows, as in (1), that x is a geodesic polar parametrization. The largest
normal neighborhood in this case is the entire surface H. The radial geodes-
ics are Euclidean lines, and polar circles are the Euclidean circles with center
0 (both with non-Euclidean metric properties). ◆

1.8 Theorem For each point q of a normal neighborhood Ne of p, the
radial geodesic segment of Ne from p to q uniquely minimizes arc length.

Proof. Let x be a polar parametrization of Ne. If q = x(u0, v0), then—
admitting the value 0 for u—the radial segment out to q is

Now let a be an arbitrary curve segment from p to q in M. We param-
etrize a on the same interval as g without changing its arc length. For g to
be a shortest curve from p to q, we must prove

Consider first the case where a stays in the neighborhood Ne (Fig. 8.4).
We can assume that once having left p, a never returns—for if it 

did, throwing away the resulting loop would shorten a. Thus it is possible
to write

L Lg a( ) ( )� .

g u u v u u( ) = ( ) ( )x , 0 00 � � .

x e eu v v v0 1 2, ,( ) = +cos sin

x u v
u

v v, ,( ) = ( )2
2

tanh cos sin .

s t
t( ) = Ê

Ë
ˆ
¯

-2
2

1tanh .

a t t v t v( ) = ( )cos sin,
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Since a(0) = p and a(u0) = q, we have

(1)

Because x has E = 1 and F = 0, the speed of a is .
Now,

(2)

Hence

(3)

where the last step uses (1). Since the radial geodesic has unit speed,

and so we conclude that L(g ) � L(a).
If a does not stay in Ne, then strict inequality, L(g ) < L(a), will hold.

In fact, to leave Ne, a must cross the polar circle u = u0; so it already has
length u0 = L(g )—and it has further to go.

Now we prove the uniqueness assertion:

The argument above shows that if L(a) = L(g ), then a stays inside Ne and
the inequality in (3) becomes an equality. The latter implies

If , then is a reparametrization ofL La g a g( ) = ( ) .

L du u
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Since G > 0, we conclude from (2) that

Thus a2 has constant value v0, so

This expresses a as a monotone reparametrization of g. ◆

This fundamental result shows, as promised earlier, that if points p, q in a
surface M are close enough together, then—as in Euclidean space for arbi-
trary points—there is a unique geodesic segment from p to q that is shorter
than any other curve in M from p to q.

1.9 Example Length-minimizing geodesics on the sphere. Let S Ã R3 be a
sphere of radius r. It follows from Example 1.7(1) that for each point p of S
the largest normal neighborhood has radius pr and covers the entire sphere
except for the point -p antipodal to the pole p. Hence the preceding theorem
implies:

(a) If distinct points p and q are not antipodal, q π ±p, then the radial
geodesic g from p to q is the unique shortest curve joining p and q. But we
know all the geodesics of S, so g can only be the one that follows the shorter
arc of the great circle through p and q.

(b) Intrinsic distance on S is given by the formula

where J is the angle from p to q in R3 (Fig. 8.5). If q π ±p, this follows from
(a), since

r g Jp q,( ) = ( ) =L r .

r J J pp q, ,( ) = ( )r 0 � �

a gu a u v a u( ) = ( )( ) = ( )( )x 1 0 1, .

¢ ¢ =a a1 20 0� and .

¢ + ¢ = ¢a Ga a1
2

2
2

1.
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Otherwise, r(p, p) = 0, and as q moves toward the antipodal point -p of p,
continuity implies r(p, -p) = pr. Consequently,

(c) There are infinitely many minimizing geodesics from any point p to its
antipodal point -p, namely, constant speed parametrizations of the semicir-
cles running from p to -p. (Proof. These all have length pr = r(p, -p).)

(d) No geodesic g of length L(g ) > pr can minimize arc length between its
end points. This follows immediately from the fact that intrinsic distance on
S never exceeds pr. It is clear geometrically, since if g starts at p, its length
exceeds pr as soon as it passes the antipodal point -p. But then the other arc
of the same great circle is shorter than g. ◆

Although the geodesic structure of the hyperbolic plane is simpler than
that of the sphere, Theorem 1.8 is still informative. Since the entire hyper-
bolic plane is a normal neighborhood of the point 0, it tells us that the intrin-
sic distance from 0 to any point p is the length of the radial geodesics from
0 to p. The preceding example gives this explicitly as

where ||p|| is the Euclidean distance from 0 to p. It follows that every geodesic
g of H has infinite length—hence H is complete. In fact, using the triangle
inequality,

Then as t Æ •, r(0, g (t)) Æ •; hence L(g |[t0, t]) Æ •.
The differential equations result used to establish the domain and differ-

entiability of the exponential map will, in fact, yield this local uniformity
property of normal radii: For each point p of a surface M, there is an e > 0
such that every point q with r(p, q) < e has a normal neighborhood of radius
e. (For a proof, see [doC], for example.)

Using this property, we can confirm the maxim that a shortest road has no
turning.

1.10 Corollary If a is a shortest piecewise regular curve in M from p to
q, then a is an (unbroken) geodesic.

Proof. First we show that the regular segments of a are geodesics; then
that a has no corners. We can suppose a has unit speed.

Assume that a regular segment ai|[bi, bi+1] of a is not a geodesic. Then
a ≤i (t0) is nonzero for some t0 in [bi, bi+1], and by continuity we can suppose
t0 < bi+1. Then a subsegment ai|[t0, t0 + e] is contained in a normal e-

L t t t t t tg r g g r g r g0 0 0, .[ ]( ) ( ) ( )( ) ( )( ) - ( )( )� �, , ,0 0

r 0 p
p

, ,( ) = -2
2

1tanh
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neighborhood of ai(t0). Note that ai|[t0, t0 + e] cannot be reparametrized
to be geodesic. Thus by the uniqueness feature of Theorem 1.8, the radial
geodesic segment s from ai(t0) to ai(t0 + e) is strictly shorter (Fig. 8.6).
Replacing ai|[t0, t0 + e] by s changes a to a strictly shorter curve from p
to q, contradicting the assumption that a is shortest. Thus a is a possibly
broken geodesic.

Now we assume that a actually has a corner, say at ai-1(bi) = ai(bi), and
again deduce a contradiction. By the remark preceding this lemma, there
is an e > 0 such that ai-1(bi) is contained in in a normal neighborhood N

of ai-1(bi - e). By continuity, some initial subsegment ai|[bi, t1] of ai is still
in N.

Thus the combined curve from ai-1(bi - e) to ai(t1) has a corner and lies
in N. So it is strictly longer than the radial geodesic t of N joining these
points (Fig. 8.6). Then as before, replacing the combined curve by t short-
ens a, giving the required contradiction. ◆

Exercises

1. Prove:
(a) A normal e-neighborhood of p in M consists of all points q in M such
that r(p, q) < e.
(b) If p π q in M, then r(p, q) > 0. (This completes the proof that intrin-
sic distance r is a metric on M; see Ex. 3 of Sec. 6.4.)

2. (Normal coordinates.) Let N = expp(U ) be a normal neighborhood of a
point p in M, and let e1, e2 be a frame at p. Prove:

(a) The mapping

is a coordinate patch on N.

(b) At p (but generally not elsewhere) E = 1, F = 0, G = 1. Thus normal
coordinates are Euclidean at p, hence at least approximately Euclidean 
near p.
(c) Coordinate straight lines through p are geodesics of M.

n e ex y x yp,( ) = +( )exp 1 2

FIG. 8.6



(d) With suitable choices, n for R2 is the identity map n(x, y) = (x, y). So
for arbitrary M, normal coordinates generalize the natural (rectangular)
coordinates of R2.

3. At the point p = (r, 0, 0) of the cylinder M: x2 + y2 = r2, let e1 = (0, 1,
0) and e2 = (0, 0, 1). Find an explicit formula for the normal parametriza-
tion in Exercise 2. What is the largest normal neighborhood of the point p?

4. (Continuation.) Prove:
(a) A geodesic starting at an arbitrary point p = (a, b, c) in the cylinder 
M does not minimize arc length after it passes through the antipodal line
t Æ (-a, -b, t). (Only vertical geodesics through p fail to meet this line.)
(b) If q is not on the antipodal line of p, there is a unique shortest geo-
desic from p to q.
(c) Derive a formula for intrinsic distance on the cylinder.

5. Let M be an augmented surface of revolution (Ex. 12 of Sec. 4.1). Prove,
without computation:

(a) If M has only one intercept p on the axis of revolution, then every geo-
desic segment g starting at p uniquely minimizes arc length.
(b) If M has a second intercept q, then the conclusion in (a) holds if and
only if g does not reach q.

6. In M let a be a curve segment in M from p to q, and b a curve segment
from q to r. Joining a and b does not usually produce a differentiable curve
from p to r since a + b will usually have a corner at q.

In this case, prove that there is a piecewise smooth curve g from p to r that
is arbitrarily close to a + b but strictly shorter: L(g ) < L(a) + L(b). (Hint:
See proof of Cor. 1.10.)

Techniques from advanced calculus show that the corner can actually be
smoothed away, leaving g differentiable throughout.

7. (Intrinsic distance is continuous.)
(a) For p0 in M, show that the real-valued function p Æ r(p0, p) is con-
tinuous; in fact, if r(p, q) < e, then |r(p0, p) - r(p0, q)| < e.
(b) State precisely and prove that the function (p, q) Æ r(p, q) is 
continuous.

8. The radial geodesics from the point (0, 1) in the Poincaré half-plane P
are given by (x - a)2 + y2 = a2 + 1 for all a (see Ex. 1 of Sec. 7.5).

(a) Show that the curves given by x2 + (y - b)2 = b2 - 1 for all b > 1 are
everywhere orthogonal to these geodesics.
(b) Deduce that the curves in (a) are the polar circles about the pole (0, 1).
(c) (Computer graphics.) Plot a few curves from each family on the same
figure.
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8.2 Complete Surfaces

A geometric surface M is complete provided all its geodesics can be defined
on the entire real line (Definition 4.4 of Chapter 7). Thus the plane R2 is com-
plete, but any smaller open set in R2 is not. Completeness is a very natural
condition. Physically, we can picture a point in a frictionless surface M as a
penny p, constrained by a normal force to remain in M. Once p is given an
initial velocity, its motion is completely determined, and since there is no
acceleration, it traces out a geodesic of M. It is reasonable to think that this
motion can be stopped only by a flaw in the surface.

In this section we consider some consequences of completeness. The most
remarkable is that the geodesics of a complete surface, assumed only to run
forever, actually go everywhere—and in the shortest possible arc length.

2.1 Theorem (Hopf-Rinow) Any two points p and q in a complete con-
nected geometric surface M can be joined by a shortest geodesic segment.

Proof. The scheme is an ingenious one, which begins by picking a
promising candidate for the shortest curve (see Theorem 10.9 of [Mi]). Let

parametrize a polar circle Ca of radius a in a normal neighborhood of p. By
Exercise 7 of the preceding section, the function v Æ r(b(v), q) is continuous
on the closed interval [0, 2p], so it takes on a minimum value at some v0. Thus
b(v0) is the point of Ca nearest to q. This makes it reasonable to hope that the
radial geodesic through b(v0), namely

will hit target point q.
Since M is complete, g is defined for all u � 0. We will, in fact, show

(1)

(See Fig. 8.7.) Furthermore, since g has unit speed, (1) implies

so g minimizes arc length as required.

To prove (1) we will show that

(2)r g u r u a u r( )( ) = -, for allq � � .

L rg r( ) = = ( )p q, ,

g rr r( ) = = ( )q p q, where , .

g u u v( ) = ( )x , ,0

b pv a v v( ) = ( ) ( )x , 0 2� �
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This is a kind of efficiency condition on g : Each inch that g advances brings
it one inch closer to q. Note that (2) does imply (1), since for u = r it gives
r(g (r), q) = 0, hence g (r) = q.

We separate the proof of (2) into three parts.
Start. Equation (2) holds for u = a (the radius of Ca); that is,

(3)

To show this, note that by Theorem 1.8, r(p, g (a)) = a. Hence by the 
triangle inequality,

To get (3) we must reverse this inequality. By the definition of intrinsic dis-
tance, for any e > 0 there is a curve segment a from p to q such that

Now a must hit the polar circle Ca, say at a(t0), and we observe that the
part of a from p to a(t0) has length L1 � a, while the remainder has length

(The latter inequality holds since g (a) is a nearest point to q on C.) Thus

Since e was arbitrary, we get the inequality,

required to prove (3).
Plan. The set of numbers u in [a, r] for which (2) holds has a least upper

bound b � r. Since the functions involved in (2) are continuous, it follows
that (2) holds for u = b, that is, r(g (b), q) = r - b. Evidently it suffices to
show that b = r.

a a+ ( )( ) ( )r g r, , ,q p q�

a a L L+ ( )( ) + ( ) +r g r e, ,q p q� �1 2 .

L t a2 0� �r a r g( )( ) ( )( ), ,q q .

L a r e( ) ( ) +� p q, .

r a a= ( ) + ( )( )r r gp q q, � , .

r g a r a( )( ) = -, q .
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To do this, our plan is to assume b < r and deduce a contradiction by proving

Indeed, this contradicts the least upper bound definition of b.
Finish. Let C* be a polar circle of radius 0 < a* < r - b in a normal

neighborhood of g (b). By reproducing the argument for the circle Ca, we
get a point c* such that

(See Fig 8.8.) Since r(g (b), q) = r - b, this becomes

(4)

It remains only to show that

(5)

By the triangle inequality,

Then (4) implies

But there is a broken geodesic from p to c* whose length is b + a*. In fact,
as Fig. 8.8 shows, we can travel from p to g (b) with arc length b, and then
from g (b) to c* on a radial geodesic of length a*. Thus by Corollary 1.10,
this curve is not broken. Hence it is g all the way, which means that 
g (b + a*) is exactly c*.

Finally, we substitute (5) into (4) to get the required contradiction

◆

Here are two fundamental consequences of completeness.

r g b a r b a+( )( ) = - +( )* * ., q

r p c, * *.( ) +� b a

r r rp c c q p q, , ,* * .( ) + ( ) ( ) =� r

c* * .= +( )g b a

r c q*, * .( ) = - +( )r b a

r r gc q q* *., ,( ) = ( )( ) -b a

r g b a r b a a+( )( ) = - +( ) >* * * ., for some numberq 0
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2.2 Corollary At every point p of a complete connected surface M the
exponential map expp is defined on the entire tangent space Tp(M) and maps
it onto M.

Proof. By completeness, if v is tangent to M at p, the geodesic gv is
defined on the whole real line. But gv(1) is the definition of expp(v), so expp

is defined on all of Tp(M).
By the Hopf-Rinow theorem, for any other point q in M there is a 

geodesic segment g from g (0) = p to g (r) = q. Thus expp(rg ¢(0)) =
g (r) = q. ◆

A connected geometric surface M is said to be extendible if it is isometric
to an open subset of a strictly larger connected surface . Thus, for example,
R2 - 0 is extendible to R2, but the following result shows that R2 itself is 
inextendible.

2.3 Theorem A complete connected surface M is inextendible.

Proof. We assume M is extendible and deduce a contradiction. For sim-
plicity, let M actually be a subset of . Then it is an open set of (Exer-
cise 15 of Section 4.3). It will suffice to find a geodesic g of that meets
M. For then the portion of g in M is a geodesic of M that cannot be
extended—in M—over the whole real line. But this contradicts the com-
pleteness of M.

Since is connected, the open set criterion (Exercise 9 of Section 4.7)
implies that - M is not open. Hence there is a point p in - M such
that every neighborhood N of p meets M. When N is a normal neigh-
borhood, some radial geodesic from p will meet M and is thus the required
geodesic g. ◆

Completeness, a geometric condition, is implied by the topological prop-
erty compactness.

2.4 Corollary A compact geometric surface is complete.

Proof. If every unit-speed geodesic in M can be extended by some fixed
amount h > 0, then M is complete, because these small extensions can be
repeated indefinitely.

By the remark preceding Corollary 1.10, for each point p in M there is
an e > 0 such that every point q within distance e of p has a normal neigh-
borhood of radius e. Since M is compact, a finite number of such neigh-
borhoods, say, N1, . . . , Nk, cover all of M. Let 2h be the smallest of the
corresponding radii e1, . . . , ek.

M̃M̃
M̃

M̃
M̃M̃

M̃
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Now we can extend any geodesic by h. Consider g : [0, b) Æ M. From
g (b - h) there will be radial geodesics of length 2h in all directions. The
one that has initial velocity g ¢(b - h) will then run for arc length 2h and
hence extend g by h. ◆

In fact, a more elaborate proof shows that every closed surface M in R3 is
complete. Although it applies only to surfaces in R3, this result is stronger
there than the corollary above. For example, it tells us that any quadric
surface in R3 is complete.

The properties above show that completeness is a crucial prerequisite for
the global study of surfaces.

Exercises

1. Show that the converse of the Hopf-Rinow theorem is false: Give an
example of a geometric surface M such that any two points can be joined by
a minimizing geodesic segment but M is not complete.

2. Test the scheme used to prove the Hopf-Rinow theorem (2.1) as follows.
Given points p = (p1, p2) and q = (q1, q2) in M = R2, use only that scheme
to find a formula for a geodesic g starting at p and aimed at q.

3. Prove that every complete generalized cylinder C is isometric to the plane
R2 or to a circular cylinder with radius uniquely determined by C.

4. Let M Ã R3 be flat. Exercise 2 of Section 6.3 correctly suggests that every
point of M has a neighborhood that is ruled. Give an example to show that
M itself need not be ruled. (Hint: Begin by cutting a small square from each
corner of a plane square.)

However, it is known that every complete flat surface in R3 is a generalized
cylinder (so Ex. 3 applies). See W. S. Massey, “Surfaces of Gaussian Cur-
vature Zero in Euclidean Space,” Tohoku Math. J. 14, 1962.

5. Many surfaces of revolution with constant curvature K π 0 were found
in Section 7 of Chapter 5 and its exercises. Show that except for the sphere,
none are complete.

6. Give an example of a surface in which every pair of points can be joined
by a geodesic segment, but not always by a minimizing one.

7. Let C be the z > 0 part of the cone z2 = x2 + y2 in R3. Show that C is
not complete, but that any two points of C can be joined by a minimizing
geodesic. (Hint: Cut C and bend it isometrically into R2.)
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8.3 Curvature and Conjugate Points

The preceding section dealt with curve segments g from p to q whose arc
length L is a minimum compared to all curve segments joining these points.
Now we consider g on which L has only a local minimum. The definition has
the same pattern as for a local minimum of a real valued function on R, but
with points of R replaced by curve segments from p to q.

3.1 Definition A geodesic segment g from p to q in M locally minimizes
arc length from p to q provided that L(a) � L(g ) holds for every curve
segment a from p to q that is sufficiently close to g.

To clarify the term “sufficiently close,” we define a to be e-close to g pro-
vided there is a reparametrization of a defined on the same interval I as g
and such that

Then the ending of the preceding definition becomes:

provided there exists an e > 0 such that L(a) � L(g ) holds for any
curve segment from p to q that is e-close to g.

The local minimization is strict (or unique) provided strict inequality 
L(a) > L(g ) holds except when a is a reparametrization of g.

To get an intuitive picture of this definition, we can imagine that g is an
elastic string—or rubber band—that (1) is constrained to lie in M, (2) is under
tension, and (3) has its end points pinned down at p and q.

Because g is a geodesic, it is in equilibrium. If it were not a geodesic, its
tension would pull it to a new shorter position. But is the equilibrium stable?
That is, if g is pulled aside slightly to a new curve a and released, will it return
to its original position? (See Fig. 8.9.) Evidently g is strictly stable if and only
if g is a strict local minimum in the sense above, for if a is always longer than
g, its tension will pull it back to g.

The key to local minimization is the notion of conjugate point. If g is a
unit-speed geodesic starting at p, then g is a u-parameter curve v = v0 of a
geodesic polar mapping x with pole p. We know that along g the function 
G = ·xv, xvÒ is zero at u = 0, but is nonzero immediately thereafter (Lemma
1.6). A point g (s) = x(s, v0) with s > 0 is called a conjugate point of g (0) = p
on g provided G(s, v0) = 0. (Such points may or may not exist.)

The geometric meaning of conjugacy rests on viewing as the dis-
tance between nearby radial geodesics and hence of its derivative as( )G u

G v= x

r a g e˜ .t t t I( ) ( )( ) <, for all in

ã
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the rate at which the radial geodesics are spreading apart. In fact, the dis-
tance from x(u, v) to x(u, v + e) is approximately e ||xv(u, v)||, and if
this distance is increasing, so the radial geodesics are spreading apart, while
if the distance is decreasing, so the radial geodesics are pulling
closer together.

Since G vanishes at a conjugate point g (s1) = x(s1, v0), we can expect that,
for v near v0, the radial geodesics gv will all reach this point at distance 
s = s1 (Fig. 8.10). Unfortunately, this meeting may not actually occur, since
G controls only first derivative terms of x, and higher order terms may still
be nonzero when G vanishes.

The Euclidean plane R2 sets the standard rate at which radial geodesics
spread apart, and for x(u, v) = (ucosv, usinv) we have

In particular, there are no conjugate points. Let us compare this with the cases
in Example 1.7, the unit sphere S and the hyperbolic plane H.

G u G u= =, hence ( ) .1

( )G u < 0

( )G u > 0

FIG. 8.9

FIG. 8.10
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For S, since xv = (-sinu sinv, sinu cosv, 0), we find

Thus radial geodesics from the north pole (meridians of longitude) begin in
Euclidean fashion but as cosu drops below 1, they spread apart ever less
rapidly than in R2. After they pass the equator (at u = p/2) cosu turns nega-
tive and the geodesics begin crowding closer together. All have their first 

conjugate point after traveling distance p, since . In this
case, of course, the meeting actually takes place—at the south pole of S (Fig.
8.3).

For the hyperbolic plane, we know that radial geodesics from the origin
follow Euclidean straight lines. From the formula for x(u, v) in Example
1.7(2), we can compute†

Thus the radial geodesics, after beginning in Euclidean fashion, spread apart
ever more rapidly than in R2, as might be guessed from the slogan “rulers
shrink as they approach the rim.” In particular, there are no conjugate points.

3.2 Theorem (Jacobi) If g is a geodesic segment from p to q such that there
are no conjugate points of p = g (0) on g, then g locally minimizes arc length
(strictly) from p to q.

Proof. For a geodesic polar mapping x with pole p, we can write

Since there are no conjugate points of p on g, we have

As noted earlier, it follows from Lemma 1.6 that EG - F 2 reduces to G
for a geodesic polar mapping, so x is regular for all (u, v0) with 0 < u � b.
Thus the image of g for 0 < u < b is covered by neighborhoods N that are
diffeomorphic images, under x, of open sets in the uv plane.

Then g can be divided into segments by numbers

so that the first segment g |[0, u1] lies in a normal neighborhood N0 of p
and each later segment g |[ui, ui+1], 1 � i � k, is in one of the neighbor-
hoods N, say Ni.

0 1 1< < < < =+u u u bk k. . . ,

G u v u b, for0 0 0( ) > < < .

g gu u v u b L( ) = ( ) = ( )x , for0 0 � � .

G u G uu= =sinh ,    ( ) cosh .hence  

G vp p,( ) = =sin 0

G u G uu= =sin ,    ( ) cos .hence  

† We will soon find a method much quicker than direct computation.
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Now we can choose an e > 0 so small that if a curve a is e-close to g,
then each subsegment a |[ui, ui+1] lies in the same open set Ni as g |[ui, ui+1]
and e is less than the radius of the normal neighborhood N0 (Fig. 8.11).

The first segment of a can evidently be written in the polar form

a(t) = x(a1(t), a2(t)),

with a1(0) = 0, a2(0) = v0. The local inverses of x on each Ni carry the later
segments, in succession, back to the uv plane. Thus a can be written as

with

We must show that L(a) � L(g ), with equality only if a is a monotone
reparametrization of g. As in the proof of Theorem 1.8, we find

And if L(a) = L(g ), then as before, a is a monotone reparametrization 
of g. ◆

The study of conjugate points can be radically simplified by freeing it from
dependence on geodesic polar mappings. To achieve this, we examine the

“spreading coefficient” more closely.

3.3 Theorem Let x be a geodesic polar mapping on whose domain in 
the uv plane, G > 0 if u > 0. Then satisfies the Jacobi differential
equation

( )G K Guu + = 0,

G v= x

( )G u

L a Ga a dt

a b a b L

b b

a

g

( ) = ¢ + ¢ ¢

= ( ) - ( ) = = ( )
Ú Ú1

2
2

2

0
1

0

1 1 0

�

.

a a v a b b a b v1 2 0 1 2 00 0 0( ) = ( ) = ( ) = ( ) =, ,; .

a t a t a t( ) = ( ) ( )( )x 1 2, ,
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subject to the initial conditions

The restriction G > 0 is needed to ensure that is differentiable, at least for
u > 0.

Proof. The Jacobi equation follows immediately from the curvature
formula in Proposition 6.3 of Chapter 6. As noted in the proof of Lemma
1.6, x(0, v) = p for all v, so G(0, v) = 0 for all v. Because is not
differentiable at u = 0, limits are required, and we must show

It is only necessary to consider a single radial geodesic g (u) = x(u, v0),
setting

On g, since E = 1, F = 0, we get a frame field

Because g is a geodesic, E1 is parallel, and by Exercise 2 of Section 7.3,
so is E2. By parallelism, E2 is well-defined at u = 0. Now,

Hence

Furthermore, since xv = gE2 on g, and E2 is parallel, we find

on g, for u > 0. Taking limits as u Æ 0 yields

(*)

But xu(0, v) = cosv e1 + sinv e2 for all v. Hence

Comparing this equation with (*) shows that limuÆ0 g¢(u) = 1. Since 
g = , this is the required limit. ◆G

x e euv v v v E0 00 0 1 0 2 2,( ) = - + = ( )sin cos .

xuv
u

v g u E0 00
0

2, lim .( ) = ¢( ) ( )
Æ

x xuv vu g E= = ¢ 2

E v v2 0 1 0 20( ) = - +sin cos .e e

E v v vu1 0 0 1 0 20 0( ) = ( ) = +x e e, cos sin .

E E gu v1 2= ¢ = =g x x, / .

g u G u v u( ) = ( ) >( ), 0 0 .

lim( ) .G u v
u uÆ

( ) =
0

1,

G v= x

G

G v G u v v
u

u0 0 1
0

, , , for all( ) = ( ) =
Æ

lim( ) .
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Recall that for the Euclidean plane we found for u > 0, and hence
. Thus the initial conditions in the preceding theorem show that as

radial geodesics first leave the pole p in any geometric surface, they are
spreading at the same rate as in R2. Thereafter, the Jacobi equation

shows that the rate of spreading depends on Gaussian curvature. For K < 0,
radial geodesics spread faster than in R2, as we saw earlier for the hyperbolic
plane. For K > 0, they spread slower than in R2, as on the sphere.

To locate conjugate points it is no longer necessary to construct a geodesic 
polar mapping, as we have done so far. We can find on a geodesic g
simply by solving the Jacobi equation along g, subject to the Jacobi initial
conditions. Explicitly, Theorem 3.3 gives

3.4 Corollary Let g be a unit-speed geodesic starting at p in M. Let g be
the unique solution of the Jacobi equation on g,

that satisfies the initial conditions g(0) = 0, g¢(0) = 1.
Then the conjugate points of g (0) = p on g are the points g (s), s > 0, at

which g(s) = 0.

As in the plane R2, conjugate points may not exist, but if they do, the first
one is particularly important because of Theorem 3.2.

3.5 Example Conjugate Points.
(1) Let g be a unit-speed geodesic starting at any point p of the sphere S

of radius r. Since K = 1/r2, the Jacobi equation for g is g≤ + g/r2 = 0, which
has the general solution

The initial conditions g(0) = 0, g¢(0) = 1 then give

The first zero s1 > 0 of g occurs at distance s1 = pr. Thus the first conjugate
point of p occurs at the antipodal point -p. This agrees with our earlier com-
putation using geodesic polar parametrization.
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(2) On a torus of revolution with radii R, r > 0, let g be a unit-speed param-
etrization of the outer equator. Now g is a geodesic, and along it K has con-
stant value 1/(r(R + r)). Thus by the preceding corollary the first conjugate
point of, say, g (0) will occur at exactly the same distance as if g were on a
sphere with this curvature, so 

3.6 Corollary There are no conjugate points on any geodesic in a surface
with curvature K � 0. Hence every geodesic segment in such a surface is
locally minimizing.

Proof. Apply Corollary 3.4 to a geodesic in M. The initial conditions
g(0) = 0 and g¢(0) = 1 show that g starts out as a strictly increasing pos-
itive function. Since K � 0, the Jacobi equation gives

Thus g¢(s) ≥ 1 for all s. Then evidently g(u) > 0 for all u > 0. ◆

For example, on a (flat) circular cylinder, the helical geodesic g from p to
q indicated in Fig. 8.12 is indeed stable, as one can verify by experiment.
Although locally minimizing, it is certainly not minimizing, since the straight-
line segment s gives a much shorter way to travel from p to q.

Although geodesics locally minimize arc length before the first conjugate
point, they do not locally minimize past it.

3.7 Theorem Let g be a geodesic segment from p to q. If there is a con-
jugate point of p along g before q, then g does not locally minimize arc length
between p and q.

¢¢ = -g Kg � 0.

s r R r1 = +( )p .

FIG. 8.12



A formal proof requires the calculus of variations (see [Mi] or [dC]), but
we can give a persuasive argument. As before, let g be the u-parameter curve
v = v0 of a geodesic polar mapping x. If q = g (u0) = x(u, v0), then by hypoth-
esis, the function u Æ G(u, v0) is zero at some number s with 0 < s < u0.

We have seen that this means that nearby u-parameter geodesic segments
of the same length as g tend to meet again at g (s) = x(s, v0) (see Fig. 8.10).
Suppose that (as on the sphere) this meeting actually occurs for some v1 arbi-
trarily near v0. Then we construct the broken geodesic b : [0, u0] Æ M for which

Thus b has the same length as g |[0, u0]. But it has a corner at g (s), and as the
proof of Corollary 1.10 shows, cutting across this corner produces a strictly
shorter curve that is arbitrarily near to b and hence to g. Thus g does not
locally minimize arc length from p to q.

Note that the proof of Corollary 1.10 remains valid for local minimiza-
tion, so a locally minimizing curve from p to q is an (unbroken) geodesic.

In the critical case where the end point g (b) of a geodesic segment 
g : [a, b] Æ M is exactly the first conjugate point of its initial point g (a),
nothing can be said in general: g may or may not locally minimize arc length.

The Jacobi differential equation can be used to give an intuitive descrip-
tion of Gaussian curvature. First we need

3.8 Lemma If x is a geodesic polar mapping with pole p, then

Here o(u3) denotes a function of u > 0 and v such that limuÆ0o(u3)/u3 = 0.
So in the formula, when u is small enough, o(u3) is negligible compared to
the first two terms.

Proof. Again consider on a radial geodesic u Æ x(u,v).
As a solution of the Jacobi equation, g is differentiable at u = 0, and hence
has a Taylor expansion,

We can evaluate all these coefficients. The Jacobi initial conditions 
in Corollary 3.4 are g(0) = 0, g¢(0) = 1. Using the first of these in the 
Jacobi equation gives g≤(0) = 0. Now differentiate the Jacobi equation to
get

g u g g u g
u

g
u
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Thus

Substitution in the Taylor expansion then gives the required result. ◆

Suppose the inhabitants of a geometric surface M want to determine the
Gaussian curvature of M at a point p. By measuring a short distance e in all
directions from p, they obtain the polar circle Ce of radius e. If M = R2, then
Ce is just an ordinary Euclidean circle, with circumference L(Ce) = 2pe. But
for K > 0 the radial geodesics from p are not spreading as rapidly, so Ce should
be shorter than 2pe, and for K < 0 they are spreading more rapidly, so Ce

should be longer than 2pe.
The dependence of L(Ce) on K can be measured with precision. For e small

enough, Ce is parametrized by v Æ x(e, v), where x is a geodesic polar patch
at p. Thus

Hence by the preceding lemma,

(*)

Thus if surveyors in M measure L(Ce) carefully for e small, they can estimate
the Gaussian curvature of M at p to any desired accuracy. Taking limits yields
a precise result.

3.9 Corollary .

Let us test the formula (*) on a sphere S of radius r in R3. As Fig. 8.13
shows, the polar circle Ce with center p is actually a Euclidean circle of Euclid-
ean radius r sinJ, where J = e/r. Then by the Taylor series of the sine 
function,

Comparison with (*) gives yet another proof that the sphere has Gaussian
curvature K = 1/r2.
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Exercises

1. If x(u, v) is a polar parametrization in a surface of constant curvature
k, show that

2. In a normal neighborhood of p Œ M, call the region De on and within
the polar circle Ce a polar disk of radius e.

(a) Show that the area of a polar disk is

and hence

(b) Use this formula to find the Gaussian curvature of a sphere of
radius r.

3. (a) At the pole 0 in the hyperbolic plane H, find the length of the polar
circle Ce and the area of the polar disk De, where 0 < e < • is the hyper-
bolic radius.
(b) Deduce from each that K(p) = -1.

(As we shall later see, these results hold for any point of H.)
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4. Let M be an augmented surface of revolution (Ex. 12 of Sec. 4.1).
(a) If M crosses the axis A at only one point p (as on a paraboloid of rev-
olution), show that p has no conjugates on any geodesic.
(b) If M crosses the axis A at only two points p and q (as on an ellipsoid
of revolution), show that p and q are conjugate along every meridian.
(Hint: Use a canonical parametrization to get the Jacobi equation.)

The following exercises deal with a useful variant of the geodesic polar
parametrization in which the pole p is replaced by an arbitrary regular curve.

5. Let b: I Æ M be a regular curve in M, and let X be a nonvanishing vector
field on b such that b¢(v) and X(v) are linearly independent for all v. Define

Thus the u-parameter curve v = v0 is a geodesic cutting across b with initial
velocity X(v) (Fig. 8.14). Prove:

(a) x is a regular mapping on some open region D in R2 containing the
points (0, v) for all v in I.
(b) By suitable choices of b and X, this parametrization x becomes (i) the
identity map of R2 (natural coordinates), (ii) the canonical parametriza-
tion of a surface of revolution, and (iii) a ruled parametrization of a ruled
surface (Def. 2.6 in Ch. 4).

(Note: To obtain familiar formulas it may sometimes be necessary to reverse
u and v.)

6. (Continuation.) If b is a unit-speed curve and X is the unit normal 
N = J(b¢) in M, show that E = 1, F = 0, and is the solution of the Jacobi

equation such that( )G K Guu + = 0

G

x u v u uX vX v v,( ) = ( ) = ( )( )( ) ( )g bexp .

FIG. 8.14
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By analogy with conjugate points, if G(u0, v0) = 0, we say that x(u0, v0) is a
focal point of b along the normal geodesic v = v0. Here light rays emerging
orthogonally from b tend to meet (Fig. 8.15).

7. (a) If b is a circle of latitude on a sphere S, show that the north and
south poles of S are the only focal points of b.
(b) If b is a curve in the Euclidean plane, show that its focal points are
exactly its centers of curvature, that is, the points on its evolute. (See Ex.
13 of Sec. 2.4.)

8. (a) Let x and be geodesic polar parametrizations of normal e-neigh-
borhoods Ne and e (same e) in two (not necessarily different) geomet-
ric surfaces. If K(x) = K( ) on the common domain of x and , prove
that Ne and e are isometric.
(b) Deduce Minding’s theorem that constant curvature uniquely determines
local geometry: If M and M¢ have the same constant curvature, then any
points p in M and p¢ in M¢ have isometric neighborhoods.

8.4 Covering Surfaces

There is a close relationship between certain pairs of surfaces that lets infor-
mation about one—obtained perhaps with difficulty—be transmitted easily
to the other. We are interested mostly in surfaces, but we state the basic def-
inition for manifolds of arbitrary dimension so that Curves (1-dimensional
manifolds) are included.

4.1 Definition Let F be a differentiable mapping of a manifold M onto
a manifold N of the same dimension. An open set V in N is evenly covered
provided the set of points in M that map into V splits into disjoint open sets,
each mapped diffeomorphically onto V by F. Then F is a covering map pro-
vided every point of N has an evenly covered neighborhood.

N

xx
N

x

G v G v vu g0 1 0, ( ) , .( ) = ( ) = - ( )and k

FIG. 8.15
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Here “diffeomorphically” means that the restriction of F to any one of
these disjoint open sets, say U1, is a diffeomorphism of U1 onto V. Thus F |U1

has a differentiable inverse mapping l1: V Æ U1. Note that any open subset
of an evenly covered neighborhod is itself evenly covered.

If F: Æ M is a covering map, then is called a covering manifold of
M, and we say that covers M.

4.2 Example The classic 1-dimensional example of a covering map is the
exponential map

which wraps the line R around the unit circle C: x2 + y2 = 1 in R2.† 
Figure 8.16 presents R as an infinite coil, with E dropping each point of R
down to C; the evenly covered neighborhoods are readily pictured (see also
Exercise 4.2).

The exponential map E resolves the ambiguity between the “geometric
angle” formed by two vectors (or two radial lines) and the “numerical angle”
that measures it. Here a point (x, y) of C represents the geometric angle
between the positive x axis and the line from the origin through the point 
(x, y), and J is an oriented angle (using the natural orientation of the plane).
For any point (x, y) in C, the infinitely many numbers sent to (x, y) by E are
the possible measurements of the angle—any two differing by an integer 
multiple of 2p.

It is clear from the definition that a covering map Æ M is a local 
diffeomorphism onto M, but we will soon see that the converse is not 
true.

M̃

E eiJ J JJ( ) = = ( )cos sin, ,

M̃
M̃M̃

FIG. 8.16

† This mapping, with R considered as a tangent line to C, was a model for the general notion of the
exponential map in Section 1.



4.3 Example Several covering maps have appeared earlier.

(1) The usual parametrization x: R2 Æ T of the torus of revolution.
(2) The map F(x, y) = (cosx, sinx, y) that wraps the Euclidean plane R2

around a cylinder C Ã R3.
(3) The projection F of the sphere S onto the projective plane P

(Example 8.2 in Chapter 4).
(4) The natural map of the orientation covering of a surface M onto

M (Exercise 6 of Section 4.8). ◆

A covering map Æ M has the crucial property that curves in M can
always be lifted to in the following sense.

4.4 Proposition Let F: Æ M be a covering map. If a: I Æ M is a
curve and p is any point of such that F(p) = a(t0) in M, then there is a
unique curve ã : I Æ such that

Proof. For simplicity, take I = [0, b] and t0 = 0.
Existence of Lifts. Since every point a(t) is in an evenly covered neigh-

borhood, a standard result from advanced calculus asserts that there are
numbers

such that for i = 1, … , n, each subinterval [ti-1, ti] is contained in an evenly
covered neighborhood, say Vi. We build on [0, b] by lifting a on each
subinterval in succession.

There is no choice as to the lift of a |[0, t1]. Let U1 be the covering neigh-
borhood of V1, that contains p. Since the covering neighborhoods are dis-
joint, a lift of a |[0, t1] that starts at p must lie entirely in U1. But F carries
U1 diffeomorphically onto V1, so this lift can only be

where l1: V1 Æ U1, is the inverse diffeomorphism of F|V1.
Now we repeat this process, replacing p by (t1) to get a curve 12 such

that F( 12) = a |[t1, t2]. This curve starts at the end point of a1, so the two
combine to give a curve 2 such that

After a finite number of such repetitions the entire curve is lifted.
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ã
ã
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Uniqueness of Lifts. Here we only assume that F: Æ M is a local dif-
feomorphism. Then if a1, a2: [0, b] Æ are lifts of the curve a in M such
that a1(0) = a2(0), we must show that a1 = a2. The proof is based on the
fact that [0, b] is not the union of two disjoint open sets.

Let A Ã [0, b] consist of all t such that a1(t) = a2(t). Since curves are
continuous, the set [0, b] - A is open. But A is also open, since if t is in A
then there is a neighborhood U of a1(t) = a2(t) that is mapped diffeo-
morphically onto a neighborhood V of a(t) in M. For t¢ near t, a(t¢) is in
V, so, arguing as above, both a1(t¢) and a2(t¢) can only be l(a(t¢)); hence 

a1(t¢) = a2(t¢).

Since A actually contains the number 0, we conclude that A is the entire
interval [0, b].

Note that the result holds if instead of a1(0) = a2(0), we assume that
a1 and a2 agree at any t0 in [0, b]. ◆

In short, a curve in M can be uniquely lifted to any level in a covering
surface of M.

Notation: For any map F, let F-1 (y) be the set of all x such that F(x) = y.

4.5 Corollary Let F: Æ M be a covering map with M connected, and
let k be a positive integer. If for some one q0 in M there are exactly k points
in F-1(q0), then the same is true for every point q in M. In this case the 
covering is said to have multiplicity k.

Proof. For any q in M, let a: [0, 1] Æ M be a curve segment from q0 to
q. Then let a1, . . . , ak be the lifts of a starting at the k points of F-1(q0).
The end points i(1) all lie in F-1(q), and they are all different, for by the
uniqueness of lifts, if any two end points agreed, the entire curves would
be identical, but by construction their initial points differ.

Consequently, F-1(q) contains at least as many points as F-1(q0). Clearly
the argument holds with q0 and q reversed, so the two sets have the same
number of points. ◆

Note that this corollary implies that if F-1(q) is infinite for one point q in
M, it is infinite for every point. Evidently, the exponential map E above has
infinite multiplicity, as do the first two maps in Example 4.3.

A covering map of multiplicity 1 is just a diffeomorphism. A covering map
of multiplicity 2 is called a double covering. In Example 4.3 the last two maps
are double coverings. When faced with a choice of two objects at each point
of a surface M, it often turns out that the set of all these objects forms a
double covering surface of M.

ã
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Corollary 4.5 can also be used to prove that a particular map is not a 
covering map. For example, let E1 be the restriction of the map E above to
an interval J: 0 < t < 3p. Now J is still mapped nicely around the unit circle
C - S1; in fact, E1: J Æ S1 is a local diffeomorphism. However E1 is not a
covering map since for some points, F-1(q) contains two points, for others
only one. A sketch will show that the even covering condition fails only
around the two edge points E1 (0) = (1, 0) and E1 (3p) = (-1, 0).

Proposition 4.4 has an analogue that asserts that 2-segments can also be
lifted to any level.

4.6 Theorem Let F: Æ M be a covering map, and let x: R Æ M be a
2-segment, where D: a � u � b, c � v � d. If p is any point of such that
F(p) = x(a, c), then there is a unique 2-segment in such that

The proof is a straightforward 2-dimensional version of the proof of Propo-
sition 4.4. The rectangle R is chopped into subrectangles, each lying in an
evenly covered neighborhood. Then these are uniquely lifted—across one row
and back the next—until is completed. For details, see the Covering Homo-
topy Theorem in [ST].

4.7 Remark Coverings with finite multiplicity. Suppose F: Æ M is a
covering with multiplicity k.

(1) If M is compact, then is compact. Proof. M is covered by a finite
number of 2-segments. Each of these can be lifted to k 2-segments in .
Clearly these finitely many lifts cover all of , so it is compact.

(2) The Euler characteristic of is k times of that M. Proof. For a rec-
tangular decomposition of D of M, lift (as in (1)) each face in D to k faces
in . Using the uniqueness of curve lifts, we can check that if such faces
meet, they do so in a lifted edge or vertex. Each edge has k lifts, and the lifts
of a vertex p are just the k points in F-1(p). Thus the lifted faces constitute a
rectangular decomposition of , and c( ) = kv - ke + kf = k(v - e +
f ) = kc(M).

A covering surface can be expected to have simpler topology than the
surface it covers. Evidently the plane R2 is simpler than either a torus or a
cylinder. Now we show that simply connected covering surfaces are those that
cannot, in this sense, be further simplified.
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4.8 Theorem If F: Æ M is a covering map with connected and M
simply connected, then F is a diffeomorphism.

Proof. Since F is, in particular, a regular mapping onto M, it will suffice
to show that F is one-to-one. So if p1 and p2 are points of such that
F(p1) = F(p2) = q in M, we must show that p1 = p2.

Since is connected, there is a curve segment : [0, 1] Æ running
from p1 to p2. Now F carries to a curve a in M, and a is closed since

Because M is simply connected, a is homotopic to a constant. By Defini-
tion 7.6 of Chapter 4, this means that there is a 2-segment x in M—defined
for simplicity on the unit square 0 � u, v � 1—whose base curve is a, with
its other boundary curves constant at p.

By the preceding lemma there is a lift of x to the p1 level, that is, a 
2-segment in such that

To show that p1 = p2, we chase around the rim of the 2-segment , as
in Fig. 8.17.

The edge curve of starts at p1 and is carried by F to the constant
curve at p. Hence by the uniqueness of lifts (see proof of Prop. 4.4), can
only be the constant curve at p1.

Similarly the edge curve starts at (0) = (1) = p1 and is carried to
a constant curve; hence is constant at p1.

Finally, ends at (1) = p1 and is carried to a constant curve; hence 
is also constant at p1. Thus

◆

Here are three applications of covering methods that involve orientation
covering surfaces (Exercise 6 of Section 4.8).

(1) Proof of Theorem 7.11 of Chapter 4. This asserts that a simply 
connected surface M is orientable. By the preceding theorem, the orientation
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covering surface of M is not connected. For M Ã R3, it follows from Exer-
cises 6 and 7 of Section 4.8 that M is orientable.

If M is not in R3 the argument is the same, but an abstract definition of
is required. For example, we could take to be the set of all rotation

operators J on M—two at each point.
(2) The Poincaré-Hopf theorem for compact nonorientable surfaces N.

The proof in Section 7 of Chapter 7 required orientability; to extend to the
nonorientable case, suppose that V is a vector field on N with only isolated
singularities p1, . . . , pk.

Let F: Æ N be the orientation covering of N. Since F is a local diffeo-
morphism, there is a unique vector field on N such that F*( ) = V.

For each pi, the two points qi, q¢i in F-1(pi) are also singular points of .
Near each of them, is just an isometric copy of V near pi, so both qi and
q¢i have the same index as pi. In view of the property of Euler characteristic
in Remark 4.7,

Thus c(N) = Sk
i=1ind(V, pi).

(3) Classification of compact nonorientable surfaces. These surfaces can
all be constructed by a scheme similar to that used in the orientable case
(Section 7.6).

Instead of handles, crosscaps are used. A crosscap is a projective plane P
with a hole punched in it. To add a crosscap to a surface M, punch a corre-
sponding hole in it (in both cases, by removing the interior of a face of a rec-
tangular decomposition). Join the boundaries of the holes smoothly to get
the new surface M¢. It has Euler characteristic

In fact, its decomposition has two fewer faces than M and P combined, and
the changes in vertices and edges cancel. (Recall that c(P) = c(S )/2 = 1.)

Then, analogous to Theorem 6.8 of Chapter 7, we have

4.9 Theorem If N is a compact connected nonorientable surface, there
is a unique integer k � 0 such that N is diffeomorphic to a projective plane
with k crosscaps.

(See Chapter 1 of [Ma].) In this case we denote N by P[k]. The formula above
gives

c cP k P k k k[ ]( ) = ( ) - = - ( )1 0� .
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Thus the nonorientable compact surfaces have Euler characteristics

The preceding theorem and Theorem 6.8 of Chapter 7 constitute the 
following surface classification theorem.

4.10 Theorem Two compact connected surfaces are diffeomorphic if
and only if they have the same Euler characteristic and are both orientable
or both nonorientable. Equivalently, every compact connected surface is 
diffeomorphic to exactly one surface in the following double sequence:

The vertical arrows are orientation covering maps, since

4.11 Corollary The orientation covering surface of P[k] is S [k], a sphere
with k handles.

Proof. If N is a nonorientable connected surface, then (as asserted in
Exercise 7 of Section 4.8) its orientation covering surface is connected
and orientable. If N is also compact, then by Remark 4.7, is compact
and has Euler characteristic 2c(N). Thus the orientation covering of
P[k] is a compact orientable surface with Euler characteristic 2(1 - k) =
2 - 2k. Hence by Theorem 6.8 of Chapter 7, P[k]

�
is diffeomorphic to 

S [k]. ◆

A local isometry of geometric surfaces that is also a covering map is called
a Riemannian covering map. To make use of the power of covering methods,
it is important to be able to decide when a given local isometry is a 
Riemannian covering map. If it is, then curves in N can be lifted to every 
level in M. We now consider a geometrical converse.

A local isometry F: M Æ N is said to have the geodesic lift property
provided every geodesic segment g in N can be lifted to every level in M.
(Note that such lifts are necessarily geodesics since the local inverses of F are
isometries.)

4.12 Theorem If a local isometry F: M Æ N, with N connected, has the
geodesic lift property, then F is a Riemannian covering map.
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Proof. To show that F maps M onto N, fix a point p0 in M and let q be
an arbitrary point of N. Since N is connected, there is a broken geodesic
segment b: [0, b] Æ N from F(p0) to q (Exercise 7 of Section 7.4). Using
the geodesic lift property, we lift successively the unbroken subsegments of
b to get a broken geodesic : [0, b] Æ M starting at p0. Thus 

F( (b)) = b(b) = q.

We must find an evenly covered neighborhood for each point q in N. It
turns out that any normal e-neighborhood N of q will work. To show this,
let p be any point of F -1(q). Each radial geodesic g starting at q runs for
length e, hence so does its lift to M starting at p. Since F is, in particu-
lar, a local isometry, every geodesic starting at p is such a lift. Furthermore,
once they leave p, no two such geodesic segments meet again. It follows
that these segments fill a normal e-neighborhood N (p) of p, and further-
more that F carries N (p) in one-to-one fashion onto N. As a local isom-
etry, F is a regular mapping; hence N (p) Æ N is a diffeomorphism.

Next we show that the neighborhoods N (p) for all p in F-1(q) fill the
entire set F-1(N ) (Fig. 8.18). They are evidently contained in it. For r in
F-1(N ), we must show that r is in some N (p). Let s be the radial geodesic
from q to F(r) in N. Then if is the lift of s ending at r, we have

Hence (0) is in F-1(q), and r is in N ( (0)) as required.
It remains only to note that for points p π p¢ of F-1(q), their normal 

e-neighborhoods do not meet. In fact, if they did, then radial geodesic 
segments from p and p¢ meet—contrary to the uniqueness of lifts. ◆

s̃s̃

F ˜ .s s0 0( )( ) = ( ) = q

s̃

g̃

b̃

b̃

FIG. 8.18



Exercises

1. Describe a vector field on the projective plane that has exactly one sin-
gularity. What is its index?

2. Let E: R Æ C be the exponential map in Example 4.2.
(a) For any integer k, if Tk is the translation J Æ 2pk of R, show that 
ETk = E.
(b) If N is the open semicircle y > 0 in the unit circle C, let cos-1 be the
(differentiable) inverse of the restriction of cos to the interval I: 0 < J < p
and define l: N Æ R by l(x, y) = cos-1(x). Prove that E(l(x, y)) = (x, y)
for all (x, y) in N. (Hint: Use y > 0.)
(c) Same as (b) for the semicircles y < 0, x > 0, and x < 0 in C.
(d) Deduce that E is a covering map.

3. Let F: M Æ N be a local diffeomorphism. Show that F is a covering map
if F-1(q) contains the same finite number of points for all q in M.

4. For each integer n � 1, find a covering map Fn: C Æ C of the circle C
that has multiplicity n.

5. Prove:
(a) The only compact connected surface that can be a covering surface of
a torus T is a torus.
(b) There are coverings F: T Æ T of every multiplicity n � 1.

6. Using sketches as needed, show:
(a) A crosscap contains a Möbius band. (Hint: For F: S Æ P, remove the
arctic and antarctic regions from S.)
(b) If a crosscap is added to any surface, the resulting surface is 
nonorientable.
(c) Cutting the Klein bottle in Fig. 8.20 by its plane of symmetry leaves
two Möbius bands.
(d) P[1] is a Klein bottle. (Explain without using the classification 
theorems.)

8.5 Mappings That Preserve Inner Products

We have seen that a local isometry F: M Æ N carries geodesics of M to 
geodesics of N. The notation gv for the geodesic with initial velocity v allows
a more explicit description.
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5.1 Lemma If F: M Æ N is a local isometry, and v is a tangent vector to
M, then

Proof. As just noted, = F(gv) is a geodesic of N. Its initial velocity is
the tangent vector

at the point F(p) in N. Thus by the uniqueness of geodesics, and gF*(v) are
the same. ◆

Thinking of an isometry as a rigid motion suggests that if two isometries
agree on some neighborhood, then they agree everywhere. In fact, a stronger
result is true.

5.2 Theorem Let F and G be local isometries from a connected surface
M to a surface N. If at some one point p in M their differential maps agree,
that is, if

then F = G.

Proof. If M is complete, the proof is easy. Let m be an arbitrary point
of M. By the Hopf-Rinow theorem (2.1) there is a vector v at the special
point p such that gv(r) = m for some number r. Then the preceding lemma
gives

Hence, in particular,

In the general case, there is at least a broken geodesic b from p to m
(Exercise 7 of Section 7.4). Then F(b) = G(b) follows by applying the argu-
ment above, successively, to each unbroken segment of b. So again F(m) =
G(m). ◆

An isometry F: M Æ M from a surface to itself can be regarded as an
intrinsic symmetry of M. Every feature of the geometry of M is the same at
p as at F(p), since this geometry consists of isometric invariants. The results
of Exercise 9 of Section 6.4, show at once that the set I(M) of all isometries

F F r G r Gv vm m( ) = ( )( ) = ( )( ) = ( )g g .

F Gv F v G v vg g g g( ) = = = ( )( ) ( )* *
.

F G T M T M F Gp q* *:= ( ) Æ ( ) = ( ) = ( ), where ,q p p

g

¢( ) = ¢( )( ) = ( )g g0 0F Fv* * v

g

F v F vg g( ) = ( )*
.
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M Æ M forms a group, just as does the set E (n) of all isometries of n-
dimensional Euclidean space Rn (Exercise 7 of Section 3.1). I(M) is called the 
isometry group of M.

The group I(M) is intrinsic to M and when M is a surface in R3 should not
be confused with the group S(M) of Euclidean symmetries of M (Exercise 6
of Section 6.9). Intuitively, S(M) gives the symmetries of M seen by Euclid-
ean observers, while I(M) gives those observed by the inhabitants of M. Each
Euclidean symmetry restricts to an isometry F |M : M Æ M, but this does not
generally give all the isometries of M Ã R3, as we now see.

5.3 Example Let M be a cylinder in R3 whose cross-sectional curve is a
noncircular ellipse of length l. Parametrize M by

where a is a periodic unit-speed parametrization of the ellipse. Now for any
number a, the map

is an isometry of M. The inhabitants of M cannot distinguish M from the
isometric cylinder C whose cross-sectional curve is a circle of circumference
l; so for them, Fa is just a rotation.

But evidently Fa will be the restriction of a Euclidean symmetry F only in
the special case where a is a multiple of l/2. Then F is a 180° rotation of M
or the identity map.

For an arbitrary geometric surface M, the isometry group I(M) gives a
novel algebraic description of M. Roughly speaking, the more symmetrical
M is, the larger I(M) is. For example, the ellipsoid

has eight isometries derived from Euclidean isometries: three reflections 
(one in each coordinate plane), three 180° rotations (one around each 
coordinate axis), the isometry p Æ -p, and, of course, the identity map of
M. In fact, these are the only isometries of M (argue from K as in Exercise
8 of Section 6.9).

The smallest possible isometry group I(M) occurs when the identity 
map is the only isometry of M. We can produce such a surface by putting a
bump on the ellipsoid in such a way as to destroy all seven of its nontrivial
isometries.

M
x
a

y
b

z
c

a b c:
2

2

2

2

2

2
1+ + = > >( )
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8.5 Mappings That Preserve Inner Products 427



By contrast, a surface M has the maximum possible symmetry if every
isometry allowed by Theorem 5.2 actually exists. Explicitly, given any 
linear isometry f : Tp(M) Æ Tq(M) of tangent spaces, there exists an 
isometry F: M Æ M such that F* = f.

Equivalently, given frames e1, e2 and 1, 2 at p and q, respectively, there
exists an isometry F: M Æ M such that

Thus in this case we say that M is frame-homogeneous: Any two frames on
M are symmetrically positioned. So what was proved in Theorem 2.3 of
Chapter 3 is that R3 is frame-homogeneous, and the same proof is valid for
any Rn, in particular, for the Euclidean plane R2.

5.4 Definition A geometric surface M is point-homogeneous (or merely
homogeneous) provided that for any points p and q of M there is an isome-
try F: M Æ M such that F(p) = q.

A frame-homogeneous surface is, of course, homogeneous—but not con-
versely. A circular cylinder C furnishes an example. Rotations of R3 about
the axis of C and translations of R3 along this axis produce isometries of C.
Evidently we can move any point of C to any other using a rotation and a
translation, so C is homogeneous. But C is not frame-homogeneous: All its
points are geometrically equivalent, but not all its frames. Proof. No isome-
try F could carry any vector v tangent to a ruling to a vector w tangent 
to a cross-sectional circle, since by Lemma 7.1, F would have to send the 
one-to-one geodesic gv to the closed geodesic gw an impossibility since F is
one-to-one.

Homogeneity is a strong restriction.

5.5 Theorem If a geometric surface M is homogeneous, then M is com-
plete and has constant Gaussian curvature.

Proof. Constancy of curvature follows immediately from the definition
of homogeneity and the fact that isometries preserve curvature.

The proof of completeness is more interesting. If M is not complete,
there is a unit-speed geodesic a whose largest interval of definition I is not
all of R. Suppose I: t < b. Let us show that this is impossible.

The radial geodesics in a normal e-neighborhood of some point p all
run for length e > 0. Choose t0 in I so that b - t0 < e. Because M is homo-

F F* * .e e e e1 1 2 2( ) = ( ) =,

ee
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geneous, there is an isometry F: M Æ M such that F(p) = a(t0). For some
unit vector u at p, F*(u) = a ¢(t0). Thus the geodesic segment F(gu) has initial
velocity

and this segment runs for distance e at unit speed (Fig. 8.19). By the
uniqueness of geodesics, a reparametrization of gu can be attached onto a
to produce an unbroken geodesic defined on the interval I¢: t < t0 + e. Since
t + e > b, this contradicts the maximality of the interval I and thus proves
that M is complete. ◆

As the title of this section suggests, isometries and local isometries are not
the only inner-product preserving mappings of importance in geometry. We
consider briefly some other types.

5.6 Definition Let F: M Æ Rn be a mapping of a geometric surface into
Euclidean n-space (n = 3, 4, . . .). If the differential map F* preserves inner
products of tangent vectors, then F is an isometric immersion.

If, furthermore, F is one-to-one and its inverse F-1: F(M) Æ M is continu-
ous, then F is an isometric imbedding.

For example, a proper patch (Section 1 of Chapter 4) is an imbedding of
an open set D Ã R2 into R3. The continuity requirement for the inverse map
F-1 is the same as in that special case: It prevents edges of M from being glued
onto M, thus making F(M) quite different from M. In the special case where
the surface M is compact, it has no “edges,” and in fact a theorem of topol-
ogy asserts that F-1 is always continuous.

The following technical result makes it clear that the surfaces M Ã R3

studied in the early chapters are just those abstract geometric surfaces that
can be imbedded in R3.

F F tu* *¢ ( )( ) = ( ) = ¢( )g a0 0u ,

FIG. 8.19



5.7 Lemma If F: M Æ R3 is an isometric imbedding of a geometric
surface in R3, then the image F(M) is a surface in R3 (Definition 1.2 of
Chapter 4), and the function F: M Æ F(M) is an isometry.

Proof. If x: D Æ M is a coordinate patch in M, then the composite
mapping F(x): D Æ R3 is a proper patch. In fact, its inverse function
F(x(D)) Æ D is x-1F-1, which is continuous since both x-1 and F-1 are.
Evidently, F(x(D)) is contained in M, so the definition of surface in R3 is
satisfied.

F(M) uses the dot product of R3 as its inner product, and by definition
the imbedding F: M Æ R3 preserves inner products. Hence, when consid-
ered as a mapping of M onto F(M), F also preserves inner products, and
since it is one-to-one, it is an isometry. ◆

We have seen that there are geometric surfaces M that cannot be imbedded
in R3, for example, the flat torus and the projective plane (both defined in
Section 2 of Chapter 7). In such cases it is natural to try to imbed M in a
higher-dimensional Euclidean space Rn. Finding isometric imbeddings is
seldom easy, but the larger n is, the less difficult the task becomes. Roughly
speaking, with more dimensions for M to curve through, there is a better
chance that a shape can be found for it that is compatible with its intrinsic
geometry.

The following example imbeds the flat torus; for the projective plane see
Exercise 10.

5.8 Example Isometric embedding of a flat torus in R4. The idea here is
that since the unit circle C is naturally imbedded in the plane R2, by taking
Cartesian products (Exercise 15 of Section 4.8) we can get an imbedding of
the flat torus C ¥ C = T0 into R2 ¥ R2 = R4.

Start with the mapping : R2 Æ R4 given by

If x is the parametrization of the flat torus given in Example 2.2 of Chapter
7, then the formula

is consistent in the sense of Exercise 13 of Section 4.5. Now

x x
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Thus the exercise shows not only that F is a well-defined mapping 
F: M Æ R4, but also that it is one-to-one.

To show that F preserves inner products, the method in Lemma 4.5 of
Chapter 6 remains valid. We compute

Hence, using the dot product of R4,

Since these functions agree with E, F, G for x, inner products are 
preserved. ◆

The general situation here is not well understood. It is known that every
compact surface can be isometrically imbedded in R17, but it seems likely that
17 can be replaced by a lower dimension.

Exercises

1. Prove that isometric surfaces have isomorphic isometry groups.

2. Prove:
(a) The torus of revolution T is not homogeneous.
(b) The flat torus T0 is homogeneous, but not frame homogeneous. (Hint:
Show that T0 has closed geodesics of different lengths.)

3. Suppose that in M any two points can be joined by at least one geodesic,
and that in N any two points can be joined by at most one geodesic. Prove
that every local isometry F: M Æ N of such surfaces is one-to-one.

4. Show that the set I + of all orientation-preserving isometries of a surface
M is a normal subgroup of the isometry group I(M). (A subgroup H of a
group G is normal provided h Œ H and g Œ G imply ghg-1 Œ H.)

5. (a) If there is a point p0 in M such that for each p in M some isometry
of M sends p0 to p (or the reverse), show that M is homogeneous.
(b) State and prove the analogous fact for frame-homogeneity.
(c) Suppose there is a point p0 in a homogeneous surface M with the prop-
erty that for any two frames at p0 there is an isometry F of M such that F*
carries one of the frames to the other. Show that M is frame-homogeneous.
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6. For the sphere S: ||p|| = r in R3, prove:
(a) Every orthogonal transformation C of R3 restricts to an isometry of S.
(b) S is frame-homogeneous.
(c) Every isometry of the sphere is the restriction of a Euclidean isome-
try. (Hint: For (b) use Ex. 5(c).)

7. Prove:
(a) If C: S Æ S is an isometry as in Exercise 6(a), there is a unique isom-
etry Cp: P Æ P such that FC = CpF, where F is the projection S Æ P.
(b) The projective plane P is frame-homogeneous.

8. If M is a connected surface in R3 that is not contained in a plane, show
that the function F Æ F|M is a one-to-one homomorphism of the Euclidean
symmetry group S(M) onto a subgroup of the isometry group I(M).

9. Let M be the trough-shaped surface z = cosh2y in R3.
(a) By adjusting the Monge patch (u, v) Æ (u, v, coshv) find an isometry
x: R2 Æ M.
(b) Show that I(M ) is isomorphic to the isometry group E (2) of the Euclid-
ean plane. Which isometries of M derive as in Exercise 8 from Euclidean
symmetries of M? Which do not?

10. (Isometric imbedding of the projective plane.) Consider the mapping 
F: R3 Æ R6 given by

(a) If v is a tangent vector to R3 at p = (x, y, z), show that

Thus the restriction F1 = F |S of F to the unit sphere S is an isometric
immersion of S in R6.
(b) Show that F1 is one-to-one, hence is an imbedding. (By a theorem 
of topology, since S is compact, the inverse map (F |S)-1 is automatically
continuous.)
(c) Derive an isometric imbedding of the projective plane P in R6. (Hint:
Prop. 2.6 of Ch. 7.)
(d) Check that each point in the image of F1 has the same dot product 
with (1, 1, 1, 0, 0, 0), and improve (c) to an isometric imbedding of P in 
R5.

11. The n-dimensional sphere S n: ||p|| = r in Rn+1 becomes a Riemannian
manifold, just as in the 2-dimensional case, by using the dot product of Rn+1

on its tangent vectors. Show that:
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(a) The mapping in Example 5.8 actually gives an isometric imbedding of
the flat torus in a 3-dimensional sphere of radius .
(b) The mapping in the preceding exercise gives an isometric imbedding of
the projective plane in a 5-dimensional sphere of radius .

8.6 Surfaces of Constant Curvature

The simplest possibility for the Gaussian curvature of a surface is that it is
constant. We have seen several examples of such surfaces, and there are infi-
nitely many more. The goal of this section is to give a reasonable organiza-
tion for all of them.

A realistic treatment must be limited to complete connected surfaces.
Without connectedness, we would have to consider, for example, a surface
composed of a random collection of planes, spheres, and tori. Without com-
pleteness we would have to deal with enormous collections starting, say, with
every connected open subset of the plane.

Given any number k, there is a particularly simple geometric surface M(k)
whose Gaussian curvature has the constant value k.

• k > 0: M(k) is the sphere S Ã R3 of curvature k (hence radius ).
• k = 0: M(k) is the Euclidean plane R2.
• k < 0: M(k) is the hyperbolic plane H of curvature k (hence pseudo-radius 

). (See Exercise 4 of Section 7.2.)

We call M(k) the standard geometric surface of constant curvature k. These
surfaces are complete and simply connected, and using covering methods we
will show that in a sense they dominate all surfaces of constant curvature.

The following preliminary result will simplify matters.

6.1 Lemma Let M be a complete connected surface and let F: M Æ N
be a local isometry into a connected surface N. Then F is a Riemannian cov-
ering map onto N, and N is complete.

Proof. If the geodesic lift property holds, then Theorem 4.12 will show
that F is a Riemannian covering map. So let a: [0, b] Æ N be a geodesic
segment and let p be a point of M such that F(p) = a(0). There is a unique
vector v at p such that F*(v) = a ¢(0). Since M is complete, the geodesic gv

can be defined on the entire real line. Then

F v F vg g a( ) = =( )*
,
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wherever both sides are defined. Thus gv provides a lift of a, and 
furthermore, F(gv) is an extension of a over the whole real line, so N is
complete. ◆

6.2 Theorem If N is a complete connected surface with constant curva-
ture k, then the standard surface M(k) is a Riemannian covering surface of
N.

Proof. In view of the preceding lemma we need only prove that there is
a local isometry F from M(k) into N. There are three cases.

The Case k < 0. It will suffice to work with the k = -1 hyperbolic plane
H.

As in (2) of Example 1.7, we use the frame U1, U2 at 0 in H. Let e1, e2

be a frame at an arbitrary point of N. Then let and x be the resulting
geodesic polar mappings in M(k) and N. For the surface N we assert:

(1) x is defined on the entire closed half-plane H : u � 0 (a consequence
of completeness).

(2) The mapping x: H Æ N is regular for u > 0. (Proof: As noted in the
proof of Lemma 1.6, geodesic polar mappings have E = 1 and F = 0.
We saw earlier that the Jacobi equation for k = -1 gives ,
so EG - F 2 = sinh2 u > 0 for u > 0.)

These general results are valid for : H Æ H as well, but here we know
more. Example 1.7 showed that the whole surface H is a normal neigh-
borhood of the pole 0. Thus has only the usual ambiguities of polar
coordinates, that is, the equation (u, v) = q determines u and v uniquely,
but for the addition of multiples of 2p. This means that the formula

is consistent in the sense of Exercise 13 of Section 4.5. Thus it defines a
mapping F of H onto N. Condition (1) ensures that F is defined on all of
M(k), and the differentiability of F at the pole follows from the differen-
tiability of the exponential map there.

That F is a local isometry follows from the fundamental criterion in
Section 4 of Chapter 6. Indeed, using (2) above gives

At the pole the preservation of inner products is an honest consequence
of continuity.

The Case k = 0. This proof is a word-for-word copy of the preceding
one, except that M(k) = R2 and = G = u2.G̃

˜ ˜ ˜ sinh .E E F F G u G u= = = = = = >1 0 02, , for
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The Case k > 0. Here a new idea is required, since the largest normal
neighborhood N of a point p in the sphere M(k) = S is not the whole
sphere, but the sphere minus the antipodal point -p of the pole p.

Arguing as in the case k < 0, we get a local isometry F1: N Æ N. Now
repeat this argument once more at a point p* different from both p and 
-p. This will produce another local isometry F2: N * Æ N, where N * is
all of S except -p*. For the frames that determine F2 we use an arbitrary
frame e1, e2 at p*, but in N the frame F1*(e1), F1*(e2) at F1(p*).

Thus Theorem 5.2 applies, showing that F1 = F2 on the (connected) inter-
section of N and N *. But N and N * cover the entire sphere, so taken
together F1 and F2 constitute a single local isometry F from S to N. ◆

6.3 Corollary The standard constant curvature surfaces M(k) are the
only geometric surfaces that are complete, simply connected, and have con-
stant curvature.

Proof. We have already seen that the three types of M(k) have the spec-
ified properties. Conversely, if M is a complete connected surface with con-
stant curvature k, then by Theorem 6.2 there is a Riemannian covering map
F: M(k) Æ M. But Theorem 4.8 asserts that a simply connected surface
has only trivial coverings, so F is an isometry. ◆

Using Theorem 6.2 we give an overview of constant curvature surfaces,
omitting some proofs. We assume connectedness for all surfaces, and con-
sider the cases k > 0, k = 0, k < 0 in turn.

Constant Positive Curvature Given any number k > 0 there are (up to
isometry) exactly two complete geometric surfaces M with curvature k: the
sphere and the projective plane. The preceding corollary covers the simply
connected case. Since the sphere has Euler characteristic 2, Remark 4.7
implies that it can nontrivially cover only a compact surface of Euler char-
acteristic 1. By Theorem 4.10, the projective plane P is the only such surface.

Flat Surfaces For k = 0 we have met, so far, three types of complete sur-
faces: the plane, cylinder, and flat torus. There are two more types, discov-
ered only in the late 1800s. They can be found by the scheme used to derive
the projective plane P from the sphere S. Example 8.2 of Chapter 4 used the
antipodal map A of the sphere to construct P as an abstract surface; then
Example 2.7 of Chapter 7 carried geometry along to make P a geometric
surface. Starting from a surface M (in the role of S), all that is needed is an
isometry A of M that has the two essential properties of the antipodal map
of S:

8.6 Surfaces of Constant Curvature 435



436 8. Global Structure of Surfaces

A2 = I (the identity map of M), and
A has no fixed points, that is, A(p) never equals p.

Then the abstract surface M/A is defined to be the set of all unordered
pairs {p, A(p)}, and patches are defined just as for the projective plane 
P = S /A. Evidently, Proposition 2.6 of Chapter 7 applies, giving M/A a
metric tensor that makes the projection p Æ {p, A(p)} a local isometry. Then,
by Lemma 6.1, it is a Riemannian covering.

6.4 Example Complete flat nonorientable surfaces.
(1) A complete flat Möbius band. Let C be the cylinder x2 + y2 = r2 in R3.

For the required isometry A we use the antipodal map A(x, y, z) = (-x, -y,
-z). It may help to recognize the resulting surface C/A as a Möbius band by
imagining the cylinder as shrunk down to an ordinary band, its vertical lines
reduced to intervals -1 < z < 1.

However, we need the whole cylinder C, so that it, and hence C/A, will be
complete.

(2) A flat Klein bottle. The familiar image of the Klein bottle as labora-
tory glassware (right side of Fig. 8.20) is not very flat. But we can construct
a flat one, starting from the flat torus T0 in Example 2.2 of Chapter 7.

T0 has the same symmetries in R3 as the torus of revolution, so once more,
the mapping A(x, y, z) = (-x, -y, -z) is an isometry T0 Æ T0. Then T0/A is
a complete flat surface.

The transition in Fig. 8.20 suggests how to see that T0/A is actually a Klein
bottle. On the left we have discarded an open half of T0 since the deleted
points are antipodal to points in the remaining tube (hence nothing is lost in
the construction of T0/A). The identifications imposed by A on the two

FIG. 8.20



boundary circles give them orientations inconsistent from those that would
produce a torus. To match these oriented circles, the tube must be stretched
around as suggested in Fig. 8.20 and twisted along the way. The criterion in
Exercise 1 of Section 4.8 shows readily that T0/A is nonorientable.

It is known that there are no more. Of course, except for the plane, different
parameters produce nonisometric examples within a given type, for example,
the cylinders over circles of different radii.

All five types appear in the following diagram, where arrows represent 
Riemannian covering maps.

For the horizontal arrows, the multiplicity of the covering is infinite. The ver-
tical arrows are the two double coverings defined above.

Only the flat torus and Klein bottle are compact; only the Möbius band
and Klein bottle are nonorientable. In fact, both vertical arrows represent ori-
entation coverings.

Only the plane and cylinder can be isometrically imbedded in R3. Compact
flat surfaces are barred from R3 by Theorem 3.5 of Chapter 6. For the (non-
compact) flat Möbius band, see the reference in Exercise 4 of Section 2.

Constant Negative Curvature Ignoring scale changes, we have found
very few surfaces that have constant k � 0, but the situation is radically dif-
ferent for k < 0.

6.5 Theorem Every compact surface with a negative Euler characteris-
tic admits a metric of constant negative curvature.

(Of the infinitely many compact surfaces listed in the classification theorem
(4.10), all but four have c < 0.)

We give an informal proof of the theorem in the orientable case. Consider
a regular geodesic octagon P in the k = -1 hyperbolic plane, as shown in Fig.
8.21. P is centered at 0, and regular means that its eight angles are equal and
also its eight sides. Recall that the flat torus defined in Example 2.2 of
Chapter 7 was visualized as a rectangle with opposite sides sewn together.

plane cylinder flat torus

Mobius band Klein bottle

Æ Æ
Ø Ø

˙̇

So now up to scale change we have five types of complete flat surfaces

Euclidean plane, cylinder, flat torus, Mobius band, Klein bottle

— — .

˙̇ .
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Figure 8.21 uses the same scheme: Like-named sides are sewn together with
matching orientations (indicated by the arrows). When this is done, the eight
vertices of P are fused into one. All the angles of P meet there; hence if the
result is to be a surface, their sum must be 2p.

This can always be achieved by adjusting the size of P. To see this, let Pr

be the regular octagon that has hyperbolic distance r from 0 to every vertex.
The Gauss-Bonnet formula proves what can be seen in figures such as Fig.
7.11: for r small, the angle sum is too large, and for r very large, the sum is
too small. (Recall that hyperbolic angles are the same as Euclidean.) Since
the angle sum depends continuously on r, there is an intermediate value for
which the sum is exactly 2p.

Let be the resulting surface. It is compact and since it is cut from the
hyperbolic plane has constant negative curvature. We claim that topologically
it is a double torus, that is, a sphere with two handles. In Fig. 8.21, note that
the line from vertex to vertex becomes a circle in . On the right side the four
edges a, b, a, b are sewn together by the pattern used for the torus. Thus the
right half of the figure produces in a torus with a hole punched in it. The
same is true for the left side, so is constructed by joining two handles; it is
thus a double torus, that is, a sphere with two handles.

A proof by induction takes care of the general case. To reach the sphere
with h > 2 handles, start with a regular 4h-sided polygon and modify Fig.
8.21 by replacing sides c, d, c, d (on the left) by identification pattern of the
sphere with h - 1 handles. Then, for sides a, b, a, b (on the right) add one
more handle just as before. ◆

It turns out that two compact surfaces with the same curvature k < 0 and
the same number h � 2 of handles need not be isometric. However, they must
have the same area A(k, h) = 4p(1 - h)/k, since by the Gauss-Bonnet
theorem,

P
P

P

P

FIG. 8.21
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If compactness is weakened to completeness, there are infinitely many non-
isometric constant k < 0 surfaces, with complicated patterns of tubes and
spikes that defy any systematic organization.

As a simple example, let M be the abstract surface built by attaching an
infinite number of handles to a cylinder, as in Fig. 8.22. Let F be a covering
map of M onto a double torus D that wraps the cylinder repeatedly around
the lower loop L of D in such a way that each handle of M is carried dif-
feomorphically onto the upper loop U of D. We have just seen that D has a
metric with constant negative curvature. The pullback metric on M makes 
F a local isometry (Remark 1.3 of Section 7) and thus gives M constant 
negative curvature.

Not one of these many k < 0 surfaces can be found in R3, for a theorem
of Hilbert asserts that a complete surface in R3 cannot have constant nega-
tive curvature; this is proved in [dC]. A refinement by Efimov weakens the
curvature hypothesis to K � k < 0.†

Scale changes effectively reduce the standard surfaces M(k) to just three:
the unit sphere S , Euclidean plane R2, and hyperbolic plane H of curvature
k = -1. The plane, in concept at least, was well known long before Euclid.
The sphere was prominent in ancient astronomy and later in long-distance
navigation. Only hyperbolic geometry was a self-conscious mathematical
invention.

Like the Euclidean plane, the hyperbolic plane was initially studied syn-
thetically, that is, in terms of axioms governing relations between abstract
points and lines. Only later were these synthetic geometries realized by geo-
metric surfaces whose geodesics are the “lines.” The familiar axiom that two
points determine a unique line fails for antipodal points on the sphere S , but

kA K dM M h h= = ( ) = -( ) = -( )ÚÚ 2 2 2 2 4 1pc p p .

FIG. 8.22

† See T. K. Milnor, “Efimov’s Theorem about Complete Immersed Surfaces of Negative Curvature,”
Advances in Mathematics 8 (1972), 472–543.



it is recovered by identifying antipodal pairs, thus forming the projective
plane P.

The classical geometries are those of the Euclidean plane, sphere, projec-
tive plane, and hyperbolic plane. In the sphere any two lines (that is, routes
of geodesics) must intersect; hence the same is true for P. Thus the parallel
postulate for these four geometries becomes:

Through any point p not on a line L, the number of lines through p that
do not meet L is

6.6 Corollary All four surfaces R2, S, P, H realizing the classical geome-
tries are frame-homogeneous.

Proof. We already know this for M = R2, S, and H, the latter two from
earlier exercises. But Theorem 6.2 gives a simple proof for all three simul-
taneously. Fix a tangent frame to M—for H locate it at the origin 0. By
the proof of Theorem 6.2 this frame can be carried to an arbitrary frame
on M by a Riemannian covering map. The surfaces M are simply con-
nected; hence Theorem 4.8 implies that this covering map is an isometry.
This is enough to prove frame-homogeneity (see Exercise 5 of Section 5).

Since the projective plane is not simply connected, it escapes the argu-
ment above. But its frame-homogeneity can be derived from that of the
sphere, as suggested in Exercise 7 of Section 5. ◆

Previously, as in this proof, we have given preference to the origin 0 in the
hyperbolic plane H, but now we know that all frames on H are geometrically
equivalent.

Frame homogeneity is sometimes called the axiom of free mobility because
the inhabitants of such a surface can then use (as we have) Euclid’s intuitive
definition of congruence: Two geometric figures are congruent provided one
can be moved isometrically into coincidence with the other.

The surfaces in the preceding corollary are the only frame-homogeneous
surfaces. In fact, if k > 0, then M is either the sphere or projective plane, both
frame-homogeneous. If k = 0, then among the five flat surfaces only the plane
is frame-homogeneous (see Exercise 2 of Section 5 and Exercise 2 below).
More advanced covering methods are needed in the k < 0 case; there the
hyperbolic plane is the only surface that is even homogeneous.

It is noteworthy that of the multitude of complete, constant curvature 
surfaces only three types—spheres, cylinders, and the plane—can be found
in R3.

hyperbolic , Euclidean: , spherical and elliptic: : .• 1 0
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Exercises

1. (a) How do we know, before trying it, that the construction method for
Theorem 6.5 cannot produce a S [1] (sphere with one handle) that has con-
stant k = -1?

(b) If we do try this method, exactly where does it fail?

2. Show that the flat Möbius band M contains a unique shortest closed geo-
desic. Deduce that M is not homogeneous (hence not frame-homogeneous).

3. An incidence geometry consists of two abstract sets—called the points
and the lines—and a single incidence relation described by either “point is on
line” or “line is through point.” Consider the following axioms:

(i) Through any two distinct points there is a unique line.
(ii) Any two distinct lines pass through a unique point.
(iii) There exists a set of four points, no three of which are on the same
line.

For each of the classical geometries M = R2, S, P, H decide which of these
axioms are satisfied, with points of M as the points, routes of geodesics as lines,
and the obvious incidence relation. Which (if any) satisfy all three axioms?

4. In the sphere S of radius r, let D be a triangle whose sides are geodesic
segments of lengths a, b, and c (all less than pr). Let J be the interior angle
of D at the vertex p opposite side a.

(a) Prove this spherical law of cosines:

(Hint: To determine cosJ, find unit vectors at p tangent to the sides b and
c.)
(b) Show that this formula approximates the usual Euclidean law of
cosines when r is large compared to a, b, c.

5. (Side-angle-side criterion). Let D and D¢ be geodesic triangles in the hyper-
bolic plane H. If two adjacent sides a, b of D have the same lengths as cor-
responding sides in D¢ and the angles between the sides are equal, prove that
the triangles are congruent, that is, show that there exists an isometry F of
H such that F(D) = D¢.

6. Show: (a) Every S [n], n � 2, is a covering surface of the double torus
S [2].

(b) S [4] can be covered by S [n] if and only if n has the form 3N + 1. (Hint:
To show existence, adapt Fig. 8.22.)

cos cos cos sin sin cos .
a
r

b
r

c
r

b
r

c
r

= + J
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8.7 Theorems of Bonnet and Hadamard

The simplest way to weaken the hypothesis that Gaussian curvature is con-
stant is to require that it obey inequalities. The natural cases may seem to be
K < 0 and K > 0, but, in fact, they turn out to be K � 0 and K � k > 0. The
reason stems from the opposite effects produced by the Jacobi equation: As
we have seen, K � 0 implies that there are no conjugate points, and, as we
now show, K � k > 0 implies that there are many.

The following is an instance of the general rule that conjugate points arrive
sooner on surfaces with larger positive curvature.

7.1 Lemma Let M be a surface with K � k > 0 for some constant k. If
a geodesic segment s starting at p has length , there is a conjugate
point of p along s.

Proof. The sphere S of radius has curvature k = 1/r2, so M
has curvature at least as large as that of S . We know that in S , conjugate
points arrive at arc length , so the lemma asserts that they arrive
no later on M.

To prove this, let s be a unit-speed geodesic in M defined on the inter-
val [0, l], where . From Corollary 3.4, the Jacobi equation and
initial conditions for M are

and the corollary asserts that there will be a conjugate point of s(0) along
s if and only if the function g is zero at some s1 with 0 < s1 £ l.

The corresponding data for S are

Here we have the explicit solution

We will show that as long as g(s) stays positive, it is no larger than f(s).
Since f is zero at l, it follows that g has a zero at or before l, thus proving
the lemma.

The assertion is proved by some simple but ingenious calculus: Suppose
that g > 0 on the open interval J: 0 < s < b, where b � l. Evidently f > 0
on J, so the Jacobi equations above give

f s
ks

k
( ) =

sin
.

¢¢ + = ( ) = ¢( ) =f kf f f0 0 0 0 1, with , .

¢¢ + ( ) = ( ) = ¢( ) =g K g g gs 0 0 0 0 1, with , ,
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Thus the function gf ¢ - fg¢ is nondecreasing (that is, monotonically increas-
ing) on J. Since gf ¢ - fg¢ is zero at s = 0, it follows that gf ¢ - fg¢ � 0 on
J. Hence

So f/g is also nondecreasing on J. This function is equal to 1 at s = 0, since
by 1’Hôpital’s rule,

Thus f/g ≥ 1 on J, that is, f � g there. ◆

The main theorem on curvature K � k > 0 continues the comparison with
a sphere S of curvature k and shows that M also is compact—and has diam-
eter and area no larger than those of S. “Diameter” here means intrinsic
diameter: the least upper bound of all distances r(p, q) between points of
M—or • if these distances are unbounded. For a surface in R3, this should
not be confused with the Euclidean diameter, which is generally smaller, since
Euclidean distances tend to be shorter (see Fig. 6.8).

For example, consider the sphere S of curvature k. It has Euclidean radius
, hence intrinsic diameter , the distance between antipo-

dal points. Its Euclidean diameter, of course, is just . Note that in
terms of curvature its area 4pr2 becomes 4p/k.

7.2 Theorem (Bonnet) If M is a complete connected surface with 
K � k > 0, then M is compact and has intrinsic diameter and 
area � 4p /k.

Proof. If we show that for all p, q in M, then the diam-
eter inequality follows.

By the Hopf-Rinow theorem there is a minimizing geodesic segment s
from p to q. Then s is certainly locally minimizing, so Theorem 3.7 asserts
that there are no conjugate points of p on s before q.

By the preceding lemma, there will be a conjugate point of p on s
if s is strictly longer than . Thus . Since s is 
minimizing,

as required.
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To show that M is compact, consider the exponential map exp at an
arbitrary point p. Line segments radiating from 0 in the tangent plane
Tp(M) are carried by exp to radial geodesics—of the same length—starting
at p. The argument above shows that we can travel from p to any point q
of M by a geodesic of length at most . Thus exp maps the disk
D: ||v|| � l in Tp(M) onto the entire surface M. The disk D is compact,
and the continuous image of a compact set is compact (Exercise 2 of
Section 4.7); hence M is compact.

For the area assertion, we only need to integrate over enough
of the geodesic polar parametrization at p to be sure of covering all of M.
(No harm will result if some of M is covered more than once.) Let s1(v)
be the distance to the first conjugate point of p along the radial geodesic
s Æ x(s, v), where we write s instead of the usual u. The proof of the
preceding lemma showed that on the interval Jv: 0 < s < s1(v),

is never greater than

Since E = 1 and F = 0 for a polar parametrization,

on the interval Jv.

The argument above shows that to cover all of M it suffices to go out
to s1(v) on each radial geodesic. Then, since remains positive out
to ,

◆

We saw in Section 2 that compactness implies completeness. Bonnet’s
theorem provides a converse when K � k > 0. Just K > 0 would not suffice—
for example, the paraboloid of revolution is complete and has K > 0, but is
certainly not compact.

Bonnet’s theorem can be strengthened as follows.
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7.3 Corollary Under the hypotheses of Bonnet’s theorem, M is diffeo-
morphic to either a sphere or a projective plane, and in the latter case the
bounds on diameter and area can be cut in half.

Proof. M is compact, connected, and has positive curvature; hence, it has
positive Euler characteristic. Thus the first assertion is an immediate con-
sequence of the surface classification theorem (4.10). When M is dif-
feomorphic to a projective plane, its orientation covering surface is 
diffeomorphic to a sphere. If F: Æ M is the covering map, assign 
the pullback metric, thus making F a local isometry. Now apply Bonnet’s
theorem to . Since this is a double covering, it is clear that the area of
M is exactly half that of . We omit the more complicated proof of the
corresponding fact for diameters. ◆

Turning to the study of a surface M with K � 0 we again use compari-
son—this time with the Euclidean plane in the form of any tangent plane to
M. The essential fact is that the exponential maps of M are covering maps.
To prove this, two lemmas are needed.

7.4 Lemma If M is a complete surface with K � 0, then for any point p
in M the exponential map expp: Tp(M) Æ M is length nondecreasing, that is,

for every tangent vector s to Tp(M).

Proof. As in Section 1, let be a polar parametrization of Tp(M), with
corresponding geodesic polar mapping x = expp( ). (Henceforth we omit
the subscript from exp.)

At any point (u0, v0) in Tp(M), the tangent vectors u and v are an
orthogonal basis for the tangent plane to Tp(M) at (u0, v0). As we saw in
Lemma 1.6, F = ·xu, xvÒ = 0, so the vectors

are also orthogonal.
The proof of the lemma separates into three assertions.

(1) It suffices to show that the lengths of u and v are not decreased
by the differential map exp*.
Proof. To show that this condition is sufficient, suppose that, in fact,
||xu|| � || u|| and ||xv|| � || v||, and let s be an arbitrary tangent vector to
Tp(M) at (u0, v0). Now

exp exp ˜ ˜ exp ˜ exp ˜ .* * * *s x x x x x x( ) = +( ) = ( ) + ( ) = +a b a b a bu v u v u v

x̃
x̃x̃

x̃x̃

x x x xu u v v= ( ) = ( )exp* ˜ exp* ˜and

x̃
x̃x̃x̃

x̃
x̃

expp( ) ( )* s s�

M̃
M̃

M̃M̃
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Then, since xu and xv are orthogonal,

(2) ||xu|| = || u||.

Proof. The definition of polar parametrization in Section 1 shows that
evaluated at an arbitrary (u0, v0), u is the velocity vector at u = u0 of the
unit-speed radial line

in Tp(M). We know that exp carries this radial line to the unit-speed
geodesic u Æ x(u, v0) in M with initial velocity cosv0 e1 + sinv0 e2. Hence

(3) ||xv|| � || v||.

Proof. This time the comparison between in Tp(M) and x in M involves
the Jacobi equation. The definition of polar parametrization in Section 1
shows that

Thus, for the radial line v = v0,

(*)

Again exp carries this ray to a geodesic u Æ x(u, v0), along which

We know that g(u) = ||xv(u, v0)|| is uniquely determined by

Since K � 0, this implies
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But then gg¢ � 0 for u � 0, so

Using the initial conditions on g, we find (g¢2)(u) � (g¢2)(0) = 1 for u � 0.
Since g¢ is initially positive, g¢(u) � u for all u � 0. Hence

Combining this with (*) completes the proof. ◆

If a map F is length nondecreasing in this sense, then evidently F*(v) = 0
implies v = 0, so F is a regular mapping. Thus the exponential maps of com-
plete K � 0 surfaces are local diffeomorphisms. As in earlier cases, the ques-
tion now becomes, Are they covering maps? The length nondecreasing
property provides the answer.

7.5 Lemma If an exponential map expp: Tp(M) Æ M of a complete
surface is length nondecreasing, then curve segments in M can be lifted to
any level in Tp(M).

Proof. Let a: [0 b] Æ M be a curve. If v in Tp(M) is carried to a (0) by
expp, we must prove that there is a curve segment : [0, b] Æ Tp(M) such
that expp ( ) = a.

Assume that such a lift does not exist. Since expp is a local diffeomor-
phism, there is a partial lift c defined on some initial segment Jc: 0 � t < c
of [0, b]. Let d be the largest such partial lift. We will show that d can, in
fact, be extended past d—and this contradiction proves the lemma.

Let {ti} be an increasing sequence in Jd that approaches d. The lifted
points (ti) in Tp(M) are in the set (Jd). Since expp does not decrease the
lengths of vectors, it cannot decrease the length of curves; hence

Thus these points all lie in a closed disk D of radius L(a) centered at v. A
standard theorem of calculus asserts that every infinite sequence in a closed
disk in R2 contains a convergent subsequence. Since Tp(M) is isometric to
R2, we can apply that result to the lifted points (ti) to get a subsequence
{ (tn)} converging to some point w of Tp(M). Necessarily, tn Æ d.

Again, since expp is a local diffeomorphism, some neighborhood of w
is carried diffeomorphically onto a neighborhood of a(d). But then the
inverse l of this local map lifts a segment of a around a(d) into Tp(M),
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where (by the uniqueness of lifts) it agrees with for t < d and hence 
provides the sought-for extension of to values of t greater than d. ◆

Now we can prove the result mentioned earlier.

7.6 Theorem If M is a complete connected surface with K � 0, then for
any point p in M, the exponential map expp: Tp(M) Æ M is a covering map.

Proof. We would like to use Theorem 4.12, which says that a local isom-
etry with the geodesic lift property is a covering map. But the exponential
maps in the theorem are generally not local isometries—in terms of the
natural Euclidean structure of Tp(M) ª R2. But as noted above, these expo-
nential maps are regular, so temporarily assigning Tp(M) the pullback
metric from M, as in Remark 1.3(2) of Chapter 7, makes them local isome-
tries. The preceding lemma shows, in particular, that geodesics can be
lifted; thus Theorem 4.12 applies to complete the proof. ◆

7.7 Theorem (Hadamard) If M is a complete, simply connected surface
with K � 0, then

(1) M is diffeomorphic to the Euclidean plane R2.
(2) All nonconstant geodesics are one-to-one (so there are no geodesic

loops or closed geodesics).
(3) Through any points p π q in M there is a unique (up to parametriza-

tion) geodesic.

Proof. (1) By the preceding theorem, exp is a covering map, and since
M is simply connected, Theorem 4.8 says that exp is a diffeomorphism. So
for any point p, we have diffeomorphisms

(2) If a nonconstant geodesic has, say, g (0) = g (1), then the exponen-
tial map expg (0) sends both 0 and g ¢(0) π 0 to g (1). But exp is one-to-one.

(3) If geodesics a and b each pass through both p and q, then by repa-
rametrization we can suppose

But expp sends a ¢(0) to a(1) and b¢(0) to b(1), hence

Since expp is one-to-one, a ¢(0) = b¢(0). Hence by the uniqueness of geo-
desics, a = b. ◆

exp exp .p p¢( )( ) = ¢( )( )a b0 0

a b a b0 0 1 1( ) = ( ) = ( ) = ( ) =p q, .
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ã
ã
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Thus M has the same differentiable structure as the Euclidean plane R2 and
shares its most famous geometric property: “two points determine a line.”

Exercises

1. Prove that the exponential maps of a complete flat connected surface are
Riemannian covering maps.

2. Show that under the hypotheses of Bonnet’s theorem, if area(M) = 4p/k,
then M is isometric to a sphere S k of curvature k. (Hint: Compare the final
part of the proof of Theorem 1.8, where less-than-or-equal successively
becomes equality.)

3. Prove that a compact surface M is intrinsically bounded (has finite intrin-
sic diameter) and if M is in R3 has finite Euclidean diameter.

4. If a complete connected surface has finite intrinsic diameter, show that
it is compact. (Hint: Use the scheme in the proof of Bonnet’s theorem.)

8.8 Summary

The global structure of a complete connected surface M can be described in
terms of geodesics and Gaussian curvature K. From a point p in M, run geo-
desics out radially until (by the Hopf-Rinow theorem) they fill M. The only
geometric difference from the Euclidean plane is the stretching of the polar
circles (orthogonal trajectories of the radial geodesics), and this stretching is
controlled by K, via the Jacobi differential equation.

The topological difference from R2 is more serious, but the notion of cov-
ering surface and the classification of compact surfaces lead to good results.
In particular, we can give a reasonably complete account of all surfaces of
constant curvature. When only inequalities are imposed on curvature, we still
get the powerful theorems of Bonnet (for K ≥ k > 0) and Hadamard (for 
K £ 0).

Generally speaking, the strictly geometric results of the last two chapters
hold up well when geometric surfaces are replaced by higher-dimensional
Riemannian manifolds. Once the definitions are readjusted, most proofs are
essentially the same. For example, the Hopf-Rinow theorem and the Bonnet
and Hadamard theorems remain valid since their proofs depend only on what
happens on an individual geodesic. Dimension 2 has simplified certain 
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consistency proofs such as Theorems 2.1 and 3.2 in Chapter 7, but these can
be avoided entirely by more advanced methods.

The most striking changes come in the links between topology and geom-
etry. In higher dimensions there is no classification of compact manifolds
comparable to Theorem 4.10 of this chapter. Where in dimension 2 only the
sphere and projective space admitted metrics of positive curvature, now there
are many. The Euler characteristic c generalizes but no longer characterizes,
and odd-dimensional compact manifolds all have c = 0. Nevertheless, the
Gauss-Bonnet theorem extends to higher (even) dimensions, and in this and
other ways, curvature continues its strong influence over topology.
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Computer Formulas

451

The computer commands most useful in this book are given in both the
Mathematica and Maple systems. More specialized commands appear in the
answers to several computer exercises. For each system, we assume a famil-
iarity with how to access the system and type into it.

In recent versions of Mathematica, the core commands have generally
remained the same. By contrast, Maple has made several fundamental
changes; however most older versions are still recognized. For both systems,
users should be prepared to adjust for minor changes.

Mathematica

1. Fundamentals

Basic features of Mathematica are as follows:

(a) There are no prompts or termination symbols—except that a final
semicolon suppresses display of the output. Input (new or old) is acti-
vated by the command Shift-return (or Shift-enter), and the input and
resulting output are numbered.

(b) Parentheses (. . .) for algebraic grouping, brackets [. . .] for arguments
of functions, and braces {. . .} for lists.

(c) Built-in commands typically spelled in full—with initials capitalized—
and then compressed into a single word. Thus it is preferable for user-
defined commands to avoid initial capitals.

(d) Multiplication indicated by either * or a blank space; exponents indi-
cated by a caret, e.g., x^2. For an integer n only, nX = n*X, where X
is not an integer.



(e) Single equal sign for assignments, e.g., x = 2; colon-equal (:=) for
deferred assignments (evaluated only when needed); double equal signs
for mathematical equations, e.g., x + y == 1.

(f) Previous outputs are called up by either names assigned by the user or
%n for the nth output.

(g) Exact values distinguished from decimal approximations (floating
point numbers). Conversion using N (for “numerical”). For example,
E^2*Sin[Pi/3] returns ; then N[%] gives a decimal 
approximation.

(h) Substitution by slash-dot. For example, if expr is an expression
involving x, then expr/.xÆu^2 + 1 replaces x everywhere in the
expression by u2 + 1.

Mathematica has excellent error notification and online help. In particu-
lar, for common terms, ?term will produce a description. Menu items give
formats for the built-in commands. The complete general reference book—
exposition and examples—is The Mathematica Book [W]. For our purposes,
the outstanding reference is Alfred Gray’s book [G].

> Some basic notation. Functions are given, for example, by

f[x_]:= x^3-2x+1 or
g[u_,v_]:= u*Cos[v]-u^2*Sin[v]

Here, as always, an underscore “_” following a letter (or string) makes it a
variable. Thus the function f defined above can be evaluated at u or 3.14 or
a2 + b2.
> Basic calculus operations.
Derivatives (including partial derivatives) by D[f[x],x] or
D[g[u,v],v]
Definite integrals by Integrate[f[x],{x,a,b}]. For numerical inte-
gration, prefix an N thus: NIntegrate.

> Linear algebra. A vector is just an n-tuple, that is, a list v={v1,...,vn},
whose entries can be numbers or expressions. Addition is given by v+w and
scalar multiplication by juxtaposition, with sv=s{v1,...,vn} yielding
{s*v1,...,s*vn}. The dot product is given by v.w and, for n = 3, the
cross product is Cross[v,w].

Mathematica describes a matrix as a list of lists, the latter being its rows.
For example, {{a,b},{c,d}} is a matrix and is treated as such in all contexts.

To make it look like , apply the command MatrixForm. The 

determinant of a square matrix m is given by Det[m].

a b
c d

Ê
Ë

ˆ
¯

e2 3 2
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The full power of the dot operator (.) appears only when matrices are
involved. First, if p and q are properly sized matrices, then p.q is their
product. Next, if m is an m ¥ n matrix and v is an n-vector, then m.v gives
the usual operation of m on v. Taking m = n = 3 for example, if m1, m2,
m3 are the rows of m and v={v1,v2,v3}, then Mathematica defines

m.v to be {m1.v,m2.v,m3.v}

This can be seen to be the result of m (in 3 ¥ 3 form) matrix-multiplying the
column-vector corresponding to v, with the resulting column-vector restated
as an n-tuple. In this sense, Mathematica obeys the “column-vector conven-
tion” from the end of Section 3.1, which identifies n-tuples with n ¥ 1 matrices.

If A is any array—say, a vector or matrix—then for most commands,
cmd[A] will apply the command cmd to each entry of A.

2. Curves

A curve in R3 can be described by giving its components as expressions in a
single variable. Example:

c[t_]:= {Cos[t],Sin[t],2t}

Then the vector derivative (i.e., velocity) is returned by D[c[t],t].

> Curves with parameters. For example, the curve c above can be generalized
to

helix[a_,b_][t_]:= {a*Cos[t],a*Sin[t],b*t}

Then helix[1,2]=c.

The following formulas, drawn from Theorem 4.3 of Chapter 2, illustrate
aspects of vector calculus in Mathematica.

The curvature and torsion functions k and t of a curve c ª g are given by

kappa[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]].
Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]^(1/2)/
Simplify[D[c[tt],tt].D[c[tt],tt]]^(3/2)/.tt->t

(Note the description of second derivatives.) The use of the dummy variable
tt makes kappa[c] a real-valued function R Æ R. Otherwise, it would be
merely an expression in whichever single variable was used.

“Simplify” is the principal Mathematica simplification weapon; however, it
cannot be expected to give ideal results in every case. (“FullSimplify” is more
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powerful but slower.) Thus human intervention is often required, either to do
hands-on simplification or to use further computer commands such as
“Together” or “Factor” or trigonometric simplifications.

tau[c_][t_]:=Simplify[
Det[{D[c[tt],tt],D[c[tt],{tt,2}],D[c[tt],
{tt,3}]}]]/

Simplify[Cross[D[c[tt],tt],D[c[tt],{tt,2}]].
Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]/.tt->t

Here the determinant gives a triple scalar product.
Note: The distinction between functions and mathematical expressions 

is basic. Thus, with notation as above, tau applied to a curve, say,
helix[1,2], is a real-valued function tau[helix[1,2]] whose value
on any variable or number s is tau[helix[1,2]][s].

The unit tangent, normal, and binormal vector fields T, N, B of a curve
with k > 0 are given by

tang[c_][t_]:=D[c[tt],tt]/
Simplify[D[c[tt],tt].D[c[tt],tt]]^(1/2)/.tt->t

nor[c_][t_]:=Simplify[Cross[binor[c][t],
tang[c][t]]]

binor[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]]]/

Simplify[Factor[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]].

Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]]^(1/2)/.tt->t

Here is how to preserve any such commands for future use: Type (or copy)
them into a Mathematica notebook, say frenet, and use the Cell menu to
designate the cells containing them as initialization cells. When this notebook
is saved, a choice will be offered letting you save, not only frenet, but also
a new file frenet.m that contains only the commands. Then these can be
read into later work by <<frenet.m

3. Surfaces

A coordinate patch, say x, is given by listing its components as expressions
in two variables. For example,

x[u_,v_]:= {u*Cos[v],u*Sin[v],2v}
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> Parameters can be handled as above for curves. For example, the 2 in this
formula can be replaced by an arbitrary parameter using

helicoid[b_][u_,v_]:={u*Cos[v],u*Sin[v],b*v}

Then helicoid[2] gives the original x.

For a patch, the following commands return , and
, , . We elect to represent our capital letters (E) by double lowercase letters
(ee), since many capitals have special meaning for Mathematica (for example,
E = 2.7183 . . .).

ee[x_][u_,v_]:=
Simplify[D[x[uu,vv],uu].D[x[uu,vv],uu]]/.
{uu->u,vv->v}

ff[x_][u_,v_]:=
Simplify[D[x[uu,vv],uu].D[x[uu,vv],vv]]/.
{uu->u,vv->v}

gg[x_][u_,v_]:=
Simplify[D[x[uu,vv],vv].D[x[uu,vv],vv]]/.
{uu->u,vv->v}

ww[x_][u_,v_]:=
Simplify[Sqrt[ee[x][u,v]*gg[x][u,v]-
ff[x][u,v]^2]]

The variant command, say www, in which Sqrt[...] is replaced by 
PowerExpand[Sqrt[...]] will often give decisively simpler square
roots. But one must check that its results are positive, since for example,
PowerExpand[Sqrt[x^2]] yields x.

11[x_][u_,v_]:=Simplify[Det[{D[x[uu,vv],uu,uu],
D[x[uu,vv],uu],D[x[uu,vv],vv]}]/ww[x][u,v]]/.
{uu->u,vv->v}

The formulas for mm and nn are the same except that the double derivative
uu, uu is replaced by uu, vv and vv, vv, respectively.

> Gaussian curvature K. When the commands for E, F, G and , ,  have
been read in, commands for K and H follow directly from Corollary 4.1 of
Chapter 5 (see Exercise 18 of Section 5.4). However, the fastest way to find
K for a given patch in R3 is by the following command, based on Exercise 20
of Section 5.4. In it, “Module” creates an enclave in which temporary defin-
itions can be made that let the final formula be expressed more simply.

gaussK[x_][u_,v_]:= Module[{xu,xv,xuu,xuv,xvv},
xu=D[x[uu,vv],uu];xv= D[x[uu,vv],vv];

E F G W EG F, , , = - 2
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xuu=D[x[uu,vv],uu,uu];
xuv=D[x[uu,vv],uu,vv];
xvv=D[x[uu,vv],vv,vv];
Simplify[(Det[{xuu,xu,xv}]*Det[{xvv,xu,xv}]-
Det[{xuv,xu,xv}]^2)/
(xu.xu*xv.xv-(xu.xv)^2)^2]]/.{uu->u,vv->v}

As with other useful commands, this should be saved for future use.

4. Plots

There are four basic types: Plot and Plot3D plot the graphs of functions
of one and two variables respectively. Examples:

Plot[f[x]//Evaluate,{x,a,b}]
Plot3D[g[x,y]//Evaluate,{x,a,b},{y,c,d}]

Here //Evaluate improves the speed of plotting.
ParametricPlot plots the image of a parametrized curve in the plane

R2.
ParametricPlot3D plots the image of a parametrized curve or patch.

For example, a parametrized curve c(t) in R3 is plotted for a � t � b by

ParametricPlot3D[c[t]//Evaluate,{t,a,b}]

and if x is an explicitly defined patch or parametrization, its image on the
rectangle 0 � u � 1, 0 � v � 2p is plotted by

ParametricPlot3D[x[u,v]//Evaluate,{u,0,1},
{v,0,2Pi}]

Various refinements are available for plots. For example, if the end of the
command above is altered to

...{v,0,2Pi},AspectRatio->Automatic]

then the same scale is imposed on height and width. Formally, the option
“AspectRatio” has been reset from its default value. Various adjuncts to a
plot can be also be changed. For example, the box surrounding the preced-
ing plot is eliminated by Boxed->False. The plot can be made smoother
by using PlotPoints->{m,n}, where the integers increase the default
values governing smoothness in the u and v directions, respectively.

The options available for a command cmd are given, along with their
default values, by Options[cmd]. Then ?opt will describe a particular
option.

Previously drawn plots can be shown on the same page by

Show[plot1,plot2,plot3]
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5. Differential Equations

Explicit solutions in terms of elementary functions are inherently rare, so we
describe how to find and plot numerical solutions, which are all that is needed
in many contexts. In the command for such a solution, Mathematica lumps
equations and initial conditions into a single list, then specifies the dependent
variables and the interval of the dependent variable.

Example: Solve numerically the differential equations

subject to the initial conditions

on the interval tmin � t � tmax. The format is

soln = NDSolve[{x9[t]==f[x[t],y[t],t],
y9[t]==g[x[t],y[t],t],
x[t0]==x0,y[t0]==y0},{x,y},{t,tmin,tmax}]

Note the double equal signs. Without the N for “numerical,” an exact solu-
tion would be sought.
NDSolve expresses x and y in terms of Interpolating Functions, data suf-

ficient for subsequent plots. If soln is an explicit result from the preceding
command, the solution is plotted by

ParametricPlot[Evaluate[{x[t],y[t]}/.soln],
{t,tmin,tmax}]

Here “/.” substitutes soln into the coordinates. Note the general equiva-
lence: Evaluate[X] is the same as X//Evaluate.

Maple

1. Fundamentals

Basic features of Maple are as follows:

(a) Input is typed after a prompt and must be terminated by a semicolon—
or colon, to suppress display of the output. We do not show these
below. Then press  (or ).

(b) Parentheses used for algebraic grouping and arguments of functions;
braces {. . .} for sets; brackets [. . .] for lists.

x t x y t y0 0 0 0( ) = ( ) =, ,

¢ = ( ) ¢ = ( )x f x y t y g x y t, , , , , ,
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(c) Built-in commands are abbreviated, with multiword commands com-
pressed into a single word; most are written in lower case.

(d) Multiplication always indicated by *, exponents by a caret, e.g., x^2.
(e) Assignments indicated by colon-equal, e.g., x:=2; equations by single

equal, e.g., x+y=1.
(f) Previous outputs are called up by names assigned by the user. (Naming

is important since input/outputs are not numbered.) Also, the percent
symbol (%) gives the immediately preceding output, and two of these
give the one before that.

(g) Exact values distinguished from decimal approximations (floating
point numbers). Conversion is accomplished by the “evalf” command.
For example, exp(2)*sin(Pi/3) returns ; then 
evalf(%) gives a decimal approximation.

(h) Substitution by the “subs” command. If expr is an expression involv-
ing x, then subs(x=u^2+1, expr) replaces every x in the expres-
sion by u2 + 1.

(i) If A is an array—say a matrix or vector—then to apply an operation
F to each entry of A, use the command “map” thus: map(F,A).

Maple has a distinctive command “unapply” that converts mathematical
expressions into functions. For example, if expr is an expression involving 
u and v, then unapply(expr,u,v) is the corresponding function of
u and v.

Many specialized Maple commands are collected in packages, which are
loaded, for example, by with(plots). A list of the commands in the
package appears unless output is suppressed. We rarely use packages other
than plots and LinearAlgebra (which is replacing linalg).

Maple has reasonable error notification and excellent on-line help. For
common terms, ?term will produce a detailed description (no semicolon
required).

The Maple Learning Guide is a good introduction to the most recent
version of Maple; it may be obtained from the website maplesoft.com. Of
course, there are a variety of more advanced books.

Some basic notations.

Functions can be produced by the arrow notation. Examples:

f:= x->x^3-2*x+1 or
g:= (u,v)->u*cos(v)-u^2*sin(v)

Derivatives (including partials):

diff(f(x),x) or diff(g(u,v),v)

e2 3 2
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Definite integral:

int(f(x),x=a..b) or
int(g(x,y),x=a..b,y=c..d)

If an explicit integral cannot be found, then evalf(%) gives a numerical
result. Direct numerical integration is given by evalf(Int(f(x),x=a..b)).

Linear algebra. Recent versions of Maple have changed considerably (though
it still recognizes many old forms). Currently, its commands, whether new or
not, are often signalled by new names. Typically, the new command begins
with a capital letter and is not abbreviated. These changes are most evident
in the package LinearAlgebra that is replacing linalg.

Maple has always made a fundamental distinction between an n-tuple
[v1,..,vn]—which is a list—and a vector, in any notation. The two types
cannot directly interact. In the new version, vector is replaced by Vector
(capital V).

Lists are the easiest to deal with. For instance, the usual sum of n-tuples
v=[v1,..,vn] and w=[w1,..,wn] is given by v+w, and scalar multi-
plication of an n-tuple by a number s uses an asterisk, with s*v giving
[s*v1,..,s*vn].

A matrix is produced by applying the command Matrix to a list whose
entries are lists, the latter being the rows of the matrix. Thus

Matrix([[a,b],[c,d]]).

With the package LinearAlgebra loaded, the determinant of a square matrix
m is given by Determinant(m).

When an n ¥ n matrix C is considered as a linear transformation on Rn, it
cannot directly attack [v1,..,vn] to give the image [w1,..,wn]. The
list [v1,..,vn] must first be stood on end as Vector([v1,..,vn]),
which is, in fact, an n ¥ 1 matrix. Now matrix multiplication is valid, and,
with LinearAlgebra installed, Multiply(C,Vector([v1,..,vn]) is
the n ¥ 1 matrix that convert(%,list) turns into [w1,..,wn]. This
identification of an n-tuple with a column vector is just the “column vector
convention” at the end of Section 3.1.

Since curves and surfaces are described in terms of lists, we can largely avoid
the list/Vector conflict by defining three basic vector operations directly in
terms of lists. First, note that the entries of a list p:=[p1,p2,. . .,pn]
can be any expressions, and the ith entry is displayed by the command p[i].

a b

c d
Maple

Ê
ËÁ

ˆ
¯̃

is described by as

Maple 459



An operation applied to a list is automatically applied to each entry. (By con-
trast, other arrays require the command map.)

Dot product: dot:=(p,q)–> simplify(p[1]*q[1]+

p[2]*q[2]+p[3]*q[3])

Cross product: cross:=(p,q)–> simplify

([p[2]*q[3]–p[3]*q[2],p[3]*q[1]–

p[1]*q[3],p[1]*q[2]–p[2]*q[1]])

Triple scalar product: tsp:=(p,q,r)–> dot(p,cross(q,r))

The built-in simplify above will reduce the number needed in later com-
mands. Note that tsp(p,q,r) is just the determinant of the matrix with
rows p,q,r, so reversal of any two entries gives (only) a sign change.

The three commands can be saved in Maple’s concise machine language by:

save dot,cross,tsp,99dotcrosstsp.m99

(Any name ending in “.m” will do as well.) These commands can then be
introduced into later sessions by

read 99dotcrosstsp.m99

(Formerly, save and read were expressed by save(cmd1,cmd2,
’filename.m’) and read(’filename.m’), using backquotes.)

> Differential forms. The package difforms provides the essentials, including
the exterior derivative operator d. The command defform is used to specify
the degree of the forms involved. For example, defforms(x=0,y=0) tells
Maple that x and y are 0-forms, that is, real-valued functions. Then the
command d(x^2*sin(y)) yields 2x sin(y)d(x)+x2 cos(y)d(y).

2. Curves

A curve in R3 is described by giving its components as expressions in a single
variable, for example, c:= t–>[3*cos(t),3*sin(t),2*t]. Then the
vector derivative (i.e., velocity) of c is returned by diff(c(t),t), which
differentiates each component of the curve by t.

> Curves with parameters. For example, using the unapply command, the
curve c can be generalized to

helix:=(a,b)–> unapply([a*cos(t),a*sin(t),b*t]

Then helix(3,2) gives c as above.
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> Frenet apparatus. We now show how the Frenet formulas in Theorem 4.3
of Chapter 2 can be expressed in terms of Maple.

The curvature function k of a curve c ~ g is given by

kappa:= c –> unapply(simplify(
dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t)))^(1/2)/
dot(diff(c(t),t),diff(c(t),t))^(3/2)),t)

Here “unapply” makes kappa(c) a real-valued function on the domain of
c. Otherwise, it would merely be an expression in t and could not be evalu-
ated on real numbers or other variables.

The command “simplify” is the principal Maple simplification weapon, but
it not a panacea. It can be augmented by related commands such as “factor”
or “expand.” Use ?simplify for information about these.

No set pattern of commands will give good results in every case, and
human intervention is often required to get reasonable simplification.

The torsion function tau of a curve c is given by

tau := c -> unapply(simplify(
tsp(diff(c(t),t),diff(c(t),t,t),
diff(c(t),t,t,t))/factor(

dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t))))),t)

The distinction between functions and mathematical expressions is always
important. Thus, with notation as above, tau, applied to a curve, say
helix(3,2), is a real-valued function whose value at a number or variable
s is given by tau(helix(3,2))(s).
Maple has several varieties of scalar multiplication when LinearAlgebra is
installed, however, since we are working with lists, s*v suffices.

The Frenet frame of a curve. The unit tangent, normal, and binormal vector
fields T, N, B of a curve c are given by

tang:=c->unapply(
dot(diff(c(t),t),diff(c(t),t))^(-1/2)
*diff(c(t),t),t)

nor:=c->unapply(cross(binor(c)(t),tang(c)(t)),t)

binor:=c->unapply(simplify(factor(
dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t)))))^(-1/2)*
cross(diff(c(t),t),diff(c(t),t,t)),t)
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The presence of square roots in these formulas means that we cannot expect
simple results unless the curve itself is quite simple. However, individual
values of the vector fields are usually readable.

Once the Frenet commands have been typed, they can be saved in a Maple
dot-m file by

save kappa,tau,tang,nor,binor,99frenet.m99

and, as usual, these commands can be installed in later work by read
99frenet.m99.

3. Surfaces

A coordinate patch, say x, in R3 is defined as a list-valued function whose
entries are expressions in two variables. For example,

x:=(u,v)–>[3*u*cos(v),3*u*sin(v),2*v]

Parameters in a patch can be handled as above for curves. For example, the
3 and 2 in this formula can be replaced by an arbitrary parameters a and b
using

helicoid:=(a,b)–> unapply([a*u*cos(v),a*u*sin(v),
b*v],u,v)

Then helicoid(3,2) gives the original patch x.

The following commands, applied to a patch x, return E, F, G, W = EG
- F 2, and , , . We elect to represent these capital letters (E) by double
lowercase letters (ee) since some capitals have special meaning for Maple (for
example, I = -1).

ee := x–> unapply(dot(diff(x(u,v),u),
diff(x(u,v),u)),u,v)

ff := x–> unapply(dot(diff(x(u,v),u),
diff(x(u,v),v)),u,v)

gg := x–> unapply(dot(diff(x(u,v),v),
diff(x(u,v),v)),u,v)

(Recall that simplify is built into the dot command, defined earlier.)

ww := x–> unapply(simplify(
ee(x)(u,v)*gg(x)(u,v)–ff(x)(u,v)^2)^
(1/2),u,v)
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ll := x–> unapply(tsp(diff(x(u,v),u,u),
diff(x(u,v),u),diff(c(u,v),v))/
ww(x)(u,v),u,v)

The formulas for mm and nn are the same, except that the double derivative
u,u is replaced by u,v and v,v, respectively.

As before, these commands can be saved by

save ee,ff,gg,ww,ll,mm,nn,99efgwlmn.m99

> Gaussian and mean curvature. When the commands above for E, F, G and
, ,  have been read in, commands for K and H follow immediately from
Corollary 4.1 of Chapter 5. However, a faster way to find K for a given patch
in R3 is to use the following command, based on Exercise 20 of Section 5.4.
In it, proc, for “procedure”, begins an enclave—terminated by end proc—
within which definitions can be made that do not escape to the outside.
These temporary definitions allow the final formula to be expressed more
concisely.

gaussK := proc(x)local xu,xv,xuu,xuv,xvv;
xu := diff(x(u,v),u);xv := diff(x(u,v),v);
xuu := diff(x(u,v),u,u);
xuv := diff(x(u,v),u,v);
xvv := diff(x(u,v),v,v);

unapply(simplify(factor(
tsp(xuu,xu,xv)*tsp(xvv,xu,xv)–
tsp(xuv,xu,xv)^2)/

(dot(xu,xu)*dot(xv,xv)–dot(xu,xv)^2)^2),u,v)
end proc

Here tsp is the triple scalar product, defined earlier. As usual, gaussK can
be saved for future use.

4. Plots

Maple has three basic plot commands.

(1) The command plot has two uses:
(i) Graphs. If f is a real-valued function defined on a � t � b, then

plot(f(t),t=a..b) draws its graph.
(ii) Parametric plots. If g is another such function, then the curve

with c(t) = [f(t),g(t)] is plotted in R2 by plot(c(t),
t=a..b). Alternatively, plot([f(t),g(t)],t=a..b)
gives the same result.
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Plots can be modified by options, thus: plot([c(t),t=a..b],
<option>), where, for example, the option numpoints=200 would
increase the smoothness of the plot, and scaling=constrained
imposes the same scale on the axes. Use ?plot[options] to get many
others.

(2) The command plot3d also has two uses. Let D be a region a � u �
b, c � v � d in R2. Then
(i) Graphs. If ƒ is a real-valued function defined on D, its graph is

plotted by plot3d(f(u,v),u=a..b,v=c..d).
(ii) Parametric plots. If x:D Æ R3 is a list-valued patch or parame-

trization, its image is plotted by plot3d(x(u,v),u=a..b,
v=c..d).

Again, ?plot3d describes a number of ways to specify plot style.
(3) Parametrized curves in R3 are plotted using the command “spacecurve”

from the plots package. As an example: spacecurve(c(t),
t=–2..4)

To show more than one plot on the same page, each plot should be
named, say, A:= plot3d(x(u,v),u=0..1,v=0..Pi): with termi-
nal colon to avoid a flood of numbers. Then use “display” from the plots
package: display([A,B,C]).

5. Differential Equations

Explicit solutions in terms of elementary functions are rare, so we describe
how to find and plot numerical solutions, which are just as useful in many
contexts. In the command for a numerical solution, Maple lumps equations
and initial conditions into a single set, then gives the dependent variables (as
follows).

For example, suppose we want to solve numerically the equations

subject to the initial conditions

on the interval a � t � b. The format is

numsol:= dsolve(
{diff(x(t),t)=f(x(t),y(t),t),
diff(y(t),t)=g(x(t),y(t),t),
x(t0)=x0,y(t0)=y0},{x(t),y(t)},type=numeric)

x t x y t y0 0 0 0( ) = ( ) =,

¢ = ( ) ¢ = ( )x f x y t y g x y t, , , , ,
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This solution is plotted by a command from the plots package:

odeplot(numsol,[x(t),y(t)],a..b)

Only now is the domain a � t � b of the solution specified.

Computer Exercises

Chapter 2: 2.2/9, 2.4/11, 14, 15, 19, 20, 2.7/7
Chapter 3: 3.2/5, 3.5/4, 5, 9, 10
Chapter 4: 4.2/5, 6, 11, 4.3/6, 11, 4.6/6, 4.8/10
Chapter 5: 5.4/16, 18–21, 5.6/16, 18, 5.7/8, 9
Chapter 6: 6.5/6, 6.8/11, 13
Chapter 7: 7.2/13, 7.5/9–12, 7.7/12, 13
Chapter 8: 8.1/8
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These answers are not complete; and in some cases where a proof is required,
we give only a hint.

Chapter 1

Section 1.1

1. (a) x2y3 sin2 z.
(c) 2x2y cosz.

3. (b) 2xeh cos(eh), h = x2 + y2 + z2.

Section 1.2

1. (a) -6U1(p) + U2(p) - 9U3(p).
3. (a) V = (2z2/7)U1 - (xy/7)U3.

(c) V = xU1 + 2yU2 + xy2U3.
5. (b) Use Cramer’s rule.

Section 1.3

1. (a) 0.
(b) 7 · 27.
(c) 2e2.



3. (a) y3.
(c) yz2(y2z - 3x2).
(e) 2x(y4 - 3z5).

5. Use Exercise 4.

Section 1.4

1.

3.
5. The lines meet at (11, 7, 3).
7. vp = (1, 0, 1)p at p = (0, 1, 0).

Section 1.5

1. (a) 4.
(b) -4.
(c) -2.

3. Use Exercise 2 and f((1/x)V + (1/y)W) = f(V )/x + f(W )/y.
5. (b) (x dy - y dx)/(x2 + y2).
7. (a) dx - dz.

(b) not a 1-form.
(c) zdx + xdy.

9. ±(0, 1, 1/2).
11. (a) Consider the Taylor series for t Æ f(p + tv).

(b) Exact: -.420, approximate: -.500.

Section 1.6

1. (a) f Ÿy = yz cosz dx dy - sinz dx dz - cosz dy dz.
(b) df = -z dx dy - y dx dz, since d(dz) = 0.

7. Apply this definition to the formula following Definition 6.3.
9. For the alternation rule, set f = y, g = x.

Section 1.7

1. (c) (0, 0), (1, 0).
3. F* (v) = F(p + tv)¢(0) = 2(p1v1 - p2v2, v1p2 + v2p1) at F(p).
5. F* (vp) = F(p + tv)¢(0) = (F(p) + tF(v))¢(0) = F(v)F(p).

b s s s s( ) = + - -( )1 1 2 12, , .

¢( ) = -( ) ( )a p 2 1 0 1 2 1 1 2, , at , , .

Chapter 1 Answers 469



7. Using Lemma 4.6 gives vp[g(F)] = (d/dt)|0 g(F(p + tv)) = F(p + tv)¢(0)[g]
= F* (vp)[g].

9. (a) GF = (g1(f1, f2), g2(f1, f2)).
(b) (GF)* (a ¢(0)) = (GF(a))¢(0) = G* (F(a)¢(0)) = G*F* (a ¢(0)).
(c) F-1 is one-to-one and onto. To show it is regular, start from 

F(F -1) = I, the identity map. Hence F* (F -1)* = I* = identity map
on tangent vectors. So (F -1)* cannot carry a nonzero vector to zero.

Chapter 2

Section 2.1

1. (a) -4.
(b) (6, -2, 2).

(c)

(d) .

(e) .
5. If v ¥ w = 0, then u • v ¥ w = 0 for all u; use Exercise 4.
7. v2 = v - (v • u) u.

Section 2.2

1. (b) s(t) = 2t + t3/3.

3. .

7. For (ii), |h¢| = -h¢ � 0, so the change of variables formula in an

integral gives 

9. L(a) ª 12.9153 < 14.1438 ª L(b).

Section 2.3

1. k = 1, t = 0, B = -(3, 0, 4)/5, center (0, 1, 0), radius 1.
7. (a) 1 = ||a(h)¢|| = ||a ¢(h)h¢|| = |h¢|, hence h¢ = ±1.

(b) Let e = ±1. Then = a(h) implies T = a ¢(h)h¢ = eT(h). Hence 
= k (h)N(h), and so on.Nk

a

dt dt L
b

a

a

b

a a a- ¢ = ¢ = ( )Ú Ú .

L h h ds h h ds h ds
c

d

c

d

c

d

a a a a( )( ) = ( ) = ¢( ) - ¢( ) = - ¢ ¢ =Ú Ú Ú¢

b s s s s( ) = + ( )( -1 2 2 22 1/ / ,sinh /,

-2 15/

2 11

1 2 1 6 1 0 3 10, , , ,-( ) -( )/ , / .

470 Answers to Odd-Numbered Exercises



9. For the rectifying plane. From the formula for in the text, delete b (0)
and the N0 term. The remaining terms give the same general shape as
the curve (s, ±s3).

11. (b) First differentiate B = ; consider the two ± cases and differentiate
again.

Section 2.4

1. (a) Let f = t2 + 2. Then k = t = 2/f 2 and B = (t2, -2t, 2)/f.
(c) All the limits are natural unit vectors, ±(1, 0, 0), . . .

3. (a) N = (0, -1, 0), t(0) = 3/4.
7. (a) (g (t) - a (t0)) • u = 0.

(b) g has constant speed, so use Exercise 5.
9. Evidently, a is a cylindrical helix. By Exercise 7 its cross-sectional curve

g is a plane curve with constant curvature, hence g lies in a circle.
11. (c) (Mathematica):

helix[a_,b_][t_]:={a*Cos[t],a*Sin[t],b*t}
ParametricPlot3D[{helix[2,1][t],helix[–.5,1]
[t]}//Evaluate,{t,0,6Pi}]
(Maple): With the plots package installed,
helix:=(a,b)–>[a*cos(t),a*sin(t),b*t]
spacecurve({helix(2,1)(t),helix(–.5,1)(t)},
t=0..6*Pi,numpoints=100)
Recall that we do not show Maple’s mandatory terminal semicolon.

13. (b) lt(s) = a (t) + s(a ¢(t) • a ¢(t)/a ≤(t) • J(a ¢(t)) J(a ¢(t)) for 0 � s � 1.
(c) For a unit speed, lt(s) = a + s(1/ )N. Hence dlt/ds = (1/ )N (inde-

pendent of s). Evidently this is normal to a at a (t). Since a* =
a + (1/ )N, we get (a*)¢ = T + (1/ )¢N - T = (1/ )¢N, in agree-
ment with dlt/ds at a* (1).

15. (a) For the rectifying plane (orthogonal to N):
(Mathematica):
viewN[a_,eps_]:=ParametricPlot[{(a[t]–a[0]).
tang[a][0],
(a[t]–a[0]).binor[a][0]}//Evaluate,
{t,–eps,eps}]

(Maple)
viewN:=(a,eps)–>plot([dot((a(t)–a(0)),
tang(a)(0)),
dot((a(t)–a(0)),binor(a)(0)),t=–eps..eps])

k̃k̃k̃

k̃k̃

B

b̃
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(b) (iii) For all curves with t(0) π 0 there are essentially only two cases,
depending on the sign of t.

17. (a) .
(b) •.

(c) .
(d) 2p (see Exercise 18).

19. (c) For a suitable n, let tn be t with new z-component (1/n) sin3t. Here
= k, and in the notation of Exercise 12, .

21. Use Theorem 4.6. By hand computation (easy, if k and t are first found
by computer), we get t/k = (3ac/2b2)(P/Q)3/2, where

Thus t /k is constant if and only if 4b2 = 9a2c2/b2, that is, 3ac = ±2b2.
(Hence t /k = ±1).

Section 2.5

1. (a) 2U1(p) - U2(p).
(b) U1(p) + 2U2(p) + 4U3(p).

5.

Section 2.6

1. Show that V · = 0, and use Lemma 1.8.
3. For instance, E2 = -sinzU2 + coszU3 and E3 = E1 ¥ E2.

Section 2.7

1. w12 = 0,
3. w12 = -df, w13 = cos f df, w23 = sin f df.
5. By Corollary 5.4(3),
7. (Mathematica):

(a) connform[A_]:=Simplify[Dt[A].Transpose[A]]
(b) In A, write q for J and f for j. Then in MatrixForm

[connform[A]], read Dt[q] as dq.

(Maple): Install the packages LinearAlgebra and difforms. With q and 
f as above, write defform(q=0,f=0) to identify them as real-valued 
functions.
(a) connform:=A–>simplify(Multiply(map(d,A),

Transpose(A)))

— ( ) = [ ] + —V i i i i i V if E V f E f ES S

w w13 23 2= = df / .

W̃

— = Â ¢( )[ ] = Â( ) ( )( )( ) = ( )¢ ( )¢( )a aa at i i i iW t w U d dt w t U W t/ .

P c t b t a Q c t a c b t a= + + = + ( ) +9 4 9 92 4 2 2 2 2 4 2 2 2 2 2and

ds dt x y= ¢ + ¢2 2k̃

p / 2

p / 2
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Section 2.8

3. (a) Compute q = Adx, as in the text. (A was found in Section 7.)
(b) For example, E1[r] = dr[E1] = q1(E1) = 1.
(c) Use the appropriate form of the chain rule.

Chapter 3

Section 3.1

3. (Ta)-1 = T-a, and since C is orthogonal, C-1 = tC. Thus F-1 = (TaC)-1 =
C -1 (Ta)-1 = tCT-a. By Exercise 1, this equals TtC (-a)

tC = T-tC(a)
tC.

5. (b) Using Exercise 3 we find 
7. Use Exercises 2 and 3.
9. (a) For J such that C(1, 0) = (cosJ, sinJ), C has matrix

(b) O(1) consists of +1 and -1, so F(t) = a ± t for any number a.

Section 3.2

1. T(vp) = vT(p).
3. The middle row of C is (-2, 1, 2)/3, and T is translation by

5. (Mathematica):
Let ame={e1,e2,e3} and amf={f1,f2,f3} be the attitude
matrices of the frames in Exercise 3.
(b) Set cc:=Simplify[Transpose[amf].ame] Then Sim-

plify[cc.e1] is f1, etc.
(Maple):
Install the package LinearAlgebra, and let ame=Matrix([e1,e2,
e3]) and amf=Matrix([f1,f2,f3]) be the attitude matrices of
the frames in Exercise 3.
(b) Set cc:=simplify(Multiply(Transpose(amf), ame)).

Then simplify(Multiply(cc,Vector(e1))) is
Vector(f1), etc.

3 1 2 2 3, 4/3,- -( )/

cos sin

sin cos
.

J J
J J

m

±
Ê
ËÁ

ˆ
¯̃

F - ( ) = -( )1 5 2 2 3 2p , ,
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Section 3.3

1. If the orthogonal parts of F and G are A and B, then by Exercise 2 of
Section 1, sgn(FG) = det AB = (detA)(det B) = det BA = sgn(GF ).
Then +1 = sgnI = sgn(FF -1) = sgn(F )sgn(F -1).

5. C is rotation through angle p/2 about the axis given by a.

Section 3.4

1. (b) By definition, s(s) is the point canonically corresponding to T(s);
hence by Exercise 1 of Section 2, C(s ) corresponds to F* (T ), the
unit tangent of F(b ).

3. Translate each triangle so that its new first vertex is at the origin. A sketch
will show that the required C is orientation-reversing, and we find C =

5. For a tangent vector v at p,

Section 3.5

3. Take a = 2, b = ±2.
5. Yes, since c has constant speed, curvature, and torsion.

7.

9. For simplicity, assume a � 0 � b; then:
(Mathematica):
(a) kdetc[f_,a_,b_]:=

NDSolve[{x’[s]==Cos[phi[s]],
y’[s]==Sin[phi[s]],
phi’[s]==f[s],x[0]==0,y[0]==0,
phi[0]==0},{x,y,phi},{s,a,b}]

(b) draw[f_,a_,b_]:=ParametricPlot[Evaluate
[{x[s],y[s]}/.kdetc[f,a,b]],{s,a,b},
AspectRatio–>Automatic]

(Maple):
(a) kdetc:=f–>dsolve({diff(x(s),s)=cos(phi(s)),

diff(y(s),s)=sin(phi(s)),diff(phi(s),s)=f(s),
x(0)=0,y(0)=0,phi(0)=0},{x(s),y(s),
phi(s)},type=numeric)

b j j js s ds s ds s f s ds( ) = ( ) ( )( ) ( ) = ( )ÚÚ Úcos sin, , where

F W F W t W F tC Wv F v* *( ) ( .
*

—( ) = +( )¢ ( ) = ( ) + ( )( )¢ ( ) = — ( )p v p v0 0

-Ê
ËÁ

ˆ
¯̃

3 5 4 5

4 5 3 5

/ /

/ /
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(b) Install plots. Define draw:=(f,a,b)–>odeplot(kdetc(f),
[x(s),y(s)],a..b,scaling=constrained).

Chapter 4

Section 4.1

1. (a) The vertex.
(b) All points on the circle x2 + y2 = 1.
(c) All points on the z axis.

5. (b) c π -1.
9. Use Exercise 7.

11. q is in F(M) if and only if F-1(q) is in M, that is, g(F-1(q)) = c. Use the
Hint to apply Theorem 1.4.

Section 4.2

1. (c) The Monge patch x(u, v) = (u, v, u2 + v2) covers the entire surface;
a parametrization based on Example 2.4 omits the point (0, 0, 0).

3. xu ¥ xv = vd ¢ (u) ¥ d(u).
5. (a) EG - F 2 = b2 + u2 is never zero.

(b) Helices and straight lines (rulings).
(c) H: xsin(z/b) - ycos(z/b).
(d) For x as given:

(Mathematica): ParametricPlot3D[x[u,v]//
Evaluate, {u,–1,1},{v,0,2Pi}]

(Maple): plot3d(x(u,v),u=–1..1,v=0..2*Pi)
7. (b) x(u, v) = (cosu - vsinu, sinu + vcosu, v).
9. In all cases, (i) check that the three partial derivatives of the defining 

function g are never zero simultaneously on M: g = 1 (Theorem 1.4),
and (ii) First, check that the components of x satisfy the equation 
g = 1.

11. (c) x ± (u, v) = (acosu, bsinu, 0) ± v(-asinu, bcosu, c).
(d) (Mathematica):

xplus[u_,v_]:={1.5*(Cos[u]–v*Sin[u]),
Sin[u]+v*Cos[u],2v}

ParametricPlot3D[xplus[u,v]//Evaluate,
{u,0,2Pi},{v,–1,1}]

(Maple): xplus:=(u,v)Æ[1.5*(cos(u)–v*sin(u)),
sin(u)+v*cos(u),2*v]
plot3d(xplus(u,v),u=0..2*Pi,v=–1..1)
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Section 4.3

1. (a) r2 cos2 v.
(b) r2(1 - 2cos2 v cosu sinu).

3. (a) and are the Euclidean coordinate functions of x-1y.
(b) Express y = x( , ) in terms of Euclidean coordinates, and 

differentiate.
5. (a) M is given by g = z - f(x, y) = 0, with —g = (-fx, -fy, 1), and v is

tangent to M at p if and only if v • —g(p) = 0.
7. —g = (-y, -x, 1) is a normal vector field; V is a tangent vector field if

and only if V • —g = 0, for example, V = (0, 1, x).
9. (a) p(M) consists of all points r such that (r - p) • z = 0; hence vp is

in Tp(M) (that is, v • z = 0) if and only if p + v is in p(M).
11. (a) If a/b = m/n for integers m, n, consider Dt = 2p m/a = 2p n/b.

(b) Assume a(s) = a(t) for s π t, so x(as, bs) = x(at, bt). Equality for
z components and for x2 + y2 implies as - at = 2pm and bs -
bt = 2pn for some integers m, n. Thus a/b = m/n, a contradiction.

Section 4.4

1.

3. If a is a curve with initial velocity v at p, then

5. On the overlap of Ui and Uj, dfi - dfj = d(fi - fj) = 0.

7. (b) .

Section 4.5

1. If x: D Æ M is a patch, then F(x): D Æ N is (by Theorem 3.2) a dif-
ferentiable mapping. Hence y-1Fx is differentiable for any patch y in N.

3. If and are patches in M and N, respectively, note that -1F =
( -1y)(x-1 ) is differentiable, being a composition of differentiable 
functions.

5. By Exercise 1, A is differentiable. Since A2 = I, A-1 = A, so A is a dif-
feomorphism. For A*, consider its effect on a curve t Æ cos tp + sin tu
in S .

7. Theorem 5.4.

xy
xyyx

du u
u

u
u
uu u˜ ˜

˜
x x

x( ) = [ ] =
∂ ( )( )

∂
=

∂
∂

= 1

v p vp pg f gf g f f g f f( )[ ] = ( )¢( ) = ¢( )( )( )¢( ) = ¢ ( )( ) [ ]a a a0 0 0 .

df fd u vf f= Ÿ +( )( )x x, .

d f
f

u
f

v
f

u vu v v u v uf f f f f( )( ) =
∂ ( )( )

∂
( ) -

∂ ( )( )
∂

( ) + ( ) ∂
∂

( ) -
∂
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( )È
ÎÍ

˘
˚̇

x x
x

x
x

x x x x,
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T
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9. (a) Use Exercise 8.
(b) F* (axu + bxv) = ayu + byv implies linearity.

11. M is diffeomorphic to a torus if the profile curve a of M is closed, and
to a cylinder if a is one-to-one. With parametrizations as suggested,
F(x(u, v)) = y(u, v) is a diffeomorphism.

13. (a) If p in M, there is a q in such that p = G(q). By consistency,
F(p) = (q) is a valid definition. G is regular, hence locally has 
differentiable inverse mappings. Thus, locally F = G-1 so F is 
differentiable.

(b) If F(p1) = F(p2), then for q1, q2 in such that G(q1) = p1, G(q2) =
p2, we have F(G(q1) = F(G(q2)). Thus (q1) = (q2). Then the
hypothesis gives G(q1) = G(q2), that is, p1 = p2.

Section 4.6

3. (b) Use Theorem 6.2.
5. (a) Let r(t) = ||a(t)||. Then let f = U1 • a/||a || and g = U2 • a/||a ||. Apply

Exercise 12 of Section 2.1 to get J.
(b) J(a) and J(b) measure the same angle; hence they differ by some

integer multiple of 2p.
(c) Use Exercise 1 to evaluate y on the polar expression for a in (a).

(d)

7. (a) Since (F*(f))(a¢) = f((F*)(a ¢)) = f(F(a)¢), we get

9. (a) 2pm, (b) 2pn.
13. The text shows that if f is the dual of V, then The dual

of curl V is df, and dA ª W du dv. It follows that 

Section 4.7

1. (a) Connected, not compact.
(c) Not connected and not compact.
(e) Connected and compact.

3. If v is nonvanishing on N, show that F*(v) is nonvanishing on M.
5. (a) All—by Definition 7.1.

(b) Sphere, torus—by Lemma 7.2.

U V dA V
W

W du dv du dvu v
u v• • .curl curl ,=

¥
= ( )x x

x xf

V ds• .Ú Ú= f

F F dt
a

b

F
* .f f a f

a a
( ) = ( )¢Ê

Ë
ˆ
¯ =Ú Ú Ú ( )

det

•
.

a a
a a

, ¢( )
=

¢ ¢
+( ) =

¢ - ¢
+

f g

f g
f g

fg gf
f g

2 2
2 2

F̃F̃
M̃

F̃
F̃

M̃
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(c) All—by Proposition 7.5
(d) Plane, sphere (see text).

9. (c) If M is connected, then path-connectedness (Definition 7.1) follows
using parts (a) and (b). If M is path-connected, let U and M - U

be open sets of M such that U contains a point p.
Assume that M - U contains a point q. There is a curve segment

a:[a, b] Æ M from p to q. Since a is continuous, a-1(U ) and a-1

(M - U ) are disjoint open sets filling [a, b]. This contradicts the
stated connectedness of [a, b].

11. Fix q in M - R; then by the Hausdorff axiom, for each p in R, there
are disjoint neighborhoods Up of p and Uq,p of q. By compactness, a
finite number of the neighborhoods Up cover R. Then the intersection
of the corresponding neighborhoods Up,q is a neighborhood of q that
does not meet R.

Section 4.8

1. If M is orientable it has a nonvanishing 2-form m. Then f(t) = m(a ¢(t),
Y(t)) is a differentiable function on [a, b]. By (ii), f(a) f(b) < 0; hence f is
somewhere zero on a < t < b. This contradicts (i).

5. (a) The function p Æ d(0, p) is continuous on M, hence takes on a
maximum.

7. (i) Since M is nonorientable, there is a reversing loop (as in the hint)
at some point q. Fix Uq. Then every point Up in M̂ can be connected
to Uq by a curve in M̂. Proof: Move Up along a curve from p to q.
If the result is -Uq, move it around the reversing loop.

9. (b) B - b is diffeomorphic to an ordinary band.
11. (a) Recall that a neighborhood in a surface is the image under a coor-

dinate patch of a neighborhood in R2. Evidently every neighbor-
hood x(U ) of 0 meets every neighborhood y(V ) of 0*.

(b) The sequence {(1/n, 0)} converges to 0 when expressed in terms of
x, and to 0* in terms of y.

(c) Relative to x and y, the coordinate form of F is the identity map.
13. (a) In terms of the natural coordinates, a¢(t) = V(a(t)) becomes

(b) The differential equations are u¢ = -u2, v¢ = uv, and the initial 
conditions are u(0) = 1, v(0) = -1. The first differential equation 
integrates to 1/u = t + A. But u(0) = 1, so u = 1/(t + 1). Thus we
get v¢ = v/(t + 1), which integrates to v = B(t + 1). Then v(0) =
-1 implies v = -(t + 1).

¢ + ¢ = ( ) + ( )u U v U f u v U f u vU1 2 1 1 2 2, , .
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15. Smooth overlap follows from the identity

Chapter 5

Section 5.1

1. Use Method 1 in the text.
3. (a) 2.

(c) 1.
5. Meridians go to meridians (great circles through the poles), parallels to

parallels—except for the top and bottom circles of the torus.
7. Use Method 1 and the definition of tangent map in Chapter 1.

Section 5.2

1. (b) If e1, , then S(e1) = e1 and S(e2) = -e2.

Section 5.3

1. k1k2 � 0 and k1 = k2 imply k1 = k2 = 0.
5. (b) K > 0: an ellipse on one side and no points on the other. K < 0: the

two branches of a hyperbola. K = 0, nonplanar: two parallel lines
on one side, no points on the other.

7. (a) If a is a curve with initial velocity v at p, then F*(v) = F(a)¢(0) =
(a + eUa)¢(0) = v - eS(v) at F(p).

Section 5.4

1. W = r2 cosv > 0, U = x/r, K = 1/r2, H = -1/r.
5. Use a ¢ = a¢1xu + a¢2xv to find speed.
7. K = -36r2/(1 + 9r4)2.
9. Expand S(v) ¥ v. This vector is zero if and only if its dot product with

xu ¥ xv is zero. Use the Lagrange identity (Exercise 6 of Section 3).
11. k(u) = S(v) • v/v • v. Substitute v = v1xu + v2xv.
15. (a) K is negative except at the origin, but this is a planar point, hence

an umbilic with k = 0.

e u u2 1 2 2= ±( ) /

x y x y xx yy¥( ) ¥( ) = ( ) ¥ ( )- - -1 1 1 .
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(b) The hint leads to . These two 
umbilics reduce to one for the paraboloid of rotation, a = b, where
(by symmetry) we expect 0 to be umbilic.

17. (b) Since k < B, if e < 1/B, then xu ¥ xv π 0.
(c) S(xu) ¥ S(xv) = -kcosvT ¥ xv/e.

19. (Mathematica):
(b) hyperboloid[a_,b_,e_][u_,v_]:=

{u,v,u^2/a^2+e*v^2/b^2}
(c) monkeypolar[r_,q_]:=monkey[r*Cos[q],

r*Sin[q]]
(Maple):
(b) hyperboloid:=(a,b,e)–>unapply([u,v,u^2/a^2+

e*v^2/b^2],u,v)
(c) monkeypolar:=(r,q)–>monkey(r*cos(q),

r*sin(q))
21. Maple has a built-in tube command in the plots package. For (c), with

t defined as in the exercise referred to, the tube is plotted by 
tubeplot(t(t),t=0..2*Pi,radius=0.5)
(Mathematica):
(a) With the commands for unit normal and binormal installed (see

Appendix), a tube formula is
tube[c_,r_][t_,phi_]:=c[t]+r*(Cos[phi]*
nor[c][t]+Sin[phi]*binor[c][t])
This is plotted—in (b), for example—by
ParametricPlot3D[tube[helix,1/2][t,phi]//
Evaluate,{t,0,4Pi},{phi,0,2Pi},
PlotPoints–>{40,20},Axes–>None,Boxed–>
False]

(c) If the general approach in (a) is slow in this case, a faster way is to
copy the outputs of binor[t][t,phi] and nor[t][t,phi]
into an explicit definition of the tube function of t.

Section 5.5

3. (a) The critical points of K are those of h. They occur at the intercepts
of M with the coordinate axes.

(b) For the ellipsoid, c2/(a2b2) � K � a2/(b2c2). (Note again the effect of
a = b = c.)

5. (c) Use Z = grad(ez cosx - cosy) and W = Z ¥ V. Then —VZ ¥
W + V ¥ —W Z = 0 and V • —VZ ¥ —WZ = -e2z.

0 2 42 2 2 2, ,± ( ) - -( )( )b a b a b
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7. (a) Use 
(b) The tangency condition for a vector v at p is 

Section 5.6

3. Use Remark 6.10.
5. Since U • V is constant, U¢ • V + U • V¢ = 0. If a is principal in M, then

using Lemma 6.2, U¢ • V = 0, hence V • U¢ = 0. Continue as for Lemma
6.3.

7. S(T) = -U¢; hence by orthonormal expansion, U¢ = -S(T) • T T -
S(T) • V V. Continue as in the proof of the Frenet formulas.

11. (a) Set s = a + fd. Then f is determined using the equation s ¢ • d¢ = 0.
(b) d ¢ ^ d, a ¢ implies that a ¢ ¥ d and d ¢ are collinear. Then a ¢ ¥ d =

pd ¢. Hence xu ¥ xv = pd ¢ + vd ¢ ¥ d, so W 2 = (p2 + v2)d ¢ • d ¢.
Now use Exercise 12 of Section 4.

(c) On each ruling, K has a unique minimum point; the striction curve
meets the ruling at this point.

13. (a) Since s (u + e) - s (u) ª es¢(u), the Hint gives de = es¢ (u) • d(u) ¥
d ¢(u)/||d (u) ¥ d ¢(u)||. However ||d (u) ¥ d ¢(u)||e ª ||d (u) ¥ d(u + e)||
= sinJe ª Je. Since ||d(u) ¥ d ¢(u)||2 = d ¢ • d ¢, we see that limeÆ0de/Je

= s ¢ • d ¥ d¢/d ¢ • d ¢ = p.
15. Compute E, F, G and , , . (Computer formulas for these are given

in the Appendix.) Then EG - F 2 π 0 proves (a), and F =  = 0 proves
(b).

17. (a) K = -h¢2J ¢2/W 4, H = u(h¢J ≤ -J ¢h≤)/(2W3), where W2 = h¢2 + u2J ¢2.
(b) d ¥ d ¢ = J ¢U3. Since K is a minimum when u = 0, the z axis is 

the striction curve, and p = h¢/J ¢, reciprocal of turn rate (Exercise
13 of Section 6).

19. Use W = ||xu ¥ xv||.

Section 5.7

1. K = (1 - x2)(1 + x2exp(-x2))-2. Hence K > 0 ¤ -1 < x < 1.
3. In a canonical parametrization, if g is constant, the profile curve is

orthogonal to the axis, so the surface M is part of a plane. Otherwise,
K = 0 ¤ h≤ = 0 ¤ h¢ is constant. If h¢ = 0, the profile curve lies in a
line parallel to the axis, so M is part of a cylinder. If h¢ π 0, the profile
curve is a slanting line, so M is part of a cone.

5. M has parametrization x(r, v) = (rcosv, rsinv, f(r)). Then E = 1 + f ¢2,
F = 0, G = r2, and WL = rf ≤, WM = 0, WN = r2f ¢, with W 2 = EG -
F 2 = r2(1 + f ¢2).

Â =v p ai i i
2 0.

Z x a Ui i i= Â( ) .



7. (a) h(u) = asinh(u/c) satisfies the given differential equation with 
K = -1/c2. Use the integral formula for g(u). Then as u Æ 0, the 
slope angle tanj = h¢/g¢ approaches .
The curve becomes vertical when g¢ = 0, hence the integrand of g
vanishes. There cosh2(u*/c) = c2/a2, so 

(b) h(u) = ce-u/c satisfies the differential equation and initial condition
in Example 7.6.

Chapter 6

Section 6.1

1. (a) a ≤ = w12(T)E2 + w 13(T)E3. Hence a ≤ is normal to M if and only
if w12(T ) = 0.

3. Apply the symmetry equation to E1, E2. Then use Corollary 1.5.

Section 6.2

1. (a) q 1 = dz, q 2 = rdJ.
(d) K = 0 and H = -1/2r.

Section 6.3

1. If K = H = 0, then k1k2 = k1 + k2 = 0. Thus k1 = k2 = 0, so S = 0.
3. In the proof of Liebmann’s theorem, replace the constancy of K = k1k2

by that of 2H = k1 + k2.
5. In the case k1 π k2, use Theorem 2.6 to show that, say, k1 = 0. By Exer-

cise 2 the k1 principal curves are straight lines. Show that the k2 princi-
pal curves are circles and that the (k1) straight lines are parallel in R3.

Section 6.4

1. (d) fi (b): If z is an arbitrary tangent vector at p, write z = av + bw.
Then

F a F abF F b F

a ab b

* * * • * *

• .

z v v w w

v v w w z

2 2 2 2 2

2 2 2 2 2

2

2

= + +

= + + =

h a u c c amax sin * .= ( ) = -h 2 2

a c a c a c a/ / / /( ) - = -1 2 2 2 2
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3. (b) Monotone reparametrization does not affect length of curves.
(c) By the definition of r, given any e > 0 there is a curve segment a

from p to q of length < r(p, q) + e, and an analogous b for q and
r. Combining a and b gives a piecewise differentiable curve segment
from p to r. (If only everywhere-differentiable curves are allowed,
there is no change in r, but proofs are harder.)

5. (a) Define F(a (u) + vT(u)) = b(u) + vT(u).
(b) Choose b in R2 with plane curvature equal to k.

7. By the exercise mentioned, a shortest curve in R2 joining the points
parametrizes a straight line segment. Thus any curve in M joining the
points has length L > 2.

9. F*((F-1)*v) = (FF-1)*v = I*v = v. Since F is an isometry, ||(F-1)*v|| = ||v||.
11. Write F(x(u, v)) = (f(u), g(v)) for suitable parametrizations.
13. For y, show that the conditions E = G and F = 0 are equivalent 

to g¢ = cosg, which has solution g(v) = 2tan-1 (ev) - p /2 such that 
g(0) = 0. Use criteria suggested by Exercise 8.

15. F(x(u, v)) = ( f(u)cosv, f(u) sinv), where x is a canonical parametriza-

tion and 

Section 6.5

1. First show that a is a geodesic if and only if w12(a ¢) = 0. Let 1, 2

be the transferred frame field, with connection form 12. Since 1 =
F*(a¢) = F(a)¢, Lemma 5.3 gives

3. There is no local isometry of the saddle surface M (-1 � K < 0) onto a
catenoid with -1 � < 0—or vice versa—since K has an isolated
minimum point, at 0, while takes on each of its values on entire
circles. Many other examples are possible.

5. (b) Follows from Lemma 4.5, since computation for xt shows Et =
cosh2 u = Gt and Ft = 0.

(d) For Mt, Ut = (s, -c, S)/C, so the Euclidean coordinates of Ut are 
independent of t.

7. A local isometry must carry minimum points of KH to minimum points
of KC, and also preserve orthogonality and geodesics.

Section 6.6

1. (b) q q w1
2

2 12
2 2 2

1 1 1 1= + = = + = +( )u du u dv dv u K u, , ,/ / .

K
K

0 12 12 12 12= ¢( ) = ( ) ¢( ) = ¢( )( ) = ( )¢w a w a w a w aF F F* * .( )

Ew
EE

f u dt h t
u

( ) = ( )Ê
Ë

ˆ
¯Úexp .

1

x̃
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3. (b) Substitution into dw 13 = w 12 Ÿ w 23 leads to

Section 6.7

1. 1 + fu
2 + fv

2 � 1.

3. (a)

(b) xu ¥ xv points inward, and thus 

. Hence 

5. F carries positively oriented pavings of M to positively oriented pavings
of N. Apply the suggested exercise to each 2-segment.

Section 6.8

1. (a) F*(du Ÿ dv) = F*(du) Ÿ F*(dv) = df Ÿ dg = (fudu + fvdv) Ÿ (gudu +
gvdv) = (fugv - fvgu)du Ÿ dv.

(b)
3. (a) Recall that G* ª -S. Let e1, e2 be a principal frame at a point of M.

Then G*(e1) • G*(e2) = 0. Thus G is conformal if and only if
||G*(e1)||2 = ||G*(e2)||2 > 0 at every point.

5. Using a canonical parametrization,

7. (a) For a small patchlike 2-segment,

If this always equals , then taking limits as x shrinks to a 

point p gives JF (p) = ±1. F must be one-to-one, for otherwise two small
regions of total area 2e could map to a single region of area e.

Conversely, we can suppose F is orientation-preserving; hence JF = 1.
Then use Exercise 5 of Section 7.

(b) An isometry carries frames to frames. We have seen that cylindrical
projection of a sphere is area-preserving (Exercise 6 of Section 7).

A dM
x

x( ) = ÚÚ

A F dN J dM
F

Fx
x x

( )( ) = = ±
( )ÚÚ ÚÚ .

KdM dv h h h ds

h b h a

a

b

a b

ÚÚ Ú Ú= - ¢¢( )

= - ¢( ) - ¢( )( )
= -( )

0

2

1 1

1

1

2

2

p

p

p j jsin sin .

x x x* .dM dM du dv EG F du dvu v( ) = ( ) Ÿ = ± - Ÿ, 2

v T Rr
TÚ = - ( ) = -area 4 2p .EG F= - - 2

U u v u v• x x x x¥ = - ¥
v dv R r Rr u du R r

TÚÚ Ú Ú= + +( ) = +( )
0

2
2 2 2 2 2

0

2

2 4
p p

pcos .

L
L N

v
v

v

E
E G

HE= +Ê
Ë

ˆ
¯ =

2
.
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9. (a) See text.
(b) See Example 4.3(1) of Chapter 5.
(c) First show that on one of the vertical lines, exactly four directions

are omitted by U. Total curvatures: -4p, -•, -•.

13.

Section 6.9

5. (a)

.

7. (a) Example 4.3(2) of Chapter 5 shows that K has a unique minimum
at 0. Hence every Euclidean symmetry F must carry 0 to 0, so F is
an orthogonal transformation C.

(b) C must carry asymptotic unit vectors to asymptotic unit vectors,

and carry Uz to ±Uz. One such C is .

Chapter 7

Section 7.1

1. (a) The speed squared is ·a ¢, a ¢Ò = a ¢ • a ¢/h2(a).
(b) ·hUi, hUjÒ = Ui • Uj = d ij.

3. (a) The definition J(e1) = e2, J(e2) = -e1 is independent of the choice
of positively oriented frame field e1, e2, since for another positively
oriented frame field,

and this implies J(ê1) = ê2, J(ê2) = -ê1. Then for v π 0, choose e2 so
that e1 = v/|v|, e2 is positively oriented.
(b) V = f1E1 + f2E2, with f1, f2 differentiable. For the other two rela-

tions, first replace arbitrary vectors by e1, e2.
(c) If E1, E2 is positively oriented for dM, then E1, -E2 is positively ori-

ented for -dM.

ˆ cos sin ˆ sin cose e e e e e1 1 2 2 1 2= + = - +J J J J, ,

0 1 0

1 0 0

0 0 1

-

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

F = =

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

C

1 0 0

0 0 1

0 1 0

TC K r W r dr= ( ) ( ) = -
•

Ú2 4
0

p p.
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5. (a) Expand ||v ± w||2 = ·v ± w, v ± wÒ.
(b) Compute ·v, wÒ with the vectors expressed in terms of xu and xv.
(c) Direct computation with a ¢ = a¢1xu + a¢2xv, yields the same result as

applying ds2 to a ¢, since du(a ¢) = a¢1, dv(a ¢) = a¢2.
7. We have F*(U1) = fuU1 + guU2, F*(U2) = fvU1 + gvU2. If F is confor-

mal and orientation-preserving, then using Exercise 6,

So the Cauchy-Riemann equations hold. Conversely, if the Cauchy-
Riemann equations hold, then

This proves F is conformal (and shows that |dF/dz| is the scale factor).
F is orientation preserving since JF = fugv - fvgu = f 2

u + g2
u > 0.

9. (F*(v) • F*(w))/h2F(p) = v • w/h2(p).

Section 7.2

3. A = pa2/(1 - a2/4); hence total area is infinite.
5. Since x is an isometry, the area of T0 is the same as the area of a Euclid-

ean rectangle with sides 2pR and 2pr. Hence A(T0) = 4p2Rr, the same
as A(T ).

7. (c) Evidently, i = cq i, and hence 12 = w 12 follows by uniqueness in
the first structural equations.

(d) d = 1 Ÿ 2 = c2q1 Ÿ q2 = c2dM.
(e) Theorem 2.1 defines K.

9. (b) Since qi = qi (xu)du + qi (xv)dv = ·Ei, xuÒdu + ·Ei, xvÒdv, we find

(c) Substitute w12 = Pdu + Qdv and preceding results into the first
structural equations.

(d) Substitute into the second structural equation.

q q1 2= + =E du F E dv W E dv/ , / .

qqM

wq

F U F U f f g g f f f f

F U F U f g dF dz f g F U F U

u v u v u v u v

u u v v

* * ,

* , * * * .

1 2

1 1
2 2 2 2 2

2 2

0( ) ( ) = + = - =

( ) ( ) = + = = + = ( ) ( )

, and

,

f U g U F U

F JU

J F U

J f U g U

g U f U

v v

u u

u u

1 2 2

1

1

1 2

1 2

+ = ( )
= ( )
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11. (b) K = -2/cosh3(2u).
13. (a) To define tensorK, first simplify the square root of E(u, v)G(u, v)

- F(u, v)2 to get W(u, v).
(b) The formulas for E, F, G in the Appendix are valid for arbitrary 

n, so evaluate tensorK on the functions ee[x],ff[x],gg[x]
for Mathematica; ee(x),ff(x),gg(x) for Maple.

Section 7.3

1. (a) First find the dual 1-forms.
(b) a≤ = -cot ta ¢.
(c) b¢ = c/(st)E1 + 1/tE2, and ·b¢, b¢Ò¢ = -2/(s2t3).

3. From the proof of Lemma 3.8,
5. (a) Let w12 be the connection form of a frame field on D. Since

Stokes’ theorem gives . From 

the text,

7. (a) If W = fE1, then —V(W ) = V [ f ]E1 + fw12(V )E2, hence

On the other hand,

But [ f(F-1)] = (F*V)[ f(F -1)] = V[ f(F -1F )] = V[ f ], and

where the last (crucial) step uses Lemma 5.3 of Chapter 6. This com-
pletes the proof.

Section 7.4

1. Since a ≤ = 0, we get which is 0 if and only if h≤ = 0.
3. If L is a line in the xy plane, consider the Euclidean plane passing through

both L and the north pole n of S 0; then use stereographic projection.
5. (a) Use Exercise 5 of Section 3. Since a ¢ is parallel on a, –a (a ¢(a),

a ¢(b)) is the holonomy angle ya.
(b) (ii) The image of the Gauss map of a paraboloid is an open 

hemisphere of S, hence any (finite) simple region in it has total 
curvature <2p.

7. (a) Fix p0 Œ M, and let U consist of all points that can be joined to p0

by a broken geodesic—include p0 in U. If p Œ U, then by the given
fact, U contains an e-neighborhood of p. Thus U is open. In a
similar way, M - U is open. Since U is not empty, M = U.

a ah h h( )¢¢ = ¢( ) ¢¢,

w w w w12 12 12 12V F V F V V( ) = ( )( ) = ( )( ) = ( )* * .

V

— ( ) = — ( )( ) = ( )[ ] + ( ) ( )- - -
V VW f F E V f F E f F V E1

1
1

1
1

12 2w .

— = — ( )( ) = [ ] + ( ) ( )-
v VW F W V f E f F V E* .1

1
12 2w

w y
a

a12Ú = - .

w
a

12Ú ÚÚ= - K dM
g

d K dMw12 = - ,

w12 3 3 1 3 1 3Y E E E E S Y E Ey( ) = -— ◊ = ( ) ◊
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Section 7.5

1. The coordinates u, v have E = G = 1/v2, F = 0, hence are Clairaut. With
the suggested reversals, geodesics are given by

Set w = 1 - c2v2 and integrate to get . Consequently,
(u - u0)2 + v2 = 1/c2.

3. At the meeting point, u1 = a1(t1). Since , the condition
G(u) = c2 implies sinj = ±1. Thus a1¢(t1) is tangent to the barrier curve,
so a1¢(t1) = 0.

The geodesic equation A1 = 0 in Theorem 4.2 reduces to a1≤ =
Gu a2¢2/(2E ). At the meeting point, Gu π 0 since barriers are not 
geodesic, and a2¢ π 0 since a1¢ = 0. Thus a2≤(t1) π 0. This means that 
a leaves the barrier curve instantly, remaining on the same side of
it.

5. (a) By Exercise 4, tangency to the top circle implies slant c = R (larger
of the radii of T ). Except for the inner and outer equators, no par-
allel is geodesic. Hence a leaves the top circle, necessarily entering
the outer half of T. As h increases, sinj decreases; hence a meets
and crosses the outer equator. By symmetry, it returns to tangency
with the top circle.

(b) Crossing the inner equator implies slant c < R - r.
7. Evidently all meridians approach the rim on a finite parameter interval.

In view of the exercises above, so do all other geodesics; even if initially
moving away from the rim, they will be turned back by a barrier curve.
They cannot asymptotically approach a parallel, since no parallels are
geodesic.

9. (a) E(u) = ee(u), G(u) = gg(u) will be given (for abstract surfaces) or
computed (for surfaces in R3).
(Mathematica):
clair[u0_,v0_,c_,tmin_,tmax_]:=
NDSolve[{u’[t]==Sqrt[gg[u[t]]–c^2]/Sqrt[ee[u[
t]]*gg[u[t]]],v’[t]==c/gg[u[t]],u[0]==u0,v[0]
==v0},{u,v},{t,tmin,tmax}]

(b) ParametricPlot3D[Evaluate[x[u[t],v[t]]/.
nsol],{t,tmin,tmax}]

where nsol is an explicit return from clair. (Delete “3D” in the
abstract case.)

c G a= ( )1 sinj

u u w c- =0 m /

du
dv

c G

E E c

cv

c v
=

±
-

=
±
-2 2 21

.
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(Maple)
(a) clair:=(u0,v0,c)–>dsolve({diff(u(t),t)=

(gg(u(t))–c^2)^(1/2)/(ee(u(t))*gg(u(t))^
(1/2),diff(v(t),t)=c/gg(u(t)),u(0)=u0,v(0)=
v0},{u(t),v(t)},type=numeric).

(b) With plots installed, if nsol is an explicit return from clair,
odeplot(nsol,x(u(t),v(t)),tmin..tmax)

11. (b) Since G(0) = f(0)2 = (3/4)2, the slant of this geodesic is ±3/4.
13. Since a ¢ = a ¢1xu + a¢2xv, we have . Hence 

cos2j = (U(a1) + V(a2))a ¢12, and sin2 j is similar. Thus we must show that
the function f = (U(a1) + V(a2)(U(a1)a¢22 - V(a2)a¢12) is constant.
Compute f ¢. The geodesic equations from Theorem 4.2 then give f ¢ = 0.

Section 7.6

1. In (a) and (c) the surface is diffeomorphic to a sphere, so TC = 4p. In
(b), there are four handles, so TC = -12p.

3. If h = 0, then M is a sphere, so TC > 0. If h = 1, then M is diffeo-
morphic to a torus; hence TC = 0. If h � 2, then TC < 0.

5. (c) For each polygon, draw lines from a central point to each vertex.
Thus each original n-sided face is replaced by n faces, and there are
n new edges and one new vertex. Thus for each polygon, the effect
on c(M ) is 1 Æ 1 - n + n, so there is no change.

7. The area of x(R) is . Three of the four edges are geodesics.
9. We count e = 6f /2 = 3f and v = 6f /3 = 2f; hence c = 0. So this is

impossible on the sphere, but a suitable diagram shows that the torus
has such a decomposition.

Section 7.7

1. Follows from Theorem 7.5 since a polygon has Euler characteristic +1.
3. (a) By the Gauss-Bonnet theorem, M is diffeomorphic to a sphere; hence

if two simply closed geodesics do not meet, they bound a region.
5. (a) The angle function from any X to Vt depends continuously on t;

hence the index depends continuously on t. But a continuous
integer-valued function on an interval is constant.

(b) Use (a).
7. (a) Approximate closely by a genuine polygon. In the limit, the in-

terior angles will all be p. Hence by Exercise 1, -An/r2 = (2 - n)p,
so An = (n - 2)pr2.

pr 2 4 2/ ( )

cos /j a= ¢ = ¢, xu E E a1

Chapter 7 Answers 489



(b) As n Æ •, An Æ •, so H(r) has infinite area.
9. (a) Let h = ||Va || > 0. Then f = hcosj, g = hsinj, so the integrand

reduces to j¢.
11. (a) The equations u¢ = -u, v¢ = v have general solutions u = Ae-t, v =

Bet, so A = a, B = b.
(b) Since uv = ab, the integral curves parametrize hyperbolas (when 

ab π 0); this is a meeting of two streams, with index -1.
(c) For the circle a(t) = (cos t, sin t), the integrand reduces to -1.

13. (a) (Mathematica): numsol[u0_,v0_,tmin_,tmax_]:=NDSolve
[{u’[t]==2u[t]^2–v[t]^2,v’[t]==–3u[t]*v[t],
u[0]==u0,v[0]==v0},{u,v},{t,tmin,tmax}]
draw[u0_,v0_,tmin_,tmax_]:=ParametricPlot
[Evaluate[{u[t],v[t]}/.numsol[u0,v0,tmin,
tmax]],{t,tmin,tmax}]

(b) (Maple): Take X = (1, 0); hence J(X) = (0, 1). Now apply Exercise
9. Evaluation on the circle a(t) = (cos t, sin t) gives
f:=t–>2*cos(t)^2–sin(t)^2,
g:=t–>–3*cos(t)*sin(t)
The integrand is
wint:=t–>(f(t)*diff(g(t),t)–
g(t)*diff(f(t),t))/(f(t)^2+g(t)^2) and int(wint
(t),t = 0..2*Pi) is -4p, so the index is -2.

Chapter 8

Section 8.1

1. (a) If q is in a normal e-neighborhood N of p, then by Theorem 1.8,
the radial geodesic from p to q has length r(p, q) < e. If q is not in
N, then any curve from p to q meets every polar circle of N; hence
r(p, q) � e.

3. n(x, y) = (rcos(x/r), rsin(x/r), y). To get the largest normal e-neighbor-
hood, fold an open Euclidean disk of radius pr around the cylinder.

5. (a) Any geodesic starting at p is initially tangent to a meridian;
hence (by the uniqueness of geodesics) parametrizes that 
meridian. It follows that the entire surface is a normal neighbor-
hood of p.

7. (a) By the triangle inequality, r(p, q) > r(p0, q) - r(p0, p). Reversing p
and q, we conclude that r(p, q) > |r(p0, q) - r(p0, p)|.
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(b) Show that if r(p0, p) < e and r(q0, q) < e, then it follows that 
|r(p0, q0) - r(p, q)| < 2e.

Section 8.2

1. Let M be an open disk in R2.
3. We can assume that C is parametrized by a(u) + vU3, with a a unit-

speed curve. If a is (smoothly) closed, let s have the same arc length
and parametrize a circle in R2. Then a(u) + vU3 Æ s(u) + vU3 is an
isometry. Circular cylinders of different radii are not isometric since
their closed geodesics have different lengths.

If a is one-to-one, then since it is a geodesic of C it is defined on the
entire real line. Then a(u) + vU3 Æ (u, v) is an isometry onto R2.

5. The profile curves all approach either a singularity of the curve or the
axis of rotation. Only for the sphere was the axis met orthogonally, thus
giving S as an augmented surface of revolution.

Section 8.3

1. For k = -1/r2, the general solution of the Jacobi equation g≤ - g/r2 =
0 can be written as g(u) = Acoshu/r + Bsinhu/r. The initial conditions
then determine A and B.

3. (a) L(e) = 2psinhe.
5. (a) xu(0, v) = X(v), and since x(0, v) = gx(v)(0) = b(v), we have xv(0, v) =

b¢(v). Thus EG - F2 is nonzero when u = 0, hence also for |u| small.
(b) (iii) b as base curve, X = d.

7. (a) The u-parameter curves of x are meridians of longitude.
(b) Since K = 0, the Jacobi equation becomes . Hence is

linear in u, and it follows that .

Section 8.4

1. Let E be the due-east unit vector field on the sphere S (undefined at the
poles). If A is the antipodal map, then A*(E) = E, so E transfers to P
via the projection S Æ P. The unique singularity has index 1.

3. The condition implies F(M) = N. If q is in N, then each point of F-1(q)
has a neighborhood mapped diffeomorphically onto a neighborhood of
q. The intersection V of all these neighborhoods of q is evenly covered;
the condition prevents its lifts from meeting.

G u v v ug,( ) = - ( )1 k

GG uu      ( ) = 0
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5. (a) Since covering maps are local diffeomorphisms and T is orientable,
T cannot be covered by a nonorientable surface (Exercise 3 of
Section 4.7). Thus any compact connected covering surface M of T
must also have c(M ) = 0. Hence by Theorem 6.8 of Chapter 7, M
is a torus.

(b) For the usual parametrization of T, let F(x(u, v)) = x(nu, v).

Section 8.5

1. If F: M Æ N is an isometry, define f: I(M) Æ I(N) by f(G) = FGF -1.
Show that f is a homomorphism and is one-to-one and onto.

3. Suppose p π q in M. Then any geodesic segment s from p to q has
nonzero speed, so F(s) is a nonconstant geodesic of N. If F(p) = F(q),
there are two geodesics from this point to the midpoint of F(s).

5. (a) Given points p and q in M, if F and G are isometries such that 
F(p0) = p and G(p0) = q, then the isometry GF-1 carries p to q.

(c) Given frames e1, e2 at p and f1, f2 at q, let F and G be isometries such
that F(p) = p0 and G(q) = p0. By hypothesis, there is an isometry 
H that carries the frame F*(e1), F*(e2) to G*(f1), G*(f2). Then the
isometry G-1HF carries e1, e2 to f1, f2.

7. (a) Since C on R3 is linear, C(-p) = -C(p). Then the mapping {p, -p} 
Æ {C(p), -C(p)} has the required properties.

(b) Because F is a local isometry, any two frames on P can be written
as F*(e) and F*(f), where e and f are frames on S. By Exercise 6
there is an orthogonal transformation C of R3 such that C*(e) = f.
Now use FC = CpF.

9. (a) .
(b) Use Exercise 1. The only derived isometries are those of the form 

F(x(u, v)) = x(±u + a, ±v).
11. Calculate ||F(p)||.

Section 8.6

1. (a) One handle implies c(M ) = 0, but by Gauss-Bonnet, K < 0 implies
c < 0.

(b) By the Gauss-Bonnet formula, the angle sum for a k = -1 rectan-
gle can never be 2p.

3. Only the projective plane satisfies all three axioms; the others fail on
axiom (ii), and S also fails (i).

5. For D, let e1, e2 be the frame at the common vertex of a and b such 
that e1 is tangent to a, and cosJe1 + sinJe2 is tangent to b. Let F be
the isometry carrying the frame e1, e2 to the corresponding frame on D¢.

x u v u v v E F G, , , has( ) = +( ) = = =-sinh , ,1 21 1 0 1
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Section 8.7

1. In the proof of assertion (3) in Lemma 7.4, the Jacobi equation now
reduces to g≤ = 0, so the initial conditions then give g(u) = u.

3. For a point p0 in M, the functions p Æ r(p0, p) and (when relevant) 
p Æ d(p0, p) are both continuous, hence take on maximum values.
Then use the triangle inequality.
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B

Barrier curve, 361 (Ex. 2)
Basis formulas, 269
Bending, 283, 286

helicoid to catenoid, 293 (Ex. 5)
Binormal, 59, 69, 72
Bonnet’s theorem, 438–439
Boundary

of a 2-segment, 176
of a polygonal region, 377

Bounded 198 (Ex. 5), 443, 449 (Ex. 3)
Bracket operation, 208 (Ex. 9)
Bugle surface, 259–260, 262 (Ex. 8), 299–313

C

Canonical isomorphism, 45, 62
Canonical parametrization, 256
Cartan, E., 43, 85, 95
Cartesian product, 200 (Ex. 15)
Catenoid, 254

Gauss map, 308
Gaussian curvature, 254, 256
local isometry onto, 283
as minimal surface, 254–255
total Gaussian curvature, 305–306,

309
Center of curvature, 67 (Ex. 6), 79 

(Ex. 11)
Circle, 61, 65
Clairaut parametrization, 33
Classical geometries, 440

▼

▲
Index
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A

Acceleration of a curve
in R3, 54–55, 70
in a surface, 203, 341

Adapted frame field, 264
Algebraic area, 307–308, 376 (Ex. 8)
All-umbilic surface, 275–276
Alternation rule, 28, 48, 159–160
Angle, 45, 322

coordinate, 224
exterior, 366
interior, 366
oriented, 311
turning, 366

Angle function, 52 (Ex. 12)
along a curve, 311–312
on a surface, 324
slope, 68 (Ex. 6), 351

Antipodal mapping, 173 (Ex. 5), 194
Antipodal points, 194
Arc length, 52–53, 231 (Ex. 5)

parametrization, 53
Area, 297–303
Area form, 301, 312
Area-preserving mapping, 304 (Ex. 6), 313

(Ex. 7)
Associated frame field

of a coordinate patch, 294, 336
of a vector field, 312

Asymptotic curve, 243–244
Asymptotic direction, 242–243
Attitude matrix, 47–48, 91–92



Classification of compact surfaces, 423
nonorientable, 422
orientable, 371

Closed differential form, 164–165
Closed surface in R3, 198 (Ex. 4), 404
Codazzi equations, 267, 272
Column-vector conventions, 105
Compactness, 184
Compact surface, 184–185, 276–277, 280
Complete surface, 350

geodesics, 400
Composite function, 4
Cone, 146 (Ex. 3), 233 (Ex. 13)
Conformal geometric structure, 323, 331
Conformal mapping, 286, 288 (Ex. 8)
Conformal patch, 288 (Ex. 8)
Congruence of curves, 121, 127 (Ex. 5)

determined by curvature and torsion,
121–123, 126

Congruence of surfaces, 314–315
Conjugate point, 405–410
Connected surface, 184, 192 (Ex. 9)
Connection equations

on Euclidean space, 89, 266
on a surface, 267, 38

Connection forms
on Euclidean space, 89
on a surface, 266, 289, 295, 324

Conoid, 251 (Exs. 17, 18)
Consistent formula for a mapping, 174 

(Ex. 13)
Constant curvature surface

flat, 435–437
negative, 437–438
positive, 435
standard, 433

Continuous function, 369, 384
Coordinate angle, 224
Coordinate expression, 149
Coordinate patch, See Patch
Coordinate system on a surface, 165 (Ex. 7),

295
Covariant derivative

Euclidean, 81–84, 121 (Ex. 5)
intrinsic, 337–340, 341
on a patch, 202–203
relation of Euclidean to intrinsic,

343–344
Covariant derivative formula, 93 (Ex. 5), 338
Covering map, 416–417

dent multiplicity, 419–420
Riemannian, 423–424

Covering manifold (surface), 417
Critical point, 28
Cross product, 48–50, 111, 113
Crosscap, 422
Cross-sectional curve, 78 (Exs. 7, 8)
Curvature, See also Gaussian curvature;

Geodesic curvature; Mean curvature
of a curve in R2, 68 (Ex. 8)
or a curve in R3, 58, 69, 72

Curve, 16, 150
closed, 188
coordinate functions, 150,
one-to-one, 21
periodic, 21, 156 (Ex. 2)
regular, 21
in a surface, 150
unparametrized, 21–22

Curve segment, 52–53
minimizing, 389
shortest, 389

Cylinder, 146 (Ex. 4)
geodesics, 246

Cylindrical frame field, 85
connection forms, 92–93
dual 1-forms, 97 (Ex. 3)

Cylindrical helix, 75–76, 78

D

Darboux, G., 85–86
Darboux frame field, 248 (Ex. 7)
Degree of a form, 29
Degree of a mapping, 376 (Ex. 8)
Diffeomorphic surfaces, 169, 371
Diffeomorphism

of Euclidean space, 40
of surfaces, 169,

Differentiability, 4 10 34 150–151
Differential form,

closed, 164–165
exact, 164–165
on a surface, 158–163
on R2, 163
on R3, 22–23, 28–29
pullback of, 171–172

Differential of a function, 25
Dini’s surface, 262
Direction, 209
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Directional derivative, 11–12, 155
computation of, 12, 26

Disk
polar, 414 (Ex. 2)
smooth, 192 (Ex. 6)

Distribution parameter, 249 (Ex. 11)
Domain, 1
Dot product, 43–44, 85, 224

preserved by isometries, 116
Dual 1-forms, 94–95, 266, 289, 297, 324
Dupin curves, 222 (Ex. 5)

E

E, F, G (metric components), 146 (Ex. 2),
224, 234 (Ex. 18), 337 (Ex. 4)

Edge (curve), 177, 369
Efimov’s theorem, 439
Ellipsoid, 148 (Ex. 9)

Euclidean symmetries, 319 (Ex. 8), 427
Gaussian curvature, 236–238
isometry group, 427
umbilics on, 240 (Ex. 7)

Elliptic paraboloid, 149 (Ex. 10), 232 
(Ex. 6)

geodesics, 356–357
Ennepers surface, 250–251 (Exs. 15, 16),

313–314 (Exs. 10, 11)
e-neighborhood, 44
Euclid, 360
Euclidean coordinate functions, 9, 16, 24, 33,

55
Euclidean distance, 44, 50 (Ex. 2), 383 

(Ex. 1), 399 (Ex. 7)
Euclidean geometry, 116–117
Euclidean plane, 5
Euclidean space, 3–5

natural coordinate functions, 4
natural frame field, 9

Euclidean symmetry group, 319 (Ex. 6)
Euclidean vector field, 153, 158 (Ex. 12)
Euler characteristic, 370–371
Euler’s formula, 214
Evolute, 79 (Exs. 17, 18)
Exact differential form, 164–165
Exponential map, 389–390

of the real line, 417
Exterior angle, 366
Exterior derivative, 30, 33 (Ex. 7),

161–163

F

Faces, 369
Fary-Milnor theorem, 81
Fenchel’s theorem, 80 (Ex. 18), 309
Flat surface, 220
Flat torus, 330

imbedded in R4, 430
Focal point, 416–417 (Ex. 6)
Form, See Differential form
Frame, 45
Frame field

adapted, 264
on a curve, 126
on R3, 85
natural, 9
principal, 271
on a surface, 264, 389
transferred, 290–291

Frame-homogeneous surface, 428, 440
Frenet, F., 84
Frenet apparatus, 66 (Ex. 1)

preserved by isometries, 118
for a regular curve, 69
for a unit speed curve, 58–59

Frenet approximation, 63, 68 (Ex. 9)
Frenet formulas, 60, 69, 350
Frenet frame field, 59
Function, 1–2

one-to-one, 2
onto, 2

Fundamental form, 222 (Ex. 4), 329 (Ex. 5)

G

Gauss, K. F., 263
Gauss-Bonnet formula, 367–368
Gauss-Bonnet theorem, 372–375, 378
Gauss equation, 267
Gauss map, 207–208 (Exs. 4–8), 308–309
Gaussian curvature, 216–218, 329, See also

Specific surfaces
formulas for

direct, 216–217, 219–220, 226, 273–274,
296–297, 336–337 (Ex. 9)

indirect, 219, 269–270, 413, 414 (Ex. 2)
and Gauss map, 308
and holonomy, 345 (Ex. 5)
of an implicitly defined surface, 236–237
isometric invariance, 291–292
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Gaussian curvature (continued)
and principal curvatures, 216
sign, 216–218

Geodesic curvature, 248 (Ex. 7), 350
Geodesic lift property, 423
Geodesic polar mapping, 391
Geodesic polar parametrization, 391–393
Geodesics, 245–246, 346, See also Specific

surfaces
broken, 353 (Ex. 7)
closed, 246
coordinate formulas for, 351–352
existence and uniqueness, 348–349
locally minimizing, 405
maximal, 349
minimizing, 394, 397–398
periodic, 246
preserved by (local) isometrics, 293 

(Ex. 1), 425
Geographical patch, 140
Geometric surface, 322. See also Constant

curvature surfaces
inextendible, 403

Gradient, 33 (Ex. 8), 51 (Ex. 11) as normal
vector field, 153

Group, 106
Euclidean, 106 (Ex. 7)
Euclidean symmetry, 319–320
isometry, 427
orthogonal, 106 (Ex. 8)

H

Hadamard’s theorem, 448
Handle, 371
Hausdorff axiom, 192 (Ex. 10), 193, 193

(Ex. 11)
Helicoid, 146 (Ex. 5)

local isometries, 284–286, 294 (Ex. 7)
patch computations, 227–228

Helix, 16, 60–61, 119–120, 124
Hilbert’s lemma, 278
Hilbert’s nonimbedding theorem, 439
Holonomy, 343

angle, 343
Homeomorphic surfaces, 369
Homogeneous surface, 428
Homotopy, 188

free, 191
Hopf’s degree theorem, 379 (Ex. 8)

Hopf-Rinow theorem, 400
Hyperbolic paraboloid, 149 (Ex. 10), 232

(Ex. 6)
Hyperbolic plane, 332–333, 335 (Ex. 4)

completeness, 397
geodesics, 358–359
frame-homogeneity, 364 (Ex. 14), 440

Hyperboloids, 148–149 (Ex. 9), 232 (Ex. 6),
238 (Ex. 1)

I

Identity map, 102
Image, 1
Image curve, 36
Imbedding, 201 (Ex. 16)

isometric, 429
Immersed surface, 201 (Ex. 17)
Immersion, 201 (Ex. 17)

isometric, 429
Improper integral, 303
Index of a singularity, See Singularity
Initial velocity, 22 (Ex. 6)
Inner product, 43, 321–322
Integral curve, 200 (Exs. 13, 14)
Integral of a function on a surface, 303
Integration of differential forms,
1-forms over 1-segments, 174–176,

178–180
of 2-forms over 2-segments, 177
of 2-forms over oriented regions, 303, 303

(Ex. 4)
Interior angle, 366
Intrinsic distance, 281, 287 (Ex. 3), 387 

(Ex. 7)
Intrinsic geometry, 289
Inverse function, 2
Inverse function theorem, 40, 169
Isometric imbedding, 429
Isometric immersion, 429
Isometric invariant, 289, 321
Isometric surfaces, 283
Isometry of Euclidean space, 100

decomposition theorem, 105
determined by frames, 109–110
tangent map, 107–108

Isometry group, See also Euclidean
symmetry group

of Euclidean space, 107 (Ex. 7)
of a geometric surface, 426
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Isometry of surfaces, 282
and Euclidean isometries, 314–316

Isothermal coordinates, 297 (Ex. 2)

J

J (rotation operator), 79 (Ex. 12), 311, 327
(Ex. 3)

Jacobi equation, 409–410
Jacobian (determinant), 156 (Ex. 3), 161,

306, 312 (Ex. 1)
Jacobian matrix, 40
Jacobi’s theorem, 407
Jordan curve theorem, 352

K

Klein bottle, 436
Kronecker delta, 25

L

L, M, N, 228, 230, 234 (Ex. 18)
Lagrange identity, 222 (Ex. 6)
Law of cosines, 441 (Ex. 4)
Leibnizian property, 14
Length

of a curve segment, See Arc length
of a vector, 322. See also Norm

Liebmann’s theorem, 280
Line of curvature, See Principal curve
Line-element, 328 (Ex. 5)
Liouville parametrization, 364 

(Ex. 13)
Liouville’s formula, 403
Local diffeomorphism, 173 (Ex. 6)
Local isometry, 283–284, 426

criteria for, 284
determined by differential map, 426

Local minimization of arc length, 405–407,
408

Loop, 188–189
Loxodrome, 234 (Ex. 16)

M

Manifold, 196, 201, 326
Mapping of Euclidean spaces, 34–35

of surfaces, 166–167
Massey, W. S., 404

Mean curvature, 216, 217–218, 221 (Ex. 3),
226, 237, 269–270

Mercator projection, 286 (Ex. 13)
Metric tensor, 322

components of, See E, F, G
coordinate description, 324, 328 (Ex. 4)
induced, 323

Milnor, T. K., 439
Minding’s theorem, 416 (Ex. 8)
Minimal surface, 221

examples, 255. See also Enneper’s surface;
Scherk’s surface

Gauss map, 313 (Ex. 9)
ruled, 251–252 (Ex. 19)
as surface of revolution, 255

Minimization of arc length, 389
local, 405

Möbius band, 1871, 198–199 (Exs. 8–10)
complete and flat, 436

Monge patch, 133, 229 (Exs. 2, 3)
Monkey saddle, 137, 218, 314 (Ex. 13)

Gaussian curvature, 230 (Ex. 7)

N

Natural coordinate functions, 4
Natural frame field, 9
Neighborhood, 44, 131. See also Open set

normal, 390
Norm, 44, 45, 85
Normal coordinates, 398 (Ex. 2)
Normal curvature, 209–212, 232 (Ex. 11)
Normal plane, 69 (Ex. 9)
Normal section, 210–211
Normal vector field, 153–154

O

One-to-one, 2
Onto, 2
Open interval, 16–17
Open set

in Euclidean space, 5, 44
in a surface, 158, 192

Orientable surface, 186–187, 198 (Ex. 7),
301

Orientation
determined by an area form, 301
determined by a unit normal, 186, 203,

208
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Orientation (continued)
of frames, 110, 311
of a patch, 301–303
of a paving, 302–303
of a region, 208

Orientation of a tangent frame fields
opposite, 324–3025
same, 324–325

Orientation covering surface, 198 (Exs. 6, 7),
423

Orientation-preserving (-reversing) 
isometry, 112, 115, 116, (Ex. 6),
306

Orientation-preserving (-reversing)
reparametrization of a curve, 54,
180–181

monotone, 57 (Ex. 7)
Oriented angle, 311–312
Oriented boundary, 177–178, 377
Orthogonal coordinates, 295–296

Gaussian curvature formula in, 296
Orthogonal matrix, 48
Orthogonal transformation, 102, 104
Orthogonal vectors, 45, 65–66, 322
Orthonormal expansion, 47
Orthonormal frame, See Frame
Osculating circle, 67 (Ex. 6)
Osculating plane, 63, 68 (Ex. 9)
Osserman, R., 314

P

Paraboloid, See Elliptic paraboloid
Parallel curves, 58 (Ex. 10), 69 (Ex. 11)
Parallel postulate, 360–361
Parallel surfaces, 223 (Ex. 7)
Parallel translation, 342
Parallel vector field, 56, 341–342
Parallel vectors in Euclidean space, 6
Parameter curves, 143
Parametrization

of a curve, 22
of a surface, 142–143
decomposable into patches, 173 (Ex. 7)

Partial velocities, 140, 141, 153, 168–169
Patch, 130

abstract, 193
geometric computations in, 224–226
Monge, 133
orthogonal, 232 (Ex. 8), 294

principal, 233 (Ex. 8), 293 (Ex. 3)
proper, 131, 136, 158 (Ex. 14)

Patchlike 2-segment, 297
Paving, 300, 302–303
Planar point, 218
Plane curvature, 68 (Ex. 8), 79 (Ex. 12)
Plane curve, 63

Frenet apparatus, 68 (Ex. 8)
Plane in R3, 62, 137 (Ex. 2), 245, 274–275

identified with R2, 132
Poincaré, H., 376
Poincaré half-plane, 327 (Ex. 2), 399 

(Ex. 8)
geodesics, 361 (Ex. 1)
isometric to hyperbolic plane, 362–363

(Ex. 8)
Poincaré-Hopf theorem, 381–382, 422
Poincaré’s lemma, 189
Point of application, 6
Pointwise principle, 9
Polar circle, 392
Polarization, 103–104, 328 (Ex. 5)
Polygonal decomposition, 370
Polygonal region, 376

boundary segment, 376
Pregeodesic, 352
Principal curvatures, 212

as eigenvalues, 213
formula for, 214, 220

Principal curve, 240–241, 247–249
Principal direction, 212
Principal frame field, 271–272
Principal normal, 59, 69, 72, 350
Principal vectors, 212, 232 (Ex. 9)

as eigenvectors, 213
Projective plane, 194–195, 334

frame-homogeneity, 432 (Ex. 7)
geodesics, 352–353 (Ex. 6)
isometric imbedding of, 432 (Ex. 10)
topological properties, 197 (Ex. 2)

Pseudosphere, See Bugle surface
Pullback

of a form, 170–171
of a metric, 323

Push forward of a metric, 333

Q

Quadratic approximation, 214–215
Quadric surface, 148
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R

Rectangular decomposition, 369
Rectifying plane, 68 (Ex. 9)
Reflection, 113
Regular curve, 22
Regular mapping, 39, 169
Reparametrization of a curve, 19–20

monotone, 57 (Ex. 7)
orientation-preserving, 54
orientation-reversing, 54
unit-speed, 53

Riemann, B., 321, 360
Riemannian geometry, 326
Riemannian manifold, 326
Rigid motion, See Isometry of Euclidean

space
Rigidity, 318 (Ex. 1)
Rotation, 101, 113, 115 (Ex. 4), 116 (Ex. 6)
Ruled surface, 145, 233 (Ex. 12), 244, 313

(Ex. 8)
flat, 233 (Ex. 13)
noncylindrical, 249–250 (Exs. 11–13)

Ruler function, 323
Ruling, 145

S

Saddle surface, 147 (Ex. 6)
Euclidean symmetries, 319 (Ex. 7)
Gauss map, 314 (Ex. 12)
patch computations, 229–230

Scalar multiplication, 8, 9
Scale change, 336 (Ex. 7)
Scale factor, 286
Scherk’s surface, 239 (Ex. 5)

Gauss map, 313 (Ex. 9)
Schwarz inequality, 45, 322
Serret, J. A., 84
Shape operator, 203–204

characteristic polynomial, 221 (Ex. 4)
and covariant derivative, 344
and Gauss map, 308–309
and Gaussian and mean curvature, 216
and normal curvature, 209
preserved by Euclidean isometries,

314–315
and principal curvatures and vectors, 213
proof of symmetry, 226–227, 269 (Ex. 3)
in terms of a frame field, 266

Shortest curve segment, 389

Sign of an isometry, 109
Simply connected surface, 188
Singularity, 380, 385 (Ex. 10)

index, 380, 385 (Ex. 9)
isolated, 380
removable, 384
sources and sinks, 380, 381

Slant of a geodesic, 354
Smooth disk, 192 (Ex. 5)
Smooth function, 4
Smooth overlap, 151–152, 194
Speed of a curve, 52
Sphere, 133

conjugate points, 407, 410
Euclidean symmetries, 319 (Ex. 4), 432

(Ex. 6)
Euler characteristic, 370–371
frame-homogeneity, 432 (Ex. 6), 440
Gaussian curvature, 221, 231 (Ex. 1),

270
geodesics, 245, 396–397
geographical patch, 140
computations, 230 (Ex. 1), 296
geometric characterizations, 275, 276, 280
holonomy, 343
isometries, 319 (Ex. 4)
rigidity, 318 (Ex. 1)
shape operator, 202–203
topological properties, 184, 188, 189

Sphere with handles, 371
Spherical curve, 66, 68 (Ex. 10), 81(Ex. 20)
Spherical frame field, 87, 97

adapted to sphere, 267–268
dual and connection forms, 97

Spherical image
of a curve, 74–75
of a surface, See Gauss map

Standard constant curvature surface, 433,
435

Stereographic plane, 331
Stereographic projection, 167, 169–170, 173

(Ex. 12)
as conformal mapping, 288 (Ex. 14)

Stereographic sphere, 331–332
Stokes’ theorem, 178–179, 183 (Ex. 13), 377
Straight line, 16, 58 (Ex. 11)

length-minimizing properties, 58 (Ex. 11)
Structural equations on R3, 95–96

on a surface, 267, 270, 329, 330
Support function, 238
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Surface
abstract, 195–196
geometric, 322
immersed, 201 (Ex. 16)
in Rn, 335
in R3, 131, 429

implicit definition, 133–134
simple, 133, 172 (Ex. 3)

Surface of revolution, 135, 243–253
area, 303 (Ex. 2)
augmented, 138 (Ex. 12)
of constant curvature, 257–259, 261–262

(Ex. 7)
diffeomorphism types, 191 (Ex. 5)
Gaussian curvature, 253, 256
geodesics, 3622 (Ex. 4)
local characterization, 288 (Ex. 12)
meridians and parallels, 135–136
parametrization canonical, 256

special, 148 (Ex. 8)
usual, 143–144

patch computations, 239–240
principal curvatures, 253
principal curves, 242, 239–240
profile curve, 135
total Gaussian curvature, 312–313 (Exs. 5,

6)
twisted, 262

Symmetry equation, 267

T

Tangent bundle, 196–197
Tangent direction, 209–210
Tangent line, 23 (Ex. 9), 63
Tangent map, 37, 40 (Ex. 9)

of a Euclidean isometry, 107–109
of a mapping of surfaces 168–169, 173

(Exs. 9, 10), 426
of a patch, 156 (Ex. 4)

Tangent plane, 152–153
Euclidean, 157 (Ex. 9)

Tangent space, 7
Tangent surface, 233 (Ex. 13), 335

local isometries, 287 (Ex. 5)
Tangent vector,

to R3, 6, 15,
to a surface, 152

Theorema egregium, 291–293, 329
3-curve, 17, 73–74

Topological invariants (properties), 184–191,
370

Torsion of a curve, 60, 69, 72
formula for,72
sign, 119

Torus of revolution, 144. See also Flat torus
Euler characteristic, 370
Gauss map, 308
Gaussian curvature, 217–218, 254
patch computations, 254–255
total Gaussian curvature, 305, 309–310
usual parametrization, 144–145

Total curvature of a curve in R3, 80 (Ex. 17)
Total Gaussian curvature, 304, 309–310

and Euler characteristic, 372
and Gauss map, 309–310

Total geodesic curvature, 364–366
Total rotation, 380
Transferred frame field, 290–291
Translation of Euclidean space, 100–101, 113
Trefoil knot, 80–81 (Ex. 19), 235 (Ex. 21)
Triangle, 378–379, 441 (Ex. 4)
Triangle inequality, 286 (Ex. 3)
Triangulation, 370
Triple scalar product, 4850
Tube, 234 (Ex. 17), 235 (Ex. 21)

2-segment, 176–177

U

Umbilic point, 212–213, 233 (Exs. 14, 15).
See also All-umbilic surface

Unit normal function, 225–226
Unit normal vector field, 186, 203
Unit points, 36
Unit-speed curve, 53
Unit sphere, 131–132
Unit tangent, 58, 69, 72–73
Unit vector, 45

V

Vector, See Tangent vector
Vector analysis, 33 (Ex. 8)
Vector field

on an abstract surface, 195
on a curve, 54, 332–333
on Euclidean space, 8
on a surface in R3, 153,
in terms of a patch, 158 (Ex. 12)
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normal, 153–154
tangent, 153

Vector part, 6
Velocity (vector), 18, 195
Vertices, 366
Volume element, 33 (Ex. 6)

W

Wedge product, 29–30, 160
Winding line on torus, 158 (Ex. 11)
Winding number, 181 (Exs. 5, 6), 191–192,

385–386

Index 503


	Contents
	Preface to the Revised Second Edition�
	Introduction
	1. Calculus on Euclidean Space�
	1.1. Euclidean Space �
	1.2. Tangent Vectors �
	1.3. Directional Derivatives �
	1.4. Curves in R^3 �
	1.5. 1-Forms �
	1.6. Differential Forms �
	1.7. Mappings �
	1.8. Summary �

	2. Frame Fields�
	2.1. Dot Product �
	2.2. Curves �
	2.3. The Frenet Formulas �
	2.4. Arbitrary-Speed Curves �
	2.5. Covariant Derivatives �
	2.6. Frame Fields �
	2.7. Connection Forms �
	2.8. The Structural Equations �
	2.9. Summary �

	3. Euclidean Geometry�
	3.1. Isometries of R^3 �
	3.2. The Tangent Map of an Isometry �
	3.3. Orientation �
	3.4. Euclidean Geometry �
	3.5. Congruence of Curves �
	3.6. Summary �

	4. Calculus on a Surface�
	4.1. Surfaces in R^3 �
	4.2. Patch Computations �
	4.3. Differentiable Functions and Tangent Vectors �
	4.4. Differential Forms on a Surface �
	4.5. Mappings of Surfaces �
	4.6. Integration of Forms �
	4.7. Topological Properties of Surfaces �
	4.8. Manifolds �
	4.9. Summary �

	5. Shape Operators�
	5.1. The Shape Operator of M R^3 �
	5.2. Normal Curvature �
	5.3. Gaussian Curvature �
	5.4. Computational Techniques �
	5.5. The Implicit Case �
	5.6. Special Curves in a Surface �
	5.7. Surfaces of Revolution �
	5.8. Summary �

	6. Geometry of Surfaces in R^3�
	6.1. The Fundamental Equations �
	6.2. Form Computations �
	6.3. Some Global Theorems �
	6.4. Isometries and Local Isometries �
	6.5. Intrinsic Geometry of Surfaces in R3 �
	6.6. Orthogonal Coordinates �
	6.7. Integration and Orientation �
	6.8. Total Curvature �
	6.9. Congruence of Surfaces �
	6.10. Summary �

	7. Riemannian Geometry�
	7.1. Geometric Surfaces �
	7.2. Gaussian Curvature �
	7.3. Covariant Derivative �
	7.4. Geodesics �
	7.5. Clairaut Parametrizations �
	7.6. The Gauss-Bonnet Theorem �
	7.7. Applications of Gauss-Bonnet �
	7.8. Summary �

	8. Global Structure of Surfaces�
	8.1. Length-Minimizing Properties of Geodesics �
	8.2. Complete Surfaces �
	8.3. Curvature and Conjugate Points �
	8.4. Covering Surfaces �
	8.5. Mappings That Preserve Inner Products �
	8.6. Surfaces of Constant Curvature �
	8.7. Theorems of Bonnet and Hadamard �
	8.8. Summary �

	Appendix: Computer Formulas �
	Bibliography �
	Answers to Odd-Numbered Exercises �
	Index �



