NOTE ON EMBEDDED SURFACES

BY

T. J. WILLMORE University of Liverpool, England

Dedicated to Professor Octav Mayer on his 70-th birthday

1. Introduction. Let S be a closed orientable surface, differentiable of class C^{∞} , and let $f: S \to E^3$ be a C^{∞} -embedding of S into euclidean space of three dimensions. The euclidean metric of E^3 induces a riemannian structure on f(S). Let K be the Gaussian curvature at $P \in f(S)$. Then the theorem of Gauss-Bonnet states that

(1)
$$\frac{1}{2\pi} \int_{f(S)} K dS = \chi(S),$$

where the right-hand member of (1) is the Euler characteristic of S. Thus the left-hand member of (1) is independent of the particular embedding f.

In this Note we consider an expression analogous to the left-hand member of (1) in which the curvature K is replaced by the square of the mean curvature H of f(S) considered as a hypersurface of E^3 . In particular we define $\tau(f)$ by

(2)
$$\tau(f) = \frac{1}{2\pi} \int_{f(S)} H^2 dS.$$

Evidently we cannot expect $\tau(f)$ to be a topological invariant of S; however, if we define $\tau(S)$ by

(3)
$$\tau(S) = \inf_{f \in \mathcal{I}} \tau(f)$$

where the infimum is taken over the space \mathcal{J} of all C^{∞} -embeddings of

S in E^3 , it is clear that $\tau(S)$ will be a topological invariant of S. The problem raised in this Note is to find the relation between $\tau(S)$ and $\chi(S)$. We show that for surfaces of genus 0 we have $\tau(S) = \chi(S)$, and incidentally we obtain a characterisation of the euclidean sphere. However this simple relation cannot hold for surfaces of genus $p \ge 1$ and the corresponding problem remains unsolved.

2. Surfaces of genus 0. We prove the following Theorem 1. Let S have genus 0. Then for all $f \in \mathcal{F}$ we have

$$(4) 2 \leq \tau(f).$$

Moreover $\tau(f) = 2$ if and only if f(S) is a euclidean sphere.

Let r_1, r_2 denote the principal curvatures at $P \in f(S)$ so that

$$(5) K = r_1 r_2$$

and

(6)
$$H = \frac{1}{2}(r_1 + r_2).$$

Since

(7)
$$H^2 = K + \frac{1}{4}(r_1 - r_2)^2,$$

we have

$$\tau(f) = \frac{1}{2\pi} \int_{f(S)} K dS + \frac{1}{8\pi} \int_{f(S)} (r_1 - r_2 d)^2 S,$$

that is,

(8)
$$\tau(f) = \chi(S) + \frac{1}{8\pi} \int_{f(S)} (r_1 - r_2)^2 dS,$$

where we have used (1). It follows immediately that $\tau(f) \ge \chi(S)$; since S has genus 0 we have $\chi(S) = 2$, and equation (4) follows.

Moreover, if $\tau(f) = 2$, then from (8) it follows that $r_1 = r_2$ at each point $P \in f(S)$. Thus every point of f(S) is an umbilic and hence f(S) is a euclidean sphere [see, for example, [3] page 128]. This completes the proof of theorem 1.

We note that $\inf \tau(f) = 2$, so that in this case we have

$$\tau(S) = \chi(S),$$

and there exists an embedding in which the infimum is attained.

Some information about an upper bound for $\tau(f)$ may be obtained from an early result of H. Weyl [2], also subsequently obtained by S. S. Chern in [1]. The result in question states that the square of the mean curvature H of a convex surface satisfies the inequality

$$(10) H^2 \leq M$$

where

(11)
$$M = \sup_{R \in I(S)} \left(K - \frac{\Delta K}{K} \right).$$

By use of this result we have

Theorem 2. Let f(S) be a convex surface with surface area V. Then

$$(12) 2 \leq \tau(f) \leq \frac{MV}{2\pi}.$$

3. Surfaces of genus 1. Let us consider the anchor ring f(T) given by

(13)
$$x = (a + b\cos u)\cos v, y = (a + b\cos u)\sin v, z = b\sin u.$$

The first fundamental coefficients are given by

(14)
$$E = b^2$$
, $F = 0$, $G = (a + b \cos u)^3$.

The second fundamental coefficients are given by

(15)
$$L = b, M = 0, N = (a + b \cos u) \cos u.$$

The mean curvature is given by

(16)
$$H = \frac{a + 2b\cos u}{2b(a + b\cos u)}.$$

Then we have

(17)
$$\tau(f) = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} H^{2}b(a+b\cos u) du dv.$$

After some computation we find, on writing b/a = c, that

(18)
$$\tau(f) = \frac{\pi}{2 c \sqrt{1 - c^2}}$$

It is easy to see that $\tau(f) \to \infty$ both as $c \to 0$ and as $c \to 1$.

The minimum value of (f) occurs when $c = 1/\sqrt{2}$, when the value of $\tau(f)$ is π .

It seems reasonable to interpret $\tau(f)$ as a measure of the "niceness" of the shape of the surface f(S), and to argue heuristically that a small value of $\tau(f)$ corresponds to a simple shape for f(S). This suggests that (13) with $b/a = 1/\sqrt{2}$ gives the nicest shape for an embedded torus. However, whether or not $\tau(T) = \pi$ remains an open question. The problem for surfaces of genus $p \ge 2$ remains unsolved.

REFERENCES

- 1. Chern S. S. Duke Math. Journ. 12, (1945), 279-290.
- 2. Weyl H. Vierteljahrschrift der naturforschenden Gesellschaft in Zürich, Jahrgang 61, (1916), 40-72.
- 3. Willmore, T. J. Introduction to Differential Geometry, Clarendon, Oxford, (1959), 128.

ASUPRA SUPRAFETELOR SCUFUNDATE

Rezumat

Fie S o suprafață închisă, orientabilă, de clasă C^{∞} şi $f: S \rightarrow E^3$ o scufundare a ei în spațiul euclidian E^3 . Are loc formula (1) în care $\chi(S)$ este caracteristica lui Euler a suprafeței S. Egalitatea (1) arată că $\frac{1}{2\pi} \int K dS$ este un invariant topologic al suprafeței. În § 1 autorul definește

un nou invariant topologic folosind curbura medie, H, a acesteia. Fie $\tau(f)$ dat de (2) și $\tau(S) = \inf_{f \in \mathcal{I}} \tau(f)$ (\mathcal{F} fiind spațiul funcțiilor C^{∞} al scufundărilor

lui S în E^3). $\tau(S)$ este un invariant topologic al suprafeței. Problema stabilirii relației dintre $\chi(S)$ și $\tau(S)$ este rezolvată în § 2 numai pentru cazul cînd S este de gen zero. In § 3 sînt date cîteva exemple, Problema rămîne deschisă în cazul general.

о погруженных поверхностях

Краткое содержание

Пусть S замкнутая, ориентированная поверхность, класса C^{∞} и пусть $f: S \to E^3$ её погружение в эвклидовом пространстве E^3 . Имеет место формула (1) где $\chi(S)$ характеристика Эйлера поверхности S.

Равенство (1) показывает что $\frac{1}{2\pi} \int_{S} K dS$ — топологический инвариант

поверхности. В § 1 автор определяет новый инвариант поверхности При помощи средней кривизны её. Пусть τ (f) данный формулой (2) н τ (S) = $\inf \tau$ (f) (где f пространство функции C^{∞} определяющих поружения S в E^3). Задача нахождения соотношений между χ (S) и τ (S) решена в § 2 только для поверхностей нулевого рода. В § 3 даны некоторые примеры. Задача нерешена в общем случае.