RIEMANNIAN GEOMETRY
 EXCERCISE 1

1. (i) An immersion $f: N \rightarrow \mathbb{R}^{n+1}$ of an n dimensional smooth manifold into \mathbb{R}^{n+1} is called a hypersurface. Suppose f can be expressed locally in a coordinate neighborhood (U, u^{1}, \ldots, u^{n}) as

$$
x^{k}=f^{k}\left(u^{1}, \ldots, u^{n}\right), \quad 1 \leq k \leq n+1
$$

where $\left(x^{1}, \ldots, x^{n+1}\right)$ are the coordinates in \mathbb{R}^{n+1}. Let g_{0} be the standard Eulidean metric on \mathbb{R}^{n+1}. Show

$$
\left(f^{*} g_{0}\right)_{\mid U}=\sum_{k, i, j} \frac{\partial f^{k}}{\partial u^{i}} \frac{\partial f^{k}}{\partial u^{j}} d u^{i} \otimes d u^{j}
$$

(ii) Consider the unit sphere $S^{n} \subset \mathbb{R}^{n+1}$. Consider the coordinate neighborhood $\left(U, y^{1}, \ldots, y^{n}\right)$ where

$$
U:=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1}: x^{n+1} \neq 1\right\}
$$

and

$$
\left(y^{1}, \ldots, y^{n}\right):=\left(\frac{x^{1}}{1-x^{n+1}}, \ldots, \frac{x^{n}}{1-x^{n+1}}\right)
$$

Prove the induced metric on S^{n} in $\left(U, y^{1}, \ldots, y^{n}\right)$ is

$$
\frac{4}{\left(1+|y|^{2}\right)^{2}} \sum_{i=1}^{n} d y^{i} \otimes d y^{i}
$$

2. (i) On $\mathbb{R}^{2} \backslash\{$ half line $\}$ we have polar coordinates (r, θ). In these coordinates, compute the Riemannian metric on it induced from the Euclidean metric on \mathbb{R}^{2}.
(ii) A surface of revolution consists of a profile curve

$$
c(t)=(r(t), 0, z(t)): I \rightarrow \mathbb{R}^{3},
$$

where $I \subset \mathbb{R}$ is open and $r(t)>0$ for all t. By rotating this curve around the z-axis, we get a surface that can be represented as

$$
(t, \theta) \rightarrow f(t, \theta)=(r(t) \cos \theta, r(t) \sin \theta, z(t))
$$

Suppose the curve $c(t)$ is parametrized by arc length. Compute the Riemannain metric of this surface, in the above coordinate, from the Euclidean metric on \mathbb{R}^{2}. (iii) The unit sphere $S^{2} \subset \mathbb{R}^{3}$ can be though of as a surface of revolution by revolving

$$
t \rightarrow R\left(\sin \left(\frac{t}{R}\right), 0, \cos \left(\frac{t}{R}\right)\right)
$$

Use (ii) to derive the induced metric.
(iv)Consider the surface of revolution produced by the profile curve

$$
t \rightarrow R\left(\sinh \left(\frac{t}{R}\right), 0, \cosh \left(\frac{t}{R}\right)\right)
$$

Compute the metric induced from $\left(\mathbb{R}^{3}, d x \otimes d x+d y \otimes d y-d z \otimes d z\right)$.
3. (Christoffel symbols) Let $\left(U, x=\left(x^{1}, \ldots, x^{n}\right)\right)$ be a chart of a Riemannian manifold M. Let

$$
\begin{equation*}
\left(x^{1}, \ldots, x^{n}\right) \rightarrow\left(y^{1}, \ldots, y^{n}\right) \tag{0.1}
\end{equation*}
$$

be a smooth coordinate change, and the Riemannian metric can be written as

$$
g_{i j}(x) d x^{i} \otimes d x^{j} \text { and } h_{\alpha \beta}(y) d y^{\alpha} \otimes d y^{\beta}
$$

respectively.
(i) Show the transformation formula of $g^{i j}$ under the coordinate change 0.1 is

$$
g^{i j}(x)=h^{\alpha \beta}(y(x)) \frac{\partial x^{i}}{\partial y^{\alpha}} \frac{\partial x^{j}}{\partial y^{\beta}}
$$

(ii) Compute the transformation formulae of the Christoffel symbols $\Gamma_{j k}^{i}$ under the coordinate change 0.1). Do they define a tensor?
(iii) Let $\gamma:[a, b] \rightarrow U$ be a smooth curve. Denote $\dot{x}^{i}(t):=\frac{d}{d t} x^{i}(\gamma(t))$. Compute the transformation formula of

$$
\ddot{x}^{i}(t)+\Gamma_{j k}^{i}(x(t)) \dot{x}^{j}(t) \dot{x}^{k}(t)
$$

under the coordinate change 0.1 .

