RIEMANNIAN GEOMETRY EXCERCISE 2

1. (Lobatchevski plane) Let M be the upper half-plane $\{(x,y)\in\mathbb{R}^2:y>0\}$, with the Riemannian metric

$$\frac{1}{y^2}(dx\otimes dx + dy\otimes dy).$$

- (i) Compute the Christoffel symbols and write down the system of differential equations satisfied by the geodesics.
- (ii) Prove that the curves $\gamma:(0,+\infty)\to M,\ t\mapsto (x_0,e^{ct}),$ where $x_0\in\mathbb{R},\ c>0,$ are geodesics.
- (iii) Let $0 < a < b < +\infty$. Let γ be as in (ii) and $\sigma : [a, b] \to M$ be a piecewise smooth curve connecting $\gamma(a)$ and $\gamma(b)$. Prove that

$$\operatorname{Length}(\sigma_{|[a,b]}) \geq \operatorname{Length}(\gamma_{|[a,b]}).$$

Characterize the cases when the equality holds.

- (iv) At $p = (0,1) \in M$, compute $\exp_p((0,\eta))$, where $(0,\eta) \in T_pM$ (we identify T_pM with \mathbb{R}^2 here); Recall the map $d\exp_p((0,\eta)): T_{(0,\eta)}(T_pM) \to T_pM$. For $(0,1) \in T_{(0,\eta)}(T_pM)$, compute $d\exp_p((0,\eta))((0,1))$.
- (v) Prove that the transformation

$$z \rightarrow \frac{az+b}{cz+d}, \ z=x+iy, ad-bc=1,$$

is an isometry of M.

- (vi) Use (ii) and (v) to deduce the that the upper unit semicircle are geodesics.
- 2. (Geodesics on $P^n(\mathbb{R})$)
 - (i) Prove that the antipodal mapping $A: S^n \to S^n$ given by A(p) = -p is an isometry of S^n .
- (ii) Introduce a Riemannian metric on the real projective space $P^n(\mathbb{R})$ such that the natural projection $\pi: S^n \to P^n(\mathbb{R})$ is a local isometry.
- (iii) Show that the geodesics of $P^n(\mathbb{R})$ are periodic with period π .
- 3. Assume that (M, g) has the property that all normal geodesics exist for a fixed time $\epsilon > 0$. Show that (M, g) is geodesically complete.
- 4. Let (M,g) be a metrically complete Riemannian manifold and \tilde{g} is another metric on M such that $\tilde{g} \geq g$. Show that (M,\tilde{g}) is also metrically complete.
- 5. Let (M, g) be a Riemannian manifold which admits a proper Lipschitz function $f: M \to \mathbb{R}$. Show that (M, g) is complete. (Recall that a function between topological spaces is called proper if inverse images of compact subsets are compact.)