HOMEWORK 1: DIFFERENTIAL MANIFOLDS AND RIEMANNIAN METRICS

RIEMANNIAN GEOMETRY, SPRING 2020

1. (Tangent bundles)

Let M be an n dimensional manifold and let $TM = \{(p, v) : p \in M, v \in T_pM\}$. Let $\{U_{\alpha}, x_{\alpha}\}_{\alpha \in A}$ be an atlas of M. For any $\alpha \in A$, denote by

$$X_{\alpha} := \{ (p, v) : p \in U_{\alpha}, v \in T_p M \}$$

a subset of TM and assign a topology τ_{α} to it such that the following map is a homeomorphism:

$$\phi_{\alpha}: \ x_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow X_{\alpha},$$
$$(x_{\alpha}(p), (v^{1}, \dots, v^{n})) \mapsto (p, v^{i} \frac{\partial}{\partial x_{\alpha}^{i}}).$$

(i) Show that there exists a topology τ on TM such that τ induces upon each X_{α} the topology τ_{α} and TM together with the topology τ is a 2n dimensional manifold.

(ii) Suppose further that M is a differentiable manifold with $\{U_{\alpha}, x_{\alpha}\}$ being a differentiable atlas. Show that TM (with the above topology τ) admits a differentiable structure.

Hint: You are allowed to use the following theorem about gluing topological spaces:

Theorem 0.1. Let X be a set. Let $\{X_i\}$ be a collection of subsets whose union is X. Suppose on each X_i , there is a topology τ_i , and that τ_i 's are compatible in the following sense: $X_i \cap X_j$ is open in each X_i and X_j , and the induced topologies on $X_i \cap X_j$ from both X_i and X_j coincide. Then there exists a unique topology on X that induces upon each X_i the topology τ_i .

2. (Riemannian measure)

Let (M, g) be an *n* dimensional Riemannian manifold. Recall that we have defined the following positive linear functional Λ on $C_0^0(M)$:

$$\Lambda f := \sum_{\alpha} \int_{x_{\alpha}(U_{\alpha})} \phi_{\alpha} \circ x_{\alpha}^{-1} \cdot f \circ x_{\alpha}^{-1} \sqrt{\det(g_{ij}^{x_{\alpha}})} \ dx_{\alpha}^{1} \cdots dx_{\alpha}^{n},$$

where $\{U_{\alpha}, x_{\alpha}\}$ is an locally finite atlas and $\{\phi_{\alpha}\}$ is a *partition of unity* subordinate to it, $g_{ij}^{x_{\alpha}} = g(\frac{\partial}{\partial x_{\alpha}^{i}}, \frac{\partial}{\partial x_{\alpha}^{j}})$.

We define a nonnegative function μ on the set of all subsets of M as below: Define for every open set $U \subset M$

$$\mu(U) := \sup \left\{ \Lambda f : f \in C_0^0(M), 0 \le f \le 1, \operatorname{supp}(f) \subset U \right\},$$

and then define for any subset $E \subset M$

$$\mu(E) := \inf \left\{ \mu(U) : E \subset U, U \text{ is open} \right\}$$

Consider the following particular class of subsets as a candidate for a σ -algebra:

 $\mathfrak{M} := \{ E \subset M : E \cap K \in \mathfrak{M}_F \text{ for any compact subset } K \},\$

where

$$\mathfrak{M}_F := \{ E \subset M : \mu(E) < \infty, \mu(E) = \sup\{\mu(K) : K \subset E, K \text{ is compact}\} \}$$

Prove that \mathfrak{M} is indeed a σ -algebra and contains all Borel sets in M and μ is a regular measure on \mathfrak{M} .

Hint: In fact, you are asked here to prove the *Riesz Representation Theorem* on a locally compact, σ -compact, Hausdorff topological space. You can read, for example, the Chapter Two of Rudin's book "*Real and Complex analysis*" for a proof.

3. (Spheres)

The sphere

$$S^{n} := \left\{ (x^{1}, \dots, x^{n}, x^{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} (x^{i})^{2} = 1 \right\}$$

is a manifold with the following atlas $\{U_{\alpha}, y_{\alpha}\}_{\alpha \in \{1,2\}}$:

$$U_1 := S^n \setminus \{(0, \dots, 0, 1)\} \longrightarrow \mathbb{R}^n,$$

$$(x^1, \dots, x^n, x^{n+1}) \mapsto (y_1^1, \dots, y_1^n) := \left(\frac{x^1}{1 - x^{n+1}}, \dots, \frac{x^n}{1 - x^{n+1}}\right).$$

and

 y_1 :

$$y_2: \quad U_2 := S^n \setminus \{(0, \dots, 0, -1)\} \longrightarrow \mathbb{R}^n,$$
$$(x^1, \dots, x^n, x^{n+1}) \mapsto (y_2^1, \dots, y_2^n) := \left(\frac{x^1}{1 + x^{n+1}}, \dots, \frac{x^n}{1 + x^{n+1}}\right).$$

(i) Prove that the above atlas $\{U_{\alpha}, y_{\alpha}\}_{\alpha \in \{1,2\}}$ is differentiable.

(ii) Let g be the induced metric of S^n from the standard Euclidean metric of \mathbb{R}^{n+1} . Prove that in each chart U_{α} , the metric matrix $\left(g_{ij}^{y_{\alpha}}\right)$ is given by

$$g_{ij}^{y_{\alpha}} = \frac{4}{(1 + \sum_{i=1}^{n} (y_{\alpha}^{i})^{2})^{2}} \delta_{ij}.$$

(iii) Let μ be the Riemannian measure of (S^n, g) defined in Problem 2. Compute $\mu(S^n)$.

4. (Hyperbolic spaces)

The **hyperboloid** is

$$H^{n} := \left\{ (x^{1}, \dots, x^{n}, x^{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} (x^{i})^{2} - (x^{n+1})^{2} = -1, x^{n+1} > 0 \right\}.$$

Consider the following map

$$y: \quad H^n \longrightarrow B_1(0) := \left\{ (y^1, \dots, y^n) \in \mathbb{R}^n : \sum_{i=1}^n (y^i)^2 < 1 \right\} \subset \mathbb{R}^n,$$
$$(x^1, \dots, x^n, x^{n+1}) \mapsto (y^1, \dots, y^n) := \left(\frac{x^1}{1+x^{n+1}}, \dots, \frac{x^n}{1+x^{n+1}}\right).$$

(i) Prove that the above map y is a diffeomorphism between H^n and $B_1(0)$. Therefore, $\{H^n, y\}$ is a differentiable atlas of H^n .

(ii) Let g be the Riemannian metric of H^n induced from \mathbb{R}^{n+1} assigned with the Lorentz metric:

$$g_L = dx^1 \otimes dx^1 + \dots + dx^n \otimes dx^n - dx^{n+1} \otimes dx^{n+1}.$$

Prove that in the global chart $\{H^n, y\}$, the metric matrix (g_{ij}) is given by

$$g_{ij} = \frac{4}{(1 - \sum_{i=1}^{n} (y^i)^2)^2} \delta_{ij}$$

(iii) Let μ be the Riemannian measure of (H^n, g) defined in Problem 2. Compute $\mu(H^n)$.

Remark: Lorentz manifolds are the spaces occurring in general relativity. For example, the above mentioned (\mathbb{R}^{n+1}, g_L) is a special Lorentz manifold, which is often referred to as a Minkowski space. A tangent vector v of a Lorentz manifold can have negative, positive, or vanishing norm $||v|| := \sqrt{g_L(v, v)}$, which is called a timelike, space-like, or light-like tangent vector, respectively. Submanifolds of Lorentz manifolds whose tangent vectors are all space-like are Riemannian manifolds with respect to the induced metric. The hyperboloid H^n assigned with the induced metric g, which is often referred to as a hyperbolic space, is such an example.

5. (Flat tori)

Let $w_1, w_2, \ldots, w_n \in \mathbb{R}^n$ be linearly independent. We consider $z_1, z_2 \in \mathbb{R}^n$ as equivalent if there exist integers m_1, m_2, \ldots, m_n such that

$$z_1 - z_2 = \sum_{i=1}^n m_i w_i.$$

Let π be the projection mapping $z \in \mathbb{R}^n$ to its equivalence class.

The torus

$$T^n := \pi(\mathbb{R}^n)$$

is a manifold with the following atlas $\{U_{\alpha}, z_{\alpha}\}$:

$$U_{\alpha} := \pi(\Delta_{\alpha}),$$
$$z_{\alpha} := \left(\pi_{|\Delta_{\alpha}}\right)^{-1} : U_{\alpha} \longrightarrow \Delta_{\alpha} \subset \mathbb{R}^{n},$$

where Δ_{α} is any open subset of \mathbb{R}^n which does not contain any pair of equivalent points.

(i) Prove that the above atlas $\{U_{\alpha}, z_{\alpha}\}$ is differentiable.

(ii) Prove that there exists a Riemannian metric g on T^n , such that the map z_{α} is an *isometry* between the Riemannian manifolds $(U_{\alpha}, g_{|U_{\alpha}})$ and $(\Delta_{\alpha}, \langle \cdot, \cdot \rangle)$, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean metric on $\Delta_{\alpha} \subset \mathbb{R}^n$.

(iii) Let μ be the Riemannian measure of (T^n, g) defined in Problem 2. Compute $\mu(T^n)$.

Remark: A differentiable map $h: M \to N$ is a local isometry between Riemannian manifolds if for every $p \in M$ there exists a neighborhood U of p for which $h_{|U}: U \to h(U)$ is an isometry and h(U) is open in N. In terms of this terminology, you are asked to show in (ii) that there exists a Riemannian metric g on T^n such that the projection $\pi: (\mathbb{R}^n, \langle \cdot, \cdot \rangle) \longrightarrow (T^n, g)$ is a local isometry. A torus assigned with such a metric is called a *flat torus*.