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1. (Christoffel symbols)

Let (U, x = (x1, . . . , xn)) be a chart of a Riemannian manifold M . Let

(x1, . . . , xn)→ (y1, . . . , yn)

be a smooth coordinate change, and the Riemannian metric can be written as
gij(x)dxi ⊗ dxj and hαβ(y)dyα ⊗ dyβ respectively.

(i) Show the transformation formula of gij under the coordinate change is

gij(x) = hαβ(y(x))
∂xi

∂yα
∂xj

∂yβ
.

(ii) Compute the transformation formulae of the Christoffel symbols Γijk under
the coordinate change. Do they define a tensor?

(iii) Let γ : [a, b]→ U be a smooth curve. Denote ẋi(t) := d
dtx

i(γ(t)). Compute
the transformation formula of

ẍi(t) + Γijk(x(t))ẋj(t)ẋk(t)

under the coordinate change.

Remark : Elwin Christoffel (1829-1900) was noted for his work in mathematical
analysis, in which he was a follower of Dirichlet and Riemann. He wrote important
papers which contributed to the development of the tensor calculus of Gregorio
Ricci-Curbastro and Tullio Levi-Civita. The Christoffel symbols which he intro-
duced are fundamental in the study of tensor analysis. The Christoffel reduction
theorem, so named by Klein, solves the local equivalence problem for two quadratic
differential forms. Paul Butzer once commented:

The procedure Christoffel employed in his solution of the equivalence
problem is what Gregorio Ricci-Curbastro later called covariant d-
ifferentiation, Christoffel also used the latter concept to define the
basic Riemann-Christoffel curvature tensor. ... The impor-
tance of this approach and the two concepts Christoffel introduced,
at least implicitly, can only be judged when one considers the influ-
ence it has had.

Indeed this influece is clearly seen since this allowed Ricci-Curbastro and Levi-Civita
to develop a coordinate free differential calculus which Einstein, with the help of
Grossmann, turned into the tensor analysis mathematical foundation of general
relativity.
(Read more at http://mathshistory.st-andrews.ac.uk/Biographies/Christoffel.html)

2. Geodesic equation in Finsler geometry

Let M be an n-dimensional smooth manifold. Let TM = {(x, y) : x ∈ M,y ∈
TxM} be the tangent bundle of M .

A Finsler structure of M is a function

F : TM → [0,∞)
1
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with the following properties:

(1) Regularity : F is C∞ on TM \ 0.
(2) Absolute homogeneity : F (x, λy) = |λ|F (x, y) for all λ ∈ R.
(3) Strong convexity : The n× n Hessian matrix

(gij) :=

��
1

2
F 2

�
yiyj

�

is positive-definite at every point of TM \ 0. (Explanation of yi: For any
basis { ∂

∂xi }, express y as yi ∂
∂xi . The Finsler structure F is then a function

of (x1, . . . , xn, y1, . . . , yn), and�
1

2
F 2

�
yiyj

:=
∂2

∂yi∂yj

�
1

2
F 2

�
.

It can be checked that the positive-definiteness is independent of the choice
of { ∂

∂xi }.)
Let γ : [a, b]→M be a smooth curve in M . Suppose the parametrization of γ is

regular, i.e., γ̇(t) 6= 0, ∀t ∈ [a, b]. We can define the length and energy of γ to be

L(γ) :=

ˆ b

a

F (γ(t), γ̇(t))dt,

E(γ) :=
1

2

ˆ b

a

F 2(γ(t), γ̇(t))dt,

respectively.

(i) Prove that L(γ) does not depend on the choice of a regular parametrization.

(ii) Prove that L(γ)2 ≤ 2(b−a)E(γ), and characterize the case when ”=” holds.

(iii)Suppose that the image γ([a, b]) falls in a chart (U, x = (x1, . . . , xn)). Denote
by

γ(t) := (x1(t), . . . , xn(t)).

Show that the Euler-Lagrange equation for E(γ) (defined to be the geodesic equa-
tion) is

ẍ` +
1

2
gi`
��
F 2
�
xjyi

yj −
�
F 2
�
xi

�
= 0, ∀` = 1, . . . , n,

where
�
gi`
�

is the inverse matrix of (gij).

Remark : The concept of Riemannian metric was introduced by Riemann in his
habilitation address, entitled Über die Hypothesen, welche der Geometrie zugrunde
liegen. Riemannian metrics are induced by Euclidean scalar products on the tangent
spaces. In fact, Riemann also suggested to consider more general metrics obtained
by taking metrics on the tangent spaces that are not induced by a scalar product.
Such metrics were first systematically investigated by Finsler and are therefore
called Finsler metric.

3. (Spheres)

Recall that the sphere

Sn :=

(
(x1, . . . , xn, xn+1) ∈ Rn+1 :

n+1X
i=1

(xi)2 = 1

)
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is a differentiable manifold with the following differentiable atlas {Uα, yα}α∈{1,2}:
y1 : U1 := Sn \ {(0, . . . , 0, 1)} −→ Rn,

(x1, . . . , xn, xn+1) 7→ (y1
1 , . . . , y

n
1 ) :=

�
x1

1− xn+1
, . . . ,

xn

1− xn+1

�
.

and

y2 : U2 := Sn \ {(0, . . . , 0,−1)} −→ Rn,

(x1, . . . , xn, xn+1) 7→ (y1
2 , . . . , y

n
2 ) :=

�
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

�
.

Recall that the induced metric g of Sn from the standard Euclidean metric of
Rn+1 is given in local coordinates by

gyαij =
4

(1 +
Pn
i=1(yiα)2)2

δij .

(i) Compute the Christoffel symbols in the chart (U1, y1).

(ii) Write down the system of differential equations satisfied by the geodesics in
the chart (U1, y1) and determine their solutions.

(iii) Determine the the injective radius and the cut locus of the north pole
(0, . . . , 0, 1). Is U1 a normal neighborhood of the north pole (0, . . . , 0, 1)? Is U1

a totally normal neighborhood of the north pole (0, . . . , 0, 1)?

4. (Hyperbolic spaces)

Recall that the hyperboloid

Hn :=

(
(x1, . . . , xn, xn+1) ∈ Rn+1 :

nX
i=1

(xi)2 − (xn+1)2 = −1, xn+1 > 0

)

is a differentiable manifold with the following chart:

y : Hn −→ B1(0) :=

(
(y1, . . . , yn) ∈ Rn :

nX
i=1

(yi)2 < 1

)
⊂ Rn,

(x1, . . . , xn, xn+1) 7→ (y1, . . . , yn) :=

�
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

�
.

Let g be the Riemannian metric of Hn given by

gij =
4

(1−
Pn
i=1(yi)2)2

δij .

(i) Compute the Christoffel symbols and write down the system of differential
equations satisfied by the geodesics.

(ii) Determine the geodesics of Hn through the point (0, . . . , 0, 1) ∈ Rn+1 (whose
coordinate is (0, . . . , 0) ∈ B1(0) ⊂ Rn).

(iii) Is Hn a complete Riemannian manifold?

Hint : We point out the following useful fact: The function

y(t) :=
et − 1

et + 1
, t ∈ [0,∞)

is a solution of the following ODE:¨
ÿ(t) + 2y(t)

1−y(t)2 ẏ(t)2 = 0,

y(0) = 0.



4 RIEMANNIAN GEOMETRY, SPRING 2020

5. (Flat tori)

Let w1, w2, . . . , wn ∈ Rn be linearly independent. We consider z1, z2 ∈ Rn as
equivalent if there exist integers m1,m2, . . . ,mn such that

z1 − z2 =
nX
i=1

miwi.

Let π be the projection mapping z ∈ Rn to its equivalence class.

Recall that the torus

Tn := π(Rn)

is a differentiable manifold with the following differentiable atlas {Uα, zα}:

Uα := π(∆α),

zα :=
�
π|∆α

�−1
: Uα −→ ∆α ⊂ Rn,

where ∆α is any open subset of Rn which does not contain any pair of equivalent
points.

Let g be the Riemannian metric on Tn, such that the map zα is an isometry
between the Riemannian manifolds (Uα, g|Uα) and (∆α, 〈·, ·〉), where 〈·, ·〉 is the
standard Euclidean metric on ∆α ⊂ Rn. Note that in this case

π : Rn → Tn

is a local isometry.
Let us consider the standard torus Tn0 where we take wi = (0, . . . , 0, 1, 0, . . . , 0)

to be the i-th unit vector in Rn.

(i) Determine the injective radius and cut locus of any point in Tn0 .

(ii) Is Tn0 a complete Riemannian manifold?

6. (Completeness)

(i) Assume that (M, g) has the property that all normal geodesics exist for a
fixed time ε > 0. Show that (M, g) is geodesically complete.

(ii) Let (M, g) be a metrically complete Riemannian manifold and g̃ is another
metric on M such that g̃ ≥ g. Show that (M, g̃) is also metrically complete.

(iii) Let (M, g) be a Riemannian manifold which admits a proper Lipschitz func-
tion f : M → R. Show that (M, g) is complete. (Recall that a function between
topological spaces is called proper if inverse images of compact subsets are com-
pact.)

Remark : The Hopf-Rinow Theorem is named after German mathematicians
Heinz Hopf (1894-1971) and his student Willi Rinow (1907-1979), who published

it in Über den Begriff der vollständigen differentialgeometrischen Fläche, Com-
mentarii Mathematici Helvetici, 3, 209-225 (1931) (The title in English: On the
concept of complete differentiable surfaces). The Hopf-Rinow theorem is general-
ized to length-metric spaces in the following way: If a length-metric space (M,d)
is complete and locally compact then any two points in M can be connected by a
shortest geodesic, and any bounded closed set in M is compact. The theorem does
not hold in infinite dimensions: C. J. Atkin (The Hopf-Rinow Theorem is false in
infinite dimensions, Bulletin of the London Mathematical Society, 7(3), 261-266,
1975) showed that two points in an infinite dimensional complete Hilbert manifold
need not be connected by a geodesic (even if you do not require this geodesic to be
a shortest curve).
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Heinz Hopf worked on the fields of topology and geometry. In his dissertation,
Über Zusammenhänge zwischen Topologie und Metrik von Mannigfaltigkeiten in
1925 (in English, connections between topology and metric of manifolds), he proved
that any simply connected complete Riemannian 3-manifold of constant sectional
curvature is globally isometric to Euclidean, spherical, or hyperbolic space. He also
studied the indices of zeros of vector fields on hypersurfaces, and connected their
sum to curvature. Some six months later he gave a new proof that the sum of the
indices of the zeros of a vector field on a manifold is independent of the choice of
vector field and equal to the Euler characteristic of the manifold. This theorem
is now called the Poincaré-Hopf theorem. Hopf spent the academic year 1927/28
at Princeton University and at this time he discovered the Hopf invariant of maps
S3 → S2 and proved that the Hopf fibration has invariant 1.


