HOMEWORK 3: FUNCTION SPACES AND

LAPLACE-BELTRAMI OPERATOR

RIEMANNIAN GEOMETRY, SPRING 2020

1. Lipschitz functions and Sobolev spaces

Let (M, g) be a complete Riemmanian manifold. A function $f: M \rightarrow \mathbb{R}$ is said to be Lipschitz if there exists $C>0$ such that for any $x, y \in M$,

$$
|u(y)-u(x)| \leq C d(x, y)
$$

where $d(\cdot, \cdot)$ is the distance function associate to g.
(i) Show that a smooth function $f: M \rightarrow \mathbb{R}$ is Lipschitz if the norm of its gradient $|\nabla f|$ is bounded.
(ii) Recall the following fact: If Ω is a bounded open subset of \mathbb{R}^{n} and if f : $\Omega \rightarrow \mathbb{R}$ is Lipschitz, then $f \in H^{1,2}(\Omega)$. Here $H^{1,2}(\Omega)$ is the Sobolev space with respect to the Euclidean metric. Using this fact to show that any Lipschitz function $f: M \rightarrow \mathbb{R}$ with compact support belongs to $H^{1,2}\left(\operatorname{vol}_{g}\right)$.

2. Energy, Rayleigh quotient, and min-max principle

Let (M, g) be a compact Riemannian manifold and Δ be the Laplace-Beltrami operator. Let all the eigenvalues of Δ be

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leq \lambda_{2}(g) \leq \cdots \leq \lambda_{k}(g) \leq \cdots
$$

For each $i=0,1,2, \ldots$, denote by v_{i} the eigenfunction corresponding to $\lambda_{i}(g)$ with $\left(v_{i}, v_{i}\right)=1$, where (\cdot, \cdot) is the L^{2}-inner product.

The energy of a function $f \in H^{1,2}\left(\operatorname{vol}_{g}\right)$ on (M, g) is defined as

$$
E_{g}(f):=\frac{1}{2} \int_{M}|\nabla f|^{2} d \mathrm{vol}_{g}
$$

and the Rayleigh quotient of a function $f \in H^{1,2}\left(\operatorname{vol}_{g}\right), f \neq 0$ on (M, g) is defined as

$$
R_{g}(f):=\frac{\int_{M}|\nabla f|^{2} d \operatorname{vol}_{g}}{\int_{M} f^{2} d \mathrm{vol}_{g}}
$$

We observe that

$$
R_{g}\left(v_{i}\right)=\lambda_{i}(g), \forall i=0,1,2, \ldots
$$

(i) Show that for any $f \in H^{1,2}\left(\operatorname{vol}_{g}\right)$ we have

$$
2 E_{g}(f)=\sum_{i=1}^{\infty} \lambda_{i}(g)\left(f, v_{i}\right)
$$

(ii) For $k=0,1,2, \ldots$, let

$$
V_{k}:=\operatorname{span}\left\{v_{0}, v_{1}, \ldots, v_{k}\right\} \subset H^{1,2}\left(\operatorname{vol}_{g}\right)
$$

be the $k+1$-dimensional subspace of $H^{1,2}\left(\operatorname{vol}_{g}\right)$ spanned by $v_{0}, v_{1}, \ldots, v_{k}$; Let

$$
V_{k-1}^{\perp}:=\operatorname{span}\left\{v_{k}, v_{k+1}, \ldots\right\} \subset H^{1,2}\left(\operatorname{vol}_{g}\right)
$$

be the subspace vertical to V_{k-1}. Here, we use the notation $V_{-1}^{\perp}=H^{1,2}\left(\operatorname{vol}_{g}\right)$.

Show that

$$
\lambda_{k}(g)=\max _{f \in V_{k}, f \neq 0} R_{g}(f)=\min _{f \in V_{k-1}^{\perp}, f \neq 0} R_{g}(f)
$$

(iii) Show that

$$
\lambda_{k}(g)=\min _{\substack{E \subset H^{1,2}\left(\text { volg }_{g}\right) \\ \operatorname{dim}(E)=k+1}} \max _{f \in E, f \neq 0} R_{g}(f)
$$

and

$$
\lambda_{k}(g)=\max _{\substack{E \subset H^{1,2}\left(\operatorname{vol}_{g}\right) \\ \operatorname{dim}(E)=k}} \min _{f \in E^{\perp}, f \neq 0} R_{g}(f)
$$

(iv) Let g and g_{0} be two Riemannian metrics on M such that

$$
a^{2} g_{0} \leq g \leq b^{2} g_{0}
$$

for some $0<a^{2}<b^{2}$. For any $f \in H^{1,2}\left(\operatorname{vol}_{g}\right), f \neq 0$, show that

$$
\frac{a^{n}}{b^{n+2}} R_{g_{0}}(f) \leq R_{g}(f) \leq \frac{b^{n}}{a^{n+2}} R_{g_{0}}(f)
$$

For any $k=0,1,2, \ldots$, show that

$$
\frac{a^{n}}{b^{n+2}} \lambda_{k}\left(g_{0}\right) \leq \lambda_{k}(g) \leq \frac{b^{n}}{a^{n+2}} \lambda_{k}\left(g_{0}\right)
$$

Remark: The property claimed in (iv) above tells that if a sequence g_{n} of Riemannian metrics on M converges to g_{0} with respect to C^{0} topology, then $\lambda_{k}\left(g_{n}\right)$ converges to $\lambda_{k}\left(g_{0}\right)$ for any k. This fact illustrate the strength of the min-max principle: indeed, if g_{n} converges to g_{0} with respect to C^{0} topology, it is not always true that $\Delta_{g_{n}}$ converges to $\Delta_{g_{0}}$.

