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1. Torsion tensor

Let M be a smooth manifold. Let ∇ and ∇ be two affine connections on M . We
define

D(X,Y ) := ∇XY −∇XY, ∀ X,Y ∈ Γ(TM).

(i) Prove that D is a tensor, that is, D is linear over C∞ functions in both
arguments.

(ii) Prove that there is a unique way to write

D = S +A

with S symmetric and A alternating, i.e., S(X,Y ) = S(Y,X) and A(X,Y ) =
−A(Y,X).

(iii) Prove that ∇ and ∇ have that same torsion if and only if A = 0.

(iv) A parametrized curve γ = γ(t) on M is called a geodesic with respect to an

affine connection ∇ if
�
∇γ̇(t) ˙γ(t)

�
(γ(t)) = 0 for any t. Prove that the following are

equivalent:

(a) ∇ and ∇ have the same geodesics;
(b) D(X,X) = 0 for any X ∈ Γ(TM).
(c) S = 0.

(v) Prove that if ∇ and ∇ have the same geodesics and the same torsion, then
∇ = ∇.

(vi) Prove that for any affine connection ∇ on M , there exists a unique affine
connection ∇ with the same geodesics and with torsion 0. (Hint : Consider the
connection ∇XY := ∇XY − 1

2T (X,Y ), where T is the torsion of ∇.)

Remark : We can define two affine connections with the same geodesics to be
equivalent. Then all affine connections on M can be divided into equivalent classes.
The above discussions tell us that each equivalent class has exactly one connection
with zero torsion.

2. Connections on spheres

Let Sn be the sphere with the induced metric g from the Euclidean metric in
Rn+1. We denote by ∇ the canonical Levi-Civita connection on Rn+1. For any
X,Y ∈ Γ(TSn), one can extend X,Y to smooth vector field X,Y on Rn+1, at least
near Sn.

By locality, the vector ∇XY at any p ∈ Sn depends only on X(p) = X(p) and

the vectors Y (q) = Y (q) for q ∈ Sn. That is, ∇XY is independent of the extension

of X,Y we choose. So we will write ∇XY instead of ∇XY at points on Sn.

We define ∇XY to be the orthogonal projection of ∇XY onto the tangent space
of Sn, i.e.,

∇XY := ∇XY − 〈∇XY,n〉n,
1
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where n is the unit out normal vector on Sn.

(i) Prove that ∇ is an affine connection on Sn.

(ii) Prove that ∇ is the Levi-Civita connection of (Sn, g).

Remark : This is in fact a general way to construct Levi-Civita connections
on a Riemannian manifold. Recall that any Riemannian manifold (M,g) can be
embedded isometrically to a Euclidean space E of high enough dimension. For any
p ∈M , we have the orthogonal projection map

π(p) : TpE → TpM.

The composition of this orthogonal projection map with the canonical Levi-Civita
connection on E (given by directional derivatives) produces the Levi-Civita con-
nection on (M, g).

3. Covariant derivatives of tensor fields via parallel transport

Recall that for an isomorphism ϕ : V → W between two vector spaces V and
W , there is an adjoint isomorphism

ϕ∗ : W ∗ → V ∗,

between their dual spaces. For α ∈W ∗, we have

ϕ(α)(v) := α(ϕ(v)), ∀ v ∈ V.
Then, for any vi ∈ V, αj ∈ V ∗, we define

eϕ(v1⊗· · ·⊗vr⊗α1⊗· · ·⊗αs) = ϕ(v1)⊗· · ·⊗ϕ(vr)⊗(ϕ∗)−1(α1)⊗· · ·⊗(ϕ∗)−1(αs).

By linearity, we can extend eϕ to be defined on all (r, s)-tensor, ⊗r,sV , over V . This
defines an isomorphism

eϕ : ⊗r,sV → ⊗r,sW.

Let M be a smooth manifold with an affine connection ∇. Let c : I → M be
a smooth curve in M with c(0) = p ∈ M and ċ(0) = Xp ∈ TpM . Recall that the
parallel transport

Pc,t : Tc(0)M → Tc(t)M,

is an isomorphism. As described above, we can extend it to be an isomorphism

ÜPc,t : ⊗r,sTc(0)M → ⊗r,sTc(t)M.

For any A ∈ Γ(⊗r,sTM), we define

∇XpA := lim
h→0

1

h

�ÜP−1c,hA(c(h))−A(p)
�
.

Let Y ∈ Γ(TM), w, η ∈ Γ(T ∗M). Consider the (1, 2)-tensor filed K := Y ⊗w⊗η.

(i) Show that

∇Xp
K = ∇Xp

Y ⊗ w ⊗ η + Y ⊗∇Xp
w ⊗ η + Y ⊗ w ⊗∇Xp

η.

(ii) Let C : Γ(⊗1,2TM) → Γ(⊗0,1TM) be the contraction map that pairs the
first vector with the first covector. For example, CK = w(Y )η. Show that

∇Xp(CK) = C(∇XpK).

4. Induced connections

Let M,N be two smooth manifold and ϕ : N →M be a smooth map. A vector
field along ϕ is an assignment

x ∈ N 7→ Tϕ(x)M.
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Let {Ei}ni=1 be a frame field in a chart U of ϕ(x) ∈M . Then for any x ∈ ϕ−1(U),
we have

V (x) = V i(x)Ei(ϕ(x)).

Let u ∈ TxN . We define

(0.1) Ü∇uV := u(V i)(x)Ei(ϕ(x)) + V i(x)∇dϕ(u)Ei,
where ∇ is an affine connection on M .

(i) Check that Ü∇uV is well defined, i.e., (0.1) is independent of the choices of
chart U and {Ei}.

(ii) Let g be a Riemannian metric on M. Prove that if ∇ on M is compatible
with g, then for vector fields V,W along ϕ, and u ∈ TxN , we have

u〈V,W 〉 = 〈Ü∇uV,W 〉+ 〈V,Ü∇uW 〉.
(iii) Prove that if ∇ on M is torsion free, then for any X,Y ∈ Γ(TN), we have

Ü∇Xdϕ(Y )− Ü∇Y dϕ(X)− dϕ ([X, y]) = 0.

5. First variation formula for piecewise smooth curves

Let c : [0, a]→M be a piecewise smooth curve. That is, there exists a subdivision

0 = t0 < t1 < · · · < tk < tk+1 = a

such that c is smooth on each interval [ti, ti+1].

(i) At the break points ti, there are two possible values for the velocity vector
filed along c: a right derivative and a left derivative:

ċ(t+i ) =
dc

dt |[ti,ti+1]

(ti), ċ(t
−
i ) =

dc

dt |[ti−1,ti]

(ti).

Let F : [0, a] × (−ε, ε) → M be a piecewise smooth variation of c, that is, F is
smooth on each [ti, ti+1] × (−ε, ε) and ∂F

∂s is well defined even at ti’s. Derive the
First Variation Formula of the energy functional.

(ii) Let V (t) be a piecewise smooth vector filed along the curve c. Show that
there exists a variation F : [0, a] × (−ε, ε) → M such that V (t) is the variational
field of F ; in addition, If V (0) = V (a) = 0, it is possible to choose F as a proper
variation. (Hint: Use exponential maps.)

(iii) (Characterization of geodesics) Prove that a piecewise smooth curve c :
[0, a]→M is a geodesic if and only if, for every proper variation F of c, we have

E′(0) = 0.

6. A natural extension of Gauss’ lemma

Let N1, N2 be two submanifolds of a complete Riemannian manifold (M, g), and
let γ : [0, a] → M be a geodesic such that γ(0) ∈ N1, γ(a) ∈ N2 and γ is the
shortest curve from N1 to N2. Prove that γ̇(0) is perpendicular to Tγ(0)N1, and
γ̇(a) is perpendicular to Tγ(t)N2.


