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1. (Spheres)

The sphere

Sn :=

(
(x1, . . . , xn, xn+1) ∈ Rn+1 :

n+1X
i=1

(xi)2 = 1

)

is a manifold with the following atlas {Uα, yα}α∈{1,2}:

y1 : U1 := Sn \ {(0, . . . , 0, 1)} −→ Rn,

(x1, . . . , xn, xn+1) 7→ (y1
1 , . . . , y

n
1 ) :=

�
x1

1− xn+1
, . . . ,

xn

1− xn+1

�
.

and

y2 : U2 := Sn \ {(0, . . . , 0,−1)} −→ Rn,

(x1, . . . , xn, xn+1) 7→ (y1
2 , . . . , y

n
2 ) :=

�
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

�
.

(i) Prove that the above atlas {(Uα, yα)}α∈{1,2} is differentiable.

(ii) Let g be the induced metric of Sn from the standard Euclidean metric of

Rn+1. Prove that in each chart (Uα, yα), the metric matrix
�
gyαij
�

is given by

gyαij =
4

(1 +
Pn
i=1(yiα)2)2

δij .

2. (Hyperbolic spaces)

The hyperboloid is

Hn :=

(
(x1, . . . , xn, xn+1) ∈ Rn+1 :

nX
i=1

(xi)2 − (xn+1)2 = −1, xn+1 > 0

)
.

Consider the following map

y : Hn −→ B1(0) :=

(
(y1, . . . , yn) ∈ Rn :

nX
i=1

(yi)2 < 1

)
⊂ Rn,

(x1, . . . , xn, xn+1) 7→ (y1, . . . , yn) :=

�
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

�
.

(i) Prove that the above map y is a diffeomorphism between Hn and B1(0).
Therefore, {(Hn, y)} is a differentiable atlas of Hn.

(ii) Let g be the Riemannian metric of Hn induced from Rn+1 assigned with the
Lorentz metric:

gL = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn − dxn+1 ⊗ dxn+1.
1
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Prove that in the global chart {Hn, y}, the metric matrix (gij) is given by

gij =
4

(1−
Pn
i=1(yi)2)2

δij .

Remark : Lorentz manifolds are the spaces occurring in general relativity. For
example, the above mentioned (Rn+1, gL) is a special Lorentz manifold, which is
often referred to as a Minkowski space. A tangent vector v of a Lorentz manifold can

have negative, positive, or vanishing norm ‖v‖ :=
È
gL(v, v), which is called a time-

like, space-like, or light-like tangent vector, respectively. Submanifolds of Lorentz
manifolds whose tangent vectors are all space-like are Riemannian manifolds with
respect to the induced metric. The hyperboloid Hn assigned with the induced
metric g, which is often referred to as a hyperbolic space, is such an example.

3. (Critical point of energy functional)
Let Ω ⊂ Rm be an open domain with the Riemannian metric given by the matrix

(gij(x)), x ∈ Ω. Let U ⊂ Rn be an open domain with the Riemannian metric given
by the matrix (hαβ(y)), y ∈ U . Let f : Ω→ U be a smooth map which is a critical
point of the following energy functional:

E(f) :=
1

2

ˆ
Ω

gij(x)hαβ(f(x))
∂fα(x)

∂xi
∂fβ(x)

∂xj

È
g(x)dx,

where we use the notation that

f(x) = f(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)),

and g(x) = det(gij(x)), dx being the Lebesgue measure. Such a map f is called a
harmonic map from (Ω, g) to (U, h).

(i) Compute the differential equations that a harmonic map f : Ω → U has to
satisfy.

(ii) Show that a geodesic in (U, h) is a harmonic map.

(ii) If U = R with the Euclidean metric, then a harmonic map f : Ω → U is
called a harmonic function on (Ω, g). Write down the differential equations that
harmonic functions satisfy.

Remark : Harmonic maps between Riemannian manifolds are canonical objects
from the points of view of topology and calculus of variations. These maps pro-
vide a rich display of both differential geometric and analytic phenomena. Much
of the study of these maps serves as a model for many other challenging problems
in geometric analysis and has been athe source of inspiration and undiminishing
fascination. ... Harmonic maps with two dimensional domains present special fea-
tures that are crucial for applications to minimal surfaces (i.e., conformal harmonic
maps) and to the deformation theory of Riemann surfaces-Teichmüller theory....
[Preface of ”Harmonic maps and their heat flows” by Fanghua Lin and Changyou
Wang.]

Harmonic maps into spheres or complex projective spaces have also acquired
some physical interest since they turned out to be solutions of the nonlinear O(N)
σ-models. For more details, we refer to Misner, Harmonic Maps as Models for
Physical Theories, Phys. Rev. D 18 (12) (1978). [Section 1.5 of ”Harmonic maps
between surfaces” by Jürgen Jost.]


