HOMEWORK 3: CONNECTIONS, PARALLELISM, AND COVARIANT DERIVATIVES

RIEMANNIAN GEOMETRY, SPRING 2021

1. Torsion tensor

Let M be a smooth manifold. Let ∇ and $\bar{\nabla}$ be two affine connections on M. We define

$$
D(X, Y):=\nabla_{X} Y-\bar{\nabla}_{X} Y, \forall X, Y \in \Gamma(T M)
$$

(i) Prove that D is a tensor, that is, D is linear over C^{∞} functions in both arguments.
(ii) Prove that there is a unique way to write

$$
D=S+A
$$

with S symmetric and A alternating, i.e., $S(X, Y)=S(Y, X)$ and $A(X, Y)=$ $-A(Y, X)$.
(iii) Prove that ∇ and $\bar{\nabla}$ have the same torsion if and only if $A=0$.
(iv) A parametrized curve $\gamma=\gamma(t)$ on M is called a geodesic with respect to an affine connection ∇ if $\left(\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)\right)(\gamma(t))=0$ for any t.

Prove that the following are equivalent:
(a) ∇ and $\bar{\nabla}$ have the same geodesics;
(b) $D(X, X)=0$ for any $X \in \Gamma(T M)$.
(c) $S=0$.
(v) Prove that if ∇ and $\bar{\nabla}$ have the same geodesics and the same torsion, then $\nabla=\bar{\nabla}$.
(vi) Prove that for any affine connection ∇ on M, there exists a unique affine connection $\bar{\nabla}$ with the same geodesics and with torsion 0 . (Hint: Consider the connection $\bar{\nabla}_{X} Y:=\nabla_{X} Y-\frac{1}{2} T(X, Y)$, where T is the torsion of ∇.)

Remark: We can define two affine connections with the same geodesics to be equivalent. Then all affine connections on M can be divided into equivalent classes. The above discussions tell us that each equivalent class has exactly one connection with zero torsion.

2. Connections on spheres

Let S^{n} be the sphere with the induced metric g from the Euclidean metric in \mathbb{R}^{n+1}. We denote by $\bar{\nabla}$ the canonical Levi-Civita connection on \mathbb{R}^{n+1}. For any $X, Y \in \Gamma\left(T \mathbb{S}^{n}\right)$, one can extend X, Y to smooth vector field \bar{X}, \bar{Y} on \mathbb{R}^{n+1}, at least near \mathbb{S}^{n}.

By locality, the vector $\bar{\nabla} \bar{X} \bar{Y}$ at any $p \in \mathbb{S}^{n}$ depends only on $\bar{X}(p)=X(p)$ and the vectors $\bar{Y}(q)=Y(q)$ for $q \in \mathbb{S}^{n}$. That is, $\bar{\nabla} \bar{X} \bar{Y}$ is independent of the extension of X, Y we choose. So we will write $\bar{\nabla}_{X} Y$ instead of $\overline{\nabla_{X}} \bar{Y}$ at points on \mathbb{S}^{n}.

We define $\nabla_{X} Y$ to be the orthogonal projection of $\bar{\nabla}_{X} Y$ onto the tangent space of \mathbb{S}^{n}, i.e.,

$$
\nabla_{X} Y:=\bar{\nabla}_{X} Y-\left\langle\bar{\nabla}_{X} Y, \mathbf{n}\right\rangle \mathbf{n}
$$

where \mathbf{n} is the unit out normal vector on \mathbb{S}^{n}.
(i) Prove that ∇ is an affine connection on \mathbb{S}^{n}.
(ii) Prove that ∇ is the Levi-Civita connection of $\left(\mathbb{S}^{n}, g\right)$.

Remark: This is in fact a general way to construct the Levi-Civita connection on a Riemannian manifold. Recall that any Riemannian manifold (M, g) can be embedded isometrically to a Euclidean space E of large enough dimension. For any $p \in M$, we have the orthogonal projection map

$$
\pi(p): T_{p} E \rightarrow T_{p} M
$$

The composition of this orthogonal projection map with the canonical Levi-Civita connection on E (given by directional derivatives) produces the Levi-Civita connection on (M, g).

3. Induced connections

Let M, N be two smooth manifold and $\varphi: N \rightarrow M$ be a smooth map. A vector field along φ is an assignment

$$
x \in N \mapsto T_{\varphi(x)} M
$$

Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a frame field in a chart U of $\varphi(x) \in M$. Then for any $x \in \varphi^{-1}(U)$, we have

$$
V(x)=V^{i}(x) E_{i}(\varphi(x))
$$

Let $u \in T_{x} N$. We define

$$
\begin{equation*}
\widetilde{\nabla}_{u} V:=u\left(V^{i}\right)(x) E_{i}(\varphi(x))+V^{i}(x) \nabla_{d \varphi(u)} E_{i} \tag{0.1}
\end{equation*}
$$

where ∇ is an affine connection on M.
(i) Check that $\widetilde{\nabla}_{u} V$ is well defined, i.e., 0.1 is independent of the choices of chart U and $\left\{E_{i}\right\}$.
(ii) Let g be a Riemannian metric on M. Prove that if ∇ on M is compatible with g, then for vector fields V, W along φ, and $u \in T_{x} N$, we have

$$
u\langle V, W\rangle=\left\langle\widetilde{\nabla}_{u} V, W\right\rangle+\left\langle V, \widetilde{\nabla}_{u} W\right\rangle
$$

(iii) Prove that if ∇ on M is torsion free, then for any $X, Y \in \Gamma(T N)$, we have

$$
\widetilde{\nabla}_{X} d \varphi(Y)-\widetilde{\nabla}_{Y} d \varphi(X)-d \varphi([X, Y])=0
$$

4. First variation formula for piecewise smooth curves

Let $c:[0, a] \rightarrow M$ be a piecewise smooth curve. That is, there exists a subdivision

$$
0=t_{0}<t_{1}<\cdots<t_{k}<t_{k+1}=a
$$

such that c is smooth on each interval $\left[t_{i}, t_{i+1}\right]$.
(i) At the break points t_{i}, there are two possible values for the velocity vector filed along c : a right derivative and a left derivative:

$$
\dot{c}\left(t_{i}^{+}\right)=\left.\frac{d c}{d t}\right|_{\left[t_{i}, t_{i+1}\right]}\left(t_{i}\right), \dot{c}\left(t_{i}^{-}\right)=\left.\frac{d c}{d t}\right|_{\left[t_{i-1}, t_{i}\right]}\left(t_{i}\right)
$$

Let $F:[0, a] \times(-\epsilon, \epsilon) \rightarrow M$ be a piecewise smooth variation of c, that is, F is smooth on each $\left[t_{i}, t_{i+1}\right] \times(-\epsilon, \epsilon)$ and $\frac{\partial F}{\partial s}$ is well defined even at t_{i} 's. Derive the First Variation Formula of the energy functional.
(ii) Let $V(t)$ be a piecewise smooth vector filed along the curve c. Show that there exists a variation $F:[0, a] \times(-\epsilon, \epsilon) \rightarrow M$ such that $V(t)$ is the variational
field of F; in addition, If $V(0)=V(a)=0$, it is possible to choose F as a proper variation. (Hint: Use exponential maps.)
(iii) (Characterization of geodesics) Prove that a piecewise smooth curve c : $[0, a] \rightarrow M$ is a geodesic if and only if, for every proper variation F of c, we have

$$
E^{\prime}(0)=0
$$

5. A natural extension of Gauss' lemma

Let N_{1}, N_{2} be two submanifolds of a complete Riemannian manifold (M, g), and let $\gamma:[0, a] \rightarrow M$ be a geodesic such that $\gamma(0) \in N_{1}, \gamma(a) \in N_{2}$ and γ is the shortest curve from N_{1} to N_{2}. Prove that $\dot{\gamma}(0)$ is perpendicular to $T_{\gamma(0)} N_{1}$, and $\dot{\gamma}(a)$ is perpendicular to $T_{\gamma(t)} N_{2}$.

