
HOMEWORK 1: GEODESICS

RIEMANNIAN GEOMETRY, SPRING 2022

1. (Christoffel symbols)

Let (U, x = (x1, . . . , xn)) be a chart of a Riemannian manifold M . Let

(x1, . . . , xn)→ (y1, . . . , yn)

be a smooth coordinate change, and the Riemannian metric can be written as
gij(x)dxi ⊗ dxj and hαβ(y)dyα ⊗ dyβ respectively.

(i) Show the transformation formula of gij under the coordinate change is

gij(x) = hαβ(y(x))
∂xi

∂yα
∂xj

∂yβ
.

(ii) Compute the transformation formulae of the Christoffel symbols Γijk under
the coordinate change. Do they define a tensor?

(iii) Let γ : [a, b]→ U be a smooth curve. Denote ẋi(t) := d
dtx

i(γ(t)). Compute
the transformation formula of

ẍi(t) + Γijk(x(t))ẋj(t)ẋk(t)

under the coordinate change.

Remark : Elwin Christoffel (1829-1900) was noted for his work in mathematical
analysis, in which he was a follower of Dirichlet and Riemann. He wrote important
papers which contributed to the development of the tensor calculus of Gregorio
Ricci-Curbastro and Tullio Levi-Civita. The Christoffel symbols which he intro-
duced are fundamental in the study of tensor analysis. The Christoffel reduction
theorem, so named by Klein, solves the local equivalence problem for two quadratic
differential forms. Paul Butzer once commented:

The procedure Christoffel employed in his solution of the equivalence
problem is what Gregorio Ricci-Curbastro later called covariant d-
ifferentiation, Christoffel also used the latter concept to define the
basic Riemann-Christoffel curvature tensor. ... The impor-
tance of this approach and the two concepts Christoffel introduced,
at least implicitly, can only be judged when one considers the influ-
ence it has had.

Indeed this influece is clearly seen since this allowed Ricci-Curbastro and Levi-Civita
to develop a coordinate free differential calculus which Einstein, with the help of
Grossmann, turned into the tensor analysis mathematical foundation of general
relativity.
(Read more at http://mathshistory.st-andrews.ac.uk/Biographies/Christoffel.html)

2. (Critical point of energy functional)
Let Ω ⊂ Rm be an open domain with the Riemannian metric given by the matrix

(gij(x)), x ∈ Ω. Let U ⊂ Rn be an open domain with the Riemannian metric given
by the matrix (hαβ(y)), y ∈ U . Let f : Ω→ U be a smooth map which is a critical
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point of the following energy functional:

E(f) :=
1

2

ˆ
Ω

gij(x)hαβ(f(x))
∂fα(x)

∂xi
∂fβ(x)

∂xj

È
g(x)dx,

where we use the notation that

f(x) = f(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)),

and g(x) = det(gij(x)), dx being the Lebesgue measure. Such a map f is called a
harmonic map from (Ω, g) to (U, h).

(i) Compute the differential equations that a harmonic map f : Ω → U has to
satisfy.

(ii) Show that a geodesic in (U, h) is a harmonic map.

(ii) If U = R with the Euclidean metric, then a harmonic map f : Ω → U is
called a harmonic function on (Ω, g). Write down the differential equations that
harmonic functions satisfy.

Remark : Harmonic maps between Riemannian manifolds are canonical objects
from the points of view of topology and calculus of variations. These maps pro-
vide a rich display of both differential geometric and analytic phenomena. Much
of the study of these maps serves as a model for many other challenging problems
in geometric analysis and has been athe source of inspiration and undiminishing
fascination. ... Harmonic maps with two dimensional domains present special fea-
tures that are crucial for applications to minimal surfaces (i.e., conformal harmonic
maps) and to the deformation theory of Riemann surfaces-Teichmüller theory....
[Preface of ”Harmonic maps and their heat flows” by Fanghua Lin and Changyou
Wang.]

Harmonic maps into spheres or complex projective spaces have also acquired
some physical interest since they turned out to be solutions of the nonlinear O(N)
σ-models. For more details, we refer to Misner, Harmonic Maps as Models for
Physical Theories, Phys. Rev. D 18 (12) (1978). [Section 1.5 of ”Harmonic maps
between surfaces” by Jürgen Jost.]

3. (Hyperbolic spaces)

Recall that the hyperboloid

Hn :=

(
(x1, . . . , xn, xn+1) ∈ Rn+1 :

nX
i=1

(xi)2 − (xn+1)2 = −1, xn+1 > 0

)

is a differentiable manifold with the following chart:

y : Hn −→ B1(0) :=

(
(y1, . . . , yn) ∈ Rn :

nX
i=1

(yi)2 < 1

)
⊂ Rn,

(x1, . . . , xn, xn+1) 7→ (y1, . . . , yn) :=

�
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

�
.

Let g be the Riemannian metric of Hn given by

gij =
4

(1−
Pn
i=1(yi)2)2

δij .

(i) Compute the Christoffel symbols and write down the system of differential
equations satisfied by the geodesics.

(ii) Determine the geodesics of Hn through the point (0, . . . , 0, 1) ∈ Rn+1 (whose
coordinate is (0, . . . , 0) ∈ B1(0) ⊂ Rn).
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(iii) Is Hn a complete Riemannian manifold?

Hint : We point out the following useful fact: The function

y(t) :=
et − 1

et + 1
, t ∈ [0,∞)

is a solution of the following ODE:¨
ÿ(t) + 2y(t)

1−y(t)2 ẏ(t)2 = 0,

y(0) = 0.

4. (Completeness)

(i) Assume that (M, g) has the property that all normal geodesics exist for a
fixed time ε > 0. Show that (M, g) is geodesically complete.

(ii) Let (M, g) be a metrically complete Riemannian manifold and g̃ is another
metric on M such that g̃ ≥ g. Show that (M, g̃) is also metrically complete.

(iii) Let (M, g) be a Riemannian manifold which admits a proper Lipschitz func-
tion f : M → R. Show that (M, g) is complete. (Recall that a function between
topological spaces is called proper if inverse images of compact subsets are com-
pact.)

Remark : The Hopf-Rinow Theorem is named after German mathematicians
Heinz Hopf (1894-1971) and his student Willi Rinow (1907-1979), who published

it in Über den Begriff der vollständigen differentialgeometrischen Fläche, Com-
mentarii Mathematici Helvetici, 3, 209-225 (1931) (The title in English: On the
concept of complete differentiable surfaces). The Hopf-Rinow theorem is general-
ized to length-metric spaces in the following way: If a length-metric space (M,d)
is complete and locally compact then any two points in M can be connected by a
shortest geodesic, and any bounded closed set in M is compact. The theorem does
not hold in infinite dimensions: C. J. Atkin (The Hopf-Rinow Theorem is false in
infinite dimensions, Bulletin of the London Mathematical Society, 7(3), 261-266,
1975) showed that two points in an infinite dimensional complete Hilbert manifold
need not be connected by a geodesic (even if you do not require this geodesic to be
a shortest curve).

Heinz Hopf worked on the fields of topology and geometry. In his dissertation,
Über Zusammenhänge zwischen Topologie und Metrik von Mannigfaltigkeiten in
1925 (in English, connections between topology and metric of manifolds), he proved
that any simply connected complete Riemannian 3-manifold of constant sectional
curvature is globally isometric to Euclidean, spherical, or hyperbolic space. He also
studied the indices of zeros of vector fields on hypersurfaces, and connected their
sum to curvature. Some six months later he gave a new proof that the sum of the
indices of the zeros of a vector field on a manifold is independent of the choice of
vector field and equal to the Euler characteristic of the manifold. This theorem
is now called the Poincaré-Hopf theorem. Hopf spent the academic year 1927/28
at Princeton University and at this time he discovered the Hopf invariant of maps
S3 → S2 and proved that the Hopf fibration has invariant 1.


