HOMEWORK 2: CONNECTIONS AND CURVATURE

RIEMANNIAN GEOMETRY, SPRING 2022

1. Torsion tensor

Let M be a smooth manifold. Let ∇ and $\overline{\nabla}$ be two affine connections on M. We define

$$D(X,Y) := \nabla_X Y - \overline{\nabla}_X Y, \ \forall \ X, Y \in \Gamma(TM).$$

(i) Prove that D is a tensor, that is, D is linear over C^{∞} functions in both arguments.

(ii) Prove that there is a unique way to write

$$D = S + A$$

with S symmetric and A alternating, i.e., S(X,Y) = S(Y,X) and A(X,Y) =-A(Y,X).

(iii) Prove that ∇ and $\overline{\nabla}$ have the same torsion if and only if A = 0.

(iv) A parametrized curve $\gamma = \gamma(t)$ on M is called a geodesic with respect to an affine connection ∇ if $\left(\nabla_{\dot{\gamma}(t)}\gamma(t)\right)(\gamma(t)) = 0$ for any t.

Prove that the following are equivalent:

- (a) ∇ and $\overline{\nabla}$ have the same geodesics;
- (b) D(X, X) = 0 for any $X \in \Gamma(TM)$.
- (c) S = 0.

(v) Prove that if ∇ and $\overline{\nabla}$ have the same geodesics and the same torsion, then $\nabla = \overline{\nabla}.$

(vi) Prove that for any affine connection ∇ on M, there exists a unique affine connection $\overline{\nabla}$ with the same geodesics and with torsion 0. (*Hint*: Consider the connection $\overline{\nabla}_X Y := \nabla_X Y - \frac{1}{2}T(X,Y)$, where T is the torsion of ∇ .)

Remark: We can define two affine connections with the same geodesics to be equivalent. Then all affine connections on M can be divided into equivalent classes. The above discussions tell us that each equivalent class has *exactly one* connection with zero torsion.

2. Connections on spheres

Let S^n be the sphere with the induced metric g from the Euclidean metric in \mathbb{R}^{n+1} . We denote by $\overline{\nabla}$ the canonical Levi-Civita connection on \mathbb{R}^{n+1} . For any $X, Y \in \Gamma(T\mathbb{S}^n)$, one can extend X, Y to smooth vector field $\overline{X}, \overline{Y}$ on \mathbb{R}^{n+1} , at least near \mathbb{S}^n .

By locality, the vector $\overline{\nabla}_{\overline{X}}\overline{Y}$ at any $p \in \mathbb{S}^n$ depends only on $\overline{X}(p) = X(p)$ and the vectors $\overline{Y}(q) = Y(q)$ for $q \in \mathbb{S}^n$. That is, $\overline{\nabla}_{\overline{X}}\overline{Y}$ is independent of the extension of X, Y we choose. So we will write $\overline{\nabla}_X Y$ instead of $\overline{\nabla}_{\overline{X}} \overline{Y}$ at points on \mathbb{S}^n . We define $\nabla_X Y$ to be the orthogonal projection of $\overline{\nabla}_X Y$ onto the tangent space

of \mathbb{S}^n , i.e.,

$$\nabla_X Y := \overline{\nabla}_X Y - \langle \overline{\nabla}_X Y, \mathbf{n} \rangle \mathbf{n},$$

where **n** is the unit out normal vector on \mathbb{S}^n .

- (i) Prove that ∇ is an affine connection on \mathbb{S}^n .
- (ii) Prove that ∇ is the Levi-Civita connection of (\mathbb{S}^n, g) .

Remark: This is in fact a general way to construct the Levi-Civita connection on a Riemannian manifold. Recall that any Riemannian manifold (M,g) can be embedded isometrically to a Euclidean space E of large enough dimension. For any $p \in M$, we have the orthogonal projection map

$$\pi(p): T_p E \to T_p M.$$

The composition of this orthogonal projection map with the canonical Levi-Civita connection on E (given by directional derivatives) produces the Levi-Civita connection on (M, g).

3. A natural extension of Gauss' lemma

Let N_1, N_2 be two submanifolds of a complete Riemannian manifold (M, g), and let $\gamma : [0, a] \to M$ be a geodesic such that $\gamma(0) \in N_1, \gamma(a) \in N_2$ and γ is the shortest curve from N_1 to N_2 . Prove that $\dot{\gamma}(0)$ is perpendicular to $T_{\gamma(0)}N_1$, and $\dot{\gamma}(a)$ is perpendicular to $T_{\gamma(t)}N_2$.

4. (Hyperbolic spaces)

Recall that the **hyperboloid**

$$H^{n} := \left\{ (x^{1}, \dots, x^{n}, x^{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} (x^{i})^{2} - (x^{n+1})^{2} = -1, x^{n+1} > 0 \right\}$$

is a differentiable manifold with the following chart:

$$y: \ H^n \longrightarrow B_1(0) := \left\{ (y^1, \dots, y^n) \in \mathbb{R}^n : \sum_{i=1}^n (y^i)^2 < 1 \right\} \subset \mathbb{R}^n,$$
$$(x^1, \dots, x^n, x^{n+1}) \mapsto (y^1, \dots, y^n) := \left(\frac{x^1}{1 + x^{n+1}}, \dots, \frac{x^n}{1 + x^{n+1}}\right).$$

Let g be the Riemannian metric of H^n given by

$$g_{ij} = \frac{4}{(1 - \sum_{i=1}^{n} (y^i)^2)^2} \delta_{ij}$$

(i) Compute the sectional curvature, Ricci curvature, and scalar curvature of the hyperbolic space H^n . (Recall we have computed the Christoffel symbols in Excercise 1.)

5. (The Second Variation Formula for length) Let $\gamma : [a, b] \to M$ be a smooth curve and

$$F: [a,b] \times (-\epsilon,\epsilon) \times (-\delta,\delta) \to M$$

be a 2-parameter variation of γ . Denote by

$$V(t) := \frac{\partial F}{\partial v}(t,0,0), \quad W(t) = \frac{\partial F}{\partial w}(t,0,0)$$

the two corresponding variational fields. Let $L(v, w) := L(\gamma_{v,w})$ be the length of the curve $\gamma_{v,w}(t) := F(t, v, w), t \in [a, b]$.

(1) Show that

$$\frac{\partial^{2}}{\partial w \partial v} L(v, w) = \int_{a}^{b} \frac{1}{\left\|\frac{\partial F}{\partial t}\right\|} \left\{ \left\langle \widetilde{\nabla}_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial v}, \widetilde{\nabla}_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial w} \right\rangle - \left\langle R\left(\frac{\partial F}{\partial w}, \frac{\partial F}{\partial t}\right) \frac{\partial F}{\partial t}, \frac{\partial F}{\partial v} \right\rangle \right. \\ \left. + \left\langle \widetilde{\nabla}_{\frac{\partial}{\partial t}} \widetilde{\nabla}_{\frac{\partial}{\partial w}} \frac{\partial F}{\partial v}, \frac{\partial F}{\partial t} \right\rangle \\ \left. - \frac{1}{\left\|\frac{\partial F}{\partial t}\right\|^{2}} \left\langle \widetilde{\nabla}_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial v}, \frac{\partial F}{\partial t} \right\rangle \left\langle \widetilde{\nabla}_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial w}, \frac{\partial F}{\partial t} \right\rangle \right\} dt,$$

where $\left\|\frac{\partial F}{\partial t}\right\| := \left\langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle^{\frac{1}{2}}$. (2) Let γ be a normal geodesic. Show that

$$\frac{\partial^2}{\partial w \partial v}|_{v=w=0} L(v,w) = \int_a^b \left(\langle \nabla_T V, \nabla_T W \rangle - \langle R(W,T)T, V \rangle - T \langle V,T \rangle T \langle W,T \rangle \right) dt + \langle \nabla_W V,T \rangle|_a^b,$$

where $T(t) := \dot{\gamma}(t)$ is the velocity field along γ . (3) Consider the orthogonal component V^{\perp}, W^{\perp} of V, W with respect to T, that is

$$V^{\perp} := V - \langle V, T \rangle T,$$

$$W^{\perp} := W - \langle W, T \rangle T.$$

Show that

$$\frac{\partial^2}{\partial w \partial v}|_{v=w=0} L(v,w) = \int_a^b \left(\langle \nabla_T V^\perp, \nabla_T W^\perp \rangle - \langle R(W^\perp, T)T, V^\perp \rangle \right) dt + \langle \nabla_W V, T \rangle|_a^b,$$

6. (Existence of Riemmannian metrics with positive curvature) Consider the smooth manifold $RP^n \times RP^n$.

- (i) Does there exist a Riemannian metric on $\mathbb{R}P^n \times \mathbb{R}P^n$ with positive sectional curvature?
- (ii) Does there exist a Riemannian metric on $RP^n \times RP^n$ with positive Ricci curvature?

Remark: It is completely unknown whether $S^2 \times S^2$ has a Riemannian metric with positive sectional curvature or not. This is known as the Hopf problem.