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Geometric analysts always want to find a “nice” metric on a given manifold,
which seems to be canonical. The definition of “nice” might be a subtle problem.
A natural idea is that it makes some common functional, such as scalar curvature
functional, achieve its minimum.

Yamabi’s Canonical Metric in Riemannian Geometry: Scalar curvature
is a higher dimensional analogue of Gauss curvature. Yamabe set up a problem
that if we can find a metric such that its scalar curvature equal to a given smooth
function, moreover, in a given conformal class. In [Yam60], he attempted to show
that any Riemannian structure on a compact manifold of dimension not less than
3 could be pointwise conformally deformed to one of constant scalar curvature.
Trudinger [Tru68] pointed out a serious gap in Yamabe’s proof, and the assertion is
in doubt. Kazdan and Warner [KW73] had proved that, as long as the function is
negative somewhere, there is a metric whose scalar curvature coincide with the given
function. With this in mind, finding a metric whose scalar curvature is positive at
every point sounds easy, since it is only one scalar inequality on the entire metric.
However, there is a topological obstruction to the existence of metrics with positive
scalar curvature.

Actually, Some manifold can not have metric with positive scalar curvature ev-
erywhere. For example, the torus T n does not admit any metric with positive scalar
curvature everywhere [SY79] [GL80b]. In dimension 2 [KW74], we have considered
the problem of Gaussian curvature on 2-manifolds. The key to our study of Gaus-
sian curvatures was the Gauss-Bonnet theorem which imposes sign restrictions on
the Gaussian curvatures of compact 2-manifolds depending on the Euler character-
istic. There is also a topological implication of scalar curvature which provides an
obstruction to positive scalar curvature for certain special manifolds. Lichnerowicz
has shown [Lic63] that if the scalar curvature is nonnegative, but not identically
zero, on a compact even-dimensional spin manifold, then there are no harmonic
spinors. From this fact, using the Atiyah-Singer index theorem [AS68] he concluded
that the Hirzebruch Â genus of such a manifold must be zero. Thus one cannot have
a metric with nonnegative scalar curvature, except possibly identically zero, on a
compact spin manifold whose Â genus is not zero. Examples of such manifolds arise
in the theory of spin cobordism, see [Mil65].

There is a generalization of Â which has been shown to completely characterize
when a (simply connected, spin) manifold admits a metric of positive scalar curva-
ture. It is usually denoted α(M), and was first introduced in 1974 by Hitchen [Hit74]
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who showed that if there is a metric with positive scalar curvature, then α(M) = 0.
The converse was established by Stolz in 1990 [Sto90]. For our purposes, its most
important property is that it can be nonzero only in dimensions n = 0, 1, 2, 4 mod 8.
(This assumes n > 4.) So there is a possible obstruction to positive scalar curvature
only in these dimensions. Even in these dimensions, this obstruction only applies
to spin manifolds: If M does not admit spinors, then it always admits a metric of
positive scalar curvature [GL80a].

In view of Yamabe’s problem, the “nice” metric can be thought of witch has
constant scalar curvature. It seems to be special. But the constant can not be
arbitrary. Yabame invariant µ(g), which is a conformal invariance characterize this
constant. Nontrivial solution of its Euler-Lagrange equation

− 4
n− 1

n− 2
∆gf + S(g)f = µ(g)f

n+2
n−2 (1)

whose existence guaranteed by the solution of Yamabe problem [Sch84], gives rise

to the so-called Yamabe metric f
4

n−2 g, which has constant scalar curvature µ(g).

Calabi’s Canonical Metric in Kähler Geometry: In 1950s, Calabi first pro-
posed to study the constant scalar curvature Kähler (cscK) metric problems. His
ideal is to find the best canonical metric in each given Kähler class [Cal82] [Cal85],
which results in a 4th order, fully nonlinear partial differential equation. The relative
PDE is very difficult for one cannot use maximal principle from PDE point of view
and also can not have much control of metric from the bound of the scalar curvature.
When the first Chern class has a definite sign (positive, negative or zero), the cscK
metric in the suitable multiple of the first Chern class reduces to a Kähler-Einstein
metrics, which is the center of the field for the last few decades where all efforts and
techniques of many mathematicians are devoted to, leading to the final resolution
of this difficult problem.

In 1958, E. Calabi published the fundamental C3 estimate for Monge-Ampére
equation [Cal58] which later played a crucial role in Yaus seminal resolution of Cal-
abi conjecture [Yau78] in 1976 when the first Chern class is either negative or zero
(In negative case, T. Aubin has an independent proof [Aub76]) . This work of Yau is
so influential that generations of experts in Kähler geometry afterwards largely fol-
lowed the same route: Securing a C0 estimate first, then move on to obtain C2, C3

estimates etc. In the case of positive first Chern class, Gang Tian proved Calabi con-
jecture in 1989 [Tia89] for Fano surfaces when the automorphism group is reductive.
It is well known that there are obstructions to the existence of KE metrics in Fano
manifolds; around 1980s, Yau proposed a conjecture which relates the existence of
Kähler Einstein metrics to the stability of underlying tangent bundles. In 1997, Gang
Tian introduced the so-called K-stability (via special degeneration) and showed that
the existence of Kähler-Einstein metric necessarily implies the K-stability of the un-
derlying polarization through special degeneration [Tia97]. In 2002, S. K. Donaldson
reformulated it into a notion of algebraic K-stability [Don02]. This conjecture was
settled in 2012 through a series of work [CDS12a] [CDS12b] [CDS12c], which is itself
quite involved as it sits at the intersection of several different subjects: algebraic
geometry, several complex variables, geometry analysis and metric differential geom-
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etry etc. With the existence problem of Kähler-Einstein metric settled eventually,
the next step is to discuss how to attack Calabis original problem in full generality.

Conjecture 0.1 (Yau-Tian-Donaldson) Polarized Kähler manifold (M,L) is K-
stable if and only if there exist a cscK metric in c1(L).

In 2015, Chen Xiuxiong propose a “new” continuity path in a given Kähler class
to solve the cscK metric problem [Che15]. Also in 2018, Chen Xiuxiong and Cheng
Jingrui derived apriori estimates for constant scalar curvature Kähler metrics on
a compact Kähler manifold, and proved Donaldsons conjecture on the equivalence
between geodesic stability and existence of cscK when Aut0(M,J) ∕= 0 [CC18a]
[CC18b] [CC18c]. This deep result generalizes Tian Gang’s Properness theorem, the
Mabuchi energy is proper if and only if there is a metric of constant scalar curvature
in the class [ω]. On the other hand, Sean Paul gives a complete description of the
behavior of the Mabuchi energy along all degenerations. Under the assumption that
Aut(M,J) is finite, this gives the equivalent between analytic stability and algebraic
stability.

Theorem 0.1 Let (X,L) be an arbitrary polarized manifold. Assume that Aut(M,J)
is finite. Then (X,L) is asymptotically K-stable if and only if there is a constant
scalar curvature metric in c1(L).

The most important idea is to identify a norms conformally equivalent to the
standard L2 norms on polynomials. Since the conformal factors are continuous, they
are bounded by reasons of compactness. The conclusion was that the Mabuchi en-
ergy is almost the distance between the orbits in Hilb. That is, the distance in the
usual Fubini Study metric induced by L2 up to some (unknown) error that depended
on the degree of the embedding. Based on work by J.M.Bismut, Henri Gillet, and
Christophe Soulé [BGS88a] [BGS88b] [BGS88c] , Paul [Pau12a] recently found a
more sophisticated path to the relationship between the Mabuchi energy restricted
to the Bergman metrics and the resultant and hyperdiscriminant of the subvariety
which revealed that the error was in fact the difference between the L2 norm and
another well known L0 norm, i.e. the Mahler measure. The boundedness of the
error, initially attributed to compactness, is just an expression of the fact that these
norms are comparable. The outcome is that the norm on the space of polynomials
which connects the Mabuchi energy to stability of the pair (R,∆) is exactly given
by the Mahler measure. Now asymptotic stability and global bounds on K-energy
maps follow almost at once from Tian’s Thesis [Tia90].

There is also another approach, called Kähler-Ricci flow, to study the existence
problem of Kähler-Einstein metrics on Fano manifolds. In general two key ingre-
dients are needed, namely the partial C0-estimate and the construction of a de-
stabilizing test configuration. The first is analytic and the second is algebraic in na-
ture. For the partial C0-estimate, it is proved by Székelyhidi [Szé13] for the classical
Aubin-Yau continuity path, by adapting the results of [DS14] [CDS12b] [CDS12c].
For the approach using Ricci flow, this is proved by Chen-Wang [CW12] in dimension
two, Tian-Zhang [TZ13] in dimension three, and by Chen-Wang [CW14] in all dimen-
sions as a consequence of the resolution of the Hamilton-Tian conjecture. We note
that these results together with the work of Sean Paul [Pau12a] [Pau12b] [Pau13]
already imply that on a Fano manifold without non-trivial holomorphic vector fields,
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the existence of a Kähler-Einstein metric is equivalent to the notion of stability de-
fined by Paul. About the second ingredient, Datar and Szëkelyhidi [DS15a] have
adapted the results of [CDS12c] to the Aubin-Yau continuity path, which gives a
new proof of the theorem of Chen-Donaldson-Sun. Chen-Wang [CSW15] give yet
another proof using the Ricci flow, which means that technically they will address
the issue of constructing a de-stabilizing test configuration. Notice this can not be
naively adapted from [CDS12c] and requires new strategy to understand the relation
between the asymptotic behavior of the Kähler-Ricci flow and algebraic geometry.
Their work is motivated by [DS15b] which studies tangent cones of non-collapsed
Kähler-Einstein limit spaces.

When consider about cscK metrics, there is a flow, called Calabi flow which is
supposed to be used to get cscK metric. Motived by Donaldsons theorem relat-
ing balanced embeddings to metrics with constant scalar curvature [Don01]. Joel
Fine [Fin10] prove the parabolic analogue, balancing flow, which can approximate
the Calabi flow using Donaldsons techniques [Don09] with an asymptotic result of
Liu and Ma [LM07]. But the long time existence problem of Calabi flow is still open.
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