1.0.7 习题

1. 给定正则曲线 $\boldsymbol{\rho} = \boldsymbol{\rho}(s)$, 其中 s 是弧长参数。设其曲率 $\kappa(s)$ 满足 $0 < \kappa(s) < \frac{1}{a}$, 这里 a > 0 是一实数。记 $\mathbf{n}(s)$ 和 $\mathbf{b}(s)$ 分别为该曲线的主法向量和副法向量。考查曲面

$$S: \mathbf{r} = \mathbf{r}(s, \varphi) = \boldsymbol{\rho}(s) + a\mathbf{n}(s)\cos\varphi + a\mathbf{b}(s)\sin\varphi,$$

这里 $\varphi \in (0, 2\pi)$.

- (1) 证明曲面S正则。
- (2) 判断 $\mathbf{r}_s(s,\varphi)$ 和 $\mathbf{r}_{\varphi}(s,\varphi)$ 是否为曲面该点处的主方向并说明理由。
- (3) 当曲线 $\rho = \rho(s)$ 为平面曲线时,求曲面的平均曲率并判断曲面是否为极小曲面。
- (4) 当曲线 $\rho = \rho(s)$ 为平面曲线时,求曲面的椭圆点、双曲点、抛物点。
- (5) 当曲线 $\rho = \rho(s)$ 为平面曲线时,求曲面在双曲点处和抛物点处的渐近方向。
 - 2. 设 $r: D \subset \mathbb{R}^2 \to \mathbb{E}^3$ 为一个正则曲面片,设其第一、第二基本形式为

$$I = Edu \otimes du + F(du \otimes dv + dv \otimes du) + Gdv \otimes dv, \tag{1.1}$$

$$II = Ldu \otimes du + M(du \otimes dv + dv \otimes du) + Ndv \otimes dv, \tag{1.2}$$

其中 $E, F, G, L, M, N : D \to \mathbb{R}$ 为光滑函数。

- (i) 若任意坐标曲线 u = 常数 或 v = 常数 都是曲率线,则称该参数化为曲面片的一个正交曲率线网。设改曲面片没有脐点,证明参数化为正交曲率线网的充要条件是 F = M = 0.
- (ii) 若任意坐标曲线 u = 常数 或 v = 常数 都是渐近线,则称该参数化为曲面片的一个渐近线网。证明参数化是渐近线网的充要条件是 L = N = 0.
 - 3. 设 $r: D \subset \mathbb{R}^2 \to \mathbb{E}^3$ 为一个正则曲面片.
- (i) 证明任给 $(u_0, v_0) \in D$,都存在其一个邻域 U ,使得 U 有参数 $(\overline{u}, \overline{v})$ 使得 $r = r(\overline{u}, \overline{v})$ 满足 $\langle r_{\overline{u}}, r_{\overline{v}} \rangle = 0$ 在 U 上处处成立。
- (ii) 证明对 $(u_0, v_0) \in D$,若 $r(u_0, v_0)$ 不是脐点,则总存在其一个邻域 U ,使得 U 有 参数 $(\overline{u}, \overline{v})$ 其相应的曲面参数化为正交曲率线网。
- (iii) 设曲面片为全脐点曲面。证明对任给 $(u_0, v_0) \in D$,都存在其一个邻域 U,使得 U 有 参数 $(\overline{u}, \overline{v})$ 其相应的曲面参数化为正交曲率线网。