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7.2.3 Weitzenböck formula . . . . . . . . . . . . . . . . . . . . . . 206
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Introduction

On June 10, 1854, Georg Friedrich Bernhard Riemann delivered a lecture entitled “über
die Hypothesen, welche der Greometrie zu liegen”(On the Hypotheses which lie at the
Foundations of Geometry) to the faculty of Göttingen University. This lecture was
published later in 1866, and gives birth to Riemannian geometry.

This lecture was given by Riemann as a probationrary inaugural lecture for seeking
the position of “Privatdocent”. Privatdocent is a position in the German university
system. It is a lecturer who receive no salary, but is merely forwarded fees paid by those
students who elected to attend his lectures. To attain such a position, one has to submit
an inaugural paper(Habilitationsschrift) and give a probationary inaugural lecture on a
topic chosen by the faculty, from a list of 3 proposed by the coordidates. The first 2
topics which Riemann submitted were ones on which he has already worked; The 3rd
topic ha chose was the foundations of geometry. Usually, the faculty chooses the first
topic proposed by the candidate. However, contrary to all traditions, Gauss passed over
the first two and chose instead the 3rd of Riemann’s topics. So Riemann has to prepare
a lecture on a topic that he had not worked on before. In the end, Riemann finished his
lecture in about seven more weeks.

Why did Gauss choose the 3rd topic? In fact, that is topic in which Gauss had been
interested in for many years.

The single most important work in the history of differential geometry is Gauss’
paper, in Latin, of 1827: “Disquisitiones generales circa super ficies curvas”(General
Investigations of Curved Surfaces). The most influential result in Gauss’ paper is the
so-called ”Theorem Egregium”. Roughly speaking, this theorem asserts that the Gauss
cvrvature of a surface is determined by its first fundamental form. This opens the door
to “Intrinsic geometry” and provides possibility of studying more abstract spaces other
than surfaces in E3. For example, one can study the geometry of a “flat torus”, which
is a topological torus associated with a “flat metric”.

What Riemann did in his lecture is developing higher-dim intrinsic geometry. Ge-
ometry presupposes the concept of space. In this course of Riemannian geometry,
the space we study is a C∞-manifold M(Hausdorff and second countable) associated
a Riemannian metric g. A vital step is to understand what is the extension of Gauss
curvature in higher dimensional manifolds. The original definition of Gauss curvature
using Gauss map is not available in higher dimensional manifolds. The expression
of Gauss curvature in the Gauss equation is possibly extended to higher dimensional
spaces.

Actually, before discussing “curvature”, we can already see a lot of information of
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4 Introduction

the geometry of the underlying spaces from the Riemannian metric.
We will roughly follow the scheme below:
(I). Riemannian metric
From the Riemannian metric, we can calculate the length of curves, and moreover,

we obtain a natural volume measure.
(II). Geodesics
It’s natural to look for shortest curves connecting two points. Geodesics are curves

which are “locally” shortest. They can be obtained from the First variation of the
length functional. In order to explore the problem whether a geodesic is shortest, we
will discuss exponential maps, normal coordinates, Hopf-Rinow theorem(1931), etc.

(III).Connections, parallelism, and Covariant Derivatives
We reinterpret the geodesic equations in terms of connections and covariant deriva-

tives, or parallelism. In this process, we develop (Abstract) calculus on Riemmanian
manifolds.

(IV).Curvature
When we consider the Second Variation of the length functional. In this variational

formula, a “curvature” term will appear, which is a generalization of Gaussian curva-
ture of surfaces. We will discuss properties of Riemannian curvature tensor and various
curvature notions.

(V).Spaces forms and Jacobi fields
We will discuss the complete Riemannian manifolds with constant curvature, which

are referred to as space forms. Those will be model spaces when we study the geometry
of a general Riemannian manifold. In this process, we discuss the theory of Jacobi
fieldsvariational vector fields of family of geodesics.

(VI).Comparison theorems
We explore geometry of Riemannian manifolds with curvature bounds via compar-

ing them with spaces forms”.



Chapter 1

Riemannian Metric

1.1 Definition
Recall in the theory of surfaces in E3: For a surface S ⊂ E3, ∀ p ∈ S , and any two
tangent vectors X,Y∈ TpS , we have the inner product 〈X,Y〉p. (〈X,Y〉p is the inner
product of E3)

This inner product 〈X,Y〉p corresponds to the first fundenmental forms of S at p.
Based on this inner product, one can compute the lengths of a curve in S, the area of a
domain in S, etc.

Now, let us consider a C∞-manifold Mn(dimM = n).

Definition 1.1 (Riemannian Metric). A Riemannian metric g on M is a “C∞ assign-
ment”: For each tangent vector space TpM(p ∈ M) of M, we assign an inner product
gp(·, ·)=〈·, ·〉p, which is smoothly dependent on p in the following sense: f(p):=〈Xp,Yp〉p =

gp(Xp,Yp) is a smooth function on U ⊂ M for any smooth tangent vector fields X,Y on
U ⊂ M.

Remark 1.1. Recall that by inner product, we mean gp(·, ·) is symmetric, positive
definite and bilinear.

What it looks like in local coordinates: Given p ∈ M. For any coordinate neigh-
borhood U 3 p, let its coordinate functions be x1, x2, · · · , xn. Then the tangent vector
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6 CHAPTER 1. RIEMANNIAN METRIC

space TpM is spanned by ∂
∂x1 , · · · ,

∂
∂xn . Its dual spacethe cotangent vector spaces T ∗pM

is spanned by dx1, · · · , dxn. Then we denote

〈
∂

∂xi ,
∂

∂x j 〉p = g(
∂

∂xi ,
∂

∂x j )(p) := gi j(p),

and for any smooth tangent vector fields

X = Xi ∂

∂xi ,Y = Y j ∂

∂x j

we have 〈Xp,Yp〉p = Xi(p)Y j(p)
〈
∂
∂xi ,

∂
∂x j

〉
p

= gi j(p)Xi(p)Y j(p) . Here we use the
Einstein summation: an index occuring twice in a product is to be summed from 1 up to
the space dimension. Therefore, in local coordinates, we can consider the Riemannian
metric g as

g = gi jdxi ⊗ dx j,

where (1) “gp(·, ·) depends smoothly on p” is equivalent to say “gi j(p) is smooth on
U 3 p,∀i, j”.

(2) “gp(·, ·) is an inner product” is equivalent to say
· gi j = g ji, i.e the matrix (gi j(p)) is symmetric at any p ∈ U.
· The matrix (gi j(p)) is positive definite at any p ∈ U.

Hence, we can reformulate the definition of a Riemannian metric g as belows.

Definition 1.2 (Riemannian Metric). A Riemannian metric g on a C∞-manifold M is a
smooth (0,2)-tensor satisfying

g(X,Y) = g(Y, X), g(X, X) = 0 and gp(X, X) = 0⇔ X(p) = 0

for any smooth tangent vector fields X,Y.

Definition 1.3. A Riemannian manifold is a differentiable(we will always assume C∞)
manifold equipped with a Riemannian metric.

Remark 1.2. a couple (M,g).

1.2 Examples
(1)M = Rn, ∀p ∈ M, TpRn = Rn. The standard inner product on Rn gives a standard
Riemannian metric g0:

g0(X,Y) =
∑

i

XiY i = XT Y.

Another way to see it: Rn is covered by a single coordinate (x1, · · · , xn).

Matrix : (gi j) = (δi j) = In×n.

Tensor : g = dx1 ⊗ dx1 + · · · + dxn ⊗ dxn.
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More generally, (gi j) can be any positive definite and symmetric n× n matrix A = (ai j).
Then g = ai jdxi ⊗ dx j and g(X,Y) = XT AY .

(2) Induced Metric: Let f : Mn → Nn+k be a smooth immersion(i.e. d fp :
TpM → T f (p)N is injective for any p ∈ M). Let (N, gN) be a Riemannian manifold(e.g.
(N, gN) = (Rn+k, g0)). We can define the pull-back metric f ∗gN on M as belows

( f ∗gN)p(Xp,Yp) = (gN) f (p)(d fp(Xp), d fp(Yp)).

One can verify that f ∗gN is a Riemannian metric on M. (( f ∗gN)p(Xp, Xp)⇔ d fp(Xp) =

0
d fp is in jective
⇐⇒ Xp = 0)

Definition 1.4. We call f ∗gN an induced metric on M with respect to the smooth im-
mersion f : Mn → Nn+k.

A special case: M ⊂ N is an immersed submanifold. Then the inclusion map
i : M → N is an immersion. In this case, the induced metric (i∗g)p is just the restriction
of (gN)p on TpM ⊂ TpN.

Example 1.1. Let M = S 1 be the unit circle in R2. Choose a coordinate neighborhood
{θ : 0 < θ < 2π}. Then the inclusion map is given byx = cos θ

y = sin θ

gS 1 = (dx⊗ dx + dy⊗ dy)|S 1 = dθ ⊗ dθ. Then we have dx = − sin θdθ, dy = cos θdθ
and gS 1 = (dx ⊗ dx + dy ⊗ dy)|S 1 = dθ ⊗ dθ.

Example 1.2. Let M = S 2 be the unit sphere in R3. Choose a coordinate neighborhood
{(θ, z) : 0 < θ < 2π,−1 < z < 1} 

x =
√

1 − z2 cos θ

y =
√

1 − z2 sin θ
z = z
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Then the induced metric on S 2 is gS 2 = 1
1−z2 dz ⊗ dz + (1 − z2)dθ ⊗ dθ. (Exercise!)

(3)Product metric: Let (M, gM), (N, gN) be two Riemannian manifolds. Let M × N
be the Cartesian product. Let π1 : M × N → M, π2 : M × N → N be the natural
projections, Then M × N has the following product metric g:

gp,q(X,Y) = (gM)p(dπ1(X), dπ1(Y)) + (gN)p(dπ2(X), dπ2(Y))

∀(p, q) ∈ M × N,∀X,Y ∈ T(p,q)(M × N). For example, the torus T n = S 1 × · · · × S 1 has
a product metric based on the induced metric on S 1. Such tori are flat tori.

(4)If g1, g2 are two Riemannian metrics of M, so does ag1 + bg2, ∀a, b > 0.

1.3 When are two Riemannian manifolds “equivalent”?
Definition 1.5 (Isometry). Let (M, gM), (N, gN) be two Riemannian manifolds. Let
φ : M → N be a diffeomorphism(i.e. φ is bijective, C∞ and π−1 is also C∞). If
φ∗gN = gM . (That is, (gM)p(X,Y) = (gN)φ(p)(dφp(X), dφp(Y)), ∀p ∈ M, ∀X,Y ∈ TpM),
then we call φ an isometry.

1.4 Existencce of Riemannian Metrics
Theorem 1.1. A C∞-manifold M (Hausdorff,second countable) has a Riemannian met-
ric.

Proof. Let {Uα} be a locally finite covering of M by coordinate neighborhoods.That is
,any point p of has a neighborhood U such that U ∩Uα , ∅ at most for a finite number
of indices.

Let {φα} be a C∞ partition of unity on M subordinate to the covering {Uα} That is

(1) φα ≥ 0, φα = 0 on M \Uα.
(2)

∑
α
φα(p) = 1,∀p ∈M.

On each Uα we can define a Riemannian metric gα(·, ·) induced by the local coor-
dinates.(e.g. (Uα, xi

α)→ gα =
∑
i

dxi
α ⊗ dxi

α)

Let us set

gp(X,Y) :=
∑
α

φα(p)(gα)p(X,Y),∀p ∈ M,∀X,Y ∈ TpM. (1.4.1)

It is direct to verify that this construction defines a Riemannian metirc on M .(In
fact ,the main point is to check that g is positive definite.This is because the summation
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in (1.4.1) is actually a finite sum,and
∑
α
φαα = 1 =⇒ ∃β s.t.φβ(p) > 0. Hence gp ≥

φβ(p)gβ > 0.
� �

Remark 1.3. Whitney (1936) showed that any n-dimensional C∞ manifold Mn can
be embedded into R2n+1 .Thus Mn always has a Riemannian metric induced from the
standard Riemannian metric g0 of R2n+1 .

On the other hand ,given a Riemannian manifold (Mn, gM) ,the Riemannian metric
gM is usually different from the metric induced from g0 of R2n+1 .In fact ,Nash’s em-
bedding theorem tells that for any Riemannian manifold (Mn, gM) ,there exists a N,s.t.
(Mn, gM) can be underlineisometrically embedded into (RN , g0). In other words,there
exists an embedding ϕ : Mn → RN s.t. gM = ϕ∗g0. Nevertheless, the intrisic point
of view in the above proof offers great conceptual and technical advantages over the
approach of submanifold geometry of Euclidean space.

1.5 The Metric Structure

The Riemannian metirc g on M induces a natural distance function d. That is a function
d : M × M → R satisfying for any p, q, r ∈ M

(1)d(p, q) ≥ 0, and d(p, q) = 0⇐⇒ p = q.
(2)d(p, q) = d(q, p).
(3)d(p, q) ≤ d(p, r) + d(r, q).
To show this fact,let’s consider the length of curves in M.
Let γ : [a, b] → M be a smooth (parametrized) curve in M. For any t ∈ [a, b], we

have the tangent vector

γ̇(t) := dγ(
d
dt

) ∈ Tγ(t)M.

We always assume the parametrization is regular ,i.e. γ̇(t) , 0,∀t. Then the length
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of γ is

Length(γ) :=
∫ b

a
|γ̇(t)|dt

=

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t)dt.

Lemma 1.1. The quantity Length(γ) does not depend on the choice of parametirzation.

Proof. Let γ1 : [c, d] → M (c < d) is another regular parametrization of the same
curve. Then there exist a smooth function t1 = t1(t) : [a, b]→ [c, d] s.t.

γ1(t1(t)) = γ(t).

Since both parametrization are regular, we haveγ̇1(t1) , 0, γ̇0(t) , 0
Obseve that

γ̇(t) = γ̇1(t1) ·
dt1
dt
. (1.5.1)

By definition, (1.5.1) can be checked as belows:for any smooh function f ,

γ̇(t) · f = dγ(
d
dt

) · f =
d
dt

f (γ(t)) =
d
dt

f (γ1(t1(t)))

=
d

dt1
f (γ1(t1))

dt1
dt

= dγ1(
d

dt1
) f ·

dt1
dt

Hence we have dt1
dt , 0, which means either dt1

dt > 0 or dt1
dt < 0. As we assume

a ≤ b, c ≤ d, we have here dt1
dt > 0.

Now we caculate

Length(γ1) =

∫ d

c

√
〈γ̇1(t), γ̇1(t)〉γ1(t1)dt1

=

∫ b

a

√
〈

dt
dt1

γ̇(t),
dt
dt1

γ̇(t)〉γ(t)
dt1
dt

dt

=

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t)

∣∣∣∣∣ dt
dt1

∣∣∣∣∣ ∣∣∣∣∣dt1
dt

∣∣∣∣∣ dt

=

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t)dt = Length(γ).

� �

Exercise 1.1. Let ϕ : (M, gM) → (N, gN) be an isometry,γ be a smooth curve in M.
Show that LengthM(γ) = LengthN(ϕ(γ)).

Arclength parametrization. Now we look for a ”standard” parametrization for a
given curve. Consider smooth curve γ : [a, b] → M. We can define the arclength
function of γ:
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s(t) :=
∫ t

a

√
〈γ̇(t), γ̇(t)〉γ(t)dt

Then s = s(t) : [a, b] → [0,Length(γ)] is a strictly increasing function. Denote byt =

t(s) its inverse function. Then we can reparametrize γ(t) as

γ1(t) = γ(t(s)), s ∈ [0,Length(γ)]

Proposition 1.1. 〈γ̇1(s), γ̇1(s) ≡ 1

Proof. We caculate

〈γ̇1(s), γ̇1(s)〉γ1(s) = 〈γ̇(t)
dt
ds
, γ̇(t)

dt
ds
〉γ(t(s))

= (
dt
ds

)2 · 〈γ̇(t), γ̇(t)γ(t)

= 1

� �

Remark 1.4. The length of a (continuous and) piecewise smooth curve is defined as
the sum of the smooth pieces.

On a Riemannian manifold (M, g),the distance between two points p, q can be de-
fined:

d(p, q) := inf{Length(γ) : γ ∈ Cp,q}

where Cp,q := {γ : [a, b]→ M : γ piecewise smooth curve with γ(a) = p, γ(b) = q}
It can be checked immediately that d : M × M → R satisfies
(1)d(p, p) = 0, d(p, q) ≥ 0
(2)d(p, q) = d(q, p)
(3)d(p, q) ≤ d(p, r) + d(r, q) (By definition)
To show that d is indeed a distance function , it remains to prove d(p, q) = 0 =⇒

p = q or equivalently, p , q =⇒ d(p, q) > 0

Theorem 1.2. (M, d) is a metric space.

Proof. It remains to show p , q =⇒ d(p, q) > 0
There exists a coordinate neighborhood U of q, with coordinate map ϕ such that ϕ(q) = 0 ∈ Bδ(0) := V ⊂ Rn

p < U
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Denote ϕ−1 : Bδ(0)→ U. Then on Bδ(0),we have the pull-back metric (ϕ−1)∗g := h
Let γ : [a, b]→ Bδ(0) be a curve connecting 0 = ϕ(q) and a point on ∂B δ

2
(0). Let c

be the smallest number with γ(c) ∈ ∂B δ
2
(0). Then we have

Lengthh(γ) ≥ Lengthh(γ|[a,c]) =

∫ c

a

√
〈γ̇, γ̇〉hdt.

Obeserve that there exists a positive constant ε s.t.

〈γ̇, γ̇〉h ≥ ε〈γ̇, γ̇〉g0 on Bδ(0)

(Exercise: Let K be an open set of Rn, [gi j(x)] be n2 continuous functions on K
such that the matrix [gi j(x)] is symmetric for any x ∈ K.

(1)Denote by λ(x),Λ(x) the smallest, largest eigenvalues of [gi j(x)]. Show that both
λ and Λ are continuous functions on K.

(2)Suppose K is compact and [gi j(x)] is positive definite for any x ∈ K. Show that
there exist positive constants ε1, ε2 such that

ε1|v|2 ≤
∑
i, j

gi j(x)viv j ≤ ε2|v|2

for any x ∈ K and any (v1, · · · , vn) = v ∈ Rn.)
Therefore, we have

Lengthh(γ) ≥
√
ε

∫ c

a
〈γ̇, γ̇〉g0

dt =
√
εLengthg0

(γ|[a,c]) ≥
√
εδ

2
.

Any curve connecting p, q ∈ M must intersect with φ−1(∂B δ
2
(0)) at some point. Hence,

we have

d(p, q) ≥
√
εδ

2
> 0.

� �
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Moreover, we have the following property.

Proposition 1.2. Let (M,g) be a Riemannian manifold. For given p ∈ M, the function
f (·) := d(·, p) : M → R is continuous.

Proof. We need to show f (qi) → f (q) while qi tends to q (in the sense of the mani-
fold topology). By triangle inequality, | f (qi) − f (q)| ≤ d(qi, q). So it suffices to prove
d(p, q)→ 0 as i→ ∞. Pick a coordinate neighborhood U of q such that

∃ φ : U → Bδ(0) =: V ⊂ Rn, φ(q) = 0.

Without loss of generality, we assume φ(qi) ∈ B 1
i
(0). Denote by h := (φ−1)∗g.

Choose γ̃i : [0, 1] → V be the curve γ̃i(t) = tφ(qi). (Note γ̃i(0) = φ(q), γ̃i(1) = φ(qi)).
Then ∃ε2 > 0 such that

Lengthh(γ̃i) =

∫ 1

0

√
〈γ̇, γ̇〉hdt ≤

√
ε2

∫ 1

0
〈γ̇, γ̇〉g0

dt ≤
√
ε

i
.

Therefore, we have

d(pi, qi) ≤ Lengthh(γ̃i) ≤
√
ε2

i
→ 0, as i→ ∞.

� �

Corollary 1.1. The topology on M induced by the distance function d coincides with
original manifold topology of M.

Proof. The continuity of f (·) = d(·, p) tells every open set of the topology induced by
d is again open of the manifold topology. By the proof of 1.5.2, one can see the other
way around every open set of the manifold topology is open in the topology induced
by d. � �

Remark 1.5. It actually suffice to show that the topology induced by d coincides with
the one in Rn in each coordinate neighberhood, which is induced by the Euclidean
distance. We know for any point in this coordinate, exist positive constant ε1, ε2 with

ε1|v|2 ≤ gi jviv j ≤ ε2|v|2,∀v ∈ Rn.

By our precious argument, this implies the Riemannian distance d and the Euclidean
distance control each other. Hence the two topology coincides.
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1.6 Riemannian Measure, Volume
For any p ∈ M, (TpM, g) is an vector space with inner products. Consider an or-
thonormal basis {e1, · · · , en} of (TpM, g). The volume of the parallelepiped spanned by
e1, · · · , en, vol(e1, · · · , en) = 1.

Now we hope to develop a natural notion of intergration on a Riemannian manifold.
Locally, such an intergration should be the intergration over on Euclidean subset V:∫

V
()dx1 · · · dxn.

So we need to know the length of the tangent vecters { ∂
∂xi (p), i = 1, 2, · · · , n} and

the volume of the parallelepiped spanned by them.
We can write ∂

∂xi (p) = a j
i e j.

Then gik(p) =
〈
∂
∂xi (p), ∂

∂xk (p)
〉

=
〈
a j

i e j, al
kel

〉
(p) = a j

i a
l
kδ

l
j =

∑
l

al
ia

l
k.

Matrix form:[gik] = AAT , with A =


a1

1 a2
1 · · · an

1
a1

2 a2
2 · · · an

2
...

...
. . .

...
a1

n a2
n · · · an

n

 .
Therefore, we have

vol(
∂

∂x1 (p), · · · ,
∂

∂xn (p)) = det(a j
i )(p)vol(e1, · · · , en)

=

√
det(gi j)(p).

Volume of “small” compact domain.
∀p ∈ M, let (U, x1, · · · , xn) be a coordinate neighberhood: x : U → Rn. Consider

compact set K ⊂ U such that x(K) is measurable(in Rn). Then we define its volume as

vol(K) :=
∫

x(K)

√
det(gi j) ◦ x−1dx1 · · · dxn (dx1 · · · dxn : Lebesgue measure on Rn).

(1.6.1)
Well-definedness?

Proposition 1.3. The difinition (1.6.1) does not depends on the choice of the coordi-
nate.
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Proof. Suppose we have another coordinate neighborhood (V, y1, · · · , yn) containing
K: y : V → Rn.

y◦x−1 : x(U)→ y(V) is a diffeomorphism. Observe that ∂
∂xi (p) =

∂(yk◦x−1)
∂xi (x(p)) ∂

∂yk (p).
We have

gx
i j(p) : =

〈
∂

∂xi (p),
∂

∂x j (p)
〉

=

〈
∂

∂yk (p),
∂

∂yl (p)
〉
∂(yk ◦ x−1)

∂xi (x(p))
∂(yl ◦ x−1)

∂x j (x(p))

=
∂(yk ◦ x−1)

∂xi (x(p))
∂(yl ◦ x−1)

∂x j (x(p))gy
kl(p).

Denote the jacobian matrix of the map y ◦ x−1 by

J(x(p)) =


∂(y1◦x−1)

∂x1
∂(y1◦x−1)

∂x2 · · ·
∂(y1◦x−1)

∂xn

...
...

...
∂(yn◦x−1)

∂x1
∂(yn◦x−1)

∂x2 · · ·
∂(yn◦x−1)

∂xn

 .
We obtain [gx

i j(p)] = JT (x(p))[gy
kl(p)]J(x(p)).

Hence
√

det(gx
i j)(p) = |det(J(x(p)))|

√
det(gy

kl)(x(p)).

Therefore we have∫
y(K)

√
det(gy

i j) ◦ y−1dy1 · · · dyn y=y◦x−1

=

∫
x(K)

√
det(gy

i j) ◦ y−1(y ◦ x−1)|det(J(x(p)))|dx1 · · · dxn

=

∫
x(K)

√
det(gx

i j) ◦ x−1dx1 · · · dxn

� �

Volume of “larger” conmpact domain.



16 CHAPTER 1. RIEMANNIAN METRIC

Now let us consider the case when K can not be contained in a single coordinate
nerghborhood. Let Uα, x1

α, · · · , x
n
α be a locally finite covering of M by coordinate neigh-

borhoods. Let {φα}α be a C∞ partition of unity on M subordinate to the covering {Uα}.
Then we define

vol(K) :=
∑
α

∫
xα(K

⋂
Uα)

(φα ◦ x−1
α )

√
det(gxα

i j ) ◦ x−1
α dx1

α · · · dxn
α.

Proposition 1.4. This definition does not depend on the choice of the covering of co-
ordinate neighborhoods and partiton of unity.

Proof. Let {Vβ, y1
β, · · · , y

n
β}β be another locally finite covering of M by coordinate neigh-

borhood and {ψβ} be a partition of unity of M subordinate to {Vβ}. Then we compute

∑
β

∫
yβ(K

⋂
Vβ)

(ψβ ◦ y−1
β )

√
det(yyβ

i j ) ◦ y−1
β dy1

β · · · dyn
β

=
∑
β

∫
yβ(K

⋂
Vβ)

∑
α

(φα ◦ y−1
β )(ψβ

√
det(yyβ

i j )) ◦ y−1
β dy1

β · · · dyn
β.

We can exchange the order of the two summations, since each is a finite sum.∑
β

∫
yβ(K

⋂
Vβ)

∑
α

(φα ◦ y−1
β )(ψβ

√
det(yyβ

i j )) ◦ y−1
β dy1

β · · · dyn
β

=
∑
α

∫
yβ(K

⋂
Vβ)

∑
β

(ψβ ◦ y−1
β )(φα

√
det(yyβ

i j )) ◦ y−1
β dy1

β · · · dyn
β

change o f variables
=

∑
α

∫
xα(K

⋂
Uα)

∑
β

(ψβ ◦ x−1
α )(φα

√
det(yxα

i j )) ◦ x−1
α dx1

α · · · dxn
α

=
∑
α

∫
xα(K

⋂
Uα)

(φα ◦ x−1
α )

√
det(yxα

i j ) ◦ x−1
α dx1

α · · · dxn
α

� �

Let us denote by C0
0(M) the vector space of continuous functions on M with com-

pact support. For any f ∈ C0
0(M), we define∫

M

f :=
∑
α

∫
xα(Uα)

(φα f ) ◦ x−1
α

√
det(gxα

i j ) ◦ x−1
α dx1

α · · · dxn
α.

From the above discussion, we know this is well-defined. Moreover, since φα ≥ 0,
we know

f ≥ 0⇒
∫
M

f ≥ 0.
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Therefore, we obtain a positive linear functional k : C0
0(M)→ R, k( f ) :=

∫
M

f .

By riesz representation theorem, these exists a unique Borel measure dvol such that

k( f ) =

∫
M

f =

∫
M

f dvol

for any f ∈ C0
0(M).

Remark 1.6. In each coordinate neighborhood, the integration with respect to dvol
can be considered an the integration with respect to the n-form

Ω0 =

√
det(tgi j)dx1 ∧ · · · ∧ dxn.

Notice that when we change the coordinate, we have

dy1 ∧ · · · ∧ dyn = det(J(x(p)))dx1 ∧ · · · ∧ dxn.

That is, Ω0 may change sign when we change from one coordinate to the other one.
Particularly, we can have a globally defined n-form Ω0 when M is orientable. In

this case, ∫
M

f dvol =

∫
M

f Ω0.

(Recall: On an orientable manifold M, let {e1, · · · , en} be an orthonormal frame fields,
and {ω1, · · · , ωn} be its dual. Then

Ω0 = ω1 ∧ · · · ∧ ωn.

)

Once the measure dvol is obtained, the machine of measure theory is intiated. We
define the Lp(1 ≤ p ≤ ∞) norm of f ∈ C0

0(M) as

‖ f ‖Lp := (
∫
M

| f |pdvol)
1
p .

We can take the completion of C∞0 (M) with respect to Lp-norm, the resulting space
is called Lp(M).
·In particular for p = 2, we can define inner product:

〈 f1, f2〉L2 :=
∫
M

f1 f2dvol,∀ f1, f2 ∈ L2(M).

This verifies L2(M) to be a Hilbert Space.
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1.7 Divergence Theorem
Let X be a smooth tangent vector fields of M. The divergence of X is defined as a C∞

function div(X) on M as below: Let (U, x1, · · · , xn) be a coordinate neighborhood, we
have the volume element

Ω0 =

√
det(gi j)dx1 ∧ · · · ∧ dxn.

The divergence divX : M → R is a C∞ function on M such that

(divX)Ω0 = d(i(X)Ω0)

where i(X) is the interior product with respect to X(i.e. the contraction of a differential
form with the vector field X).

That is, for any vector fields Y1, · · · ,Yn−1, we have

i(X)Ω0(Y1, · · · ,Yn−1) := Ω0(X,Y1, · · · ,Yn−1).

Remark 1.7. (1)When we change coordinates, Ω0 may change sign but this does not
matter for the definition of divX. The global definition of divX does not require the
orientability of M.

(2)Let us consider the expression of divX in local coordinate. Let X = Xi ∂
∂xi ,

i(X)Ω0 = i(Xi ∂

∂xi )
√

det(gkl)dx1 ∧ · · · ∧ dxn.

Lemma 1.2. i( ∂
∂xi (dx1 ∧ · · · ∧ dxn) = (−1)i−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Proof. Let Y1, · · · ,Yn−1 be any (n-1) smooth vector fields. We compute

i(
∂

∂xi (dx1 ∧ · · · ∧ dxn)(Y1, · · · ,Yn−1)

=dx1 ∧ · · · ∧ dxn(
∂

∂xi ,Y1, · · · ,Yn−1)

=
∑
σ∈S (n)

(sgnσ)dxσ(1) ⊗ · · · ⊗ dxσ(n)(
∂

∂xi ,Y1, · · · ,Yn−1)

=
∑
σ∈S (n)
σ(1)=i

(sgnσ)dxσ(2) ⊗ · · · ⊗ dxσ(n)(Y1, · · · ,Yn−1)

� �

Hence i(X)Ω0 =
∑

i Xi
√

det(gkl)(−1)i−1dx1 ∧ · · · ∧ dxn. Let
√

G =
√

det(gkl).
Furthermore, we obtain

d(i(X)Ω0) =
∑

i

(−1)i−1
∑

k

∂

∂xk (
√

GXi)dxk ∧ dx1 ∧ · · · ∧ d̂xi · · · ∧ dxn

=
∑

i

∂

∂xi (
√

GXi)dx1 ∧ · · · ∧ dxn

= (divX)Ω0.
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Hence divX = 1
√

G
∂
∂xi (
√

GXi).

Notice that in particular, when M = Rn, (gi j) = (δi j), we have for X = Xi ∂
∂xi ,

divX =

n∑
i=1

∂

∂xi Xi =

n∑
i=1

∂Xi

∂xi Xi.

This reduces to the classical divergence.
(3)By Cartan’s magical formula

LXω = i(X)dω + div(X)ω. (LXω : Lie derivative o f di f f erential f orms)

we have LXΩ0 = i(X)dΩ0 + div(X)Ω = div(X)Ω0.
This tells us that the divergence of a vector field is “infinitesional” changing rate of

the volume element along the vecter field.

Theorem 1.3. [Divergence Theorem] Let X be a smooth vector fields on (M,g).Then∫
M

div(X) dvol = 0

Proof. Let {Uα} be a locally finite covering of M by coordinate neighborhood, {φα} be
a partition of unity subordinate to {Uα}. Then we have

X =
∑
α

φαX

Since X has compact support and the summation above is finite, we have∫
M

div(
∑
α

φαX) dvol =
∑
α

∫
Uα

div(φαX) dvol.

So it is enough to show
∫

Uα
div(φαX) dvol holds for each α. Without loss of generality,

we assume the support of X is contained in a coordinate neighborhood (U, x1, · · · , xn),
and X = Xi ∂

∂xi . By definition, we have∫
M

div(X) dvol =

∫
U

1
√

G

∂

∂xi (Xi
√

G) dvol

=

∫
x(U)

(
1
√

G

∂

∂xi (Xi
√

G)
√

G) ◦ x−1dx1 · · · dxn

=

∫
x(U)

∂

∂xi (Xi
√

G ◦ x−1)dx1 · · · dxn

= 0

� �
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Gradient vector fields of a function
Let f ∈ C∞(M). The gradient vector field of f, grad f, is defined as a smooth vector

field such that
〈grad f ,Y〉 (= g(grad f ,Y)) = Y( f ).

expressions in local coordinates: (U, x1, · · · , xn), Y = Y j ∂
∂x j , suppose grad f =

Xi ∂
∂xi .
Then by definition

〈grad f ,Y〉 = gi jXiY j = Y( f ) = Yk ∂ f
∂xk .

That is
(gi jXi)Y j =

∂ f
∂xk Yk,∀Y ⇒ gi jXi =

∂ f
∂x j .

Recall [gi j] is a positive definite matrix. Denote by [gi j] its inverse matrix, i.e.

gikgk j = δi
j =

0, i f i , j

1, i f i = j

Next, we compute

gi jXi =
∂ f
∂x j ⇒ gk jgi jXi = gk j ∂ f

∂x j

⇒ Xk = δk
i Xi = gk jgi jXi = gk j ∂ f

∂x j .

Hence grad f = gk j ∂ f
∂x j

∂
∂xk .

Remark 1.8. (1)For the case M = Rn, (gi j) = (δi j), we have

grad f =
∑

i

∂ f
∂xi

∂

∂xi = (
∂

∂x1 , · · · ,
∂

∂xn ).

.
(2)“The gradient vector field is vertical to the level set of a function.”

Proposition 1.5. Let f ∈ C∞(M), c be a regular value of f. Then the vector field grad f
is vertical to the level set f −1(c).

Proof. Since c is a regular value of f, f −1(c) is a submanifold of M. Let X ∈ T f −1(c) ⊂
T M. We know

X( f ) = 0 on f −1(c).

Therefore, 〈grad f , X〉 = X( f ) = 0 on f −1(c). � �

(3)We say a one form η is dual to a vector field X if

〈X,Y〉 = η(Y), f or any vector f ield Y.

In particular, we see
〈grad f ,Y〉 = Y( f ) = d f (Y),∀Y.

That is, d f is dual to grad f .
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Corollary 1.2. Let f ∈ C∞0 (M). Then
∫
M

div(grad f ) dvol = 0.

Definition 1.6. The Laplacian of a smooth function f is ∆ f := div(grad f ).

Remark 1.9. (1)In local coordinate (U, x1, · · · , xn), we have

∆ f =
1
√

G

∂

∂xi ((grad f )i
√

G)

=
1
√

G

∂

∂xi (gi j ∂ f
∂x j

√
G)

=
1
√

G

∂

∂xi (
√

Ggi j ∂ f
∂x j ).

In particular, for the case M = Rn, gi j = δi j, we have ∆ f =
∑
i

∂2 f
(∂xi)2 .

(2).
∫
M

∆ f dvol = 0, ∀ ∈ C∞0 (M).

(3).For any smooth function f and vector field X, we have

div( f X) = f div(X) + 〈grad f , XX〉 .

Proof.

div( f X) =
1
√

G

∂

∂xi ( f Xi
√

G)

=
1
√

G

∂

∂xi Xi
√

G + f
1
√

G

∂

∂xi (Xi
√

G)

= X( f ) + f div(X)
= 〈grad f , X〉 + f divX.

� �

Theorem 1.4. [Green’s formula] Let f,h be two smooth functions,, at least one of which
has ccompact support. Then∫

M

f ∆h dvol = −

∫
M

〈grad f , grad h〉 dvol

=

∫
M

(∆ f )h dvol.

Proof. Applying div( f X) = f divX + 〈grad f , X〉 to X = grad h, we have

div( f (grad h)) = f div(grad h) + 〈grad f , grad h〉 = f ∆h + 〈grad f , grad h〉 .

Since f · grad h has compact support, we can apply divergence theorem to derive the
Green’s formula. � �
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Remark 1.10. (1)∆ is called the Laplace-Beltrami operator. On a compact manifold
(M,g), we have

〈∆ f , h〉L2 = 〈 f ,∆h〉L2 ,∀ f , h ∈ C∞0 (M).(i.e.∆ is sel f − ad joint)

〈∆ f , f 〉L2 = − 〈grad f , grad f 〉g = −

∫
M

|grad f |2 dvol ≤ 0.(i.e. − ∆ is positive)

(2)Divergence theorem and Green’s formulas can be extended to compact Rieman-
nian manifolds with boundary.

Theorem 1.5. Let M be a compact Riemannian manifolds with C∞ boundary ∂M. Let
ν be the outward normal vector field on ∂M, X be a smooth vector field on M. Then∫

M

(divX) dvolM =

∫
∂M

g(X, ν) dvol∂M .

Remark 1.11. Let (M, g) be a compact submanifold of (N, gN). Then ∂M has a Rie-
mannian metric induced from gN . Therefore we have a natural dvol∂M . As a corallary,
we have∫

M

f ∆h dvolM = −

∫
M

g 〈grad f , grad h〉 dvolM +

∫
∂M

g(grad h, ν) f dvol∂M .

Last lecture: More explanation on the calculation of∑
σ∈S (n)
σ(1)=i

sgn(σ)dxσ(2) ⊗ · · · ⊗ dxσ(n)(Y1, · · · ,Yn−1).

Notice that {σ(2), · · · , σ(n)} = {1, 2, · · · ,̂ i, · · · , n}. So σ(2), · · · , σ(n) is produced
by a permutation τ of {1, 2, · · · ,̂ i, · · · , n}. Moreover, sgn(σ) = (−1)i−1sgn(τ).

Hence∑
σ∈S (n)
σ(1)=i

sgn(σ)dxσ(2) ⊗ · · · ⊗ dxσ(n)(Y1, · · · ,Yn−1)

=
∑

τ∈S (n−1)

(−1)i−1sgn(τ)dxτ(1) ⊗ · · · ⊗ dxτ(i−1) ⊗ dxτ(i+1) ⊗ · · · ⊗ dxτ(n)(Y1, · · · ,Yn−1)

=(−1)i−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn(Y1, · · · ,Yn−1).



Chapter 2

Geodesics

2.1 Geodesic equations and Christoffel symbols

Let γ : (a, b) → (M, g) be a rugular smooth curve(i.e.ṙ(t) , 0,∀t ∈ (a, b)). Recall its
length is defined as

L(γ) := Length(γ) :=
∫ b

a

√
〈(̇γ)(t), (̇γ)(t)〉γ(t)dt.

In a local coordinate neignborhood (U, x1, · · · , xn). The curve can be written as

(x1(γ(t)), · · · , xn(γ(t))).

When γ|(a,b) is contained in U, we have γ̇(t) = xi(γ(t)) ∂
∂xi and

L(γ) =

∫ b

a

√
gi j(x(γ(t)))ẋi(t)ẋ j(t)dt.

Example 2.1. Consider the unit sphere S 2 ⊂ R3.

23
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Consider the coordinate neighborhood (φ, θ) : φ ∈ (− pi
2 ,

pi
2 ), θ ∈ (0, 2π). We have

the induced Riemannian metric

g = dφ ⊗ dφ + cos2 φdθ ⊗ dθ.

Consider a smooth curve γ(t), t ∈ (a, b) on S n with the spherical coordinate (φ(t), θ(t)).
Then

L(γ) =

∫ b

a

√
φ̇2(t) + cos2 φ(t)θ̇2(t)dt.

Observe that

L(γ) ≥
∫ b

a
|φ̇(t)|dt ≥ |

∫ b

a
φ̇(t)dt| = |φ(b) − φ(a)|.

where “=” holds iff θ̇(t) = 0(⇔ θ(t) ≡ const) and φ is monotonic.Therefore, where
γ(a) and γ(b) has the same coordinate θ, the shortest curve connecting them is the
great circle passing through them. �

A natural question is then: given two points p, q ∈ M,
(1)does there exist a shortest curve connecting p,q?
(2)if it exists, is it unique.
In order to find the shortest curve, we consider the critical point of the Length

functional, Length(γ). Note that Length(γ) is a bit massy to bundle with since it has a
√
· term as the integrand. In fact, we can consider the Energy functional instead:

E(γ) :=
1
2

∫ b

a
〈γ̇(t), γ̇(t)〉 =

1
2

∫ b

a
gi j(x(γ(t)))ẋi(t)ẋ j(t)dt.

(In phisics, E(γ) is usually called “action of γ” where γ is contained as the orbit of a
mass point. In physics, we have the so-called “least action principle”).

In the following, we will explain why we can consider the critical value of E(γ)
instead of that of L(γ).

Lemma 2.1. For each smooth curve γ : (a, b)→ M, we have

L2(γ) ≤ 2(b − a)E(γ)

and “=” holds if and only if
√
〈γ̇(t), γ̇(t)〉 =: ‖γ̇(t)‖ ≡ const.

Proof. By Hölder’s inequality,

L(γ) =

∫ b

a
‖γ̇(t)‖dt ≤ (

∫ b

a
12dt)

1
2 (
∫ b

a
‖γ̇(t)‖2dt)

1
2 =
√

b − a
√

2E(γ).

with equality precisely if ‖γ̇(t)‖ ≡ const. � �
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Recall the length of a curve does not depend on the choice of the parametrized by
arc length, i.e. ‖γ̇‖ = 1, in order to find shortest curves. In this case, we have

b − a = L(γ), and L(γ)2 = 2(b − a)E(γ)⇒ L(γ) = 2E(γ).

Hence, after parametrizing curves by arc length, it is enough to minimize E(γ).
Moreover, observe that if γ ∈ Cp,q is a shortest curve from p to q. γ : (a, b) → M.

Then for any a ≤ a1 ≤ b1 ≤ b, γ is also a shortest curve from γ(a1) to γ(b1),

otherwise, we can shorten γ‖(a,b) further.
So we can localize our problem, and consider the case when p, q ∈ U.

Lemma 2.2. The Euler-Lagrange equations for the energy E are

ẍi(t) + Γi
jk(x(t))ẋ j(t)ẋk(t) = 0, i = 1, 2, · · · , n (2.1.1)

with
Γi

jk =
1
2

gil(glk, j + g jl,k − g jk,l),

and
g jl,k =

∂

∂xk g jl.

Definition 2.1. (geodesics)A smooth curve γ : [a, b] → M which satisfies(with ẋi(t) =
d
dt xi(γ(t)))

ẍi(t)) + Γi
jk(x(t))ẋ j(t)ẋk(t) = 0, i = 1, 2, · · · , n

is called a geodesics.

Remark 2.1. Christoffel is a German mathematician. He studied in Berlin, and worked
in ETH Zūrich, Strasburg. Riemann’s 1854 lecture was only published in 1868. Christof-
fel published in Crelles Journal(Journal für die reine and and ) in 1869 an article
discussing the necessary condition when two quadratic differential forms

F =
∑
i,k

ωi,kdxidxk, F′ =
∑
i,k

w′i,kdx′idx′k.

can be transfirmed into eaach other via independent variable changes. It was there be
introduced the “Christoffel symbols”.

Influced by Christoffel’s work, italian mathematician Gregorio Ricci-Curbasto pub-
lished 6 articles during 1883-1888 on Christoffel’s method, and introduced a new cal-
culus: He interpreted Christoffel’s algorithm into “covariant differentiations”. Ricci(1893)
called it “absolute differential calculus”.
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Later in 1901, Ricci and his student Levi-Civita published Ricci’s calculus in French
in Klein’s journal(Mathematische Annalen). It is nowed called “tensor analysis”.

Einstein(1914) derives the geodesic equation using Christoffel symbols in his Berlin
lecture.

Levi-Civita(1916/17) realized the geometric meaning of Christoffel symbols: it de-
termines the “parallel transport” of vectors. This pull Christoffel and Ricci’s discus-
sion back to the track of geometry.

Proof. Let us first look at a general functional

I(x) =

∫ a

b
f (t, x(t), ẋ(t))dt

where x(t) := (x1(t), · · · , xn(t)).
Claim: the Euler-Lagrange equation of I(x) is

d
dt
∂ f
∂ẋi −

∂ f
∂xi = 0, i = 1, · · · , n.

proof of claim: Consider y(t) = (y1(t), · · · , yn(t)) with y(a) = y(b) = 0. Solving
d
dε |ε=0I(x + εy) = 0, we have

0 =

∫ b

a
(
∂ f
∂xi yi(t) +

∂ f
∂ẋi yi(t))dt

=

∫ b

a
(
∂ f
∂xi −

d
dt
∂ f
∂ẋi )yi(t)dt

By the fundamental lemma of calculus of variations, we have

d
dt
∂ f
∂ẋi −

∂ f
∂xi , i = 1, · · · , n.

This is the E-L equation of I. �
For our energy functional

E(γ) =

∫ b

a
gi j(x(t))ẋ j(t)ẋk(t)dt,

where f (t, x(t), ẋ(t)) = gi j(x(t))ẋ j(t)ẋk(t).
We have

d
dt

[gik(x(t))ẋk(t) + g ji(x(t))ẋ j(t)] − g jk,i(x(t))ẋ j(t)ẋk(t) = 0, i = 1, 2, · · · , n.

Hence, gik,l ẋl ẋk + gik ẍk + g ji,l ẋl ẋ j + g ji ẍ j − g jk,i ẋ j ẋk = 0, i = 1, 2, · · · , n.
⇒

2gim ẍm + (gik, j + g ji,k − g jk,l)ẋ j ẋk = 0, l = 1, · · · , n. (2.1.2)

Multiply both sides by gil and sum up over i, we have

ẍl +
1
2

gil(gik, j + g ji,k − g jk,l)ẋ j ẋk = 0, l = 1, · · · , n.

� �
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Remark 2.2. :
1.When we calculated the term Γi

jk ẋ j ẋ,. pay attention to the fact that

Γi
jk ẋ j ẋk =

1
2

gil(g jl,k + gkl, j − glk, j)ẋ j ẋk

=
1
2

gil(g jl,k + gkl, j − glk, j)ẋ j ẋk.

2.As mentioned before, we only need to consider curves parametrized by arc length
when looking for shortest curves. Now, we explain the other aspect: The solution of
the E-L equation(2.1.1) on page 25 i.e. every geodesic, is parametrized proportionally
to arc length.

Explanation:

d
dt

(gi j(x(t))ẋi(t)ẋ j(t))

=gi j ẍi ẋ j + gi j ẋi ẍ j + gi j,k ẋi ẋ j ẋk

=2gi j ẍi ẋ j + gi j,k ẋi ẋ j ẋk

=2glm ẍm ẋl + gl j,k ẋl ẋ j ẋk(change the indexes)

= − (glk, j + g jl,k − g jk,l ẋl ẋi ẋk + gl j,k ẋl ẋ j ẋk(use (2.1.2))

=(g jk,l − glk, j)ẋl ẋ j ẋk

=0

Hence 〈ẋ, ẋ〉 ≡ const.
That is, every geodesic is parametrized proportionally arc length.
3(Curves in TM).We explain another viewpoint about the geodesic. First, any

smooth curve in M gives a cvrve in its tangent bundle TM.
(1)Systems of coordinates. The toral space of TM is the set of pairs (q, v), q ∈ M,

v ∈ TqM. Let (U, x1, · · · , xn) be a coordinate neighborhood of M. ∀q ∈ U, any vector
in TqM can be written as

yi ∂

∂xi

Recall locally we have TU=U ×Rn. Then (U ×Rn, x1, · · · , xn, y1, · · · , yn) is a coor-
dinate neighborhood of (q, v) ∈ T M. Then one can show that we obtain a differentiable
structure for TM.

(2)Let t → γ(t) be a Cin f ty curve in M, then it determines curve t → (γ(t), γ̇(t)) ∈
T M. If, moreover, γ is a geodesic in M, then the curve t → (γ(t), γ̇(t)) in terms of
coordinates (x1, · · · , xn, y1, · · · , yn)

t → (x1(t), · · · , xn(t), y1(t), · · · , yn(t))

satisfies ẋk(t) = yk(t)

ẏk(t) + Γk
i j(x(t))yiy j = 0

k = 1, 2, · · · , n. (2.1.3)
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Local Existence and uniqueness of geodesics
From ODE theory: (See proposition 2.5 in do carmo, chapter 3 and discussions

before that proposition.)

Theorem 2.1. For any p ∈ M, there exists
� an open set V ⊂ M, p ∈ V
� numbers δ > 0 and ε > 0
� a C∞ mapping: γ : (−ε, ε) × U → M. U = (q, v) : q ∈ V, v ∈ TqM, ‖v‖ < δ.

Remark 2.3. Let’s have a closer look at the relations between the domain (−ε, ε), and
the length of the velocity ‖v‖ < δ. Fix q ∈ M, let’s denote γv(t) as the geodesics with

γv(0) = q, γ̇v(0) = v.

Then we can claim γλv(t) = γv(λt).
This is because: in local coordinates, γv(t) is written as (x1(t), · · · , xn(t)).
Then satisfy (x1(t), · · · , xn(t)) = v

ẍk(t) + Γk
i j(x(t))ẋi ẋ j = 0

(2.1.4)

⇒

(x1(λt), · · · , xn(λt)) = λv

ẍk(λt) + Γk
i j(x(λt)) ˙x(λt)i ˙x(λt) j

= λ2(ẍi + Γk
i j(x)ẋi ẋ j)|λt = 0

(2.1.5)

Hence γλv(t) = (x1(λt), · · · , xn(λt)) = γv(λt).
⇒Lemma: If γ(t, q, v) is defined for t ∈ (−ε, ε) and ‖v‖ < δ, then γ(t, q, λv) is

defined for t ∈ (− ε
λ
, ε
λ
) and ‖v‖ < δ.

Corollary 2.1. Let p ∈ M, v ∈ TpM. Then ∃ ε > 0 and a unique geodesic γ : [0, ε]→
M with γ(0) = p, γ̇(0) = v.

Proof. Assign s = δ
2‖v‖ , then ‖sv‖ < δ. By theorem 2.1, ∃ ε0 > 0, and a unique geodesic

γsv : [0, ε0] → M with γsv(0) = p, γ̇sv(0) = sv. Hence γv(t) = γsv( t
s ) is a geodesic

defined on [0, sε0]. Hence ε = sε0, by the uniqueness of Thm 2.1, we show this corol-
lary. �

Exercise 2.1. Compute the geodesic equation of S 2 in sphererical coordinates.

Exercise 2.2. What is the transformation behavior of the Christofell symbols? Do they
define a tensor

2.2 Minimizing Properties of Geodesics
Next, we explain that a geodesic is “locally” shortest curve. For that purpose, we first
discuss the important concept Exponential map.

Let (M, g) be a Riemannian manifold, p ∈ M. Roughly speaking, the exponential
map of M at p maps v ∈ TpM, with gp(v, v) = ‖v‖, to a point q on the geodesic
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γv : [0, b]→ M with γ(0) = p, γ̇(0) = v, such that the arc length p̂q = ‖v‖. This means,
we should pick q = γv(1).(Since as a geodesic,‖γ̇t‖ = ‖γ̇(0)‖ = ‖v‖.)

Definition 2.2. (Exponential Map) Let (M, g) be a Riemannian manifold, p ∈ M.
Denote Vp := {v ∈ TpM : the geodesic γv with γv(0) = p, γ̇v = v is de f ined on [0, 1]}.
expp : Vp → M, v 7→ γv(1) is called the exponential map of M at p.

In the following we use γp,v to denote the geodesic with γp,v = p, γ̇p,v = v.(Oftenly,
p is omitted.)

What does Vp look like?

(1)Star-sharped around 0 ∈ TpM.

If v ∈ Vp, i.e. γv is defined on [0, 1], then γλv(0 < λ < 1) is defined on [0, 1
λ
], and,

in particular, on[0, 1]. Hence v ∈ Vp ⇒ λv(0 ≤ λ ≤ 1) ∈ Vp.

(2)∀p ∈ M, ∃ ε0 s.t. B(0, ε0) ⊂ Vp i.e. ∀ ω ∈ TpM, ‖ω‖ ≤ ε0, we have γp,ω is
defined on [0, 1].

By Theorem ??, ∃ ε, δ > 0, s.t. ∀v ∈ TpM, ‖v‖ < δ, γp,v is defined on [0, ε], hence
γp,εv is defined on [0, 1].

⇒ ∀ω ∈ TpM with ‖ω‖ ≤ ε‖v‖ < εδ, we have γp,ω is defined on [0, 1]. That is,
ω ∈ Vp. �

Example 2.2.
(1) M = Rn, gi j = δi j.
The geodesic equation is ẍi(t) = 0. The geodesics are straight lines parametrized pro-
portionally to arc length. ∀p ∈ Rn, v ∈ TpRn. expp(v) = p + v. Vp = TpRn = Rn.
(2) Circle (S 1, dθ ⊗ dθ).
∀p ∈ M, TpS 1 can be identified with R. Then expp(v) = eiv, Vp = TpS 1 = R for
p = ei0 = 1.(In local coordinates, expp : v→ v.). This is the simplest example explain-
ing why the terminology “exponential map” is used. It actually comes from Lie theory.
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(3) Open disc in R2 : D0 = {(x2 + y2) ∈ R2|x2 + y2 = 1} with a Riemannian metric
induced from the canonical Euclidean metric on R2.

exp0(v) = 0 + v = v. But V0 , R2, V0 = D0(we identify T0D0 with R2).

Theorem 2.2. The exponential map expp maps a neighborhood of 0 ∈ TpM diffeomorphically
onto a neighborhood of p ∈ M.

Remark 2.4. Reason for restricting to a neighborhood:

(1)expp may not be defined on the whole TpM.

(2)even if expp is defined on the whole TpM, it is not necessarilly a diffeomor-
phism.(Example of (S 1, dθ ⊗ dθ), expp is not injective.)

Proof. 0 ∈ TpM, decpp(0) : T0(TpM) → TpM. Since TpM is a vector space, we may
identify T0(TpM) with TpM.

⇒ dexpp(0) : TpM → TpM. Now we can calculate dexpp(0)(v) for a v ∈
T0(TpM) = TpM.

recall: for a c∞ map f : M → N, x 7→ y. One way to calculate d f : TxM → TyN is
the following :

For any v ∈ TxM, consider a curve γ with γ(0) = x, γ̇(0) = v. Then ξ = f (γ) is a
curve in N, and d f (v) = ξ̇(0).

Here, expp : Vp ⊂ TpM → M, 0 7→ p. For v ∈ T0(TpM) = TpM, consider γ(t) = tv.

We have

dexpp(0)(v) =
d
dt

expp(tv)|t=0

=
d
dt
γtv(1)|t=0 =

d
dt
γv(t)|t=0 = γ̇v(0) = v.

That is dexpp(0) = id|Tp M .

In particular, dexpp(0) has maximal range, and by “inverse function theorem”, there
exists a neighborhood of 0 ∈ TpM, which is mapped diffeomorphically onto a neigh-
borhood of p ∈ M. �
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Example 2.3.
S 2 ⊂ R3. q is a antipodalpoint of p. expp is defined on the whole TpS 2. Let

B(0, π) ⊂ Tp(S 2) be the open ball around 0 in Tp(S 2).(with the scalar product given by
the Riemannian metric of S 2). expp : B(0, π) → S 2\{q}, B(0, π)\B(0, π) = ∂B(0, π) →
{q} diffeomorphically. However, expp(B(0, 2π)\B(0, π)) = S 2\{p, q} and expp(B(0, 2π)\B(0, 2π)) =

{p}.

And we can identify TpM with Rn via Φ : TpM → Rn, v = viei ⇒ (v1, · · · , vn).
Thm 2,2,1(page 28) tells that ∃ a neighborhood U 3 p, such that exp−1

p map U diffeo-

morphically onto a neighborhood of 0 ∈ TpM
=

viaΦ Rn. In particular, p 7→ 0.

Definition 2.3. (Normal coordinates) The local coordinates defined by (U, exp−1
p ) are

called (Riemannian) normal coordinates with center p.

The advantage of such a choice of coordinates is presented in the following result:

Theorem 2.3. In normal coordinates, we have

gi j(0) = δi j (2.2.1)

Γi
jk(0) = 0. (2.2.2)

for the Riemannian metric, and all i,j,k.

Proof. (2.2.1) follows from the identification Φ of TpM and Rn(Recall gp(ei, e j) = δi j).
Next, we show (2.2.2), recall in the local coordinate (U, exp−1

p ) = (U, v1, · · · , vn),
the geodesic equation is

v̈i + Γi
jk(v(t))v̇ j(t)v̇k(t) = 0, i = 1, 2, · · · , n. (2.2.3)

On the other hand, in exp−1
p (U) ⊂ Rd, the line tv, t ∈ R, v ∈ Rd is exp−1

p (γtv(1)) =

exp−1
p (γv(t)), i.e. is the image of a geodesic in M via the coordinate map. �

Remark 2.5. Even if expp is defined on the whole TpM, it may be not a global diffeo-
morphism. Suppose expp : B(0, ρ) → expp(B(0, ρ)) is diffeomorphic, how large can ρ
be?

Here we mention the following concept of injectivity radius.
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Definition 2.4. Let M be a Riemannian manifold,p ∈ M. The injectivity radius of p is

i(p) := supρ > 0 : expp is a di f f eomorphism on B(0, ρ) ⊂ TpM.

The injectivity radius of M is

i(M) := inf
p∈M

i(p).

The above example shows that i(S 2) = π.

Normal coordinates

TpM has an inner product defined by g. Let e1, · · · , en(n = dim M) be an orthonor-
mal basis of TpM(w.r.t. the inner of product given by g). Then for each v ∈ TpM, we
can write v = viei. Therefore, v(t) = tv satisfies (2.2.3). This implies Γi

jk(tv)v jvk =

0, i =, · · · , n, ∀v ∈ Rd.
In particular, for t=0

Γi
jk(0)v jvk = 0, i = 1, 2, · · · , n, ∀v ∈ Rd. (2.2.4)

For any indices l and m, pick v = el + em, we have

Γi
lm(0) = 0, i = 1, 2, · · · , n.

That is Γi
jk(0) = 0, ∀i, j, k.

Recall the definition of Γi
jk(0), we obtain at 0 ∈ Rd : gil(g jl,k + glk, j − g jk,l) =

0, ∀i, j, k.
⇒ g jl,k + glk, j − g jk,l = 0, ∀ j, k, l.
By a cyclic permutation of the indices: j→ k, k → l, l→ j, we have gk j,l,k + g jl,k −

gkl, j = 0. Notice that glk, j = gkl, j, g jk,l = gk j,l, we get 2g jl,k = 0 at 0 ∈ Rd. �

Remark 2.6. In general, the second derivatives of the metric cannot be made to vanish
at a given point by a suitable choice of local coordinates. The obstruction is given by
the “curvature tensor”.
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On Rn we can introduce the standard polar coordinates (r, ϕ1, · · · , ϕn−1) where
ϕ = (ϕ1, · · · , ϕn−1) parametrizes the unit sphere S n−1.

Then via Φ, we obtain polar coordinate on TpM. We can write the metric g in polar
coordinate:

grr := g11 = g(
∂

∂r
,
∂

∂r
), grϕ := (g1,l)l=2,··· ,n, gϕϕ = (gkl)k,l=2,··· ,n

In particular at 0 ∈ TpM, we have

grr(0) = 1, grϕ(0) = 0. (2.2.5)

(The reason as (2.2.1) in Theorem 2.2.2 on page 29.)
The point is that in this case we can show (2.2.5) holds true not only at 0 ∈ TpM(=

Rn), but in the whole coordinate neighborhood.

Theorem 2.4. For the polar coordinates, obtained by transforming the Euclidean co-
ordinates of Rd, on which the normal coordinates with centre p are based, into polar
coordinates, we have

gi j =


1 0 · · · 0
0
...
0

gϕϕ(r, ϕ)


where gϕϕ(r, ϕ) is the (n − 1) × (n − 1) matrix of the components of the matrix w.r.t
angular variables (ϕ1, · · · , ϕn−1) ∈ S n−1.

Proof. In this case, tv, v ∈ Rn is transformed to be ϕ ≡ const. That is, ϕ ≡ const are
geodesic when parametrized by arc length in the local coordinates. They are given by

x(t) = (t, ϕ0). ϕ0 f ixed.

Geodesic equation gives

Γi
rr(x(t))ṫṫ = Γi

rr(x(t)) = 0, ∀i (ϕ̇0 = 0).

Compare with the situation in (2.2.4) on page 30. Hence at x(t) ∈ TpM = Rn,

gil(grl,r + glr,r − grr,l) = 0, ∀i

⇒

2grm,r − grr,m = 0, ∀m. (2.2.6)

For m = r, we have grr,r = 0, combining with grr(0) = 1⇒ grr ≡ 1.
Hence grr,m ≡ 0,∀m⇒ grϕ,r = 0,∀ϕ⇒ grϕ ≡ 0. � �
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Remark 2.7. dr ⊗ dr + gϕϕ(r, ϕ)dϕ⊗ dϕ is not a proguct metric, since gϕϕ may depend
on r.

Remark 2.8. Since g is positive definite, we have

(gϕϕ(r, ϕ))

is also positive definite.

Corollary 2.2.
(1)For any p ∈ M, ∃ρ > 0 s.t. the (Riemannian) polar coordinates may be introduced
on B(p, ρ) := {q ∈ M, d(ϕ, q) = ρ}.
(2)For any such that ρ, and q ∈ ∂B(p, ρ), there is a unique normal geodesic whose
length(=ρ) is the shortest one among all curves that belongs to Cp,q.

Proof.
(1).By theorem 2.3, polar coordinates can be introduced on a neighborhood U of p.
Since manifold topology and metric topology coincides, such a ρ can be found.

(2).Consider any c ∈ Cp,q. Without loss of generality, let’s assume it’s smooth. c
may leave our polar coordinate neighborhood. Let t0 := inf{t ∈ τ : d(c(t), p) ≥ ρ}, then
c|[0,t0] ⊂ B(p, ρ). In polar coordinates, write c(t) = (r(t), ϕ(t)), c(t0) = (ρ, ϕ(t0)). We
calculate

L(c|[0,t0]) =

∫ t0

0

√
gi j(c(t))ċi(t)ċ j(t)dt

=

∫ t0

0

√
grr(c(t))ṙṙ + gϕϕ(c(t))ϕ̇ϕ̇dt

≥

∫ t0

0
|ṙ|dt ≥ |

∫ t0

0
ṙdt| = |r(t0) − r(0)| = ρ

Moreover, “=” holds iff. gϕϕϕ̇ϕ̇ ≡ 0(⇔ ϕ̇ = 0⇒ ϕ ≡ const) and ṙ ≥ 0 or ṙ ≤ 0. Hence
the “=” holds iff c(t) = (t, ϕ0), where q = (ρ, ϕ0). Recall (t, ϕ0) is the geodesic in the
polar coordinates. �

Remark 2.9.
(1)From the proof, we see ∀c ∈ Cp.q, L(c) ≥ L(γ), where γ is the radical geodesic. And
“=” holds iff c is a monotone reparametrization of γ.
(2)There may exists other geodesics from p to q, whose length is longer. That is the
“shortestness” property of a geodesic is not global! From Corollary 2.2.1, we see
∀p, q ∈ M, where they are close “enough” to each other, then there exists precisely one
geodesic of shortest length. Can we have a uniform description of the “closedness”
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which ensure the existence of shortest geodesics, at least when M is compact? For this
surpose, we first discuss a refinement of Theorem 2.2.1(page 28)(dexpp(0) = I) and
the “totally normal neighborhood”.

Theorem 2.5. (totally normal neighborhood) For any point p ∈ M, there exists a
neighborhood M of p and a number δ > 0, such that, for every q ∈ W,(in other words,
injectivity radius i(q) ≥ δ), and expq(B(0, δ)) ⊃ W.

Remark 2.10. (Terminologies) If expp is a diffeomorphism of a neighborhood V of
the origin in TpM. Then we call expp(V) := U a normal neighborhood of p. Theorem
2.2.4 tells, ∃ a neighborhood of p such that W is a normal neighborhood of each q of
W. W is then called a totally normal neighborhood of p ∈ M.

If B(0, ε) is such that B(0, ε) ⊂ V, we call expp(B(0, ε)) the normal ball with cen-
ter p and radius ε. The geodesic in expp(B(0, ε)) that begin at p are referred to as
radical geodesics.

Remark 2.11. By Corollary 2.2.1, any 2 point in W can be connected by a cunique
minimizing geodesic. For the proof, we first discuss a revision.

Theorem 2.6. There exists a neighborhood U of p, U := {(q, v) ∈ T M : q ∈ V, v ∈
TqM, ‖v‖ < ε} such tvhat exp : U → M, (q, v) 7→ expqv is well defined. Consider the
following map.

F : U → M × M, (q, v) 7→ (q, expq)

In particular, we see F(p, 0) = (p, p). Then dF(p.0) : T(p,0)(T M)→ (M × M).

Lemma 2.3. For each p ∈ M and with it the zero vector 0 ∈ TpM, dF(p, 0) is nonsin-
gular.

Proof.
Proof of lemma 2.2.1:

First note that, we can identify the tangent space T(p,p)(M × M) to TpM × TpM,
T(p,0)(T M) to TpM × T0(TpM) � TpM × TpM. F : U → M × M. In local coordinates,
this map centre considered as (x1, · · · , xn, v1, · · · , vn)→ (x1

1, · · · , x
n
1, x

1
2, · · · , x

n
2).

We consider dF(p,0) as a linear map TpM × TpM → TpM × TpM,
� varying p, F is identity in the first coordinate. Hence on the first factor to the

factor dF(p,0) is identity.
� fix p and vary v in TpM, the first coordinate of F is fixed and the second coordinate

is exppv.
Hence, dF(0,p) is identically 0 from the second factor to the first factor and identity

from the second factor to the second factor.(Theorem 2.2.1, page 28)(
dF1

v=0 dF1
q=p

dF2
v=0 dF2

q=p

)
=

(
I 0
I 0

)
(2.2.7)

�
proof of theorem 2.6:

By lemma and the inverse function theorem, we know that F is a local diffeomor-
phism. This means that ∃ a neighborhood U′ ⊂ U of (p, 0) ∈ T M s.t. F maps U′

diffeomorphically onto a neighborhood W ′ of (p, expp0p = p) ∈ M × M.
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By shrinking U′ if necessary, we can take U′ to be the form

U′ = {(q, v) : q ∈ V ′, v ∈ TqM, ‖v‖ < δ}

where V ′ ⊂ V is a neighborhood of p ∈ M.
Now choose a neighborhood W of p in M so that W × W ⊂ W ′. Then form the

definition of F, we see expp(B(0, δ)) ⊃ W. � �

Now, we have some immediate consequence.

Corollary 2.3. Let Ω be a compact subset of a Riemannian manifold M. There ex-
ists ρ0 > 0 with the propert for any p ∈ Ω, Riemmanian polar coordinates may be
introduced on B(p, ρ0)

Proof. ∀p ∈ Ω, we can find a totally normal neighborhood Wp of p. By compactness,
we have a finite subcover {Wpi }

N
i=1 of {Wp}p∈Ω of Ω. Since for each Wp, ∃ a ρp s.t.

Riemmanian polar coordinates may be defined on B(q.ρp), ∀q ∈ Wp. We pick ρ0 =

min
i=1,··· ,N

{δpi } � �

Corollary 2.4. Let Ω be a compact subset of a Riemannian manifold M. Then there
exists ρ0 > 0 with the property that for any two points p, q ∈ M with d(p, q) ≤ ρ0 can
be connected by precisely one geodesic of shortest path.

The geodesic depends continuously on (p, q):

Proof. ρ0 from Corollary 2.2.2 satisfies the first claim by Corollary 2.2.1. Morever,
given (p, q), d(p, q) ≤ ρ0, there exists a unique v ∈ TpM(given by F−1(p, q) = (p, v))
that depends continuously on (p, q) and is s.t. γ(v) = v. �

Corollary 2.5. Let M be a compact Riemannian manifold, i(M) > 0.

Local isometries map geodesics to be geodesics
Recall that a C∞ differentiable map h : M → N is a local isometry, if ∀p ∈ M, ∃ a

neighborhood U for which h|U : U → h(U) is an isometry and h(U) is open in N and
g|U = h∗(γ|h(U)) where (gi j(p), (γαβ(h(p))) are the metrics on U, h(U) respectively. In
fact, gi j(p) = γαβ(h(p)) ∂hα(p)

∂xi
∂α(p)
∂x j .

A local isometry has the same effect as a coordinate change. We have already see
in the Homework Exercise 2, that the geodesic equations

ẍ + Γi
jk ẋ j ẋk = (ẏα + Γ̃αηγẏηẏγ)

∂xi

∂yα
.

Hence geodesic is mapped to be geodesic(det( xi

∂yα ) , 0.). Intuitively, Isometries
leave the lengths of tangent vectors and therefore also the lengths and energies of curves
invariant. Thus, critical points, i.e. geodesics, are mapped geodesics.

This observation has interesting consequences.
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Example 2.4. (geodesics of S n)
The orthogonal group O(n + 1) operates isomotrically on Rn+1, and since it maps

S n into S n, it also operates isometricaly on S n.
Let now p ∈ S n, v ∈ Tp(S n). Let E be the two dimensions plane through the origin

of Rn+1 containing v.
Claim:the geodesic γv pass through p with tangent vector v is the great circle

through p with tangent vector v(parametrized proportionally to arc length), i.e. the
intersection of S n and E.

Proof. Let S ∈ O(n + 1) be the reflection acress E, then S v = v, S p = p.
γv is a geodesic⇒ S γv is also a geodesic through p with tangent vector v. By

uniqueness result, γv = S γv.

Hence image of γv is the great circle. � �

Example 2.5. (geodesics on T2)
ω1 = (1, 0) ∈ R2, ω2 = (0, 1) ∈ R2. Consider z1, z2 ∈ R

2 as equivalent if ∃ m1,m2 ∈

Z s.t. z1 − z2 = m1ω1 + m2ω2.

The covering map π : R2 → T2, z 7→ [z], differentiable structure:
∆α ⊂ is open and does not contain equivalent points, then Uα := π(∆α), zα = (π|−1

∆α
).

For each chart (U, (π|U)−1) we use the Euclidean metric on π−1(U). Since the trans-
lations

z 7→ z + m1ω1 + m2ω2, m1,m2 ∈ Z

are Euclidean isometries, the Euclidean metrics on the different components of π−1(U)(which
are obtained from each other by translations.) yield tyhe same metric on U. Hence the
Riemmanian metric on T2 is well defiend, and π : R2 → T2 is a local isometry. There-
fore, Euclidean geodesics of R2 are mapped onto geodesics of T 2.

2.3 Global Properties:Hopf-Rinow Theorem
In the last section, we know when two points p, q ∈ M are close enough to each other,
there exists precisely one geodesic with the shortest length. Naturally, one would ask
the following questions.

Question 1: If a curve γ is of shortest lengths, is γ a geodesic?
Question 2: Let γ : [0, 1] → M be a geodesic, is it the shortest curve from γ(0) to

γ(1)?
Question3: Given p, q ∈ M, does there exists a curve from p to q with the shortest

length?
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Recall that a geodesic γ has to be parametrized proportionally to its arc length.
Hence, a proper way to formulate Question 1 is:

Question 1’: Let γ : [0, 1] → M, ‖γ̇‖ = 1 and ∀ξ ∈ Cp,q(piecewise C∞ curve from
p to q), Length(γ) ≤ Length(ξ). Is γ necessarily a geodesic ?

Proposition 2.1. If a piecewise C∞ γ : [a, b] → M with parameter proportional to
arc length, has length less than or equal to the length of any other piecewise C∞ curve
from γ(a) to γ(b), then γ is a geodesic.

Proof. Let t ∈ [a, b], and let W be a totally normal neighborhood of γ(t). There exists
a closed interval I ⊂ [a, b] with nonempty interior, t ∈ I s.t. γ(I) ⊂ W. By the global
“shortestness” property of γ, we know γ(I) is a piecewise smooth curve connecting
two points in W which the shortest length. By corollary 2.2.1, noticing further γ is
parametrized proportionally to arc length, we konw γ|I is a geodesic. � �

Concerning Question 2, we have found several counter-examples, like

So the answer to Question 2 is “No!” Then one may ask when is a geodesic γ also
a minimizing curve? We will discuss this issue in later lecture.

The answer to Question 3 is also “No”. If a curve γ from p to q is of the shortest
curve, after choosing the parameter proportional to arc length, Proposition tells that γ
must be a geodesic.

Then there is no curve from p to q with the shortest length.(but you have a mini-
mizing sequence of curves)

When is the answer to Question 3 “Yes”? It turns out, one have to require M to be
compact!!



2.3. GLOBAL PROPERTIES:HOPF-RINOW THEOREM 39

Given a Riemannian manifold (M, g), recall that (M, g) with the distance function
d derived from g is a metric space (M, d). And the topology of (M, d) coincides with
original topology of M. Therefore (M, d) is a complete metric space iff M is complete
as a topological space with regard to its original topologies. So we do not need to
distinguish this two Completeness.

Hopf-Rinow theorem tells completeness implies the existence of minimizing geodesic
between any two points. Morover, H-R thm also gives two several equivalent descrip-
tions of completeness.

Theorem 2.7. (Hopf-Rinow 1931).(Über den Begriff der vollständigen differential ge-
ometrischen Flaäche, Commentarii Mathematici Helvetici, 1931)

Let M be a Riemannian manifold. The following statements are equivalent:
(i) M is a complete metric space.
(ii) The closed and bounded subsets of M is compact.
(iii) ∃p ∈ M for which expp is defined on all of TpM.
(iv) ∀p ∈ M, expp is defined on all of TpM.

Each of the statement (1)-(4) implies
(v) Any two points p, q ∈ M can be joined by a geodesic of length d(p, q), i.e. by a

geodesic of shortest length.

Digest of the theorem:
(1) (i)⇒(v) but bot vise versa. Conuterexample: open disc is not complete, but

satisfies property (v).
(2) Definition 2.3.1(geodesically complete): A Riemannian manifold M is geodesically complete

if for all p ∈ M, expp is defined on all of TpM, or, in other words, if any geodesic
gamma(t) with γ(0) = p is defined for all t ∈ R.

H-R theorem tells completeness(manifold topology, apriori independent of the metric)⇔geodesical completeness.(depends
on the Riemannian metric)

(3) (M, g) as a complete metric space is a very special one as shown in (ii).
Consider a countable set A = {ai; i = 1, 2, · · · } with a discrete metric, i.e. d :

A × A → [0,∞) s.t. d(ai, a j) = δi j. Then (A, d) is complete and bounded. But A is not
compact.

(4) Corollary 2.3.2: Let (M, g) be a complete Riemannian manifold. Then expp :
TpM → M is surjective for any p ∈ M.

Proof. The “core” of result is (iv)⇒(v):
Given p, q ∈ M, we hope to find a shortest geodesic γ from p to q. We know

γ(0) = p, but how to decide γ̇(0)?
Consider a normal ball B(p, q). Since ∂B(p, ρ) is compact, and d(p, �) is a contin-

uous function, there exists p0 ∈ ∂B(p, ρ) s.t. d(p, �) attain its minimum on ∂B(p, ρ) at
p0.

Now the idea is the following:
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At p0, consider the normal ball B(p0, ρ1), find p1 to be the point at which d(p, �)
attain its minimum on ∂B(p0, ρ1). And, we continue this procedure, and hopefully we
arrive at q.

Two issues in this arguement:
(1) Can the piecewise geodesics(or broken geodesic) be a single geodesic?
(2) Can we arrive at q eventually?

To solve this two issues, we argue as below:
In B(p, ρ), we know the radical geodesic from p to p0 is

c(t) = expptV, f or some V ∈ TpM

with p0 = exppρV.(That is c is parametrized by arc length.)
We consider the curve

c(t) = expptV, t ∈ [0,∞)(by (iv) we can do this)

we hope to show c(r) = q, where r = d(p, q). If this was shown to be true, we know
c(r) is the shortest one and we are done.

In other words, we hope to prove

d(c(r), q) = 0 (2.3.1)

Next we know

d(c(0), q) = d(p, q) = r (2.3.2)

Consider the set

I := {t ∈ [0, r], d(c(t), q) = r − t}.

(ii)⇔ 0 ∈ I. Hence I , Φ. Moreover, since f (t) := d(c(t), q) − r + t is continuous, and
I = f −1(0)

⋂
[0, r], I is closed. Let T = sup

t∈I
t. Since I is closed, we see T ∈ I. If T = r,

then we are done.
Suppose T < r, consider the normal ball B(c(T ), ρ1)(Without loss of generality, we

can assume ρ1 < r − T .).
Let p ∈ ∂B(c(T ), ρ1) be the point at which d(q, �) attain its minimum on ∂B(c(T ), ρ1).
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Consider the three points: c(T ), p1, q. By definition, d(q, c(T )) = r − T . We have

d(c(T ), p1) + d(p1, q) ≥ d(c(T ), q) (2.3.3)

by using triangle inequation.
On the other hand, think of any curve γ from c(T ) to q. There exists t, s.t. γ(t) ∈

∂B(c(T ), ρ1).

Length(γ) ≥d(c(T ), γ(t)) + d(γ(t), q)
≥d(c(T ), p1) + d(γ(t), q)
≥d(c(T ), p1) + d(p1, q)

⇒ d(c(T ), q) ≥ d(c(T ), p1) + d(p1, q).
Combining with inequation (2.3.3), we get euqality:

d(c(T ), q) = d(c(T ), p1) + d(p, q)
⇒ d(p1, q) = d(c(T ), q) − d(c(T ), p1)

= r − T − ρ1

= r − (T + ρ1).

Now if we show
p1 = expp(T + ρ1)V = c(T + ρ1), (2.3.4)

we have T + ρ1 ∈ I, which contradicts to the definition of T .
It remains to show (2.3.4). We use Proposition 2.1 to prove it. That is, we show the

curve
c|[0,T ] and the radical geodesic f rom c(T ) to p1 (2.3.5)

is the shortest curve from p to p1. Note the length of the curve is T + ρ1.
Consider the three points p, p1 and q to figure out d(p, p1).

d(p, q) ≤d(p, p1) + d(p1, q)
⇒ T + ρ1 ≤d(p, p1)

Hence the “broken” curve in (2.3.5) is the shortest curve from p to q. Then proposition
tells that it is a smooth geodesic when parametrized with arc length.

By uniqueness of geodesics with given initial values, it has to coincide with c.
Therefore

p1 = expp(T + ρ1)V = c(T + ρ1).
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Then we finish the proof of (iv)⇒(v). �
Next, we prove the euivalence of (i)-(iv).
(iv)⇒(iii) is trivial.
(iii)⇒(ii): Let K ⊂ M be closed and bounded.
“boundness”⇒K ⊂ B(p, r) for some r > 0.
Since expp is defined on all of TpM, from the proof for (iv)⇒(v), we know any

q ∈ B(p, r) can be connected to p via c(t) = expp(tV), with c(d(p, q)) = expp(d(p, q)V)
for some V .

Hence B(p, r) is the image of the compact ball in TpM of radius r under the con-
tinuous map expp. Hence, B(p, r) is compact. Since K is assumed to be closed, and
shown to be contained in a compact set, it must to be compact itself. �

(ii)⇒(i): Let {pn}n∈N ⊂ M be a cauthy sequence and p0 ∈ M. Since {pn}n∈M is a
cauthy sequence, we have ∀ ε > 0, ∃ N, when n, l > N,

|d(pn, p0) − d(pl, p0)| ≤ d(pn, pl) < ε.

That is {d(pn, p0)}n∈N is a cauthy sequence in R, then lim
n→∞

d(pn, p0) exists. If {pn}n has
an accumulation point a0, i.e. ∃ subsequence {pnk } s.t. pik → a0 as k → ∞.

Pick p0 = a0, we have

lim
n→∞

d(pn, p0) = lim
k→∞

d(pnk , p0) = 0.

That is, pn → p0 as n→ ∞.
Otherwise, if {pn} has no accumulate point, then {pn} is closed. Note {pn} is

bounded since it is cauthy.
By assumeption (ii), {pn} is conpact. But each pn is not an accumulate point, we

have pn ∈ Un, pi < Un, ∀i , n. Hence {Un} is an open cover of {pn} without any finite
subcover. This contradicts to the conpactness of {pn}. �

(i)⇒(iv): Let γ be a geodesic in M, parametrized by arc length, and being defined
on a maximal interval I. Then I is not empty. Moreover, by the “local existence and
uniqueness of geodesics”(ODE theory), we know I is an open interval. Next we show
I is closed. Then I has to be (−∞. +∞).

Let {tn}n∈N ⊂ I be converging to t. Notice that

d(γ(tn), γ(tm)) ≤ |tn − tm| = length o f ̂γ(tn)γ(tm).

We know {γ(tn)}n∈N is a cauthy sequence in M.
M is compact⇒ ∃ p0 ∈ M, γ(tn) → p0 as n → ∞. And, ∃ δ > 0, ∃ W which is a

totally normal neighborhood of p0, s.t. ∀q ∈ W, expq(B(0, δ)) ⊃ W.
There exists N, s.t. when n,m ≥ N, we have

|tn − tm| < δ (a)
and γ(tn), γ(tm) ∈ W (b)

By (a) and the property of W, there exist a unique geodesic c from γ(tn) to γ(tm) less
than δ. Therefore c has to be a subarc of γ. Since expγ(tn) is a diffeomorphic on
B(0, δ) ⊂ Tγ(tn)M and expγ(tn)(B(0, δ)) ⊃ W, c extends γ to p0. � �
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Corollary 2.6. Compact Riemannian manifold is complete.

Proof. closed subset of a compact space is compact. � �

Corollary 2.7. A closed submanifold of a complete Riemannian manifold is complete
in the induced metric. In particular, the closed submanifold of Euclidean space are
complete.

2.4 Existence of geodesics in given homotopy class
In complete Riemannian manifold, any two points p, q can be connected by a shortest
geodesic. In this part, we discuss the existence of such geodesics in given homotopy
class.

Definition 2.5. Two curves γ0, γ1 on a manifold M with commen initial and end points
p and q, i.e. two continuous maps

γ0, γ1 : I = [0, 1]→ M

with γ0(0) = γ1(0) = p, γ0(1) = γ(1) = q, are called homotopic if there exists a
continuous map Γ : I × I → M with

Γ(0, s) = p, Γ(1, s) = q ∀s ∈ I

Γ(t, 0 = γ0(t), Γ(t, 1) = γ1(t) ∀t ∈ I.

Two closed curves c0, c1 in M, i.e. two continuous maps c0, c1 : S 1 → M are called
homotopic if there exists a continuous map c : S 1 × I → M with

c(t, 0) = c0(t), c(t, 1) = c1(t) for all t ∈ S 1.(S 1, as usual, is the unit circle
parametrized by [0, 2π))

Remark 2.12. The concept of homotopy defines an equivalence relation on the set of
all curves in M with fixed initial and each points as well as on the set of all closed
curves in M.

With the examples of torus in mind, let’s first consider the existence of closed
geodesic on a compact Riemannian manifold.

Theorem 2.8. Let M be a compact Riemannian manifold. Then every homotopy class
of closed curves in M contains a curve which is a shortest curve in its homotopy class
and a geodesic.

As a preparation, we first show
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Lemma 2.4. Let M be a compact Riemannian manifold. Let ρ0 > 0 be the constants
with the following property: any two points p, q ∈ M with d(p, q) ≤ ρ0 can be con-
nected by precisely one geodesic of shortest path. Let γ0, γ1 : S 1 → M be closed
curves with

d(γ0(t), γ1(t)) ≤ ρ0 ∀ t ∈ S 1.

Then γ0 and γ1 are homotopic.

Remark 2.13. The existence of such ρ0 on a compact Riemannian manifold has been
proven in corollary 2.2.3. In fact, we know moreover, this geodesic depends continu-
ously on (p, q).

Proof of lemma 2.4.1:
∀t ∈ S 1, let ct(s) : I → M be the unique shortest curve(which is therefore, a

geodesic) from γ0(t) to γ1(t), as usual parametrized proportionally to arc length. Recall
that ct depends continuously on its end points, hence on t, Γ(t, s) = ct(s) is continuously
and yields the desired homotopy. �

Proof of Theorem 2.4.1:
Consider the lengths of the curvesin a given homotopy class: they are numbers in

[0,+∞). Let {γn}n∈N be minimizing sequence for arc length in this homotopy class. All
{γn}n∈N are parametrized proportionally to arc length.

We may assume each γn is piecewise geodesic: for each γn, we may find 0 = t0 <
t1 < · · · < tm < tm+1 = 2π with the property that

L(γn|[t j−1,t j]) <
ρ0

2
, j = 1, · · · ,m + 1.

Replacing γn|[t j−1,t j ] by the shortest geodesic arc between γn(t j−1) and γn(t j), we obtain
a new closed curve γ̃n.

By using triangle inequality, we have d(γn(t), γ̃n(y)) ≤ ρ0. As a consequence of
Theorem 2.4.1, γ̃n is homotopic to γn and the lengths of γ̃n is no longer than γn.

We may thus assume that for any γn, ∃ points p0,n, · · · , pm,n for which d(p j−1,n, p j,n) ≤
ρ0
2 (pm+1,n := p0,n, j = 1, · · · ,m + 1).

Observe that the lengths of γn are bounded as they constitute a minimizing se-
quence. Therefore, we may assume that m is independent of n.

p0,1 p1,1 p2,1 · · · pm,1
p0,2 p1,2 p2,2 · · · pm,2
...

...
... · · ·

...
p0,n p1,n p2,n · · · pm,n
...

...
... · · ·

...
↓ ↓ ↓ ↓

p0 p1 p2 pm

Recall that the geodesic between p j−1,n and p j,n depends continuously on its endpoints,
and hence converges to the shortest arc between p j−1 and p j.(shortest arc is geodesic)

These shortest geodesic arcs yields a closed curve γ. By Lemma 2.4.1, γ is ho-
motopic to γn, and Length(γ) = lim

n→∞
Length(γn), Recall {γn} is a minimizing sequence
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for the length in their homotopy class. Therefore, γ is shortest curve in this homotopy
class.

Claim: γ is a geodesic.
Otherwise, there would exist points p and q on γ for which one of the two arcs of γ

between p and q would have length at most ρ0
2 , but would not be geodesic.

Then this arc p̂q can be shortened by replacing it by the shortest geodesic between
p and q. Denote this new curve as γ̃. We have

d(γ(t), γ̃(t)) ≤ ρ0, ∀ t ∈ S 1.

However, γ and γ̃ is homotopic as a consequence of Lemma 2.4.1. This contradicts to
the minimizing property of γ. Therefore, γ is desired closed geodesic. �

Remark 2.14. If the compact Riemannian manifold M is simply-connected, the above
arguement leads to the trivial closed geodesic: a point.

Now, we discuss the existence of shortest geodesics in a given homotopic class of
curves with fixed initial values and end points in a complete Riemannian manifold.

Theorem 2.9. Let (M, gM) be a complete and connected Riemannian manifold, p, q ∈
M. Every homotopy class of paths from p to q contains a geodesic γ that minimized
length among all admissible curves in the same homotopy class.

The idea to prove Theorem 2.4.2 is first going to the universal covering manifold
of M. In M̃, curves connecting corresponding points p̃ and q̃ only have one honotopy
class. For that purpose, we need first show that M is complete⇒ M̃ is complete.

Recall: A covering map is a surjective continuous map π : M̃ → M between con-
nected and locally-path-connected topological spaces, for which each points of M has
connected neighborhood U that is evenly covered, meaning that each connected com-
ponent of π−1(U) is mapped homeomorphically onto U by π.

It is called a smooth covering map if M̃ and M are smooth manifolds and each
component π−1(U) is mapped diffeomorphically onto U.

Any Riemannian metric on M induceds a Riemannian metric on M̃. This makes π
into a Riemannian covering. In particular, π is a local isometry.

Lemma 2.5. Suppose M̃ and M are connected Riemannian manifolds, and π : M̃ → M
is a Riemannian covering map. If M is complete, then M̃ is also complete.

Proof. Let p̃ ∈ M̃ and ṽ ∈ T p̃M̃ be arbitrary, and let p = π( p̃), and v = dπ( p̃)(̃v).
Completeness of M implies that the geodesic γ with γ(0) = p and γ̇ = v is defined

for all t ∈ R.(Recall a fundamental property of covering map is the path-lifting property:

If π : M̃ → M is covering map, then every continuous map γ : I → M lifts to a path γ̃
in M̃ s.t. π ◦ γ̃ = γ.)

Here the lifts γ̃ of γ starting at p̃ with the initial tangent vector ṽ. Since π is a local
isometry, we know γ̃ is a geodesic. Since γ is defined for all t ∈ R, so does γ̃. This
proves the completeness of M̃. �

Prood of Theorem 2.4.2: Consider the universal convering π : M̃ → M cof M,
endowed with the induced metric g̃ = π∗g. Given p, q ∈ M and a path σ : [0, 1] → M
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from p to q. Choose a p̃ ∈ π−1(p), and let σ̃ : [0, 1] → M̃ be the lift of a starting with
p̃, and set q̃ = σ̃(1).

By Hopf-Rinow, and the fact M̃ is complete, there exists a minimizing g̃-geodesic
γ̃ from p̃ to q̃.

Because π is a local isometry, γ = π ◦ γ̃ is a geodesic from p to q in M.
Since M̃ is simply connected, we have σ̃ and γ̃ are homotopic. Hence σ and γ

are also homotopic. That is γ is a geodesic in the homotopy class [σ]. If σ1 is any
other admissible curve from p to q in the homotopy class [σ], then by the monodromy
theorem, its lifts γ̃1 starting at p̃ also ends at q̃1,(γ̃1 and σ̃ are homotopic, which is trivial
in a simply connected space.) In M̃, we know Length(̃γ) ≤ Length(γ̃1). Therefore,
Length(γ) ≤ Length(γ1) � �

We’d like take this chance to discuss further about Riemannian covering map.

Theorem 2.10. Let (M̃, g̃) and (M, g) are connected Riemannian manifolds with M̃
complete, and π : M̃ → M is a local isometry. Then M is complete and π is a Rieman-
nian covering map.

Corollary 2.8. Suppose M̃ and M are connected Riemannian manifolds and π : M̃ →
M is a Riemannian covering map. Then M is complete iff M̃ is complete.

Proof. Combination of Theorem 2.4.3 and Lemma 2.4.2.

Proof of Theorem 2.4.3:
� Path-lifting property for geodesic of a local isometry π.

Let p ∈ π(M̃), and p̃ ∈ π−1(p). Let γ : I → M be a geodesic with p = γ(0), v = γ̇(0).
Let ṽ := (dπ( p̃))−1(v) ∈ T p̃M̃.(π induces dπ( p̃) is a linear isometry.) Let γ̃ be the
geodesic in M̃ with initial point p̃ and initial tangent vector ṽ. Since M̃ is complete,
π◦ γ̃ is a geodesic with initial point p and initial tangent vector v. Hence, π◦ γ̃ = γ on I.
So γ̃|I is a lift of γ starting at p̃.
� M is complete: Let p ∈ π(M), γ : I → M be any geodesic starting at p, then

γ has a lift γ̃ : I → M̃. Since M̃ is complete, π ◦ γ̃ is a geodesic defined on all of
R and coincides with γ on I. That is γ extends to all of R. Thus M is complete by
Hopf-Rinow Theorem.
� π is suijective.

∀p̃ ∈ M̃, write p = π( p̃). Let q ∈ M be arbitrary. M is complete
⇒

H − R ∃ a
minimizing geodesic from p to q.

Let γ̃ be the lift of γ starting at p̃, and r = d(p, q), we have π(̃γ(r)) = γ(r) = q. So
q ∈ π(M̃).
� Every point of M has a neighborhood U that is evenly covered.
Let p ∈ M, let U = Bε(p) be a geodesic ball(normal ball) centered at p, ε < in j(p).
Write π−1(p) = { p̃α}α∈A. For each α write Ũα be the metric ball of radius ε around

p̃α.
Claim: Ũα

⋂
Ũβ = ∅, ∀α , β.

Proof: ∀α , β, there exists a minimizing geodesic γ̃ from p̃α to p̃β because M̃ is
complete. The projective curve γ := π ◦ γ̃ is a geodesic that starts and end at p, whose
length is the same as that of γ̃. Such a geodesic must leave U and reenter it.
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Since all geodesics passing through p are radial geodesics, we have Length(̃γ) =

Length(γ) ≥ 2ε ⇒ dg̃( p̃α, p̃β) ≥ 2ε ⇒ Uα
⋂

Uβ = ∅ �

Claim:π−1(U) =
⋃
α

Ũα.

Proof: ∀q̃ ∈ Ũα for some α, there is a geodesic γ̃ of length¡ε from ˜palpha to q̃.
Then π ◦ γ̃ is a geodesic of the same length from p to π(̃q), showing that π(̃q) ∈ U =

Bε(p). i.e.
⋃
α

Ũα ⊆ π
−1(U). ∀q̃ ∈ π−1(U), we get q = π(̃q). That is, q ∈ U. So that is a

minimizing radial geodesic. γ in U from p to q, and r = dg(p, q) < ε. Let γ̃ be the lift
of γ starting at q̃.

It follows that π(̃γ(r)) = γ(r) = p. Therefore γ̃(r) = p̃α for some α, and dg̃ (̃q, p̃α) ≤
Length(̃γ) = r < ε. So q̃ ∈ Ũα.
� It remains to show that π : Ũα → U is a diffeomorphism for each α.
It is certaining a local diffeomorphism. It is bijective: we can construct the inverse

explicitly. It sends each radial geodesic starting at p to its lift starting at p̃α.
This completes the proof. � �
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Chapter 3

Connections, Parallelism, and
covariant Derivatives.

Consider the geodesic equation again. In (U, x),

ẍi(t) + Γi
jk(x(t))ẋ j(t)ẋk(t) = 0, i = 1, · · · , n. (*)

Recall under coordinate change (xi)→ (yα), the christoffel symbols behave as

Γi
jk = ˜Gamma

α

ηγ(y(x))
∂yη

∂x j

∂yγ

∂xk

∂xi

∂yα
+

∂2yα

∂x j∂xk

∂xi

∂yα
.

Therefore Γi
jk is not coefficients of a tensor!! This fact suggest in particular that we

should pay more attention to taking derivetive in local coordinates. It would be nice if
we have “the derivetive of a tensor is again a tensor”. This will be solved by so-called
“covariant derivatives”.

On the other hand, the LHS of (*) behaves under coordinate change (xi)→ (yα) as

(ẍi(t) + Γi
jk(x)ẋ j ẋk) = (ÿα + Γ̃αηγ(y(x))ẏηẏγ)

∂xi

∂yα
.

That is, it behaves like a (1,0)-tensor(i.e. vector field). Recall, in local coordinatesm if
X = Xi ∂

∂xi = Yα ∂
∂yα . Then Xi = Yα xi

yα . This suggest that ẍi(t) + Γi
jk(x)ẋ j ẋk is coefficients

of a (1,0)-tensor. This leads to the concepts of connections, and parallelism.

3.1 Affine Connections.
Refenrence:[WSY Chap.1][do Carmo, 2.2]

On Rn, let v be a vector at p ∈ Rn, f ∈ C∞(U), p ∈ U ⊂ Rn, we hava the following
“directional derivative” of f at p along v:

Dv f = lim
t→0

f (p + tv) − f (p)
t

.

49
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Let X be a C∞ vector field. In local coordinates, (U, X), we have

X = (X1, · · · , Xn), Xi ∈ C∞(U)

where X = Xi ∂
∂xi . Then the directional derivative of X along v is defined as DvX =

(DvX1, · · · ,DvXn). That is DvX =
∑
i

(DvXi) ∂
∂xi .

It is direct to check the following properties:
(a) DαvX = αDvX, ∀α ∈ R
(b) Dv( f X) = (Dv f )X + f DvX, ∀ f
(c) Dv(X1 + X2) = DvX1 + DvX2, ∀X1, X2

(d) Dv1+v2 X = Dv1 X + Dv2 X, ∀v1, v2.

In fact, we also have Dv
∂
∂xi = 0. But this property can not be extended to manifold

case. In general, we can define the following concept:

Definition 3.1. (Affine connection). An affine connection O on a smooth manifold M is
a map

O : Γ(T M) × Γ(T M)→ Γ(T M).

(Γ(T M) is the set of all smooth vector fields on M.)

This map is denoted by (X,Y)
O
→ OXY , and which satisfies the following properties:

(i) O f X+gYZ = fOXZ + gOYZ (linear over the C∞ functions in the arguement X.)
(ii) OX(Y + Z) = OXY + OXZ
(iii) OX f Y = fOXY + X( f )Y

in which X,Y,Z ∈ Γ(T M) anf f,g are any real-valued C∞ functions on M. The vector
field OXY is called the covariant derivative of Y along X(with respect to the connection
O).

Digest:
1© On Rn, the “directional derivatives” provides an affine connection. For X,Y ∈

Γ(TRn), define (OXY)(p) = DX(p)Y, p ∈ R. Then one can check 4 satisfies (i)-(iii).
2© Let X,Y ∈ Γ(T M). In a local coordinates (U, x1, · · · , xn), X,Y can be considered

as vector fields on x(U) ⊂ Rn. In (U, x), we can define OXY as the directional derive-
tive DXY . A natural question is: can we obtain an affine connection by defining it as
directional derivatives in every local coordinates?

The answer is No! Suppose we have two coordinates (U, x1, · · · , xn) and (V, y1, · · · , yn).
When U

⋃
V , ∅, we have

DXY =
∑

i

(DX f i)
∂

∂xi where Y = f i ∂

∂xi in U

=
∑

i

(DXgi)
∂

∂yi where Y = gi ∂

∂yi in V

=
∑

i

(DXgi)
∂xk

∂yi

∂

∂xk .
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Need

DX f i = DXG j ∂xi

∂y j

= DX( f k ∂y j

∂xk )
∂xi

∂y j

= DX f kδi
k + f kDX(

∂y j

∂xk )
∂xi

∂y j

= DX f i + f k[DX(δi
k) −

∂y j

∂xk DX
∂xi

∂yk ]

= DX f i − f k ∂yi

∂xk

∂xi

∂y j

= DX f i − g jDX
∂xi

∂y j

That is we need

g jDX
∂xi

∂y j = 0, ∀ i. (*)

We can find examples that (*) does not hold.
3© Existence: Many “trivial” connections: Fix a coordinate neighborhood U, define

a “local” connection OU on U via directional derivatives on Rn. This can be extended
“trivially” to a connection on M.

Lemma 3.1. The set of all affine connections on M form a convex set. Namely, if
O(1), · · · ,O(k) are affine connection on M, and f1, · · · , fk ∈ C∞(M), s.t.

∑
i

fi = 1. Then∑
i

fiO(i) is also an affine connection on M.

Proof. Properties (i),(ii) of an affine connection can be checked directly.
For (iii), we check for X,Y ∈ Γ(T M), f ∈ C∞(M).

(
∑

i

fiO(i))X(gY) =
∑

i

f i(O(i)
X (gY))

=
∑

i

fi(X(g)Y + gO(i)
X Y)

=(
∑

i

fi)X(g)Y + g(
∑

i

fiO(i))XY.

Here we need the property that
∑
i

f i = 1. � �

Exercise 3.1. Find a nontrivial connection on M via “partition of unity”.

4© Locality: “OXY depends only on local information of X and Y”
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Proposition 3.1. For any open subset U ⊂ M, if

X|U = X̃|U and Y |U = Ỹ |U ,

then OXY |U = OX̃Ỹ |Ũ .

Proof. We will show OXY |U
(1)
= OX̃Y |U

(2)
= OX̃Ỹ |Ũ .

For (1), it’s enough to show X|U = 0⇒ OXY |U (a).
For (2), it’s enough to show Y |U = 0⇒ OXY |U (b).
Proof of (a): ∀p ∈ U, ∃ open V ⊂ U and a function f ∈ C∞0 (U) s.t. f = 1 on V. We

check (1 − f )X = X since X|U = 0. Then OXY = O(1− f )XY i
= (1 − f )OXY. In particular,

OXY(p) = (1 − f (p))OXY = 0. Therefore OXY |U = 0. �

Exercise 3.2. Show that Y |U = 0 implies OXY |U = 0.

Proposition 3.2. If X(p) = X̃(p), then OXY(p) = OX̃Y(p).

Proof. Again, it’s enough to show X(p) = 0⇒ OXY(p) = 0 (∗).
By proposition 3.1, we only need to show (*) for X supported in an coordinate

neighborhood (U, x), with x(p) = 0(the origin of Rn). Now we can write X = XI ∂
∂xi

with Xi(0) = 0. By taylor’s theorem, ∃ functions Xi
k s.t.

Xi(x1, · · · , cn) = Xi(0) + xkXi
k = xkXi

k.

So OXY = Oxk Xi
k

∂

∂xi
Y = xkOXi

k
∂

∂xi
Y. In particular at p,

OXY(p) = xk(p)OXi
k

∂

∂xi
Y(p) = 0.

� �

Consequently, for v ∈ TpM, and Y ∈ Γ(T M), we can define OvY(p) := OXY(p),
where X is any vector field with X(p) = v.(This is like a “directional derivative”of Y at
p along v.)

But, it is not true that Y(p) = Ỹ(p)⇒ OXY(p) = OXỸ(p). It is not hard to construct
counterexamples.

Proposition 3.3. Let γ : (−ε, ε) → M be a smooth curve on M, with γ(0) = p and
γ̇(0) = v. Suppose X,Y, Ỹ are vector fields on M s.t.

X(p) = v, Y(γ(t)) = Ỹ(γ(t)), −ε < tε,

then OXY(p) = OXỸ(p).

Proof. It’s enough to show Y = 0 along γ ⇒ OvY(p) = 0.
Let (U, x1, · · · , xn), p ∈ U be a coordinate neighborhood around p with x(p) = 0.

Let Y = f i ∂
∂xi . Then

OvY(p) = Ov( f i ∂

∂xi )(p) = (v( f i)
∂

∂xi + f iOv
∂

∂xi )(p)

=
d
dt
|t=0 f i ◦ γ(t)

∂

∂xi + f i(p)Ov
∂

∂xi

Since f i ◦ γ(t) = 0, t ∈ (−ε, ε), we have OvY(p) = 0. � �
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3.2 Parallelism

What is going an geometrically? [Spivak II, chapter 6]
Consider a curve c : [a, b]→ M. By a vector field V along c, we mean

t ∈ [a, b] 7→ V(t) ∈ Tγ(t)M.

In a coordinate neighborhood (U, x1, · · · , xn), we can write

V(t) =

n∑
i=1

vi(t)
∂

∂xi |c(t).

We call V a C∞ vector field along c if the functions vi are C∞ on [a, b]. This is
equivalent to saying that

t 7→ V(t) f

is C∞ for every C∞ function f on M.
Notice that a vector field V along c may not be extended to a vector field on M.

When c is an embedding, V(t) can be extended to a vector field Ṽ on M. We have

Ṽ(c(t)) = V(t), ∀t ∈ [a, b].

Then O dc
dt

Ṽ is a C∞ vector field along c.

By locality, we know O dc
dt

Ṽ does not depend on the extension Ṽ . We call O dc
dt

Ṽ the
covariant derivative of V along c, we denote it by the convenient symbolism DV

dt .
We would like to generalize this covariant derivative along c to any curve c.(This is

actually the concept of “induced connections” for which we will discuss later.)

Proposition 3.4. Let M be a differential manifold with an affine connection O. There
exists a unique correspondence from C∞ vector fields V along the smooth curve c :
[a, b]→ M to C∞ vector fields along c : V → DV

dt , called the covariant derivative of V
along c, such that

(a) D
dt (V + W) = DV

dt + DW
dt .

(b) D
dt ( f V) =

d f
dt V + f DV

dt , for F ∈ C∞([a, b]).
(c) If V(s) = Y(c(s)) for some C∞ vector field Y defined in a neighborhood of c(t),

then DV
dt = O dc

dt
Y.
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Proof. Let us suppose initially that there exists a correspondence satisfying (a),(b) and
(c).

Let p = c(t0) ∈ M, and (U, x1, · · · , xn) is a coordinate neighborhood of p. For t

sufficiently to t0, we can express V locally as V(t) =
n∑

j=1
v j(t) ∂

∂x j |c(t). By (a),(b),(c), we

have

DV
dt

(a)
=

n∑
j=1

D
dt

(v j(t)
∂

∂x j |c(t))

=
(b)
=

n∑
j=1

[
dv j(t)

dt
∂

∂x j |c(t) + v j(t)
D
dt

(
∂

∂x j |c(t))]

(c)
=

n∑
j=1

[
dv j(t)

dt
∂

∂x j |c(t) + v j(t)O dc
dt

∂

∂x j ] (
dc
dt

= dc(
∂

∂t
) =

dci

dt
∂

∂xi |c(t))

=

n∑
j=1

[
dv j(t)

dt
∂

∂x j |c(t) + v j(t)
dci

dt
O ∂

∂xi |c(t)

∂

∂x j ]

Note O ∂

∂xi |c(t)

∂
∂x j is a C∞ vector field along c. Hence ∃

{
k
i j

}
s.t. O ∂

∂xi |c(t)

∂
∂x j =

{
k
i j

}
(c(t)) ∂

∂xk |c(t)

⇒ DV
dt =

n∑
k=1

( dvk

dt +
∑
i, j

{
k
i j

}
(c(t)) dci

dt v j(t)) ∂
∂xk |c(t) (∗)

The expression (*) show us that if there is a correspondence satisfying (a),(b),(c),
then such a correspondence is unique.

To show existence, define DV
dt in (U, x) by (*). We can verify that (*) possesses the

desired properties. If (V, y) is another coordinate neighborhood with U
⋂

V , ∅, then
we define DV

dt in (V, y) by (*), the definition agree in U
⋂

V by the uniqueness of DV
dt in

U. Therefore, the definition can be extended over all of M. � �

Remark 3.1. Even at points where dc
dt = 0, DV

dt is not necessarily 0!! If c is a constant
curve, c(t) = p ∈ M, ∀t. Then a vector field V along c is just a curve in TpM, and DV

dt
is just the ordinary derivative of this curve.

Definition 3.2. (Parallelism) Let M be a differentiable manifold with an affine con-
nection O. A vector field V along a curve c : [a, b] → M is called parallelism when
DV
dt = 0, ∀t ∈ [a, b]. When M = Rn, O be the directional derivative, we obtain the

standard picture of a parallel vector field.

Proposition 3.5. [do Carmo, Prop 2.6] Let M be a differentiable manifold with an
affine connection O. Let c : I → M be a smooth curve in M, and let V0 ∈ Tc(t0)M, t0 ∈ I.
Then there exists a unique parallel vector field V along c, such that V(t0) = V0.

Remark 3.2. V(t) is called the parallel transport of V(t0) along c.

Proof. First consider the case when c(I) is certained in a coordinate neighborhood
(U, x1, · · · , xn). Then V0 can be expressed as:V0 =

∑
j

v j
0
∂
∂x j
|c(t0).
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Suppose there exists a vector field V in U which is parallel along c, with V(t0) = V0.
Then V =

∑
v j(t) ∂

∂x j |c(t) satisfies

0 =
DV
dt

=
∑

k

{
dvk

dt
+

∑
i, j

{
k
i j

}
(c(t))

dci

dt
v j(t)}

∂

∂xk |c(t).

The equations
dvk

dt
+

∑
i, j

{
k
i j

}
(c(t))

dci

dt
v j(t) = 0, k = 1, · · · , n

are linear differential equations. So there is a unique solution satisfying the initial
condition

vk(t0) = vk
0, k = 1, · · · , n.

Due it’s linearity, the solution is defined for all t ∈ I, this proves the existence and
uniqueness of V in this case. In general, for any t1 ∈ I, there is a finite cover of
c([t0, t1]) by coordinate neighborhood.

In each of those coordinate neighborhood , V is defined. By uniqueness, the defini-
tions coincide when the intersections are not empty, there allowing the definition of V
along all of [t0, t1] � �

Now consider c : [a, b] → M, Va ∈ Tc(0)M. Then there is a unique V(t) ∈ Tc(t)M
s.t. Vt is the parallel transport of Va along c.

It’s clear from the definition that

(V + W)t = Vt + Wt, (λV)t = λVt.

That is, we have a linear transformation Pc,a,t = Pt : Tc(a)M → Tc(t)M,Va 7→ Vt.
Moreover, Pt is one-to-one. Its inverse is given by the parallel transport along the
reversed portion of c from t to a.

ϕ : [a, b]→ M, t 7→ c(a + b − t).

ϕ(a) = c(b), ϕ(b) = c(a).
dϕ
dt

(t) = −
dc
dt

(a + b − t).

Therefore, Vb ∈ Tc(b)M is the parallel transportation of Va ∈ Tc(a)M along c iff Va

is the parallel transportation of Vb along ϕ.(When c is embedding, this is seen from
O dϕ

dt (t)Ṽ = O− dc
dt (a+b−t)Ṽ = −O dc

dt (a+b−t)Ṽ .)
Hence Pt is an isomorphism between two vector space Tc(0)M and Tc(t)M.
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Remark 3.3. (justification of the term “connection”) A connection O gives the possi-
bility of comparing, or “connecting”, tangent spaces at different points.

Note the isomorphism between two tangent spaces given by the parallel transport
depends on the choice of curves connecting the two points.

The parallel transport Pt is defined in terms of O, but we can also reverse the pro-
cess.

Proposition 3.6. [spivak II, Chapter 6.Prop 3] Let c be a curve with c(0) = p and
ċ(0) = Xp. Let Y ∈ Γ(T M), then

OXp Y = lim
h→0

1
h

(P−1
h Yc(h) − Yp)

Remark 3.4. Parallel transport enables us to use the idea of “directional derivative”
to define OXp Y.

Proof. Let V1, c . . . ,Vn be parallel vector fields along c which are linearly independent
at c(0), and(since parallel transports are isomorphisms), hence at all points of c. Set

Y(c(t)) =
n∑

i=1
f i(t)Vi(t). Then

lim
h→0

1
h

(P−1
h Yc(h) − Yp)

= lim
h→0

1
h

(
∑

i

f i(h)P−1
h Vi(h) −

∑
i

f i(0)Vi(0))

= lim
h→0

1
h

∑
i

( f i(t)V i(0) − f i(0)Vi(0))

=
∑

i

lim
h→0

( f i(t) − f i(0))Vi(0) =
∑

i

d f i

dt
|t=0Vi(0)

=
D
dt
|t=0

∑
i

f i(t)Vi(t)

=OXp Y.

� �

Remark 3.5. Recall (*) on page 73, and geodesic equation in last Chapter. If γ :
[a, b] → M is a geodesic, then we have Dγ̇(t)

dt = 0 where D
dt is determined by a connec-

tion O on M, for which in (U, x), O ∂

∂xi

∂
∂x j = Γk

i j
∂
∂xk .
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3.3 Covariant derivatives of a tensor field
In this section, we extend the covariant derivative of a vector field Y along X to that
of a tensor field along X. Similar as previous cases, we can do this via pure algebraic
discussions, or via parallel transport.

For (0,0)-tensor(=functions), we have a nice derivative:

OX : C∞(M)→ C∞(M), f 7→ cOX f = X( f ) = d f (X).

We can check that this derivative satisfies (i)-(iii) in Definition 3.1.1. The following
property enables us to define the covariant derivative 4XA of (r,s)-tensor A(via an al-
gebraic discussions).

In fact we can define a connection on (r,s)-tensor fields

O : Γ(T M) × Γ(⊗r,sT M)→ Γ(⊗r,sT M), (X, A) 7→ OXA.

Proposition 3.7. Let M be a diffentiable manifold with an affine connection O. There
is a unique connection on all tensor fields O : Γ(T M) × Γ(⊗r,sT M) → Γ(⊗r,sT M) that
satisfies

(i) O f X+gY A = fOXA + gOXA.
(ii) OX(A1 + A2) = OXA1 + OXA2.
(iii) OX( f A) = X( f )A + fOXA.
and
(iv) O coincide with the given connections on Γ(T M) and C∞(M).
(v) OX(T1 ⊗ T2) = (OXT1) ⊗ T2 + T1 ⊗ (OXT2)
(vi) C(OXT ) = OXC(T ), where C : Γ(⊗r,sT M) → Γ(⊗r−1,s−1T M) is the contraction

map that pairs the first vector with the first covector.

Remark 3.6. (i)-(iii) is the properties for a connection, (iv)-(vi) provides a unique
extension to all tensor fields.

Proof. First, we derive the formula of O on 1-forms.
Let ω ∈ Ω1(M) = Γ(T ∗M) be any 1-form, then

X(ω(Y))
(iv)
= OX(ω(Y)) = OX(C(ω ⊗ Y))
(vi)
= COX(ω ⊗ Y) =

(v)
= C(OXω ⊗ Y + ω ⊗ OXY)

= (OXω)(Y) + ω(OXY)

So we conclude
1© (OXω)(Y) = X(ω(Y)) − ω(OXY)

Next, we can use (v) iteratively to show that for any (r,s)-tensor field A,

2© (OXA)(ω1, · · · , ωr,Y1, · · · ,Ys)

=X(A(ω1, · · · , ωr,Y1, · · · ,Ys)) −
∑

i

A(ω1, · · · ,OXωi, · · · , ωr,Y1, · · · ,Ys) −
∑

j

A(ω1, · · · , ωr,Y1, · · · ,OXY j, · · · ,Ys)

This shows the uniqueness.
For the existence, one need to check that the connections defined by 1© and 2©

satisfies all conditions (i)-(vi). � �



58CHAPTER 3. CONNECTIONS, PARALLELISM, AND COVARIANT DERIVATIVES.

Remark 3.7. OXA is called the covariant derivative of the (r,s)-tensor fields A along
X.

The properties (iv)-(vi) are very natural. To elaborate this point, we briefly discuss
another way of defining OXA, via parallel transport.

Recall for an isomorphism ϕ : V → W between two vector spaces Vand W, there
is an induced isomorphism ϕ∗ : W∗ → V∗ between their dual spaces W∗,V∗ defined by

f or α ∈ W∗ : ϕ∗(α)(v) := α(ϕ(v)),∀v ∈ V.

Then for any vi ∈ V, α j ∈ V∗, define

ϕ̃(v1 ⊗ · · · ⊗ vr ⊗ α
1 ⊗ · · · ⊗ αs)

:=ϕ(v1) ⊗ · · · ⊗ ϕ(vr) ⊗ (ϕ∗)−1(α1) ⊗ · · · ⊗ (ϕ∗)−1(αs)

Using linearity, we can extend ϕ̃ to ⊗r,sV all (r,s)-tensor over V! This defines an iso-
morphism between ⊗r,sV → ⊗r,sW.

Recall the parallel transport along c. Pc,t : Tc(0)M → Tc(t)M is an isomorphism. We
can extend it to be an isomorphism P̃c,t : ⊗r,sTc(0)M → ⊗r,sTc(t)M. As in proposition
3.4, we define

OXp A := lim
h→0

1
h

(P̃−1
c,hAc(h) − Ap) (**)

where c is a curve with c(0) = p, ċ(0) = Xp.

Clearly if A ∈ Γ(⊗r,sT M), then OXp ∈ Γ(⊗r,sT M). We also check that OXp A given in
(**) satisfies prop.(iv)-(vi).

Exercise 3.3. Let Y ∈ Γ(T M), ω, η ∈ Γ(T ∗M). Consider the tensor field K = Y⊗ω⊗η.
Let Xp ∈ TpM, and OXp K be defined in (**).

(i) Show OXp K = OXp Y ⊗ ω ⊗ η + Y ⊗ OXpω ⊗ η + Y ⊗ ω ⊗ OXpη.

(ii) Let CK = ω(Y)η. Show OXp (CK) = C(OXp K).

Remark 3.8. The definition (**) leads to be dependent on Xp and the curve c. How-
ever, (**) does not depend on choice of c. Recall OXp Y depends only on Xp. We only
need to show for any η ∈ Γ(T ∗M), OXpη also depends only on Xp. We need show
(OXpη)(Y), ∀Y ∈ Γ(T M), depends only on Xp, not on c.

Consider Y ⊗ η, we have

OXp (Y ⊗ η) = (OXp Y) ⊗ η + Y ⊗ OXpη

exchangewithcontraction
⇒ Xp(η(Y)) = η(OXp Y) + (OXpη)Y

⇔(OXpη)(Y) = Xp(η(Y)) − η(OXp Y)

RHS only depends on Xp, not on c. �

Now, for any tensor field A, and a field X, we can define (OXA)(p) = OXp A, ∀p ∈
M.
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3.4 Levi-Civita Riemannian Connections
There are too many connections on a given smooth manifold. Let X,Y ∈ Γ(T M). In a
coordinate neighborhood (U, x), write X = Xi(x) ∂

∂xi ,Y = Y j(x)
f rac∂∂x j. By definition we have

∇XY = ∇Xi ∂

∂xi
(Y j ∂

∂x j ) = Xi ∂Y j

∂xi

∂

∂x j + XiY j∇ ∂

∂xi

∂

∂x j .

Since ∇ ∂

∂xi

∂
∂x j ∈ Γ(T M), there exists functions

{
k
i j

}
s.t. ∇ ∂

∂xi |c(t)

∂
∂x j =

{
k
i j

}
, k = 1, 2, · · · , n

s.t.

∇ ∂

∂xi

∂

∂x j =
{

k
i j

}
.

⇒ ∇XY = X(Y j)
∂

∂x j + XiY j
{

k
i j

} ∂

∂xk = (X(Yk) + XiY j
{

k
i j

}
)
∂

∂xk .

That is, the connection ∇ is determined by the ns smooth functions
{

k
i j

}
.

Let c : [a, b] → M be a curve such that the relocity vector field ċ(t)(along c) is
parallel. Then locally, we can write c(t) = (x1(t), · · · , xn(t)) and

0 =
Dċ(t)

dt
=

d
dt

ẋk(t)
∂

∂xk |c(t) + ẋ j(t)
dxi

dt

{
k
i j

}
(x(t))

∂

∂xk |c(t)

= (ẍk(t) + ẋi(t)ẋ j(t)
{

k
i j

}
(c(t)))

∂

∂xk |c(t).

⇒ ẍk(t) +
{

k
i j

}
(c(t))ẋi(t)ẋ j(t) = 0, k = 1, · · · , n.

Recall the geodesic equation of a Riemannian manifold (M, g) are

ẍk(t) + Γk
i j(c(t))ẋi(t)ẋ j(t), k = 1, · · · , n.

We hope to find a connection, under which a geodesic is a curve whose velocity vector
field is parallel along it. That is, we are looking for a connection ∇, s.t.

{
k
i j

}
=

1
2

gkl(gl j,i + gil, j − gi j,l).

From this aim, we see the connection has to be “compatible” with the Riemannian
metric.

Recall that along a geodesic γ, we have 〈γ̇, ˙gamma〉g ≡ const. It is natural to require
g, as a (0,2)-tensor, is parallel w.r.t ∇. i.e.

∇Xg(Y,Z) = X(g(Y,Z)) − g(∇XY,Z) − g(Y,∇XZ) = 0, ∀X,Y,Z ∈ Γ(T M).

Definition 3.3. We say ∇ is compatible with g if the Riemannian metric g is paralell.
In other words, ∇ is conpatible with g if for all X,Y,Z ∈ Γ(T M),

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ).
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Let us calculate
{

k
i j

}
of such connections.

gi j,k =
∂

∂xk (g(
∂

∂xi ,
∂

∂x j )) = g(∇ ∂

∂xk

∂

∂xi ,
∂

∂x j ) + g(
∂

∂xk ,∇ ∂

∂xk

∂

∂x j )

= g(
{

l
ki

} ∂

∂xl ,
∂

∂x j ) + g(
∂

∂xi ,
{

l
k j

} ∂

∂xl ).

That is

gi j,k = gl j

{
l
ki

}
+ gil

{
l

k j

}
(1)

Permutation indius, we obtain

gki, j = gli

{
l
jk

}
+ gkl

{
l
ji

}
(2)

g jk,i = glk

{
l
jk

}
+ g jl

{
l
ik

}
(3)

(1),(2),(3) give us

gi j,k + gki, j − g jk,i = g jl(
{

l
ki

}
−

{
l
ik

}
) + gkl(

{
l
ji

}
−

{
l
i j

}
) + gil(

{
l

k j

}
+

{
l
jk

}
)

Now if we further have the symmetry{
l
ki

}
=

{
l
ik

}
, ∀i, l, k (3.4.1)

then

gi j,k + gki, j − g jk,i = 2gil

{
l

k j

}
⇒

1
2

gpi(gi j,k + gki, j − g jk,i) = 2gpigil

{
l

k j

}
{ p

k j

}
=

1
2

gpi(gi j,k + gki, j − g jk,i = Γ
p
k j.)

Then we obtain the christoffel symbols!!(That is, under such connections, a geodesic
is a curve whose velocity v.f. is parallel)

Express the condition (3.4.1) in global terms:

∇ ∂

∂xk

∂

∂xi − ∇ ∂

∂xi

∂

∂xk . (3.4.2)

For X,Y ∈ Γ(T M), only ∇XY − ∇Y X is not a tensor. The global expression of LHS of
(3.4.2) is as follows. For X,Y ∈ Γ(T M)

T (X,Y) := ∇XY − ∇Y X − [X,Y].

Proposition 3.8. T is a (1,2)-tensor.

Proof. T gives the multilinear map

T : Γ(T M) × Γ(T M)→ Γ(T M), (X,Y) 7→ T (X,Y).

Moreover T ( f X,Y) = T (X, f Y) = f T (X,Y).
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Example 3.1.

T ( f X,Y) = ∇ f XY − ∇Y ( f X) − [ f X,Y]
= f∇XY − Y( f )X − f∇Y X − f XY + Y( f )X + f YX

= f T (X,Y)

Hence T is a tensor. It is a (1,2)-tensor in the sense. T (ω, X,Y) = ω(T (X,Y)). �

Definition 3.4. (Torsion free) We call T the torsion tensor of ∇. If T = 0, we call ∇
torsion free(or symmetric) connection.

So, our calculations tell us: A torsion free connection ∇ which is compatible with
g has in each coordinate neighborhood.{

l
jk

}
= Γi

jk.

Definition 3.5. A connection ∇ on (M, g) is called a Levi-Civita connection(also called
a Riemannian connection), if it is torsion free, and it is compatible with g.

In this language, our previous calculations tell that if a Levi-Civita connection ex-
ists on (M, g), it is uniquely determined by the Christoffel symbols.

Conversly, we can define a connection ∇ as follows: in each coordinate neighbor-
hood (U, x),

∇XY := ∇Xi ∂

∂xi
(Y j ∂

∂x j ) := (Xi ∂Yk

∂Xi + XiY jΓk
i j)

∂

∂xk .

We can check this is well-defined, and ∇ is torsion free and is compatible with g. This
shows the existence of a Levi-Civita connections on (M, g).

Actually, we prove the following important result.

Theorem 3.1. (The fundamental theorem of Riemannian geometry) On any Rieman-
nian manifold (M, g), there exists a unique Levi-Civita connection,

Remark 3.9. This is a remarkable point to note the following observation: On a
smooth manifold, once we fix a Riemannian metric g, then we get:
� a canonical distance function
� a canonical measure
� a canonical affine connection

We in fact already show a proof via local coordinate calculations for Theorem 3.4.1.
We provide a coordinate free proof below.

Proof of Theorem 3.4.1:
Assume the Levi-Civita connection ∇ exist, then we calculate for all X,Y,Z ∈
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Γ(T M),

g(∇XY,Z) : = 〈∇XY,Z〉
∇g=0
= X(〈Y,Z〉) − 〈Y,∇XZ〉 (3.4.3)

torsion f ree
= X(〈Y,Z〉) − 〈Y,∇Z X + [X,Z]〉

= X(〈Y,Z〉) − 〈Y,∇Z X〉 − 〈Y, [X,Z]〉
∇g=0
= X(〈Y,Z〉) − (Z〈Y,Z〉 − 〈∇ZY, X〉) − 〈Y, [X,Z]〉

= X(〈Y,Z〉) − Z(〈Y, X〉) + 〈∇ZY, X〉 − 〈Y, [X,Z]〉
torsion− f ree

= X(〈Y,Z〉) − Z(〈Y, X〉) + 〈∇YZ, X〉 + 〈[Z,Y], X〉 − 〈Y, [X,Z]〉
∇g=0
= X(〈Y,Z〉) − Z(〈Y, X〉) + Y(〈Z, X〉) − 〈Z,∇Y X〉 + 〈[Z,Y], X〉 − 〈Y, [X,Z]〉

torsion f ree
= X(〈Y,Z〉) − Z(〈Y, X〉) + Y(〈Z, X〉) − 〈Z,∇XY〉 − 〈Z, [Y, X]〉 + 〈[Z,Y], X〉 − 〈Y, [X,Z]〉.

⇒ 2〈∇XY,Z〉 = X〈Y,Z〉 + Y〈Z, X〉 − Z〈X,Y〉 − 〈rX, [Y,Z]〉 + 〈Y, [Z, X]〉 + 〈Z, [X,Y]〉
(3.4.4)

⇒

2〈∇XY,Z〉 = X〈Y,Z〉 + Y〈Z, X〉 − Z〈X,Y〉 − 〈X, [Y,Z]〉 + 〈Y, [Z, X]〉 + 〈Z, [X,Y]〉

The RHS is determined by the metric g. So the uniqueness is proved.
For existence, check the ∇XY defined by (3.4.3) satisfies all conditions of Levi-

Civita connections. �

Remark 3.10. The formula (3.4.3) is called the Koszul formula. In local coordinate
(U, x), let X,Y,Z be ∂

∂xi ,
∂
∂x j ,

∂
∂xk , we will derive the formula for Christoffel symbols Γi

jk.

Sometimes, using (3.4.3) is more important than using Γk
i j. If in an open subset U ⊂

M, there exists an orthonormal frame field E1, · · · , En,(i.e. 〈Ei, E j〉(p) = δi j,∀ p ∈ U),
(3.4.3) gives

2〈∇Ei E j, Ek〉 = −〈Ei, [E j, Ek]〉 + 〈E j, [Ek, Ei]〉 + 〈Ek, [Ei, E j]〉.

Exercise 3.4. Suppose we know the following fact: There exists three vector field on
S 3 ⊂ R4, i, j, k, which are linearly independent at any point of S 3, such that

[i, j] = k, [ j, k] = i, [k, i] = j.

Assign to S 3 a Riemannian metric g s.t. i, j, k are orthonormal at any point of S 3.
Calculate the Levi-Civita connection ∇ of g on S 3.

Next, we give more geometric interpretations for the two properties of the Levi-
Civita connection.

(a) ∇ is compatible with the metric.
(b) ∇ is torsion free.

Proposition 3.9. (geometric meaning of (a)) Let M be a smooth manifold with an affine
connection ∇. Then ∇ is conpatible with the g iff any parallel transport is an isometry.
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Proof. ⇒: Let c : [a, b]→ M be a smooth curve with p = c(a). The parallel transport

Pc,a,t : Tc(a)M → Tc(t)M, t ∈ [a, b]

is an isomorphism.

⇐: i.e. any parallel transport is an isometry⇒ ∇ is compatible with g.

For any X,Y,Z ∈ Γ(T M). Look at X(p), X(〈Y,Z〉) = X(p)〈Y,Z〉. Let c : [0, 1] → M
with c(0) = p, ċ(0) = X(p). We have X〈Y,Z〉 = d

dt |t=0〈Y(c(t)),Z(c(t))〉.

Let {E1, · · · , En} is an orthonormal basis of TpM, and {E1(t), · · · , En(t)} is given by
Ei(t) = Pc,tEi. Since Pc,t is isomotry, {Ei(t)} is orthonormal(∀t).

⇒ 〈Y(c(t)),Z(c(t))〉 = 〈Y i(t)Ei(t),Zi(t)Ei(t)〉 = Y i(t)Z j(t)δi j =
∑
i

Y i(t)Zi(t).

⇒ X〈Y,Z〉 =
∑

i

d
dt
|t=0(Y i(t)Zi(t)) =

∑
i

dY i

dt
(0)Zi(0) +

∑
i

Y i(0)
dZi

dt
(0)

=〈
DY
dt
|t=0,Z〉 + 〈Y,

DZ
dt
|t=0〉

=〈∇X(p)Y,Z〉 + 〈Y,∇X(p)Z〉

This shows ∇ is compatible with g � �

Let Va,Wa ∈ Tc(a)M, and Vt := Pc,a,tVa,Wt := Pc,a,tWa. Then Vt,Wt are two C∞

vector fields along c.

If Vt,Wt can be extended to two C∞ vector fields on M, we have

∇ dc
dt
〈Vt,Wt〉

metric compatibility
= 〈∇ dc

dt
Vt,Wt〉 + 〈Vt,∇ dc

dt
Wt〉

dc
dt =0
= 0.

That is Pc,a,t preserves the norms of vectors and angles between vectors. ⇒ Pc,a,t is an
isometry.

In general, we have to use the following property of induced connection:

d
dt
〈Vt,Wt〉 = 〈

DVt

dt
,Wt〉 + 〈Vt,

DWt

dt
〉. (3.4.5)

Proof. In a coordinate neighborhood (U, x1, · · · , xn). c(t) := (x1(t), · · · , xn(t)), Vt :=
V i(t) ∂

∂xi |c(t), Wt = W i(t) ∂
∂xi |c(t).
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We calculate

d
dt
〈Vt,Wt〉

=
d
dt

(V i(t)W j(t)〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉)

=
d
dt

(V i(t)W j(t))〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉 + V i(t)W j(t)
d
dt
〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉

= (V̇ i(t)W j(t) + V i(t)Ẇ j(t))〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉 + V i(t)W j(t)dc(
d
dt

)〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉

= (V̇ i(t)W j(t) + V i(t)Ẇ j(t))〈
∂

∂xi |c(t),
∂

∂x j |c(t)〉

+ V i(t)W j(t)(〈∇dc( d
dt )

∂

∂xi ,
∂

∂x j 〉 + 〈
∂

∂xi |c(t),∇dc( d
dt )

∂

∂x j |c(t)〉)

= 〈V̇ i(t)
∂

∂xi |c(t) + V i(t)∇dc( d
dt )

∂

∂xi ,W
j(t)

∂

∂x j |c(t)〉

+ 〈V i(t)
∂

∂xi |c(t), Ẇ j(t)
∂

∂x j |c(t) + W j(t)∇dc( d
dt )

∂

∂x j 〉

= 〈
DVt

dt
,Wt〉 + 〈Vt,

DWt

dt
〉.

�

Remark 1: In fact (3.4.5) is a general property of the induced connection ∇̃ of ∇ com-
patible with g. Let ϕ : N → M be a C∞map, u ∈ TxN, V,W are two smooth vector
fielda along ϕ, then

〈∇̃uV.W〉 + 〈V, ∇̃uW〉 = u〈V,W〉.

�

Proposition 3.10. (geometric meaning of (b)) Let ∇ be a torsion-free connection of M.
Let s : R2 → M be a C∞ map.(a “parametrized surface” in M. Let V(x, y) ∈ Ts(x,y)M
be a vector field along s. For convinience, let us denote ds( ∂

∂x ) := ∂s
∂x , ds( ∂

∂y ) := ∂s
∂y .

Then for the induced connection ∇̃,

∇̃ ∂
∂x

V(x, y) = (
DV
∂x

)(x,y)

can be considered as the covariant derivative along c(t) := s(t, y) of the vector field
t 7→ V(t, y) along c, evalued at t = x. Similarly, we have ∇̃ ∂

∂y
V = DV

∂y . Then, we have

D
∂x

∂s
∂y

=
D
∂y
∂s
∂x

(3.4.6)
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Remark 3.11. In symbols of induced connection, (3.4.5) can be written as ∇̃ ∂
∂x

ds( ∂
∂y ) =

∇̃ ∂
∂y

ds( ∂
∂x ). In case ds( ∂

∂x ), ds( ∂
∂y ) are both vector fields on M, (e.g. when s is an em-

bedding), is equivalent to say

∇ds( ∂
∂x )ds(

∂

∂y
) = ∇ds( ∂

∂y )ds(
∂

∂x
).

This equivalent to the torsion free property since

[ds(
∂

∂x
), ds(

∂

∂y
)] = ds([

∂

∂x
,
∂

∂y
]) = 0.

Proof. Express both sides in a coordinate neighborhood as (U, x1, · · · , xn), s = (s1, · · · , sn)

∂s
∂y

= ds(
∂

∂y
)
∂si

∂y
∂

∂si ,
∂s
∂x

= ds(
∂

∂x
) =

∂si

∂x
∂

∂si .

⇒

D
∂x

∂s
∂y

=
∂2si

∂x∂y
∂

∂si +
∂si

∂y
∇ds( ∂

∂x )
∂

∂si

=
∂si

∂x∂y
∂

∂si +
∂si

∂y
∂s j

∂x
∇ ∂

∂s j

∂

∂si

Similarly,
D
∂y
∂s
∂x

=
∂2si

∂y∂x
+
∂si

∂y
∂s j

∂x
∇ ∂

∂si

∂

∂s j .

Then the proposition follows from the fact that

∂2si

∂y∂x
and ∇ ∂

∂s j

∂

∂si − ∇ ∂

∂si

∂

∂s j = [
∂

∂si ,
∂

∂s j ] = 0

�

Remark 2: (3.4.6) is also a general property of an induced connection ∇̃ of a torsion
free connection ∇. Let ϕ : N → M be a C∞ map, X,Y be two C∞ vector fields on N.
Then dϕ(X), dϕ(Y) are C∞ vector fields along ϕ, then ∇̃Xdϕ(Y)−∇̃Ydϕ(X) = dϕ([X,Y]).

By Remark 1 and the above Remark 2, when doing calculations, we can assume
the notation ∇̃ and proceed formally as if vector fields along ϕ were actually defined
on M. �
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Exercise 3.5. (Variation of the energy functional: A coordinate free calculation).
Let γ : [a, b]→ M be a C∞ curve, and α : (−ε, ε) × [a, b]→ M be a variation.
Recall

E(γ) :=
1
2

∫ b

a
〈γ̇(t), γ̇(t)〉dt

=
1
2

∫ b

a
〈dγ(

d
dt

), dγ(
d
dt

)〉dt.

Show that

dE(α(s))
ds

|s=0 = −

∫ b

a
〈dα(

∂

∂s
)(0, t),

Dγ̇(t)
dt
〉dt − 〈

∂α

∂s
(0, a),

Dγ̇
dt

(a)〉 + 〈
∂α

∂s
(0, b),

Dγ̇
dt

(b)〉

Hint: using Proposition 3.10.

Recall a calculation in coordinates has be carried out in our disscussions in Chapter 2, Geodesics.

Remark 3.12. Recall that any Riemannian manifold M can be embedded to the stan-
dard Euclidean space E isometrically. In the Euclidean space the Levi-Civita Connections ∇̃
is given by the directional derivatives. So for any X,Y ∈ Γ(T M), X,Y can also be ex-
tended to vecter fields X,Y on E(at least locally around M.) But usually ∇XY(p) ∈
TpE is not lie in TpM any more, The orthogonal projection π : TpE → TpM gives
π(∇XY(p)) ∈ TpM. One can check that π(∇XY(p)) gives a Levi-Civita connection on M
w.r.t. the induced metric from E.

3.5 The First variation of Arc Length and Energy

In chapter 1, we derive the geodesic equations as the Euler-Langrange equations of
the Length and Energy functionals .via local coordinates computations. Now, with the
convenient notion of (Levi-Civita) Connections, we can carry out an easier computa-
tion(intrinstic).

Recall for any smooth curve c : [a, b]→ M, we have

L(c) : =

∫ b

a

√
〈ċ(t), ċ(t)〉dt

=

∫ b

a

√
〈dc(

∂

∂t
).dc(

∂

∂t
)〉dt

E(c) =
1
2

∫ b

a
〈dc(

∂

∂t
), dc(

∂

∂t
)〉dt.

Definition 3.6. Let c : [a, b] → M be a smooth curve, ∀ε〉0. A variation of c is a map
F : [a, b] × (−ε, ε) → M with F(t, 0) = c(t),∀t ∈ [a, b]. The variation is called proper
if the endpoints stay fixed, i.e. F(a, s) = c(a).F(b, s) = c(b),∀s ∈ (−ε, ε).
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For simplicity, we will denote

∂F
∂s

= dF(
∂

∂s
),
∂F
∂t

= dF(
∂

∂t
).

We also denote cs(t) = F(t, s).

Definition 3.7. We call V(t) = ∂F
∂s (t, 0) = ∂F

∂s (c(t)) the variation field of f along c.(It is
a vector field along c)

Theorem 3.2. (The First Variation Formula) Let F(t, s) be a variation of a smooth
curve c. Let us write L(s) := L(cs), E(s) := E(cs) for simplicity. Then

d
ds
|s=0L(s) := L′(0) =

∫ b

a

1
|ċ(t)|

(
d
dt
〈V(t), ċ(t)〉 − 〈V(t),∇ ∂

∂t
ċ(t)〉)dt

(∇ ∂
∂t

ċ(t)〉 is oftenly written as ∇dotcċ.)

d
ds
|s=0E(s) := E′(0) = 〈V(b), ċ(b)〉 − 〈V(a), ċ(a)〉 −

∫ b

a
−〈V(t),∇ ∂

∂t
ċ(t)〉dt.

Proof.

d
ds

L(s) =

∫ b

a

d
ds
〈
∂F
∂t

(t, s),
∂F
∂t

(t, s)〉
1
2 dt

=

∫ b

a

1

2〈 ∂F
∂t (t, s), ∂F

∂t (t, s)〉
1
2

d
ds
〈
∂F
∂t

(t, s),
∂F
∂t

(t, s)〉dt

(3.4.5)
=

∫ b

a

1

〈 ∂F
∂t (t, s), ∂F

∂t (t, s)〉
1
2

〈∇̃ ∂
∂s

∂F
∂t

(t, s),
∂F
∂t

(t, s)〉dt

(3.4.6)
=

∫ b

a

1

〈 ∂F
∂t (t, s), ∂F

∂t (t, s)〉
1
2

〈∇̃ ∂
∂t

∂F
∂s

(t, s),
∂F
∂t

(t, s)〉dt

(3.4.5)
=

∫ b

a

1

〈 ∂F
∂t (t, s), ∂F

∂t (t, s)〉
1
2

(
d
dt
〈
∂F
∂t

(t, s),
∂F
∂t

(t, s)〉 − 〈
∂F
∂t

(t, s), ∇̃ ∂
∂t

∂F
∂t

(t, s)〉)

⇒
d
ds
|s=0L(s) =

∫ b

a

1
|ċ(t)|

(
d
dt
〈V(t), ċ(t)〉 − 〈V(t), ∇̃ ∂

∂t
ċ(t)〉)dt.

Similarly, we obtain the formula for E′(0). � �

Observe that when c is parametrized proportionally to arc length i.e. |ċ(t)| ≡ const,
the variations of L and E leads to the same critical point.(We observed this fact using
Holder inequality in Chapter 2.)

A smooth curve c : [a, b] → M is a critical point of the energy E for all proper
variations iff ∇̃ ∂

∂t
ċ(t)〉 = 0.(i.e. c is a geodesic.)

Note, by property of parallel transport ∇̃ ∂
∂t

ċ(t)〉 = 0 ⇒ |ċ(t)| ≡ const ⇒ c is
parametrized proportionally to arc length.
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More generally, we consider piecewise smooth curve c : [a, b] → M. That is, we
have a subdivision a = t0 < t1 < t2 < · · · < tk < tk+1 = b s.t. c is smooth on each
interval [ti, ti+1].

Correspondingly, we consider “piecewise smooth variations” of c, which are con-
tinuous functions F : [a, b]×(−ε, ε)→ M such that F is smooth on each [ti, ti+1]×ε×ε,
and ∂F

∂s is well defined even at t′i s.
Then, as a direct consequence of Theorem 3.5.1, we have

Corollary 3.1. Let c be a piecewise smooth curve and F be a correponding piecewise
smooth variation. Then

E′(0)

=
d
ds
|s=0E(cs) = 〈V(b), ċ(b)〉 − 〈V(a), ċ(a)〉 −

k∑
i=1

〈V(ti), γ̇(t+i ) − γ̇(t−i )〉 −
∫ b

a
〈V(t),∇ ∂

∂t
ċ(t)〉dt.

It turns out the first variation formulas are also very useful for non-proper varia-
tions. We discuss here Gauss’ lemma. Recall in a normal neighborhood Up of a point
p ∈ M, we can introduce a polar coordinate such that g = dr ⊗ dr + gϕϕ(r, ϕ)dϕ ⊗ dϕ.
Here the fact gr,ϕ ≡ 0 on the whole Up is also called Gauss’ lemma.

Lemma 3.2. (Gauss’ Lemma). In Up, the geodesics through p are perpendicular to
the hypersurfaces {expp(v) : ‖v‖ = const < δ}.(Piecely, let v ∈ TpM, ρ(t) = tv is a ray
through 0 ∈ TpM. Let ω ∈ Tρ(r)(TpM) is perpendicular to ρ′(r). Then

〈(dexpp)(ρ(r))(ω), (dexpp)(ρ(r))(ρ′(r))〉 (3.5.1)

)

Proof. Let v(s) : (−ε, ε) → TpM be a curve with v(0) = rv = ρ(r), v̇(0) = ω, and
‖v(s)‖ = r.

Then we have a variation F(t, s) = expp(tv(s)), t ∈ [0, r], s ∈ (−ε, ε). with F(t, 0) =

expp(tv) = c(t).
Notice that E(cs) = 1

2

∫ r
0 〈v(s), v(s)〉dt = 1

2 r3 ≡ const.
Theorem 2⇒

0 = E′(0) = 〈V(r), ċ(r)〉 − 〈V(0), ċ(0)〉 −
∫ r

0
〈V(t), ∇̃ ∂

∂t
ċ(t)〉dt.

Since ∇̃ ∂
∂t

ċ(t) = 0, and V(0) = ∂F
∂s |t=0,s=0 = 0, we conclude

〈V(r), ċ(r)〉 = 0. (3.5.2)

Recall

V(r) =
∂F
∂s
|t=r,s=0 =

∂

∂s
|s=0expp(rv(s)) = (dexpp)(ρ(r))(ω).

ċ(r) = (dexpp)(ρ(r))(ρ′(r)).

We see (3.4.2) implies (3.4.1). � �
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3.6 Covariant differentiation, Hessian, and Laplacian
Recall the covariant derivative of a (r,s)-tensor A satisfies ∇ f X+gY A = f∇XA + g∇Y A.
That is ∇XA is linear over C∞ functions for the arguement X. Therefore we can define
a (r,s+1)-tensor ∇A for each (r,s)-tensor A as

∇A(ω1, · · · , ωr, X1, · · · , Xs, X) := ∇XA(ω1, · · · , ωr, X1, · · · , Xs), ∀ωi ∈ Γ(T ∗M), X j, X ∈ Γ(T M).

We call A the covariant differention of A.
Portionally, consider a (0,0)-tensor, i.e. a function f . The covariant differention ∇ f

of f is given as

∀X ∈ Γ(T M) : ∇ f (X) := ∇X f = X( f ) = d f (X)

⇒ ∇ f = d f is a (0,1)-tensor.
We can then discuss iteratively

∇2 f := ∇(∇ f ),∇3 f = ∇(∇2 f ), · · ·

generally, ∇2A,∇3A, · · ·
Warning: ∇2A(· · · , X,Y) , ∇Y∇XA(· · · )!!
For X,Y ∈ Γ(T M), we have=

∇ f (X,Y) = ∇(∇ f )(X,Y) = ∇Y (∇ f )(X)
= Y(∇ f (X)) − (∇ f )(∇Y X)
= Y(X f ) − ∇Y X( f ).

Proposition 3.11. ??∇2 f (X,Y) = ∇2 f (X,Y) = T (X,Y)( f ).

Proof.

∇2 f (X,Y) − ∇2 f (Y, X)
=YX f − (∇Y X) f − XY f + (∇XY) f

=[Y, X] f − (∇Y X − ∇XY) f

=T (X,Y) f .

� �

That is, when the connection ∇ is torsion-free, we have

∇2 f (X,Y) = ∇2 f (Y, X), ∀X,Y ∈ Γ(T M)

i.e. ∇2 f is a symmetric (0,2)-tensor field.
We call ∇2 f the Hessian of f .

Example 3.2. On Rn, given the canonical connection, we have

∇2 f (X,Y) = (Y1, · · · ,Yn)(
∂2 f
∂xi∂x j )


x1

...
xn
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where X = Xi ∂
∂xi ,Y = Y j ∂

∂x j .

Since ∇2 f ( ∂
∂xi ,

∂
∂x j ) = ∂

∂xi ( ∂
∂x j f ) = ∂2

∂xi∂x j .

The trace of the Hessian is the Laplacian
For any X ∈ Γ(T M), we have a linear map ∇X : Γ(T M)→ Γ(T M),Y 7→ ∇Y X.
At a point p, ∇X = TpM → TpM is a linear transformation between two vector

space. Hence, it make sense to talk about the trace of ∇X at each p, which gives us a
function on M.

Lemma 3.3. ∀X ∈ Γ(T M), we have div(X) = tr(∇X).

Recall from Chapter 1, divX = 1
√

G
∂
∂Xi (Xi

√
G), G = det(gi j) in local coordinate.

Proof. We only need to prove it at one point p ∈ M. Pick a coordinate neighborhood
p ∈ U, (U, x), we have

∇X = (∇ ∂

∂xi
X)dxi

=
∂Xk

∂xi

∂

∂xk ⊗ dxi + X jΓk
i j
∂

∂xk ⊗ dxi

Therefore tr(∇X) = ∂Xi

∂xi + X jγi
i j.

proposition: Let ∇ be the Levi-Civita connection on (M, g). Then Γ
j
ji = 1

√
G

∂
∂xi

√
G.

(see Appendix)
∂Xi

∂xi + X jγi
i j = ∂Xi

∂xi + Xi 1
√

G
∂
∂xi

√
G = 1

√
G

∂
∂xi (Xi

√
G) = div(X). � �

Recall since g is non-degenerate and bilinear on TpM, we have isomorphisms be-
tween T M and T ∗M:

b : T M → T ∗M, X 7→ φ(X). b(X)(Y) := g(X,Y)

and
# : T ∗M → T M, ω 7→ #(ω). g(#(ω),Y) = ω(Y).

In local coordinate, b(Xi∂i) = gi jXidx j, #(widxi) = gi jωi
∂
∂x j .

Now we define the trace of S as the trace of the linear map: X 7→ #S (X, �). Note
g(#S (X, �),Y) = S (X,Y).

In local coordinate, S = S i jdxidx j

#S (X, �) = #(S i jXidx j) = S i jXig jk ∂

∂xk .

Hence tr(S ) := tr(X 7→ #S (X, �)) = gi jS i j = gi jS ( ∂
∂xi ,

∂
∂x j ).

Let us come back to Hess f .

Lemma 3.4. ∀X,Y ∈ Γ(T M), Hess f (X,Y) = g(∇X(grad f ),Y)
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Proof.

RHS = ∇X(g(( gard) f ,Y)) − g(gard f ,∇XY)
= ∇X(Y f ) − (∇XY) f

= X(Y f ) − (∇XY) f = Hess f (X,Y).

� �

Hence we have

tr(Hess f ) = tr(X 7→ ∇X(grad f ))
= tr(∇] grad f )
= div(grad f )
= ∆ f (Laplace − Beltrami operator)

Recall from Chapter 1. that

∆ f =
1
√

G

∂

∂xk (gik
√

G)
∂ f
∂xi .

3.7 Appendix: The technical lemma.

Proposition 3.12. Let∇ be the Levi-Civita connection on (M, g). Then Γi
ji = 1

√
G

∂
∂xi (
√

G), G :=
det(gi j).

Proof. Recall

Γ
j
ji =

1
2

g jk(g jk,i + gki, j − g ji,k)

=
1
2

g jk ∂

∂xi (gik)

=
1
2

tr[(grs)n×n �
∂

∂xi � (g jk)n×n]

Note moreover, (grs)n×n is the inverse matrix of (g jk)n×n.
We need the following result:

Lemma: Let A = A(t) be a family of nonsingular matrices that depends smoothly on t,
then

tr(A−1 d
dt

A−1) =
d
dt

ln det A.

Sketch of proof: Observe the Lemma is obvious, when A is 1×1. For a diagonal matrix
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A.

= tr[


A−1

1 (t)
. . .

A−1
n (t)



A′1(t)

. . .

A′n(t)

]

= tr


A−1

1 (t)A′1(t)
. . .

A−1
n (t)A′n(t)

 =

n∑
i=1

A−1
i (t)A′i(t)

=
d
dt

n∑
i=1

ln Ai(t) =
d
dt

ln
n∏

i=1

Ai(t) =
d
dt

ln det


A1(t)

. . .

An(t)


Recall both trace and det are invariants under similar transformation. For diago-

nalizable A, we have A = P−1DP−1. Then det A = det D and tr(A−1 d
dt A) = tr(D−1 d

dt D)
since

tr(P−1DP(P−1DP)′) = tr(P−1D−1P(P−1)′DP + P−1D−1PP−1D′P + P−1D−1PP−1DP′)

= tr(P(P−1)′ + P−1P′) + tr(D−1D′) = tr(D−1D′)

Hence Lemma is true for diagonalizable metrices.
By standard permutation trick, one can prove Lemma in its full generality. �
Let us continue:

Γi
ji =

1
2

tr[(grs)n×n �
∂

∂xi � (g jk)n×n]

=
1
2
∂

∂xi ln det(g jk)n×n =
1
2
∂

∂xi (ln G)

=
∂

∂xi (ln
√

G) =
1
√

G

∂

∂xi (
√

G)

�. �



Chapter 4

Curvatures

The Riemannian curvature tensor was introduced by Riemann in his 1854 lecture as a
natural invariant for what is called the equivalence problem in Riemannian geometry.
This problem, comes out of the problem one faces when writing the same metric in two
different coordinates. Namely, how is one to know that they are the same or equivalent.
The idea is to find invariants of the metric that can be computed in coordinates and
then try to show that two metrics are equivalent if their invariant expressions are equal.
This problem was furthur classified by Christoffel.

Our previous discussions on geodesics and connections follow roughly the histori-
cal development. However, we will have a discussion on the curvature tensor different
from it’s historical development.(Notice that the idea of a connection postdates Rie-
mann’s introduction of the curvature tensor).

On retrospection of our previous discussions, roughly speaking ,”the first varia-
tion (of length or energy) gives the connection”. In this chapter, we will see, roughly
speaking, ”the second variation gives the curvation”!

4.1 The Second Variation
We already know that a geodesic is not necessarily minimizing. Is a geodesic a ”local
minima”? One way to explore this properly is to calculate the second variation of
length or energy. (Recall from 3.5 and Exercise 6.2 ,among curves ∈ Cp,q(piecewise
smooth curves from p to q), a geodesic is characterized as the critical point of the
energy functional).

Let γ : [a, b] → M be a normal geodesic, i.e. γ̇(t) ≡ 1. We consider a 2-parameter
variation F of γ . That is , a smooth map

F : [a, b] × (−ε, ε) × (−δ, δ)→ M

such that F(t, 0, 0) = γ(t)
Let E(v,w) be the energy of the curve γv,w(t) := F(t, v,w). And

V(t) =
∂F
∂v

(t, 0, 0),W(t) =
∂F
∂w

(t, 0, 0)

73
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are the two corresponding variation fields.
Recall

∂E
∂w

(v,w) =
1
2

∫ b

a

∂

∂w
〈
∂F
∂t

(t, v,w),
∂F
∂t

(t, v,w)〉dt

=

∫ b

a
〈5̃ ∂

∂v

∂F
∂t
,
∂F
∂t
〉dt (compatibility)

=

∫ b

a
〈5̃ ∂

∂t

∂F
∂v
,
∂F
∂t
〉dt (torsion − f ree)

Then

∂2

∂w∂v
E(v,w) =

∫ b

a

∂

∂w
〈5̃ ∂

∂t

∂F
∂v
,
∂F
∂t
〉dt

=

∫ b

a

(
〈∇ ∂

∂w
∇ ∂

∂t

∂F
∂v
,
∂F
∂t
〉 + 〈∇ ∂

∂t

∂F
∂v
,∇ ∂

∂w

∂F
∂t
〉

)
dt (compatibility)

=

∫ b

a

(
〈∇ ∂

∂w
∇ ∂

∂t

∂F
∂v
,
∂F
∂t
〉 + 〈∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂w
〉

)
dt (torsion − f ree)

Restrcting the above equation to the curve γ ,i.e. to the case where v = w = 0:

∂2

∂w∂v

∣∣∣∣
v=w=0

E(v,w) =

∫ b

a

(
〈∇ ∂

∂w
∇ ∂

∂t
V(t), γ̇(t)〉 + 〈∇ ∂

∂t
V(t),∇ ∂

∂t
W(t)〉

)
dt

Now ,we hope to make use of the fact that γ is geodesic ,i.e.,∇ ∂
∂t
γ̇(t) = 0. For this

purpose,we hope to interchange the order of the covariant derivative ∇ ∂
∂w
,∇ ∂

∂t
. Hence

we proceed:

∂2

∂w∂v

∣∣∣∣
v=w=0

E(v,w) =

∫ b

a
〈∇ ∂

∂w
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂w
V(t), γ̇(t)〉dt

+

∫ b

a
(〈∇ ∂

∂t
∇ ∂

∂w
V(t), γ̇(t)〉 + 〈∇ ∂

∂t
V(t),∇ ∂

∂t
W(t)〉)dt

=: I + II

Then the second term becomes

II =

∫ b

a

(
∂

∂t
〈∇ ∂

∂w
V(t), γ̇(t)〉 − 〈∇ ∂

∂w
V(t),∇ ∂

∂t
γ̇(t)〉 + 〈∇ ∂

∂t
V,∇ ∂

∂t
W〉

)
dt

= 〈∇ ∂
∂w

V(t), γ̇(t)〉
∣∣∣∣b
a

+

∫ b

a
〈∇ ∂

∂t
V(t),∇ ∂

∂t
W(t)〉dt.

Therefore,we obtain the following Second Variation Formula:

∂2

∂w∂v

∣∣∣∣
v=w=0

E(v,w) = 〈∇ ∂
∂w

V(t), γ̇(t)〉
∣∣∣∣b
a
+

∫ b

a

(
〈∇ ∂

∂t
V(t),∇ ∂

∂t
W(t)〉 + 〈∇ ∂

∂w
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂w
V(t), γ̇(t)〉

)
dt

(SVF)
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Remark 4.1. Usually ,we will suppose the notation 5̃ and proceed formula , as if

vectors along γ were actually defined on M and write ∂2

∂w∂v |v=w=0E(v,w) = 〈∇wV, γ̇〉
∣∣∣∣b
a

+∫ b
a

(
〈∇ jV,∇ jW〉 + 〈∇w∇ jV − ∇ j∇wV, γ̇〉

)
dt

Remark 4.2. In particular ,(SVF) tells

d2

dv2

∣∣∣∣
v=0

E(v) =: E′′(0) = 〈∇ ∂
∂v

V(t), γ̇(t)〉
∣∣∣∣b
a
+

∫ b

a
〈∇ ∂

∂t
V(t),∇ ∂

∂t
V(t)〉+〈∇ ∂

∂v
∇ ∂

∂t
V(t)−∇ ∂

∂t
∇ ∂

∂v
V(t), γ̇(t)〉dt

For proper variations,(i.e. V(a) = V(b) = 0), or generally,when∇ ∂
∂v

V(t) = 0 at t = a
and t = b ,we have

E”(0) =

∫ b

a

(
〈∇ ∂

∂t
V(t),∇ ∂

∂t
V(t)〉 + 〈∇ ∂

∂v
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂v
V(t), γ̇(t)〉

)
dt

Now we see the sign of the second term is very importan to decide the sign of E”(0),
which is useful to decide whther a geodesic has a locally minimal energy functional
(for curves parametrized proportionally to arclength, equicalent to a locally minimal
arc length).

In particular ,if the second term vanishes,(or ≥ 0), we have E”(0) ≥ 0 and the local
minimum is guaranted.

In Rn (a flat case), any geodesic is minimizing. From that sense , te term

〈∇ ∂
∂v
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂v
V(t), γ̇(t)〉

play the role of ”curvature”.

Consider variations with the property 〈∇ ∂
∂w

V(t), γ̇(t)〉
∣∣∣∣b
a

= 0 (e.g., proper variations),
we have

∂2

∂w∂v

∣∣∣∣
v=w=0

E(v,w) =

∫ b

a

(
〈∇ ∂

∂t
V(t),∇ ∂

∂t
W〉 + 〈∇ ∂

∂w
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂w
V(t), γ̇(t)〉

)
dt

:= I(V(t),W(t))

We will see this quality plays a central role in our subsequent discussions about curvature-
related geometries.

The second term in I(V,W) suggests to define for X,Y,Z ∈ Γ(T M),

R̄(X,Y)Z := ∇X∇YZ − ∇Y∇XZ ∈ Γ(T M)

But

R̄(X, f Y)Z = ∇X( f∇YZ) − f∇Y∇XZ

= X( f )∇YZ + f [∇X∇YZ − ∇Y∇XZ]

i.e. R̄ is not a tensor!!
We define for X,Y,Z ∈ Γ(T M),R(X,Y)Z := ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z It gives a

multilinear map
R : Γ(T M) × Γ(T M) × Γ(T M)→ Γ(T M)
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Proposition 4.1. R is a (1,3) tensor.

Proof. Notice that this time

R(X, f Y)Z = ∇X( f (∇YZ)) − f∇Y∇XZ − ∇[X, f Y]Z

= X( f )∇YZ + f (∇X∇YZ − ∇Y∇XZ) − ∇X( f )Y+ f [X,Y]Z

= X( f )∇YZ + f (∇X∇YZ − ∇Y∇XZ) − X( f )∇YZ − f∇[X,Y]Z

= f R(X,Y)Z

One can furthur check that

R( f X,Y)Z = R(X, f Y)Z = R(X,Y)( f Z) = f R(X,Y)Z

Hence R is a tensor . We say it is a (1,3) tensor . We actually mean R(W, X,Y,Z) :=
W(R(X,Y)Z).

�

We will call R the curvature tensor.

Remark 4.3. (1) The curvature tensor is well-defined for any affine connection on M
(2) Notice that X,Y appear skew-symmetrically in R(X,Y)Z while Z plays its own

role on top of the line ,hence we use the usual notation R(X,Y)Z instead of R(X,Y,Z).
(3) Some textbooks adopt a different sign in the definition of R. One should always

first check the author’s notation for curvature tensor when reading works on Rieman-
nian geometry , unfortunately.

(4)(Locality): At p ∈ M,R(X,Y)Z(p) only depends on X(p),Y(p),Z(p) ∈ TpM.
This is due to the tensorial property

R(X,Y)Z = XiY jZkR(
∂

∂Xi ,
∂

∂X j )
∂

∂Xk

Now let’s come back to the SVF:

I(V,W) ==

∫ b

a
(〈∇ ∂

∂t
V(t),∇ ∂

∂t
W〉 + 〈∇ ∂

∂w
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂w
V(t), γ̇(t)〉)dt

Proposition 4.2. Let s : R2 → M be a paramatrized surface , and V a C∞ vector field
along s .Then

D
∂x

D
∂y

V −
D
∂y

D
∂x

V = R
(
∂s
∂x
,
∂s
∂y

)
V (*)

(or,in another notation ,∇ ∂
∂x
∇ ∂

∂y
V − ∇ ∂

∂y
∇ ∂

∂x
V = R( ∂s

∂x ,
∂s
∂y )V)

Sketch of proof: First by the locality remark above ,at each point s(x, y) ∈ M, the
RHS is well-defined since

∂s
∂x

= ds
(
∂

∂x

)
,
∂s
∂y
,V ∈ Ts(x,y)M.

Then (*) can be proved by computing in a coordinate neighborhood.
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Definition of both sides are clear: pick (u, x1, x2....xn), s(x, y) = (s1(x, y), ..., sn(x, y))

R
(
∂s
∂x
,
∂s
∂y

)
V =

∂si

∂x
∂s j

∂y
VkR

(
∂

∂xi ,
∂

∂x j

)
∂

∂xk

while in LHS

D
∂x

D
∂y

V =
D
∂x

(
∂V i(x, y)

∂y
∂

∂xk + V i∇ds( ∂
∂y )

∂

∂xk

)
=

D
∂x

(
∂V i

∂y
∂

∂xi + V i ∂s j

∂y
∇ ∂

∂x j

∂

∂xk

)
=
∂2V i

∂x∂y
∂

∂xi +
∂V i

∂y
∂s j

∂x
∇ ∂

∂x j

∂

∂xi +
∂

∂x

(
V i ∂s j

∂y

)
∇ ∂

∂x j

∂

∂xk + V i ∂s j

∂y
∂sl

∂x
∇ ∂

∂xl
∇ ∂

∂x j

∂

∂xk

So the meaning of each term is clear. The equality (*) then just follows from direct
computation

In particular , 6.4.2 tells

∇ ∂
∂w
∇ ∂

∂t
V(t) − ∇ ∂

∂t
∇ ∂

∂w
V(t) = R(w(t), γ̇(t))V(t)

and hence

I(V,W) =

∫ b

a
〈∇ ∂

∂t
V(t),∇ ∂

∂t
W(t)〉 + 〈R(W(t), γ̇(t))V(t), γ̇(t)〉dt

=

∫ b

a
〈∇γ̇(t)V(t),∇γ̇(t)W(t)〉 + 〈R(W, γ̇), γ̇〉(t)dt

If we furthur denote T = γ̇, then we have

I(V,W) =

∫ b

a
(〈∇T V,∇T W〉 + 〈R(W,T )V,T 〉) dt

In particular ,I(V,V) =
∫ b

a (〈∇T V,∇T V〉 + 〈R(V,T )V,T 〉)dt

4.2 Properties of Curvature tensor : Geometric mean-
ing and Symmetries

Curvature tensor measures the non-commutatively of the convariant derivatives.

4.2.1 Ricci Identity
Recall for f ∈ C∞(M), its Hessian ∇2 f is symmetric (for torsion free connection )

∇2 f (X,Y) = ∇2 f (Y, X)

For any tensor field Φ ∈ Γ(
⊗r,s T M), we can define

R(X,Y)Φ = ∇X∇YΦ − ∇Y∇XΦ − ∇[X,Y]Φ
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It is obvious that

R(X,Y) f = X(Y f ) − Y(X f ) − [X,Y] f = 0

So we can write (for torsion-free connection ∇)

∇2 f (X,Y) − ∇2 f (Y, X) = R(Y, X) f = −R(X,Y) f

We can furthur check the case Φ = Z ∈ Γ(T M)

∇2Z(X,Y) = ∇Y (∇Z)X = ∇Y (∇XZ) − ∇Z(∇Y X) = ∇Y∇XZ − ∇∇Y XZ

Hence

∇2Z(X,Y) − ∇2Z(Y, X) = ∇Y∇XZ − ∇X∇YZ − ∇∇Y XZ + ∇∇XYZ

= ∇Y∇XZ − ∇X∇YZ − ∇[Y,X]Z

= R(Y, X)Z = −R(X,Y)Z

It is direct to check the gneral case.

Proposition 4.3. (Ricci Identity) ∀X,Y ∈ Γ(T M),Φ ∈ Γ(
⊗r,s T M) we have

∇2Φ(..., X,Y) − ∇2Φ(...,Y, X) = R(Y, X)Φ(...) = −R(X,Y)Φ(...)

Remark 4.4. In Euclidean space Rn, pick the directional derivative as the covariant
derivative .One easily check that R(X,Y) vanishes. In Rn, we can interchange the order
of taking derivatives freely . However this is not true anymore when R is nontrivial.

4.2.2 Geometric meaning :A test case [Spivak 2.Chap6.Thm 10]

The Ricci identity from last subsection provides an explanation of the curvature tensor
from a viewpoint of analysis : it is a term measuring the non-commutativity of taking
cavariant derivatives.

We persue for a geometric meaning of the curvature tensor. Back to Riemann’s
”equicalence problem”: If we know a Riemannian metric g = gi jdxi ⊗ dx j gives R = 0,
is there a coordinate change x → y s.t. g =

∑
i dyi ⊗ dyi? (Or ,does R = 0 implies

locally isometric to (Rn, 〈, 〉)?)
The answer is yes!

Theorem 4.1. Let (M, g) be an n-dim Riemannian manifold for which the curvature
tensor R (for the Levi-Civita connection) is 0. Then M is locally isometric to Rn with
its canonical Riemannian metric .

Proof. Let p ∈ M, pick a coordinate neighborhood (U, y1...., yn) Let g = gi jdyi ⊗ dy j
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To prove this theorem, it is equivalent to show there exist open setV ⊂ U, and a
coordinate change x : V → Rn, s.t. g =

∑
i dxi ⊗ dxi

So without loss of generality, we can assume we are in Rn,with y1..., yn the standard
coordinate system ,with a metric g = gi jdyi ⊗ dy j and ∇ be the corresponding Levi-
Civita connection

Step 1:We claim that we can find vector fields X, with arbitrary initial values X(0) ∈
T0R

n , satisfying
∇ ∂

∂yi
X = 0, f or all i

and hence ∇Z X = 0 for all Z.
To do this ,we first choose the curve y 7→ (y, 0, ...0)
Then for each fixed y1,we choose the curve y 7→ (y1, y, 0..., 0) with X(y1, 0..., 0) as

the initial value, we obtain X(y1, y, 0..., 0) via parallel transport along y 7→ (y1, y, 0..., 0)
Now we have a vector field X defined on the surface

s(y1, y2) = (y1, y2, 0, ..., 0)

By construction ,we have ∇̃ ∂

∂y2
X = 0 along s

while ∇̃ ∂

∂y1
X = 0 along {s(y, 0)}

Question: Does ∇̃ ∂

∂y1
X vanish along s?

Now we use

∇ ∂

∂y1
∇ ∂

∂y2
X − ∇ ∂

∂y2
∇ ∂

∂y1
X = R

(
∂s
∂y1 ,

∂s
∂y2

)
X = 0⇐⇒ ∇̃ ∂

∂y2
(∇̃ ∂

∂y1
X) = 0 (*)

Since ∇̃ ∂

∂y1
X
∣∣∣∣
y2=0

= 0,i.e., ∇̃ ∂

∂y1
X is parallel along {s(y, 0)},

We have by (*) ∇̃ ∂

∂y1
X = 0 along s .

We can continue in this way to obtain the desired X . This proves the claim.
Now at 0,we can choose X(0)

1 , ..., X(0)
n as orthonormal w.r.t the metric g . And con-

struct X1, ..., Xn in the above way. By property of parallel transport, they are orthonor-
mal everywhere.

Step 2: Since ∇ is torsion free , we have

0 = ∇Xi X j − ∇X j Xi − [Xi, X j]

By construction ,∇Xi X j = ∇X j Xi = 0, therefore , we obtain [Xi, X j] = 0,∀i, j
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This means that thereis a coordinate system x1, ..., xn with Xi = ∂
∂xi .(Frobenius

theorem in ”differential manifold” course . [xi, x j] = 0 means intergrability.)
Step 3: Since ∂

∂x1 , ...,
∂
∂xn are orthonormal everywhere , we have

g =
∑

i

dxi ⊗ dxi

�

Remark 4.5. In some sense , the flatness R = 0 is a kind of integrability condition.
It is not true that R = 0 implies M is globally isometric to Rn.

Example 4.1. S 1 × R1 cylinder is the product of a unit circle S 1 and R1.
∀p = (x, y, z) ∈ S 1 × R1, we can write x = cos θ, y = sin θ, z = z 0 ≤ θ〈2π
Therefore in the coordinate neighborhood {(θ, z)|0 < θ < 2π, z ∈ R1}

We have the induced metric g = dθ ⊗ dθ + dz ⊗ dz
Hence cylinder has R = 0

Corollary 4.1. If we find n everywhere linearly independent vector fields X1, ..., Xn,which
are parallel (i.e. ∇Z Xi = 0,∀Z)

then the manifold is flat.

Parallel translation of a vector along a closed curve generally bring it back to a
different vector.

4.2.3 Bianchi Identities
Before continuing the duscussions of the geometric aspect of the curvature tensor , we
prepare symmetry properties of the curvature tensor in this section . We will work on
a smooth manifold with a symmetric (i.e. torsion-free) connection ∇.

Proposition 4.4. The curvature tensor satisfies the following identities : For any
X,Y,Z,W ∈ Γ(T M),

(1)R(X,Y)Z = −R(Y, X)Z
(2)R(X,Y)Z + R(Y,Z)X + R(Z, X)Y = 0 (The first Bianchi identity)
(3)(∇XR) (Y,Z)W + (∇YR) (Z, X)W + (∇ZR) (X,Y)W = 0 (The Second Bianchi iden-

tity)
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Remark 4.6. Let T be any mapping with 3 vector field variables and values that canbe
added. Summing over cyclic permutations (denote by symbol ”S”)of the cariables
gives us a new map.

S T (X,Y,Z) = T (X,Y,Z) + T (Y,Z, X) + T (Z, X,Y)

For example , the Jacobi identity for vector fields can be written as S [X, [Y,Z]] = 0
In this way, the First Bianchi identity is S R(X,Y)Z = 0 while the second Bianchi

identity is S (∇XR)(Y,Z)W = 0

Proof. (1) is obvious from the definition
(2):

S R(X,Y)Z = S
(
∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

)
= S (∇X∇YZ) − S (∇Y∇XZ) − S

(
∇[X,Y]Z

)
= S (∇Z∇XY) − S (∇Z∇Y X) − S

(
∇[X,Y]Z

)
= S (∇Z (∇XY − ∇Y X)) − S

(
∇[X,Y]Z

)
= S (∇Z[X,Y]) − S

(
∇[X,Y]Z

)
= S ([Z, [X,Y]])
= 0

(3)Denote

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

= [∇X ,∇Y ] Z − ∇[X,Y]Z

then

(∇ZR) (X,Y)W = ∇Z(R(X,Y)W) − R (∇Z X,Y) W − R(X,∇ZY)W − R(X,Y) (∇ZW)

= [∇Z ,R(X,Y)] W − R (∇Z X,Y) W − R(X,∇ZY)W

Keeping in mind that we only do cyclic sums over X,Y,Z and that we have the
Jacobi identity for oprators:

S [∇X , [∇Y ,∇Z]] = 0

We have

S (∇XR) (Y,Z) W = S [∇X ,R (Y,Z)] W − S R (∇XY,Z) W − S R (Y,∇XZ) W

= S [∇X , [∇Y ,∇Z]] W − S
[
∇X ,∇[Y,Z]

]
W − S R (∇XY,Z) W − S R (Y,∇XZ) W

= −S
[
∇X ,∇[Y,Z]

]
W − S R (∇XY,Z) W + S R (∇XZ,Y) W

= −S
[
∇X ,∇[Y,Z]

]
W − S R (∇XY,Z) W + S R (∇Y X,Z) W

= −S
[
∇X ,∇[Y,Z]

]
W − S R([X,Y],Z)W

= −S
[
∇X ,∇[Y,Z]

]
W − S [∇[X,Y],∇Z]W + S∇[[X,Y],Z]W

= S [∇[Y,Z],∇X]W − S [∇[X,Y],∇Z]W
= 0

�
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In local coordinates , we write

R
(
∂

∂xi ,
∂

∂x j

)
∂

∂xl = Rk
li j

∂

∂xk .

=∇ ∂

∂xi
∇ ∂

∂x j

∂

∂xl − ∇
∂

∂x j
∇ ∂

∂xi

∂

∂xl

=∇ ∂

∂xi

(
Γ
γ
jl
∂

∂xγ

)
− ∇ ∂

∂x j

(
Γ
γ
il
∂

∂xγ

)
=
∂Γ

γ
jl

∂xi

∂

∂xγ
+ Γ

γ
jlΓ

µ
iγ
∂

∂xµ

−
∂Γ

γ
il

∂x j

∂

∂xγ
− Γ

γ
ilΓ

µ
jγ
∂

∂xµ

=

∂Γk
jl

∂xi −
∂Γk

il

∂x j + Γ
γ
jlΓ

k
iγ − Γ

γ
ilΓ

k
jγ

 ∂

∂xk

That is ,

Rk
li j =

∂Γk
jl

∂xi −
∂Γk

il

∂x j + Γ
γ
jlΓ

k
iγ − Γ

γ
ilΓ

k
jγ

We see Rk
li j = −Rk

l ji, and Rk
li j + Rk

i jl + Rk
jli = 0

4.2.4 Riemannian curvature tensor
Now we consider a Riemannian manifold (M, g) with a Levi-Civita connection ∇ . We
can use g to convert the (1,3)-tensor R to be a (0,4)-tensor:

〈R(X,Y)Z,W〉g := R(W,Z, X,Y)

In local coordinates

Rkli j = R
(
∂

∂xk ,
∂

∂xl ,
∂

∂xi ,
∂

∂x j

)
=

〈
R

(
∂

∂xi ,
∂

∂x j

)
∂

∂xl ,
∂

∂xk

〉
= gkmRm

li j

= gkm

∂Γm
jl

∂xi −
∂Γm

il

∂x j + Γ
γ
jlΓ

m
iγ − Γ

γ
ilΓ

m
jγ


gkm

∂Γm
jl

∂xi =
∂

∂xi

(
gkmΓm

jl

)
− Γm

jl
∂gkm

∂xi

=
1
2
∂

∂xi

(
g jk,l + gkl, j − g jl,k

)
− Γm

jl

(
gmpΓ

p
ik + gkpΓ

p
im

)
=

1
2

(
∂2g jk

∂xi∂xl +
∂2gkl

∂xi∂x j −
∂2g jl

∂xi∂xk

)
− gmpΓm

jlΓ
p
ik − gkpΓm

jlΓ
p
im

gkm
∂Γm

il

∂x j =
1
2

(
∂2gik

∂x j∂xl +
∂2gkl

∂x j∂xi −
∂2gil

∂x j∂xk

)
− gmpΓm

il Γ
p
jk − gkpΓm

il Γ
p
jm
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⇒ Rkli j =
1
2

(
∂2g jk

∂xi∂xl −
∂2gik

∂x j∂xl −
∂2g jl

∂xi∂xk +
∂2gil

∂x j∂xk

)
+ gmp

(
Γm

il Γ
p
jk − Γm

jlΓ
p
ik

)
Proposition 4.5. We have the following identities

(1) 〈R(X,Y)Z,W〉 = − 〈R(Y, X)Z,W〉, i.e. Rkli j = −Rkl ji

(2)〈R(X,Y)Z,W〉 = − 〈R(X,Y)W,Z〉,i,e, Rlki j = −Rlki j

(3)〈R(X,Y)Z,W〉 + 〈R(Y,Z)X,W〉 + 〈R(Z, X)Y,W〉
(4)〈R(X,Y)Z,W〉 = 〈R(Z,W)X,Y〉, i,e, Rkli j = Ri jkl

(5)∇R(W,Z, X,Y,V) + ∇R(W,Z,Y,V, X) + ∇R(W,Z,V, X,Y) = 0

Proof. (1) is obvious.
(2)can be seen from its expression in local coordinates. One can also use the com-

patibility of ∇ with g ,to derive directly

〈R(X,Y)Z,W〉 = −〈Z,R(X〈Y)W〉

(3) follows directly from the First Bianchi Identity.
(5) follows from the second Bianchi Identity once we observe

∇VR(W,Z, X,Y) = 〈∇VR(X,Y)Z,W〉

(4) is a consequence of properties (1)–(3).
Although one can also see (4) directly from its expressions in local coordinats, it is

deserved to have a look at the proof in [Spivak 2 ,Chap 4D,Proposition 11]. A clever
diagram proof taken from Milnor’s Morse Theory book is presented there.

�

There are interesting consequence derived from these symmetries.
The Proposition 4.5 (1) (2) , that is ,〈R(X,Y)Z,W〉 is skew-symmetric in both (X,Y)

and (Z,W) , tells

Corollary 4.2. For two vector fields

(aX + bY, cX + dY) =

(
a b
c d

) (
X
Y

)
We have

〈R(aX + bY, cX + dY)(cX + dY), cX + dY〉

=

[
det

(
a b
c d

)]2

〈R(X,Y)Y, X〉

Proof. Exercise
�

Proposition 4.5 (1)(2)(3) tells the curvature tensor R is completely determined by
the values of 〈R(X,Y)Y, X〉
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Corollary 4.3. Suppose 〈R1(X,Y)Y, X〉 = R2(X,Y)Y, X〉,∀X,Y , Then 〈R1(X,Y)Z,W〉 =

R2(X,Y)Z,W〉,∀X,Y,Z,W

Proof. It is clearly suffice to prove that if

〈R(X,Y)Y, X〉 = 0,∀X,Y ⇒ 〈R(X,Y)Z,W〉 = 0

Now we have

0 = 〈R(X,Y + W)(Y + W), X〉 = 〈R(X,Y)Y, X〉 + 〈R(X,Y)W, X〉 + 〈R(X,W)Y, X〉 + 〈R(X,W)W, X〉
= 2〈R(X,Y)W, X〉,∀X,Y,W(Use(1)(2)(4))

Moreover

0 = 〈R(X + Z,Y)W, X + Z〉

= 〈R(X,Y)W, X〉 + 〈R(X,Y)W,Z〉 + 〈R(Z,Y)W, X〉 + 〈R(Z,Y)W, X〉

⇒

0 = 〈R(X,Y)W,Z〉 + 〈R(Z,Y)W, X〉
= −〈R(Y,W)X,Z〉 − 〈R(W, X)Y,Z〉 + 〈R(Z,Y)W, X〉(using First Bianchi Identity)

⇒ 2〈R(Z,Y)W, X〉 = 〈R(Y,W)X,Z〉 (1)

By a similiar argument starting from

0 = 〈R(X + W,Y)Y, X + W〉

We will obtain

2〈R(X,Z)Y,W〉 = 〈R(Y,Z)X,W〉 (2)

Using symmetries , we can rewrite (1) and (2) as

2〈R(Y,Z)X,W〉 = 〈R(X,Z)Y,W〉

and 2〈R(X,Z)Y,W〉 = 〈R(Y,Z)X,W〉
which implies 〈R(X,Z)Y,W〉 = 0,∀X,Y,Z,W

�

4.3 Sectional Curvature
Consider another (0,4)-tensor : for X,Y,Z,W ∈ ΓT M

G(X,Y,Z,W) = 〈X,Z〉g〈Y,W〉g − 〈X,W〉g − 〈Y,Z〉g

It is not hard to check G satisfies the following properties



4.3. SECTIONAL CURVATURE 85

(1)G(X,Y,Z,W) = −G(Y, X,Z,W)
(2)G(X,Y,W,Z) = −G(X,Y,Z,W)
(3)G(X,Y,Z,W) + G(Y,Z, X,W) + G(Z, X,Y,W) = 0
(4)G(X,Y,Z,W) = G(Z,W, X,Y)
Recall from last section that (4) is actually a consequence of properties (1)–(3)
Hence G behaves very similar to the Riemannian curvature tensor 〈R(X,Y)Z,W〉.
In particular ,for the linearly independent vector Xp,Yp ∈ TpM,

G(Xp,Yp, Xp,Yp) = 〈Xp, Xp〉〈Yp,Yp〉 − 〈Xp,Yp〉
2

= 〈Xp, Xp〉〈Yp,Yp〉 − 〈Xp, Xp〉〈Yp,Yp〉 cos2 θ

= 〈Xp, Xp〉〈Yp,Yp〉 sin2 θ

equals the area of the parallelogram spanned by Xp,Yp ,
By the proof of Corollary 4.2, we have

G
(
aXp + bYp, cXp + dYp, aXp + bYp, cXp + dYp

)
=

[
det

(
a b
c d

)]2

G
(
Xp,Yp, Xp,Yp

)
Therefore, we have

Proposition 4.6. The quantity

K
(
Xp,Yp

)
: =

〈
R

(
Xp,Yp

)
Yp, Xp

〉
G

(
Xp,Yp, Xp,Yp

) =
R

(
Xp,Yp, Xp,Yp

)
G

(
Xp,Yp, Xp,Yp

)
=

R
(
Xp,Yp, Xp,Yp

)
〈
Xp, Xp

〉 〈
Yp,Yp

〉
−

〈
Xp,Yp

〉2

depends only on the two dimensional subspace

πp = span(Xp,Yp) ⊂ TpM

That is , it is independent of the choice of basis {Xp,Yp} of πp

Definition 4.1. (sectional curvature) We will call K(πp) = K(Xp,Yp)
the sectional curvature of (M, g) at p with respect to the plane πp = span(Xp,Yp)
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Remark 4.7. Note that Proposition
(1) The sectional curvature K is Not a function on M except when dimM=2.
(2) K(Ag) = 1

A K(g)

Proposition 4.7. Let (M, g) be a 2-dim Riemannian manifold , and let Xp,Yp ∈ TpM
be linearly independent . Then

K(p) = K
(
Xp,Yp

)
=

〈
R

(
Xp,Yp

)
Yp, Xp

〉
〈
Xp, Xp

〉 〈
Yp,Yp

〉
−

〈
Xp,Yp

〉2

is the same as the Gaussian curvature at p.

Sketch of proof :Let (u, x1, x2) be a coordinate neighborhood of p ∈ M
By Proposition 4.6 ,it suffices to verify the proposition when

Xp =
∂

∂x1

∣∣∣∣
p
,Yp =

∂

∂x2

∣∣∣∣
p

In this case 〈
R

(
∂

∂x1

∣∣∣∣
p
,
∂

∂x2

∣∣∣∣
p

)
∂

∂x2

∣∣∣∣
p
,
∂

∂x1

∣∣∣∣
p

〉
= R1212(p)

while G(Xp,Yp, Xp,Yp) = g11g12 − g2
12

Hence K(p) =
R1212(p)

g11g12−g2
12

Recall that the Gaussian curvature can be expressed via the first fundamental form

Edx1 ⊗ dx1 + Fdx1 ⊗ dx2 + Fdx2 ⊗ dx1 + Gdx2 ⊗ dx2

where in our case E = g11, F = g12 = g21,G = g22

Remark 4.8. Note that Proposition 4.6 and Proposition 4.7 together implies that Gaus-
sian curvature is indeed independent of the choice of coordinates.

Or equivalently, if g1, g2 are locally isometric , then they lead to the same Gauss
curvature . This is the celebrated ” Theorem Egregium”

Remark 4.9. We see in Exercise 5(2)(This exercise is in that isometries preserve Levi-
Civita connctions. That is , given (M1, g1,∇

(1)), (M2, g2,∇
(2)) ,and ϕ : M1 −→ M2 be

an isometry. Then for any X,Y ∈ Γ(T M) we habe

dϕ(∇(1)
x Y) = ∇

(2)
dϕ(x)dϕ(Y)

As direct consequences, we see if

R(i)(X,Y)Z := ∇(i)
X ∇

(i)
Y Z − ∇(i)

Y ∇
(i)
X Z − ∇(i)

[X,Y]Z

then

dϕ(R(1)(X,Y)Z) = R(2)(dϕ(X), dϕ(Y))dϕ(Z) and g1(R(1)(X,Y)Z,W) = g2(R(2)(dϕ(X), dϕ(Y))dϕ(Z), dϕ(W))◦ϕ

In particular , if ϕ : M1 −→ M2 is an isometry s.t. dϕ(πp) = π′ϕ(p) ⊂ Tϕ(p)M2
We have the sectional curvature of πp and that of π′ϕ(p) are the same .
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Proposition 4.8. Let (m, g) be a Riemannian manifold , and let πp be a 2-dim subspave
of TpM , spanned by Xp,Yp ∈ TpM . Let O ⊂ πp be a neighborhood of 0 ∈ TpM on
which expp is a diffeomorphism , let i : expp(O) ↪→ M be the inclusion , and let R̄ be
the curvature tensor for expp(O) with the induced Riemannian metric i∗g. Then〈

R̄(Xp,Yp)Yp, Xp

〉
=

〈
R(Xp,Yp)Yp, Xp

〉
Consequently ,K(πp) =

〈R(Xp,Yp)Yp,Xp〉
G(Xp,Yp,Xp,Yp) is the Gaussian curvature at p of the surface

expp(O)

Proposition 4.9. The Riemannian curvature tensor at p is determined by all the sec-
tional curvature at p.

Proof. By Corollary 4.3
�

Definition 4.2. A Riemannian manifold (M, g) is said to have constant (sectional) curvature
if its sectional curature K(πp) is a constant,i.e. is independent of p and is independent
of πp ∈ TpM.

Proposition 4.10. A Riemannian manifold (M, g) has constant curvature k if and only
if

〈R(X,Y)W,Z〉 = kG(X,Y,Z,W),∀X,Y,Z,W ∈ Γ(T M)

i.e.
R(Z,W, X,Y) = R(X,Y,Z,W) = kG(X,Y,Z,W), orR = kG

Proof. Recall both 〈R(X,Y)W,Z〉 and G(X,Y,Z,W) satisfy the symmetries (1)–(3) .Hence

S (X,Y,Z,W) := 〈R(X,Y)W,Z〉 − kG(X,Y,Z,W)

satisfies
(1) S (X,Y,Z,W) = −S (Y, X,Z,W)
(2) S (X,Y,Z,W) = −S (X,Y,W,Z)
(3) S (X,Y,Z,W) + S (Y,Z, X,W) + S (Z, X,Y,W) = 0
(4) S (X,Y,Z,W) = S (Z,W, X,Y)
Notice our assumption implies S (X,Y, X,Y) = 0
By the proof of Corollary 4.3 , we have S (X,Y,Z,W) = 0

�

Up to now ,we haven’t made use of the second Bianchi identity . Proposition 4.5
(5)

∇R(W,Z, X,Y,V) + ∇R(W,Z,Y,V, X) + ∇R(W,Z,V, X,Y) = 0

In fact , it leads to the following Schur’s theorem.
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Theorem 4.2. (Schur) Let (M, g) be a connected Riemannian manifold of dimension
n ≥ 3. If

K(πp) = f (p) (*)

depends only on p ,then (M, g) is of constant curvature.

Remark 4.10. (1) Thm 4.2 is obviously not true for (M, g) with dim =2. We know in
that case (*) always holds, but M need not be of constant curvature.

(2) Thm4.2 says that the isometry of a Riemannian manifold ,i.e., the property that
at each point all directions are geometrically indistinguishable, implies the homogene-
ity , i.e., that all points are geometrically indistinguishable. In particular, a pointwise
propert implies a global one .

Before proving Thm 4.2 , we prepare the following lemma.

Lemma 4.1. The tensor G is parallel ,i.e. ∇G = 0 .

Proof. For any X,Y,Z,W,V ∈ Γ(T M), we have

(∇VG) (X,Y,Z,W)= V(〈X,Z〉〈Y,W〉 − 〈X,W〉〈Y,Z〉)
− 〈∇V X,Z〉 〈Y,W〉 − 〈X,∇VZ〉 〈Y,W〉

−〈X,Z〉 〈∇VY,W〉 − 〈X,Z〉 〈Y,∇VW〉

− 〈∇V X,W〉 〈Y,Z〉 − 〈X,∇VW〉 〈 Y,Z〉

− 〈X,W〉 〈∇VY,Z〉 − 〈X,W〉 〈Y,∇VZ〉

By
V(〈X,Z〉 〈Y,W〉) = V(〈X,Z〉) 〈Y,W〉 + 〈X,Z〉 · V 〈Y,W〉

and compatibility of ∇ with g ,we conclude

(∇VG)(X,Y,Z,W) = 0

�

Proof. Proof of Thm 2:(An application of the second Bianchi Identity).
By assumption and Proposition 4.10 ,we have

R = fG, when f : M −→ R

Lemma 4.1 above tells ∇G = 0 Hence for all V ∈ Γ(T M),
we have ∇VR = ∇V ( fG) = V( f )G
By the second Bianchi Identity ,we have

0 = ∇VR(W,Z, X,Y) + ∇XR(W,Z,Y,V) + ∇YR(W,Z,V, X) (*)
= V( f )G(W,Z, X,Y) + X( f )G(W,Z,Y,V) + Y( f )G(W,Z,V, X)

for any X,Y,Z,W,V ∈ Γ(T M)
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Since it is a tensor identity , the RHS only depends on Xp,Yp,Zp,Wp,Vp ∈ TpM.
Since dim(M) ≥ 3, we can pick Xp,Yp,Vp ∈ TpM such that .

〈
Xp,Yp

〉
=

〈
Xp,Vp

〉
=

〈
Yp,Vp

〉
= 0

and Xp , 0,Yp , 0, |Vp| = 1
then (*) implies

O = Vp( f )
(
〈Wp, Xp〉〈Zp,Yp〉 − 〈Wp,Yp〉〈Zp, Xp〉

)
+ Xp( f )

(
〈Wp,Yp〉〈Zp,Vp〉 − 〈Wp,Vp〉〈Zp,Yp〉

)
+ Yp( f )

(
〈Wp,Vp〉〈Zp, Xp〉 − 〈Wp, Xp〉〈Zp,Vp〉

)
Recall , we still have freedom for the choice of Wp,Zp .
Let us set Zp = Vp ,then

0 = Xp( f )
〈
Wp,Yp

〉
− Yp( f )

〈
Wp, Xp

〉
for ∀Wp ∈ TpM

Hence 0 = Xp( f )Yp − Yp( f )Xp

However ,
〈
Xp,Yp

〉
= 0. That is

Xp( f ) = Yp( f ) = 0,∀Xp , 0,Yp , 0

So f must be a constant function on M.
�

4.4 Ricii Curvature and Scalar curvature

The Ricci curvature tensor is defined to be

Ric(Y,Z) := tr(X 7→ R(X,Y)Z)

Notice that at p

R(·,Y)Z : TpM −→ TpM

is a linear map between vector spaces.
In local coordinate (u, x1, x2, ..., xn),we have

Ricpq := Ric
(
∂

∂xp ,
∂

∂xq

)
= tr

(
X 7→ R

(
X,

∂

∂xp

)
∂

∂xq

)
=

∑
j

R j
q jp
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Moreover,we have∑
j

R j
q jp =

∑
i, j

gi jgilRl
q jp

=
∑

j

gi jRiq jp

=
∑
i, j

gi j
〈
R

(
∂

∂x j ,
∂

∂xp

)
∂

∂xq ,
∂

∂xi

〉

= tr
〈
R(·,

∂

∂xp )
∂

∂xq , ·

〉
= trR

(
·,

∂

∂xq , ·,
∂

∂xp

)
Therefore

Ric(Y,Z) = trR(,̇Y, ·,Z)

(as a (0,2)-tensor)
Recall the trace of a (0,2)-tensor from the section on Hessian .
In particular ,we observe that

Ric(Y,Z) = Ric(Z,Y)

That is ,Ric is a symmetric (0,2)-tensor fiels on M.

Definition 4.3. (Ricci curvature ) The Ricci curvature at p in the direction Xp ∈ TpM
is defined as

Ric(Xp) := Ric(Xp, Xp)

Remark 4.11. Ricci curvature is again NOT a function on M . We can think of the
Ricci curvature as a function defined on one-dimensional subspace of TpM.

We can ask similar questions about Ricci curvature as in the case of sectional
curvature : What information do we lose when restricting the Ricci curvature tensor to
Ric(X, X ? The answer is again that we do not lose anything .

Lemma 4.2. Let T be a symmetric 2-tensor ,then for any X,Y ,we have

T (X,Y) =
1
2

(T (X + Y, X + Y) − T (X, X) − T (Y,Y))

Hence

Ric(Xp,Yp) =
1
2

(Ric(Xp + Yp) − Ric(Xp) − Ric(Yp))

We actually should have normalized the length of the vector along which the Ricci
curvature is calculated. After that , Ricci curvature is defined on ”tangent directions”

Ric
(

X
‖X‖

)
:=

Ric(X)
g(X, X)

=
Ric(X, X)
g(X, X)
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Definition 4.4. The Ric manifold is called an Einstein manifold with Einstein constant
k , if

Ric(X) = kg(X, X),∀X ∈ Γ(T M)

i,e., M has ”constant Ricci curvature”.

Remark 4.12. Let Xp ∈ TpM be an unit tangent vector . Extend it to be an othornormal
basis {Xp, e2, ..., en} of TpM . Then

Ric(Xp) = trR(·, Xp, ·, Xp)

=

n∑
i=2

R(ei, Xp, ei, Xp)

=

n∑
i=2

K(ei, Xp)

In particular , if (M, g) has constant curvaturek,then (M, g) is Einstein with Einstein
constant (n − 1)k

Proposition 4.11. A Riemannian manifold is an Einstein constant k if and only if

Ric = kg

Proof. Define T (X,Y) = Ric(X,Y) − kg(X,Y) . Hence T is symmetric. By assumption
T (X, X) = 0 Lemma 4.2 tells T (X,Y) = 0 i.e. Ric = kg �

We also have the following version of Schur’s theorem.

Theorem 4.3. (Schur) Let (M, g) be a connected Riemannian manifold of dimesion ≥ 3.
If Ric(Xp) = f (p)g(Xp, Xp),∀Xp ∈ TpM, where f (p) depends only on p ,then (M, g) is
Einstein.

Proof. Apply the second Bianchi identity in the same manner as in Theorem 4.2
Step 1: By Proposition 4.11 , the assumption implies

Ric = f g

Note for Levi-Civita connection, we have automatically

∇g = 0

Hence ∀V ∈ Γ(T M), we have
∇VRic = V( f )g

Step 2: Apply 2nd Bianchi Identity . At p ∈ M ,pick as normal coordinate (u, x1, ..., xn),
we have for Xp,Yp,Vp ∈ TpM
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∇V Ric
(
Xp,Yp

)
= V

(
Ric

(
Xp,Yp

))
− Ric

(
∇Vp Xp,Yp

)
− Ric

(
Xp,∇XYp

)
= Vp

 n∑
i=1

R
(
∂

∂xi , Xp,
∂

∂xi ,Yp

)
−

n∑
i=1

R
(
∂

∂xi ,∇Vp Xp,
∂

∂xi ,Yp

)

−

n∑
i=1

R
(
∂

∂xi , Xp,
∂

∂xi ,∇Vp Yp

)

=

n∑
i=1

((
∇Vp R

) ( ∂

∂xi , Xp,
∂

∂xi ,Yp

))
(We used ∇Vp

∂
∂xi = 0 since in normal coordinate)

Second Bianchi identity implies

0 =

n∑
i=1

[
∇Vp R(

∂

∂xi , Xp,
∂

∂xi ,Yp) + ∇ ∂

∂xi
R(

∂

∂xi , Xp,Yp,Vp) + ∇Yp (
∂

∂xi , Xp,Vp,
∂

∂xi )
]

= ∇Vp Ric(XP,Yp) − ∇Yp Ric(Xp,Vp) +

n∑
i=1

∇ ∂

∂xi
R(

∂

∂xi , Xp,Yp,Vp)

= Vp( f )g(Xp,Yp) − Yp( f )g(Xp,Vp) +

n∑
i=1

∇ ∂

∂xi
R(

∂

∂xi , Xp,Yp,Vp)

Step 3: Pick special Xp,Yp,Vp

Let Xp = Yp = ∂
∂x j , Vp = ∂

∂xh

We have

0 =
∂ f
∂xh −

∂ f
∂xi δ jh +

n∑
i=1

∇ ∂

∂xi
R(

∂

∂xi ,
∂

∂x j ,
∂

∂x j ,
∂

∂xh )

Summing j from 1 to n,

0 = n ·
∂ f
∂xh −

∂ f
∂xh −

n∑
i=1

n∑
j=1

∇ ∂

∂xi
R(

∂

∂x j ,
∂

∂xi ,
∂

∂x j ,
∂

∂xh )

= (n − 1)
∂ f
∂xh −

n∑
i=1

(∇ ∂

∂xi
Ric)(

∂

∂xi ,
∂

∂xh )

= (n − 1)
∂ f
∂xh −

n∑
i=1

∂ f
∂xi g(

∂

∂xi ,
∂

∂xh )

= (n − 2)
∂ f
∂xh
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Hence, when n ≥ 3, we have ∂ f
∂xh = 0,∀h = 1, 2..., n

This implies that f ≡ constant .
�

Remark 4.13. (1): In fact ,Theorem 4.3 implies 4.2 . Notice that K(πp) = f (p) depends
only on p implies

Ric(Xp)
g(Xp, Xp)

= f (p), depends only on p =⇒
Ric(Xp)

g(Xp, Xp)
≡ constant(By Theorem 4.3)

(a)

Ric(Xp)
g(Xp, Xp)

= f (p), depends only on p implies
Ric(Xp)

g(Xp, Xp)
= (n − 1) f (p) (b)

(a)+(b) =⇒ K(πp) = f (p) ≡ constant
(2) In [BSSG] ,(M, g) is called Einstein if

Ric(Xp) = f (p)g(Xp, Xp)

when f (p) depends only on p . By Theorem 4.3 ,there is no difference from our
definition in case dim ≥ 3

[BSSG] ’s notation has the preperty that ”any 2-dim Riemannian manifold in Ein-
stein”.

Definition 4.5. (Scalar curvature) The scalar curvature S is defined as the trace of the
Ricci curvature tensor (which is a symmetric (0,2)-tensor ),i.e.

S = gi jRici j = trRic(·, ·)

Remark 4.14. (1) S is indeed a function on M.
(2) Let {e1, ..., en} be an orthonormal basis of TpM , we have

S (p) = tr(Ric)(p) =

n∑
i=1

Ric(ei, ei) =

n∑
i=1

Ric(ei)

=

n∑
i=1

trR(·, ei, ·, ei)

=

n∑
i=1

n∑
j=1

R(e j, ei, e j, ei)

=

n∑
i=1

n∑
j=1

K(e j, ei)

= 2
∑
i< j

K(ei, e j)

(3) If (M, g) is of constant curvature k, we have

Ric = (n − 1)kg, and S = n(n − 1)k
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If (M, g) is Einstein with Einstein constant k , we have

S = nk

Proposition 4.12. An n(≥ 3) -dimensional Riemannian manifold (M, g) is Einstein iff

Ric =
S
n

g

Proof. =⇒ By definition .
⇐=Ric = S

n g where S
n (p) depends only on p. Schur’s Theorem (n ≥ 3) =⇒ S

n ≡

constant
�

In particular , Ricci curvature provides less information than sectional curvature,
and scalar curvature provides even less information than Ricci curvature . But in di-
mension 2 or 3 , something special happens.

n = 2 , K(πp) =
Ric(Xp)

g(Xp,Xp) = 2S (p)
There is no difference from an information point of view in knowing K,Ric, orS .
Let {e1, e2, e3} be an orthonormal basis for TpM , then

K (e1, e2) + K (e1, e3) = Ric (e1)
K (e1, e2) + K (e2, e3) = Ric (e2)
K (e1, e3) + K (e2, e3) = Ric (e3)

In other words,  1 0 1
1 1 0
0 1 1


 K (e1, e2)

K (e2, e3)
K (e1, e3)

 =

 Ric (e1)
Ric (e2)
Ric (e3)

 (**)

Notice that

det

 1 0 1
1 1 0
0 1 1

 = 2 , 0

Therefore any sectional curvature can be computed from Ric .

Proposition 4.13. (M3, g) is Einstein iff (M3, g) has constant sectional curvature .

Proof. ⇐= By definition
=⇒ Solving (**) for the case Ric(e1) = Ric(e2) = Ric(e3) we obtain K(e1, e2) =

K(e2, e3) = K(e1, e3)
�

But for scalar curvature , when n = 3 , there are metrics with constant scalar curva-
ture that are not Einstein.

We will see whether the (sectional, Ricci , scalar ) curvatures of Riemannian man-
ifolds are constant , or more generally although not constant but still bounded by some
inequalities have much implications to the analysis, geometry and topology of (M, g).
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In particular , we explain the terminology ”Ric ≥ k”, (Ricci curvature is lower
bounded), this means more precisely that

Ric(X) = Ric(X, X) ≥ kg(X, X),∀X

We have discussed several times that a symmetric (0,2)-tensor has a ”correspond-
ing” linear transformation ,since

Ric
(
Xp, Xp

)
=

∑
i

R
(
ei, Xp, ei, Xp

)
=

∑
i

〈
R(ei, Xp)Xp, ei

〉
=

∑
i

〈
R(Xp, ei)ei, Xp

〉
=

〈
#Ric

(
Xp, ·

)
, Xp

〉

=⇒ #Ric(Xp, ·) =
∑

i

R(Xp, ei)ei

Xp 7→
∑

i

R(Xp, ei)ei

is a linear transformation between TpM and TpM. The condition ”Ric ≥ k” is equiva-
lent to say all eigenvalues of Xp 7→

∑
i R(Xp, ei)ei are ≥ k .

Let us mentions the following theorem of Lohkamp.
Theorem (Lohkamp , Annuls of Math . 140(1994),655-683) For each manifold Mn, n ≥

3, there is a complete metric gM with

−a(n)gM < Ric(gM) < −b(n)gM

with constants a(n) > b(n) > 0 depending only on the dimension n.

Theorem 4.4. (Lohkamp)For each manifold Mn, n ≥ 3, there is a complete metric
gM with negative Ricci curvature and finite volume. That is , there are NO topological
obstructions for negative Ricci curvature metrics.

4.5 The Second Variation : Revisited [JJ,4.1] [WSY,chap
6]

Recall from section 1 that the curvature tensor is closely related to the second variation
of the energy functional (and the length functional ) of a normal geodesic . In this
section , we will discuss some geometric and topological implications when assuming
curvature restrictions via applying SVF .
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Let γ be a normal geodesic , i.e. ,|γ̇| = 1 . Consider a variation

F :[a, b] × (−ε, ε) −→ M

(t, v) 7→ F(t, v)

(i.e. F is smooth and F(t, 0) = γ(t))
The variational field V(t) = ∂F

∂v (t, 0) is a vector field along γ.

Definition 4.6. (geodesic variation ) . The variation F is called a geodesic variation
if each curve γv(t) := F(t, v) is a geodesic

Next , we recall briefly the second variation formula from section 1. For the one-
parameter family of curvs {γv}v∈(−ε,ε), we have E(v) := E(γv) be a function on (−ε, ε)
.Since γ0 = γ is a geodesic , we have E′(0) = 0.

∂2

∂v2 E(v) =

∫ b

a

(〈
∇ ∂

∂v
∇ ∂

∂t

∂F
∂v
,
∂F
∂t

〉
+

〈
∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂v

〉)
dt

=

∫ b

a

〈
R

(
∂F
∂v
,
∂F
∂t

)
∂F
∂v
,
∂F
∂t

〉
+

〈
∇ ∂

∂t
∇ ∂

∂v

∂F
∂v
,
∂F
∂t

〉
+

〈
∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂v

〉
dt

= −

∫ b

a

〈
R

(
∂F
∂v
,
∂F
∂t

)
∂F
∂t
,
∂F
∂v

〉
dt +

∫ b

a

∂

∂t

〈
∇ ∂

∂v

∂F
∂v
,
∂F
∂t

〉
−

〈
∇ ∂

∂v

∂F
∂v
,∇ ∂

∂t

∂F
∂t

〉
dt

+

∫ b

a

〈
∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂v

〉
dt

Proposition 4.14. Let F be a geodesic variation of a curve γ : [a, b] −→ M
Then

∂2

∂v2 E(v) =

∫ b

a

(〈
∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂v

〉
−

〈
R

(
∂F
∂v
,
∂F
∂t

)
∂F
∂t
,
∂F
∂v

〉)
dt

Proof. Use the fact ∇ ∂
∂v

∂F
∂v = 0 since F is a geodesic variation

�

In particular , for a geodesic variation of a normal geodesic γ : [a, b] −→ M ,we
have

∂2

∂v2

∣∣∣∣
v=0

E(v) := E”(0) =

∫ b

a
(〈∇T V,∇T V〉 − 〈R(V,T )T,V〉) dt

Observe that when M has nonpositive sectional curvature , we have

−

〈
R

(
∂F
∂v
,
∂F
∂t

)
∂F
∂t
,
∂F
∂v

〉
= −K

(
∂F
∂v
,
∂F
∂t

)
G

(
∂F
∂v
,
∂F
∂t
,
∂F
∂v
,
∂F
∂t

)
≥ 0

Hence ∂2

∂v2 E(v) ≥ 0,for v ∈ (−ε, ε). This tells immediately:

Corollary 4.4. On a Riemannian manifold with nonpositive sectional curvature , geodesics
with fixed endpoints are always locally minimizing
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Remark 4.15. Here a geodesic γ is locally minimizing means that for rhis γ : [a, b] −→
M there exists some δ > 0,such that for any smooth curve c : [a, b] −→ M with
c(a) = γ(a), c(b) = γ(b) , d(γ(t), c(t)) ≤ δ,∀t ∈ [a, b] we have E(c) ≥ E(γ)

Proof. For each t ∈ [a, b] ,Let δt be the parameter of the totally normal neighborhood
Wt of γ(t) (That is ,∀q ∈ Wt,expq) Since γ([a, b]) is compact , we can find a finite
subcover of the cover {expγ(t)B(0, δt)}t∈[a,b] . Hence we can find a positive number
δ > 0 for γ : [a, b] −→ M such that δt ≥ δ,∀t ∈ [a, b]

Let c : [a, b] −→ M be another curve s.t. d(γ(t), c(t)) ≤ δ,∀t ∈ [a, b]
Construct the variation as
F(t, s) = expγ(t)s · exp−1

γ(t)(c(t)), t ∈ [a, b].s ∈ [−1, 1]
Notice that F(t, 0) = γ(t), F(t, 1) = c(t)
F is a geodesic variation (and proper )
F is proper and γ is a geodesic =⇒ E′(0) = 0
F is a geodesic variation =⇒ E”(s) ≥ 0, s ∈ [−1, 1]
Recall Taylor’s expansion of an one-variablw smooth functional, we have

E(1) = E(0) + E′(0) +

∫ 1

0
(1 − t)E”(t)dt ≥ E(0)

That is E(c) ≥ E(γ)
�

Remark 4.16. (1) Note that the ”locally minimizing energy ” also implies ”locally
minimizing length” From the proof above , for any curve c : [a, b] −→ M close to the
normal geodesic γ(t), we can reparametrize c : [a, b] −→ M,s.t.

Exercise 4.1. Let γ : [a, b] −→ M be a smooth curve , and

F :[a, b] × (−ε, ε) × (−δ, δ) −→ M

(t, v,w) 7→ F(t, v,w)

be a 2-parameters variation of γ . Denote by

V(t) =
∂F
∂v

(t, 0, 0), W(t) =
∂F
∂w

(t, 0, 0)

the two corresponding variational field.
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(1) Show that

∂2

∂w∂v
L(v,w) =

∫ b

a

1
‖ ∂F
∂t ‖

{ 〈
∇ ∂

∂t

∂F
∂v
,∇ ∂

∂t

∂F
∂w

〉
−

〈
R(
∂F
∂w

,
∂F
∂t

)
∂F
∂t
,
∂F
∂v

〉
+

〈
∇ ∂

∂t
∇ ∂

∂w

∂F
∂v
,
∂F
∂t

〉
−

1

‖ ∂F
∂t ‖

2

〈
∇ ∂

∂t

∂F
∂v
,
∂F
∂t

〉 〈
∇ ∂

∂v

∂F
∂w

,
∂F
∂t

〉 }
dt

where ‖ ∂F
∂t ‖ =

〈
∂F
∂t ,

∂F
∂t

〉 1
2

(2) Let γ be a mpr,a; geodesic , i.e.,‖γ̇‖ = 1. Show that

∂2

∂w∂v

∣∣∣∣
w=v=0

L(v,w) =

∫ b

a
(〈∇T V,∇T W〉 − 〈R(W,T )T,V〉 − T 〈V,T 〉T 〈W,T 〉) dt+〈∇WV,T 〉

∣∣∣∣b
a

where T (t) := γ̇(t) is the velocity field along γ
(3) Consider the orthogonal component Ṽ , W̃ of V,W with respect to T , that is

V⊥ := V − 〈V,T 〉T

W⊥ := W − 〈W,T 〉T

Show that

∂2

∂w∂v

∣∣∣∣
(0,0)

L(v,w) =

∫ b

a

(〈
∇T V⊥,∇T W⊥

〉
−

〈
R(W⊥,T )T,V⊥

〉)
dt + 〈∇WV,T 〉

∣∣∣∣b
a

Remark 4.17. Observe in the above proof, the ”properness ” of the variation F is only
used to conclude E′(0) = 0. When we consider variation of closed geodesics, i.e. a
geodesic

γ : S 1 −→ M

When S 1 is the unit circle parametrized by [0, 2π).
(in fact , γ : S 1 −→ M, γ(0) = γ(2π), γ̇(0) = γ̇(2π) ), the argument in the proof

still works.

Corollary 4.5. On a Riemannian manifold with nonpositive (negative,resp) sectional
curvature , closed geodesics are locally minimiing .(strict local minima,resp)

Notice that on a manifold with vanishing curvature , closed geodesics are still lo-
cally minimizing , but not necessarily strictly so any more .On a manifold with positive
curvature , closed geodesics in general do not minimize anymore.(?) The following
picture is very imspiring .
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We will derive a global consequence of this fact (?).
We give a general remark about how (SVF) implies minimizing property of geodesics.
Let γ : [a, b] −→ M be a normal geodesic , F be a variation of γ , we have

d2

dv2

∣∣∣∣
v=0

E(v) = 〈∇VV,T 〉
∣∣∣b
a +

∫ b

a

(
〈∇T V,∇T V〉 − 〈R(V,T )T,V〉

)
dt

where V is the variational field and T is the velocity field along γ.
Geometrically speaking , when F is a proper variation , or γ : [a, b] −→ M is a

closed geodesic ,(=⇒ γ(a) = γ(b), T (a) = T (b)),
we have d2

dv2

∣∣∣∣
v=0

E(v) =
∫ b

a

(
〈∇T V,∇T V〉 − 〈R(V,T )T,V〉

)
dt

(1) If M has nonpositive (negative ,resp) curvature , E”(0) ≥ 0 (E”(0) > 0,resp)
=⇒ γ is (strictly) locally minimizing .

(2) If M has positive curvature , -〈R(V,T )T,V〉 < 0.
If

〈R(V,T )T,V〉 > 〈∇T V,∇T V〉 (?)

then E”(0) < 0, and hence γ cannot be (locally) minimizing .
The philosophy if (2) leads to the applications of (SVF) we will discuss soon.
Synge Theorem (⇐=) When M is compact , orientable , even-dimension, of positive

curvature , for any nontrivial closed geodesic γ , we can find V ,s.t. (?) holds.
That is , under the assumptions, any nontrivial (not homotopic to constant curve)

geodesic can not be locally minimizing.
Bonnet-Myers Theorem (⇐=) When M is of sectional curvature ≥ k > 0, geodesics

of length > π
√

K
can not be (locally) minimizing .

Next, let us discuss this two applications in more detail.
Synge Theorem [WSY, Chap 6][JJ, Chap 4,4.1][dC,Chap 9,3]

Lemma 4.3. Let (M, g) be an , orientable, even-dimensional Riemannian manifold
with positive sectional curvature. Then any closed geodesic which are not homotopic to a constant curve
can not be minimizing in its (free) homotopy class.

Lemma 4.4. Let (M, g) be a compact Riemannian manifold . Then every (free) homo-
topy class of closed curve in M contains a shortest one (which is , therefore, a closed
geodesic) [JJ,Theorem 1.5.1]

Remark 4.18. (1) A closed curve c can be considered as a continuous map c : S 1 −→

M , where S 1 is the unit circle.
Recall that two contimuous maps

c0, c1 : S 1 −→ M

are called homotopic if there exists a continuous map

F : S 1 × [0, 1] −→ M

with F(t, 0) = c0(t).F(t, 1) = c1(t),∀t ∈ S 1

And the concept of homotopy defines an equivalence relation of all closed curves
in M.
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(2) Suppose (M, g) satisfy both the assumptions of Lemma 4.3 and that of Lemma
4.4 , then every homotopy class of closed curves in M contains the constant curve .
That is , M us simply connected , i.e.,π1(M) = {1}. This is exactly what Synge Theorem
says.

Theorem 4.5. [Synge,1936,On the connectivity of spaces of positive curvature ,Quar-
tely Journal of Mathematics (Oxford Series),7,316-320] Any compact, orientable, even-dimensional
Riemannian manifold,positive curvature is simply connected.

Now we start to prove Lemma 4.3 . In fact the restricitions ”orientable , even-
dimensional” guarantee the existence a parallel normal vector field along a nontrivial
closed geodesic.

If γ : [a, b] −→ M is not a closed one , it is not hard to find a parallel normal vector
field along it . Just pick a vector V(a) ∈ Tγ(a)M, 〈V(a), γ̇(a)〉 = 0 and V(t) is given by
the parallel transport along γ.

But for a closed one , V(b) = Pγ.a.bV(a) is not necessarily coincide with V(a).

Note for the velocity field along a closed geodesic γ , we have

Pγ,a,bγ̇(a) = γ̇(b) = γ̇(a)

That is , the orthogonal linear transformation

Pγ,a,b : TpM −→ TpM (p = γ(a) = γ(b))

has an eigenvalue +1 with eigenvector γ̇(a)
If the multiplicity of eigenvalue +1 ≥ 2, then we have a vector V(p) ∈ TpM lying

in the orthogonal complement of γ̇(a) s.t. Pγ,a,bV(p) = V(p) .
Hence V(t) := Pγ,a,tV(a) gives a parallel normal vector field along γ.
Next , we explain ”orientable , even-dimensional ” guarantee that the multiplicity

of eigenvalue +1 of Pγ,a,b ≥ 2.
Since Pγ,a,b is orthogonal, we have det(V)=+1 or -1
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Lemma 4.5. If det(Pγ,a,b =)=+1,and M is even-dimensional then the multiplicity of
the eigenvalue +1 ≥ 2

Proof. Since Pγ,a,b : TpM −→ TpM is orthogonal , its eigenvalues can be listed as

λ1, λ̄1, ..., λ j, λ̄ j,−1,−1, · · · ,−1︸             ︷︷             ︸
k

, 1, 1, · · · , 1︸      ︷︷      ︸
l

where λi, i = 1, 2, ..., j are complex numbers with |λi| = 1,

M even − dimensional =⇒ TpM even − dimensional

=⇒ k + l is even

Since Pγ,a,b : γ̇(a) 7→ γ̇(b) = γ̇(a), l ≥ 1(i.e. l , 0)
Hence l is even and l , 0. That is l ≥ 2 �

In fact , det(Pγ,a,b)=+1 is guaranteed by ” orientability ” of M . Let us recall briefly
the concept of orientability.

Given a vector space V , let {ei}
n
i=1 and { f j}

n
j=1 be two basis , and f j = ai

jei. Then
det(ai

j) is either positive or negative. If det(ai
j)¿0, we say the two basis have the same

orientation . This defines an equivalence relation for all basis of V . There exactly 2
equivalant classes. We call each of them an orientation of V .

Alternatively , the orientation of V can be described as below : Consider the dual
space V∗ of V . Then we have

dim Λn(V∗) = 1

and let Ω( f1, ..., fn) = det(ai
j)Ω(e1, e..., en) .

That is , given a non-zero Ω ∈ Λn(V∗), two basis {ei},{ f j} have the same orientation
iff Ω( f1, ..., fn) and Ω(e1, ..., en) have the same sign . In this sense , a nonzero Ω ∈

Λn(V∗) determines an orientation of V .
The second way of description can be generalized to the setting of a manifold. M

is orientable if there exists a C∞ nowhere vanishing n-form ω. At each p ∈ M, the
basis of TpM are divided into two classes, those with ω(e1, ..., en) > 0 and those with
ω(e1, ..., en) < 0 . The first class is called the basis coherent with the orientation .

Lemma 4.6. Let (M, g) be an orientable Riemannian manifold and γ : [a, b] −→ M be
a closed curve . Then the parallel transport Pγ,a,b : TpM −→ TpM has determinant 1.

Proof. Since Pγ,a,b is orthogonal , we only need to show

det(Pγ,a,b) > 0

Let ω be a C∞ nowhere vanishing n-form ω on M , whose existence is guaranteed
by orientability . Let {ei} be a basis of TpM with ω(e1, ..., en) > 0.

Let {ei(t)} := {Pγ,a,b(ei)} be the parallel transport of {ei} along γ . Then t 7→
ω(e1(t), ..., en(t)) is a nowhere vanishing c∞ function on [a,b] . In particular ,ω(e1(b), ..., en(b)) >
0 .
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Note {ei(b)n
i=1} is also a basis of TpM , and

ω(e1(b), ..., en(b)) = det(Pγ.a.b)ω(e1(b), ..., en).

Therefore, we have
det(Pγ.a.b) > 0

�

Proof of Lemma 1
Let γ : [a, b] −→ M be a nontrivial closed geodesic in M (let p = γ(a) = γ(b)).
By lemma 4.5 and 4.6 , there exists V(p) ∈ TpM,〈V(p), γ̇(a)〉 0 and Pγ,a,bV(p) =

V(p)
Therefore V(t) := Pγ,a,bV(p) is a parallel normal vector field along γ .
Since γ([a, b]) is compact , there exists δ > 0,s.t.

F :[a, b] × (−δ, δ) −→ M

(t, v) 7→ expγ(t)vV(t)

is a (geodesic) variation of γ. (existence of δ is shown by the argument we used in
the proof of Corollary 4.4)

Since γ is a geodesic, we have E′(0) = 0. Moreover,

E”(0) =

∫ b

a

(
〈∇T V,∇T V〉 − 〈R(V,T )T,V〉

)
dt

(∇T V = 0 since V is parallel)

= −

∫ b

a
〈R(V,T )T,V〉 dt < 0 since sectional curvature > 0

Therefore, for v , 0 small enough, γv : [a, b] −→ M is a closed curve homotopic
to γ but with E(γv) < E(γ).

That is γ is not minimizing in its homotopy class. (In fact , for length we also have
l(γv)2 ≤ 2(b − a)E(γv) < 2(b − a)E(γ) = l(γ)2(since ‖γ̇‖ ≡ constant))

Lemma 4.4 is a general result for compact Riemannian manifold ( no curvature
restriction is needed).

Proof of Lemma 4.4 Recall from Corollary (2.3) of Chapter 2 , that for a compact
Riemannian manifold M , there exists a ρ0 > 0, s.t. any p, q ∈ M with d(p, q) ≤ ρ0 can
be conneted by precisely one geodesic of shortest path.(Recall this is proved by using
the concept of totally normal neighborhood).

Moreover,the geodesic depends continuously on (p, q). This implies immediately.
Claim. Let (M, g) be a compact Riemannian manifold, and ρ0 > 0 be chosen as

above. Let γ0, γ1 : S 1 −→ M be closed curves with

d(γ0(t), γ1(t)) ≤ ρ0, ∀t ∈ S 1

Then γ0, γ1 are homotopic.
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For any t ∈ S 1, let ct(s) : [0, 1] be the unique shortest geodesic from γ0(t) to γ1(t)
. (paramatrized proportionally arclength). Since ct depends continuously on its end
points. The map

F(t, s) := ct(s)

is contimuous and yields the desired homotopy.
Next we find the shortest curve in a given homotopy class by method of minimizing

sequence .
Let {γn}n∈N be a minimizing sequence for length in the given homotopy class.

Here and in the sequal , all curves are parametrized proportionally to arc length. γn :
[0, 2π] −→ M .

We may assume each γn us piecewise geodesic. This is because: there exists m,
and

0 = t0 < t1 < ... < tm < tm+1 = 2π

s.t.,L(γn|[t j−1, t j]) ≤ ρ0/2
(This is realizable since one can equally divide [0,2π],s.t.

|t j − t j−1| =
ρ0

2|γ̇|
, j = 1, ...,m, |tm+1 − tm| <

ρ0

2|γ̇|

and m =
⌈

2π
ρ0
2|γ̇|

⌉
)

Then replacing γn

∣∣∣∣
[t j−1,t j]

by the shortest geodesic arc from γn(t j−1) to γn(t j). By the

claim , this will not change the homotopy class of the curve.
Equivalently to say, we have a minimizing sequence {γn}n such that for each γn ,

there exists p0,n, ..., pm,n for which d(p j−1, p j) ≤ ρ0/2, j = 1, ...,m+1 with pm+1,n = p0,n
and for which γn contains the shortest geodesic from p j−1 to p j .

Since {γn}n is minimizing , the length of γn are bounded, say L(γn) ≤ C. Then we
can assume that m is independent of n. (This is because L(γn) ≤ C =⇒ |γ̇n| ≤

C
2π =⇒

m ≤ 4π|γ|
ρ0

+ 1 ≤ 2C
ρ0

+ 1)
Since M id compact , after selection of a subsequence , the points p0,n, ..., pm,n

converge to points p0, ..., pm as n −→ ∞. The segment of γn from p j−1,n to p j,n then
converges to the shortest geodesic from p j−1 to p j (Recall such geodesic depends con-
tinuously on its end points).

The union of these geodesic segments yields a closed curve γ . By the claim ,γ is
still in the given homotopy class and L(γ) = limn−→∞ L(γn),i.e. ,γ is the shortest one
in its homotopy class. Therefore ,γ has to be geodesic.(Otherwise, there exists p and q
on γ on which one of the two segments of γ) from p to q has length ≤ ρ0/2, but is not
geodesic. Then replace this segment by the unique shortest geodesic from p to q. The
resulting curve lies still in the same homotopy class but with a shorter length , which is
a contradiction.)

Proof of Thoerem 4.5 Suppose M is not simply connected. Then there is a homo-
topy class of closed curves which are not homotopic to a constant curve. By Lemma
4.4 , there is a shortest closed geodesic γ in this given homotopy class . By Lemma 4.3
,γ cannot be minimizing , this is a contradiction.
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Remark 4.19. (1) Synge theorem tells that any compact , orientable, even-dimensional
manifold which is not simply connected does not admit a metric of positive curvature.

(2) Examples: the real projective spave P2(R) of dimension two, is compact, non-
orientable. Recall in Excercise (3),2(Homework 3 for 2017) ,we checked there is a
Riemannian metric on P2(R),s.t. the covering map π : S 2 −→ P2(R) is a local isometry.
Hence P2(R) has sectional curvature 1¿0.

But we know π1(P2(R)) = Z2. Hence ”orientability” in the assumption of Synge
Theorem is necessary.

Similarly, ”evem-dimensional” assumption is also necessary. P3(R) is orientable,compact,
odd-dimensional , of positive curvature , but π1(P3(R)) = Z2.

The above examples are inspiring and it is natural to ask what we can say when
(M, g) is not orientable or not even-dimensional.

Corollary 4.6. Let (M, g) be a compact,non-orientable,even-dimensional Riemannian
manifold of positive sectional curvature, then π1(M) = Z2.

Theorem 4.6. (Synge 1936) Let (M, g) be a compact , odd-dimensional Riemannian
manifold of positive sectional curvature, then M is orientable.

Remark 4.20. In particular, Corollary 4.6 gives a geometric proof of the fact π1(Pn(R)) =

Z2, when n even (knowing Pn(R) is non-orientable for n is even . Although π1(Pn(R)) =

Z2, ∀n).Theorem 4.6 gives a geometric proof of the fact Pn(R) is orientable for n odd.
But we can not say too much about the fundamental group π1(M) for a compact,odd-
dimensional manifold admitting a metric of positive curvature.

The proofs use property of the orientable double cover of a non-orientable mani-
fold. In order not to interupt our current topic too much , we postpone the proofs.

Bonnet-Myers Theorem :[PP,Chap 6,4.1]
The following lemma was first priven by Bonnet for surfaces and later by Synge

for general Riemannian manifolds as an application of his (SVF).

Lemma 4.7. (Bonnet 1855 and Synge 1926) Let(M, g) be a Riemannian manifold with
sectional curvature ≤ k > 0 . Then geodesics of length ¿ π

√
k

cannot be (locally) mini-
mizing

Proof. Let γ : [0, l] −→ M be a normal (i.e. |γ̇| = 1) geodesic of length l > π
√

k
.

Let E(0) be a unit vector in Tγ(0)M with 〈E(0), γ̇(0)〉 = 0.
Then we obtain E(t) := Pγ,0,tE(0) a parallel (vector field along γ).
Consider the following vector field along γ

V(t) := sin(πt/l)E(t)

It corresponds to a proper variation since V(0) = V(l) = 0
By (SVF):

d2

dv2

∣∣∣∣
v=0

E(v) = E”(0) =

∫ b

a

(
〈∇T V,∇T V〉 − 〈R(V,T )T,V〉

)
dt

Observe∇T V = sin′(πt/l)E(t) = π
l cos(πt/l)E(t) and hence 〈∇T V,∇T V〉 = ( πl )2 cos2(πt/l)

and
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〈R(V,T )T,V〉 = sin2(πt/l) 〈R(E,T )T, E〉 = sin2(πt/l)K(E,T )

=⇒ E”(0) =

∫ l

0
(
π

l
)2 cos2(πt/l)dt −

∫ l

0
sin2(πt/l)K(E,T )dt

≤ (
π

l
)2

∫ l

0
cos2(πt/l)dt − k

∫ l

0
sin2(πt/l)dt

< k
∫ l

0

[
cos2(πt/l) − sin2(πt/l)

]
dt (S ince l >

π
√

k
=⇒ (

π

l
)2 < k)

= k
∫ l

0
cos(2πt/l)dt = 0

Hence all nearby curves in the variation are shorter than γ . (by the same argument
as in the end of the proof for Lemma 4.3) �

In the above , we see that we actually has (n-1) choices of the parallel normal vector
fields along γ. When sectional curvature ≥ k > 0 , our above argument works for each
of these (n − 1) parallel vector field along γ. On the other hand , for our purpose here,
it’s enough to know that our above argument works for at least one of those (n − 1)
vector fields along γ. This leads to the following extension due to Myers.

Lemma 4.8. (Myers 1941). Let (M, g) be a Riemannian manifold with Ricci curvature
Ric≥ (n − 1)k > 0. Then geodesics of length > π

√
k

cannot be minimizing.

Proof. Similarly as in the proof of Lemma 4.7. Let γ : [0, l] −→ M be a normal
geodesic with l > π

√
k
.

Choose E2, ..., En ∈ Tγ(0)M s.t. γ̇(0), E2, ..., En form an orthonormal basis for
Tγ(0)M. Then Ei(t) := Pγ,0,tEi and γ̇(t) form an orthonormal basis for Tγ(t)M.

Consider n − 1 variational fields along γ

Vi(t) = sin(πt/l)Ei(t), i = 2, 3, ..., n

We have for each i,

d2

dv2
i

∣∣∣∣
vi=0

E(vi) = (
π

l
)2

∫ l

0
cos2(πt/l)dt −

∫ l

0
sin2(πt/l)K(Ei,T )dt

< k
∫ l

0
cos2(πt/l)dt −

∫ l

0
sin2(πt/l)K(E,T )dt

Taking the summation,
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n∑
i=2

d2

dv2
i

∣∣∣∣
vi=0

E(vi) < (n − 1)k
∫ l

0
cos2(πt/l)dt −

∫ l

0
sin2(πt/l)

∑
i

K(Ei,T )︸         ︷︷         ︸
Ric(T )

dt

≤ (n − 1)k
∫ l

0
cos2(πt/l)dt − (n − 1)k

∫ l

0
sin2(πt/l)dt

= 0

Hence there exists an i0 ∈ {2, · · · , n}, s.t.

n∑
i=2

d2

dv2
i0

∣∣∣∣
vi0 =0

E(vi0 ) < 0

And hence γ is not (locally) minimizing . �

If we assume further that (M, g) is complete, the above lemma implies and upper
bound of the diameter of (M, g). This seems to have first been pointed out by Hopf-
Rinow(1931) for surfaces in their famous paper on completeness and then by Myers
for general Riemannian manifolds.

(1935. Duke J. Math for sectional curvature restriction
1941. Duke J. Math for Ricci curvature restriction)

Corollary 4.7. Suppose (M, g) is a complete Riemannian manifold with Ricci curva-
ture Ric ≥ (n − 1)k > 0. Then

diam(M, g) ≤
π
√

k

Further more, (M, g) has finite fundamental group.

Remark 4.21. Corollary 4.7 is aftenly referred to as Bonnet-Myers Theorem.

Proof. Lemma 4.8 tells no geodesic can realize distance between any p, q ∈ M with
d(p, q) > π

√
k
. Hopf-Rinow Theorem tells that completeness implies any p, q ∈ M can

be connected by a shortest geodesic. Hence d(p, q) ≤ π
√

k
,∀p, q ∈ M �

Covering spaces and Fundaental groups
A continuous map π : X −→ M is called a covering map if each p ∈ M has a

neighborhood U with the property that each connected component of π−1(U) is mapped
homeomorphically onto U.

FACT 1: Let M be a differential manifold .X has a natural differentiable structure
s.t. π : X −→ M is a C∞ and locally diffeomorphism.

Let {(Uα, xα)} be a differentiable structure of M . Uα small s.t. π−1(Uα) are disjoint
open sets of X,each connected component U i

α ⊂ X , we assign coordinate map xα ◦ π
(note π : U i

α −→ Uα is homeomorphism)
This leads to a differentiable structure for X, under which π is C∞ and locally

diffeomorphism.
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π−1(Uα)

π

��

xα◦π

##
Uα xα

// Rn

FACT 2 Let (M, g) be a Riemannian manifold . Note π is surjective . We can assign
by g̃ = π∗g a Riemannian metric for X . Then π : (X, g̃ −→ (M, g)) is a locally isometry
.

FACT 3. If (M, g) is complete , then (X, g̃) is also complete,

Proof. Suppose γ be a normal geodesic on (X, g̃) with the maximal interval [0, b), b <
∞

Since π is locally isometry, we have π(γ) : [0, b) −→ M is a geodesic of (M, g).
Since (M, g) is complete , we have the geodesic π(γ) in (M, g) can be extended to

π(γ)(b) := o ∈ M

Pick a small normal neighborhood U of p in M. Then ∃a < b s.t. π(γ)(a) ∈ U and
π(γ)

∣∣∣∣
[a,b]
∈ U. Let Ui be the connected component of π−1(U) containing γ(a).

Then the isometry π−1 : U −→ Ui maps a geodesic to a geodesic. Hence the
geodesic γ van be extended over b in Ui. This contradicts to the maximality of b �

The equivalene or homotopy classes of closed curves with fixed base point p ∈ M
form a group π1(M, p), the fundamental group of M with base point p.

π1(M, p) and π1(M, q) are isomorphic for any p, q ∈ M. Hence , it make sense to
speak of the fundamental group π1(M) of M without reference to a base point.

Let π : X −→ M be a covering map . A deck transformation is a homeomorphism
ϕ : X −→ X with π = π ◦ ϕ
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FACT 4 A deck transformation ϕ of (X, g̃) is an isometry .

Proof. Since π is locally isometry, and π = π◦ϕ , we know ϕ is locally isometry. Since
ϕ us homeomorphic , we have ϕ is an isometry. �

A deck transformation which has a fixed point is the identity.
If π : M̃ −→ M be the universal covering of M . π(x0) = p0 ∈ M
(1)π1(M, p0) is in 1-1 correspondance with π−1(p0).
x1 ∈ π

−1(p0) corresponds to the homotopy class of π(γx1 ) where γx1 (0) = x0, γx1 (1) =

x1.
(2) The setD of all deck transformation is in 1-1 correspondance with π1(M, p0).
Associate each deck transformation ϕ with ϕ(p0) ∈ π−1(p0) So muc for the general

facts. Let’s come back to our discussion about Bonnet-Myers Theorem and Synge
Theorem .

We have shown if (M, g) is a complete Riemannian manifold with Ricci curvature
Ric ≥ (n − 1)k > 0.Then

diam(M, g) ≤
π
√

k

(Corolarry 4.7) and hence , in particular (M, g) is compact .
(The last assertion follows from Hopf-Rinow (The whole manifold is a bounded

closed set))
Moreover . (M, g) has finite fundamental group .
Proof for the last statement:
Let π : M̃ −→ M be the universal covering . From our previous discussion, (M̃, g̃)

is a C∞ Riemannian manifold , and π : (M̃, g̃) −→ (M, g) is a locally isometry. Hence
the Ricci curvature of (M̃, g̃) is also bounded from below by (n − 1)k

Moreoveer , (M, g) is complete =⇒ (M̃, g̃) is complete. Hence diam(M̃, g̃) ≤ π
√

k
and ( π

√
k
) is compact.

Then ∀p ∈ M, π−1(p) is finite . Since otherwise , π−1(p) has an accumulated point
p̃ ∈ M̃ , and π is not a locally diffeomorphism . Therefore , the fundamental group is
finite.

Extension: Cheeger-Gromoll [JDG,1971] Ric ≥ 0,positive at one point ,thn π1(M)
is finite. Next , we discuss Synge Thoerem further.

Firstly , recall the remarks on 4.3 that ”orientable”,”even-dimensional” are all nec-
essary.

By Bonnet-Myers, the ”compactness” can be replaced by the assumption that M is
complete and has sectional curatures bounded away from 0 .

In fact , the ”compactness” alone , due to a theorem of Gromoll-Meyer.

Theorem 4.7. (Gromoll-Meyer On complete open manifolds of positive curvature ,
Ann of Math,go(1639),75-90)

If M is a connected , complete , non-compact n -dimensional manifold with all
sectional curvatures positive, then M is diffeomorphic to Rn.

What happens if M is not orientable?
We give a proof of Corollary 4.6
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Proof. Every non-orientable differential manifold M has an orientable double cover M̄
:

A brief description : At each point p ∈ M , the TpM can be separated into two
disjoint sets : Recall the orientation of a vector space, two bases are equivalent if their
transformation matrix has determinant > 0 . This is an equivalente relation . Let Op be
the quotient space of TpM w.r.t. the equivalence relation. Op ∈ Op will be called an
orientation of TpM

M̄ = {(p,Op) : p ∈ M,Op ∈ Op}

M̄ has a natural differentiable structure s.t. π : M̄ −→ M is C∞ and surjective .
∀p ∈ M, ∃U ∈ M, p ∈ U s.t.

π−1(U) = V1 t V2

π : Vi −→ U is a diffeomorphism [dC. Chap 0, Ex12 ]
Example:S 2 is the orientable double cover if P2(R) .

Then by our previous discussion , M̄ is orientable , and compact , even-dimensional
nd positive sectional curvature. Hence M̄ is simply connected. Therefore π1(M) = Z2

�

What happens if not ”even-dimensional”
Theorem 4.6
For that purpose, we prove a more general result

Theorem 4.8. (Weinstein 1968) Let f be an isometry of a compact orientable Rieman-
nian manifold Mn . Suppose that M has positive sectional curvature , and f reverses
the orientatiion of M and n is odd. Then f has a fixed point .

Proof. Suppose to the contrary , f (q) , q,∀q ∈ M
Let p ∈ M such that d(p, f (p)) attains the minimum

d(p, f (p)) = inf
q∈M

d(q, f (q))(We use M is compact)

Since M is compact =⇒ complete, ∃ a normal minimizing geodesic

γ : [0, l] −→ M,

γ(0) = p, γ(l) = f (p) and l = d(p, f (p))



110 CHAPTER 4. CURVATURES

Claim: ˙( f ◦ γ)(0) = γ̇(l)
proof of claim:
Let p′ = γ(t′), t′ , 0, t′ , l, f (p′) = f ◦ γ(t′)
We have

d(p′, f (p′)) ≤ d(p′, f (p′)) + d( f (p), f (p′))
= d(p′, f (p′)) + d(p, p′) (S ince f is isometry)
= d(p, f (p)) (S ince γ is minimal)

Then by d(p, f (p)) = infq∈M d(q, f (q)), we know the ”≤ ” is an ”=” i.e.,d(p′, f (p′)) =

d(p′, f (p)) + d( f (p), f (p′))
That is the curve γ

∣∣∣∣
[t′,l]
∪ f ◦ γ

∣∣∣∣
[0,t′]

is a shortest curve and hence a geodesic.

In particular , this implies ˙( f ◦ γ)(0) = γ̇(l).
Next consider P−1

γ,0,l ◦ d fp : TpM −→ TpM
Then it is an isometry and hence , an orthogonal transformation.
Note d fp(γ̇(0)) = ˙( f ◦ γ)(0), (since f (p) = f ◦ γ(0))
We have

(P−1
γ,0,l ◦ d fp)(γ̇(0)) = P−1

γ,0,l( ˙( f ◦ γ)(0))

= P−1
γ,0,l(γ̇(l)) = γ̇(0)

That is P−1
γ,0,l ◦ d fp has eigenvalue +1 with multiplicity ge1.

SInce Pγ,0,t preserves orientation and f reverse the orientation , we have det(P−1
γ,0,l ◦

d fp) = −1
List all its eigenvalues as

λ1, λ̄1, ..., λ j, λ̄ j,−1,−1, · · · ,−1︸             ︷︷             ︸
l

, 1, 1, · · · , 1︸      ︷︷      ︸
k

We have
n odd ⇒ k + l odd
det = −1⇒ l odd

}
⇒

k even
k > 1

}
⇒ k > 2
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⇒ ∃V ∈ TpM, < V, γ̇(0) >= 0, and
(
P−1
γ,0,l ◦ d fp

)
(V) = V

i.e. Pγ,0,lV = d fp(V)

Define V(t) = Pγ,0,tV ,
We have F(t, s) = expγ(t)(sV(t)), s ∈ (−ε, ε), t ∈ [0, l] is a variation of γ ,
with

F(t, 0) = γ(t)
F(0, s) = β(s)
F(l, s) = f ◦ β(s)

and
∂F
∂s

∣∣∣∣
s=0

= V(t)

By the (SVF), we have

d2

ds2

∣∣∣∣
s=0

E(s) =

∫ b

a

(
〈∇T V,∇T V〉 − 〈R(V,T )T,V〉

)
dt < 0

This shows that ∃ small enough s,s.t. the curve γs has the property L(γs)2 ≤

2lE(γs) < 2lE(γ) = L(γ)2

Hence let ps = γs(0), we have

d(ps, f (ps)) ≤ L(γs) < L(γ) = d(p, f (p))

which contradicts to the minimality of d(p, f (p))
�

Proof of Theorem 4.6
Suppose M is not orientable , let M̄ be the orientable double cover of M. Then

(M̄, π∗g) is a compact orientable manifold with positve sectional curvature . Let ϕ be a
deck transformation of M̄ with ϕ , id.

Because M is not orientable ,ϕ is an isometry which reverse the orientation of M̄
. Since n is odd, we can apply Weinstein’s theorem to conclude ϕ has a fixed point .
Therefore ϕ = id, which is a contradicition.
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Exercise 4.2. (1)Prove Weinstein Theorem for even-dimensional case: Let f be an
isometry of a compact orientable Riemannian manifold Mn. Suppose M has positive
sectional curvature , and f preserve the orientation of M and n is even. Then f has a
fixed point.

(2) Prove Synge Theorem (even-dimensional) as a corollary.



Chapter 5

Space forms and Jacobi fields

We start our further investigation on geometry and topology of Riemannian manifolds
by studying the simplest cases: complete Riemannian manifolds with constant sec-
tional curvature, which are called space forms. We again will study the behavior of
geodesics in order to reveal the underlying geometry and topology.

The first problem we’re concerned about space forms is the existence. Recall if
a Riemannian manifold (M, g) has constant sectional curvature k, then (M, λg) has
constant sectional curvature k

λ
for λ > 0. Therefore, we only need to consider space

forms with sectional curvature 0,+1,-1.
Obviousely, Rn with the Euclidean metric has 0 sectional curvature.(For example,

by the formula in local coordinate:

〈R(
∂

∂xi ,
∂

∂x j )
∂

∂xl ,
∂

∂xk 〉 =
1
2

(
∂2g jk

∂xi∂xl −
∂2gik

∂x j∂xl −
∂2g jl

∂xi∂xk +
∂2gil

∂x j∂xk ) + gmp(Γm
il Γ

p
jk −Γm

jlΓ
p
ik)

recall from the previous discussion. For Rn, Rkli j = 0, ∀i, j, k, l.) Hence Rn is a space
form with sectional curvature 0. In fact, we have the following result:

Theorem 5.1. For any c ∈ R and any n ∈ Z+, there exists a unique(upto isometries)
simply connected n-dimensional space form with constant sectional curvature c.

In order to discuss the existence for the other two cases c = +1 or −1, we first
introduce same useful ideas.

5.1 Isometries and totally geodesic submanifold

Let (M, g), (M, g) be two Riemannian manifolds, and f : M → M be an immersion. If
f ∗g = g, then we say f is a isometric immersion and M is called the Riemannian embedded submanifold,
or regular submanifold.

Let dim M = n, dim M = n + k, we say M has codimension k in M. In particular, if
k = 1, M is called a hypersurface in M.

113
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Definition 5.1. (totally geodesic submanifold). Let M be a submanifold of M. We
identify p ∈ M with f (p) ∈ M. Then TpM = TpM

⊕
T⊥p M, where T⊥p M is the

orthonormal complement of TpM in TpM.

M is called a totally geodesic submanifold if ∀ geodesic γ in M with γ(0) ∈ M, γ̇(0) ∈
TpM, we have γ ⊂ M.

Remark 5.1. Recall from the Final Remark of our discussions about Levi-Civita con-
nection, we know for the Levi-Civita connection ∇ and ∇ for M and M respectively, we
heve

∇γ̇γ̇ = 0⇒ ∇γ̇γ̇ = 0.

That is, γ is also a geodesic in M.
There is a characterization of totally geodesic submanifold by the second fundamental form.

In fact, the decomposition TpM = TpM
⊕

T⊥p M is differentiable, and, hence, the
tangent bundle T M = T M

⊕
NM where NM is the normal bundle.

For any X,Y ∈ Γ(T M), define

B(X,Y) = ∇XY − ∇XY ∈ Γ(NM).

First, we observe that ∀function f on M, we have

B( f X,Y) = f B(X,Y) (easy)
B(X, f Y) = f B(X,Y)

 (5.1.1)

We also have B(X,Y) = B(Y, X).(usingtorsion− f reeproperty.) B is called the second fundamental form

of the submanifold M in M.

Theorem 5.2. M is a totally geodesic submanifold of M if and only if B ≡ 0.

Proof. Due to the property (5.1.1), we can speak of the map for all p

B : TpM × TpM → NpM

which is bilinear and symmetric. Let M be a totally geodesic submanifold of M, then

∀V ∈ TpM, let γ be the geodesic in M with γ(0) = p, γ̇(0) = V. ∇γ̇γ̇ = 0, then we have
∇γ̇γ̇ = 0.

That is
∇γ̇γ̇ − ∇γ̇γ̇ = ∇vv − ∇vv = B(v, v) = 0.

Since B is bilinear and symmetric, we have

B(v, v) = 0, ∀v ∈ TpM,

Conversely, suppose B ≡ 0. Then ∀p ∈ M,V ∈ TpM, let γ be a geodesic in M with
γ(0) = p, γ̇(0) = V. Let ξ be the geodesic in M. Due to the uniqueness of the geodesic
with initial data γ(0), γ̇(0), we conclude ξ = γ. Hence γ ⊂ M. � �
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Remark 5.2. Notice that by ∇γ̇γ̇, ∇γ̇γ̇ we are actually using the induced connection,
One can check B ≡ 0⇒ ∇ξ̇(t)ξ̇ �

Totally geodesic submanifold can be considered as a generalization of geodesics.
Rk ↪→ Rk+1 is a totally geodesic submanifold but S 2 ⊂ R3 is not.

we have

Proposition 5.1. Let M be a totally geodesic submanifold of M, denote by K and K
for their sectional curvature respectively. Then every 2-dim sections πpTpM and any
p ∈ M, we have K(πp) = πp.

Proof. By definition and Theorem 6.2.9. � �

Next, we give a relation between isometry and totally geodesic submanifold.

Theorem 5.3. [WSY, p59, Lemma 3] Let f : (M, g) → (M, g) be an isometry. Then
every connected component of the fixed point set M = Fix( f ) = {p ∈ M| f (p) = p} is
totally geodesic submanifold.

Proof. Observe that Fix( f ) is a closed subset: It is the preimage of the diagonal in
M × M under the differentiable mapping p 7→ (p, f (p)) ∈ M × M. Let p ∈ Fix( f ). If p
is not isolated, consider H = {v ∈ TpM.

Let δ be small enough s.t.

exp
p

: B(0, δ) ⊂ TpM → Bp(δ) ⊂ M

is a diffeomorphism.
Claim: expp(H

⋂
B(0, δ)) = M

⋂
Bp(δ). This claims implies immediately that M

is submanifold of M.

Proof of the claim:
(1) ∀q ∈ M

⋂
Bp(δ), choose V ∈ B(0, δ) ⊂ TpM, s.t. expp V = q and γ : [0, 1] →

M, γ(t) = expp tV is the unique shortest geodesic. By our previous discussion, V ∈ H.
Hence M

⋂
Bp(δ) ⊂ expp(H

⋂
B(0, δ)).

(2) Let V ∈ H
⋂

B(0, δ), let q = expp V. Let γ : [0, 1] → M be the geodesic
γ(t) = expp tV, then γ(0) = p, γ(1) = q. Then f ◦ γ is also a geodesic with ( f ◦ γ)(0) =

f (p) = p. Moreover ˙( f ◦ γ)(0) = d fp(γ̇(0)) = d fp(V) = V = γ̇(0), then by uniqueness,
f ◦ γ = γ, and in particular

f (q) = f ◦ γ(1) = γ(1) = q.

Hence exp PV ⊂ Bp(δ)
⋂

M i.e. exp(H
⋂

B(0, δ)) = Bp(δ)
⋂

M. This complete the
proof of the claim. �

The above arguement (2) also tells that any geodesic γ in M with γ(0) ∈ M, γ̇(0) ∈
Tγ(0)M satisfies f (γ) = γ. Hence M is a totally geodesic submanifold M. � �
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5.2 Space forms
We continue the discussion about the existence of sapce forms with sectional curvature
+1 or -1.

Example 5.1. S 2 ⊂ R3 with the induced metric of the Euclidean metric of R3. Since
x = r cosϕ cos θ
y = r cosϕ sin θ
z = r sinϕ

(5.2.1)

g|S 2 = (dx2 + dy2 + dz2)|S 2 = dϕ2 + cos2 ϕdθ2.(r = 1) Then

〈
∂

∂θ
,
∂

∂θ
〉〈
∂

∂ϕ
,
∂

∂ϕ
〉 − 〈

∂

∂θ
〉,
∂

∂ϕ

2

= cos2 ϕ.

〈R(
∂

∂ϕ
,
∂

∂θ
)
∂

∂θ
,
∂

∂ϕ
〉

=
1
2

(gθϕ,ϕθ − gϕϕ,θθ − gθθ,ϕϕ + gϕθ,θϕ) + gmp(Γm
ϕθΓ

p
θϕ − Γm

θθΓ
p
ϕϕ)

(check Γ
ϕ
ϕθ = Γθθθ = Γ

ϕ
ϕϕ = 0, Γθϕθ = −

cosϕ sinϕ
cos2 ϕ

.) = −
1
2

gθθ,ϕϕ + gθθΓ(ϕθ)θΓθθϕ = cos2 ϕ

⇒ sectionalcurvature K ≡ 1.

Proposition 5.2. The unit sphere S n ⊂ Rn+1(n ≥ 2) has constant sectional curvature
+1.

Proof. n = 2 has been checked in Example 1.
When n ≥ 3, define an isometry f : Rn+1 → Rn+1 as below

f : (x1, x2, x3,−x4, · · · , xn+1) = (x1, x2, x3 − x4, · · · ,−xn+1).

It induce an isometry f : S n → S n.

Observe the set of fixed point of f : S n → S n = {(x1, x2, x3, 0, · · · , c)|
3∑

i=1
xi2 = 1} =

S 2. Therefore, S 2 is a totally geodesic submanifold of S n. Since sectional curvature of
S 2 is 1, we have S n has sectional curvature K(πp) = 1 for some πp ⊂ TpS 2. For any
π′q ⊂ TqS n. Suppose πp = {e1, e2}, the positive vector of p be en+1, π

′
q = span{e′1, e

′
2},

the positive vector of q be e′n+1. First let rotate φ in span{en+1, e′n+1} be s.t. φ(en+1) =

e′n+1 and dφ(πp) = πq. Then let φ′ be the ratation which fix q and send πq to π′q. Then
the isometry φ′ ◦ φ send p to q, and πp ⊂ TpS n to π′q ⊂ TqS n. Hence K(π′q) = 1. � �

Proposition 5.3. The unit ball Bn = {x ∈ Rn|‖x‖〈1} ⊂ Rn with the hyperbolic metric

g =
4

(1 −
∑
i

(xi)2)2

∑
i

dxi ⊗ dxi

is a space form with constant sectional curvature -1.
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Proof. First, we show (Bn, g) := Hn is complete. Consider the curve γ(s) := ( es−1
es+1 , 0, · · · , 0).

We compute

〈γ̇(s), γ̇(s)〉g =
4

(1 − ( es−1
es+1 )2)2

(
∂

∂s
(
es − 1
es + 1

))2

=
4

( 4es

(es+1)2 )2
(
es(es + 1) − (es − 1)es

(es + 1)2 )2

=
(es + 1)4

4e2s

(2es)2

(es + 1)4 = 1

That is γ is paramertrized by arc length.
Observation: Any orthonormal transformation of Rn induces an isometry (Bn, g)→

(Bn, g).
Let f : Bn → Bn be the isometry induced by (x1, x2, · · · , xn) 7→ (x1,−x2, · · · ,−xn).

Note Fix( f ) = γ((−∞,∞)). By Theorem 6.2.10, γ is a geodesic. Use the Observation
againm A(γ) is a geodesic for any isometry A induced by a orthonormal transformation
Rn → Rn. That is all geodesic starting from 0 can be defined on [0.∞). We conclude
the completeness by Hopf-Rinow Theorem.

Next,we showHn has constant sectional curvature -1: i.e. ∀p ∈ Bn, ∀ 2-dim section
πp ⊂ TpBn, we have to show K(πp) = −1.

Let ~p be the position vector of p. Identifying TpBn withRn. Let E be a 3-dimensional
linear subspace of Rn containing ~p and πp. If ~p ∈ πp, or ~p = 0, the choice of E is not
unique. The reason we have to consider such a 3 − dim subspace: There is no ob-
vious way to say Rn is homogeneous, i.e. ∀p, q ∈ Bn, ∃ isometry f : Bn → Bn s.t.
f (p) = f (q). However, we will show this later.

Let Rn = E
⊕

E⊥, let f : Bn → Bn be the isometry induced by the orthonormal
transformation

(e, e1) 7→ (e,−e1), e ∈ E, e⊥ ∈ E⊥.

Observe Fix( f ) = E
⋂

Bn. Use the Observation again, choose orthonormal transfor-
mation A s.t. A(E) = {(x1, x2, x3, 0, · · · , 0)} ⊂ Rn. A induce an isometry Bn → Bn.
Hence, it remains to show B3 with the hyperbolic metric has constant sectional curva-
ture -1.

Use the spherical coordinate {ρ, ϕ, θ} on B3 \ {0}, the hyperbolic metric can be writ-
ten as

4
(1 − ρ2)2 (dρ2 + ρ2dθ2 + ρ2 cos2 θdϕ2)

where dρ2 := dρ ⊗ dρ and, similarly, dθ2, dϕ2.
Consider vector fields

X1 =
1 − ρ2

2
∂

∂ρ
, X2 =

1 − ρ2

2ρ
∂

∂θ
, X3 =

1 − ρ2

2ρ cos θ
∂

∂ϕ
.
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Then we have 〈Xi, X j〉 = δi j. We calculate

[X1, X2]( f ) =
1 − ρ2

2
∂

∂ρ
(
1 − ρ2

2ρ
∂ f
∂θ

) −
1 − ρ2

2ρ
∂

∂θ
(
1 − ρ2

2
∂ f
∂ρ

)

=
1 − ρ2

2
∂

∂ρ
(
1 − ρ2

2ρ
)
∂ f
∂θ

+
1 − ρ2

2
1 − ρ2

2ρ
∂2 f
∂ρ∂θ

−
1 − ρ2

2ρ
1 − ρ2

2
∂2 f
∂θ∂ρ

=
1 − ρ2

2
∂

∂ρ
(
1 − ρ2

2ρ
)
∂

∂θ
f

⇒ [X1, X2] =
1 − ρ2

2
∂

∂ρ
(
1 − ρ2

2ρ
)
∂

∂θ
=

1 − ρ2

2
−(ρ2 + 1)

2ρ2

∂

∂θ
.

(
∂

∂ρ
(
1 − ρ2

2ρ
) =
−2ρ(2ρ) − 2(1 − ρ2)

4ρ2 =
−(ρ2 + 1)

2ρ2 )

⇒ [X1, X2] = −
1 + ρ2

2ρ
X2. (1)

Similarly,

[X2, X3] = +
1 − ρ2

2ρ
tan θX3 (2)

[X1, X3] = −
−(ρ2 + 1)

2ρ2 X3 (3)

Recall for orthonormal vector fields X,Y,Z, we have by koszul formula

2〈∇XY,Z〉 = −〈X, [Y,Z]〉 + 〈Y, [Z, X]〉 + 〈Z, [X,Y]〉.

Employing (1),(2), and (3), we have

∇X1 X1 = ∇X1 X2 = ∇X1 X3 = 0

∇X2 X2 = −
ρ2 + 1

2ρ
X1, ∇X2 X3 = 0

∇X3 X3 = −
ρ2 + 1

2ρ
X1 +

1 − ρ2

2ρ
tan θX2.

By torsion-free property (∇XY − ∇Y X) = [X,Y], the above information is enough to
calculate the sectional curvature.

K(X1, X2) = 〈R(X1, X2)X2, X1〉

K(X2, X3) = 〈R(X2, X3)X3, X2〉

K(X1, X3) = 〈R(X1, X3)X3, X1〉

(5.2.2)
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R(X1, X2)X2 =∇X1∇X2 X2 − ∇X2∇X1 X2 − ∇[X1,X2]X2

=∇X1 (−
ρ2 + 1

2ρ
X1) − ∇

−
1+ρ2

2ρ X2
X2

=
1 − rho2

2
∂

∂ρ
(−
ρ2 + 1

2ρ
)X1 +

1 + ρ2

2ρ
(−
ρ2 + 1

2ρ
)X1

∂

∂ρ
(
ρ2 + 1

2ρ
) =

2ρ � 2ρ − 2(ρ2 + 1)
4ρ2 =

2ρ2 − 2
4ρ2 =

ρ2 − 1
2ρ2

⇒ R(X1, X2)X2 = −
1 − ρ2

2
ρ2 − 1

2ρ2 X1 −
(ρ2 + 1)2

4ρ2 X1

=
(ρ2 − 1)2 − (ρ2 + 1)2

4ρ2 X1 = −X1.

Hence K(X1, X2) = −1.

R(X1, X3)X3 = ∇X1∇X3 X3 − ∇X3∇X1 X3 − ∇[X1,X3]X3

=∇X1 (−
ρ2 + 1

2ρ
X1 +

1 − ρ2

2ρ
tan θX2) − ∇ 1+ρ2

2ρ X3
X3

=X1(−
ρ2 + 1

2ρ
)X1 + X1(

1 − ρ2

2ρ
tan θ)X2 +

ρ2 + 1
2ρ
∇X3 X3

= −
1 − ρ2

2
ρ2 − 1

2ρ2 X1 −
1 − ρ2

2
ρ2 + 1

2ρ2 tan θX2 −
1 + ρ2

2ρ
ρ2 + 1

2ρ
X1 +

1 + rho2

2ρ
1 − ρ2

2ρ
tan θX2

=
(ρ2 − 1)2 − (ρ2 + 1)2

4ρ2 X1 = −X1
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Hence K(X1, X3) = −1.

R(X2, X3)X3 = ∇X2∇X3 X3 − ∇X3∇X2 X3 − ∇[X2,X3]X3

=∇X2 (−
ρ2 + 1

2ρ
X1 +

1 − ρ2

2ρ
tan θX2) − ∇ 1−ρ2

2ρ tan θX3
X3

=
1 − ρ2

2ρ
∂

∂θ
(−
ρ2 + 1

2ρ
)∇X2 X1 +

1 − ρ2

2ρ
∂

∂θ
(
1 − ρ2

2ρ
tan θ)X2

+
1 − ρ2

2ρ
tan θ∇X2 X2 −

1 − ρ2

2ρ
tan θ∇X3 X3

= −
ρ2 + 1

2ρ
�
ρ2 + 1

2ρ
X2 +

(1 − ρ)2

4ρ2

1
cos2 θ

X2

−
1 − ρ2

2ρ
tan θ

ρ2 + 1
2ρ

X1 +
1 − ρ2

2ρ
tan θ

ρ2 + 1
2ρ

X1

−
ρ2 + 1

2ρ
tan θ

ρ2 + 1
2ρ

tan θX2

= −
(ρ2 + 1)2

4ρ2 X2 +
(1 − ρ2)2

4ρ2 [
1

cos2 θ
− tan2 θ]X2

=
(ρ2 − 1)2 − (ρ2 + 1)2

4ρ2 X2 = −X2.

Hence K(X2, X3) = −1 � �

5.3 Geodesics in Rn, S n, Hn

Since R2, S 2, H2 are totally geodesic submanifold of Rn, S n, Hn, respectively, we
only need to consider geodesics in R2, S 2.H2.

Let us measure the convergence/divergence properties of geodesic emanating from
a reference point 0 by the length of the circle

c(r) := {x ∈ M : d(0, x) = r.

When r is small eougn, c(r) is the image of S (0, r) ⊂ T0M under the diffeomorphism
exp0, i.e. c(r) = exp0 S (0, r).
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Let c0(r), c+(r), c−(r) be the length of c(r) in R2, S 2, H2, respectively.
(1) c0(r) = 2πr is linear in r.
(2) c+(r), i.e. M = S 2.

(3) c−(r), i.e. M = H2 .(Here, we choose 0 to be the centre of the disc. Later,
we will see c−(r) does not depend on the choice of 0.) Recall the normal geodesic
emanating from 0 is given by

γ : [0,∞)→ B2, s 7→
es − 1
es + 1

� p, ∀p ∈ ∂B2.

Then

c−(r) =

∫ 2π

0

2
(1 − ρ2)

� ρdθ|ρ= er−1
er+1

=
2 � er−1

er+1

1 − ( er−1
er+1 )2

2π = 2π
e2r − 1

2er = 2π
er − e−r

2

⇒ c−(r) = 2π sinh r.
We see that c−(r) grows much faster than c0(r).
In the above 3 particular cases, we see the sign of the curvature is closely related to

the behavior of geodesic. What happens in genernal?
In order to answer this question, we consider the quantity c(r) for a Riemannian

manifold (M, g). Let 0 ∈ M, and δ〉0 be a small number such that exp0 is a diffeomor-
phism on B(0, δ) ⊂ T0M.

Consider the polar coordinate (ρ, θ) in T0M. Then for any fixed r, r̃(θ) = (r, θ) is a
curve in T0M. d

dθ (r, θ) is the velocity field along r̃(θ).
Let r < δ, we have

c(r) =

∫ 2π

0
〈d exp

0
(

d
dθ

(r, θ)), d exp
0

(
d
dθ

(r, θ)) > dθ

So, for our purpose, we have to explore the interaction between the norm of d exp0( d
dθ (r, θ))

and the curvature of (M, g). Note that Rn � T0M 3 ~p = (r, θp), if we write

d exp
0

(
d
dθ

(r, θ)) = d exp
0

(~p)(
d
dθ

).

In order to calculate its norm, we first observe it can be extended to be a variational
field of a geodesic variation of

γ(t) = exp
0

t
r
~p, t ∈ [0, r].

In fact, we pick

F : [0, r] × (−ε, ε)→ M, (t, s) 7→ exp
0

t
r

(~p + s
d
dθ

).
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We observe that F(t, 0) = γ(t), and ∂F
∂s (t, 0) = ∂

∂s |s=0 exp0
t
r (~p + s d

dθ ) is the variational
field along γ. In particular

∂F
∂s

(r, 0) =
∂

∂s
|s=0 exp

0
(~p + s

d
dθ

)

=d exp
0

(~p)(
d
dθ

)

=d exp
0

(
d
dθ

(r, θ)).

In order to calculate ∂F
∂s (r, 0),we calculate the whole variational field. V(t) = ∂F

∂s (t, 0), t ∈
[0, r].

Here, we can be slightly more general: consider a general vector X ∈ T~p(T0M) and
the variation

F(t, s) = exp
0

t
r

(~p + sX), t ∈ [0, r], s ∈ (−ε, ε).

Let V(t) := ∂F
∂s (t, 0) be the geodesic variational field along γ.

To calculate V(t), t ∈ [0, r], we derive the equations it satisfies:

∇̃ ∂
∂t
∇̃ ∂

∂t

∂F
∂s

=∇̃ ∂
∂t
∇̃ ∂

∂s

∂F
∂t

=∇̃ ∂
∂s
∇̃ ∂

∂t

∂F
∂t

+ ∇̃ ∂
∂t
∇̃ ∂

∂s

∂F
∂t
− ∇̃ ∂

∂s
∇̃ ∂

∂t

∂F
∂t

=R(
∂F
∂t
,
∂F
∂s

)
∂F
∂t
.

Restricting to the normal geodesic γ, we have

∇T∇T V = R(T,V)T, or ∇T∇T V + R(V,T )T = 0 (*)

Definition 5.2. (Jacobi field), Let γ : [a, b] → M be a geodesic, and T be the velocity
field along γ. If a vector field V along γ satisfies

∇T∇T V + R(V,T )T = 0, (5.3.1)

we call V a Jacobi field(along γ). The equation (5.3.1) is called the Jacobiequation.



5.3. GEODESICS IN RN , S N , HN 123

Choose parallel vector fields Y1, · · · ,Yn along γ which are orthonormal at γ(a), and
hence orthonormal everywhere along γ, then ∃ f i(t) s.t. V(t) = f i(t)Yi(t), and

∇T∇T V + R(V,T )T =
d2 f i(t)

dt2 Yi + f iR(Yi,T )T = 0

⇔〈
d2 f i(t)

dt2 Yi,Y j〉 + 〈 f iR(Yi,T )T,Y j〉 = 0, ∀ j = 1, · · · , n.

⇔
d2 f j

dt2 + f i(R(Y)i,T )T,Y j) = 0, ∀ j = 1, · · · , n.

Hence, V(t) the solution of the above system of second order linear ODE. It will be
determined by its initial conditions V(0) and V̇(0) := ∇̃T V ∈ T0Tγ(0)M. Recall

V(0) =
∂

∂s
|s=0F(t, s)|t=0

=
∂

∂s
|s=0F(0, s) =

∂

∂s
|s=0 exp

0
0 = 0

V̇(0) =∇T V(0) = ∇̃ ∂
∂t

∂F
∂s
|s=0(0, s) = ∇̃ ∂

∂s

∂F
∂t

(0, 0)

=∇̃ ∂
∂t

1
r

(~p + sX).

Note 1
r (~p + sX) is a vector field along the constant curve. By definition of induced

connection, we have

V̇(0) =∇̃ ∂
∂s

(
1
r

(~p + sX)) =
X
r
∈ T0(T0M)

i.e. ḟ i(0)Yi(0) =
X
r

= 〈
X
r
,Yi(0)〉Yi(0)

i.e. ḟ i(0) = 〈
X
r
,Yi(0)〉.

So, in order to solve V(t), where V(r) = d exp0(~p)(X) is what we need, we have solve
f̈ j + 〈R(Yi,T )T,Y j〉 f i = 0, j = 1, · · · , n

f j(0) = 0

ḟ j(0) =
1
r
〈X,Y j(0)〉

(5.3.2)

Next, we come back to the calculation of c(r):

c(r) =

∫ 2π

0
〈d exp

0
(

d
dθ

(r, θ)), d exp
0

(
d
dθ

(r, θ))〉
1
2 dθ

where 
f̈ j + 〈R(Yi,T )T,Y j〉 f i = 0, j = 1, · · · , n

f j(0) = 0

ḟ j(0) =
1
r
〈

d
dθ

(r, θ),Y j(0)〉

(5.3.3)
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In particular, for the cases of R2, S 2, H2. Let Y(t) be a unit parallel vector field along
γ s.t. 〈Y(t),T (t)〉 = 0, ∀t.

By Gauss’s lemma, d
dθ (t, θ), t ∈ [0, r] is vertical to the radial geodesic at everywhere

t. In fact, the variational field V(t) along γ is perpendicular to γ everywhere.(by First
variational formula.) So, we can write

V(t) = f (t)Y(t).

Then the equation (5.3.2) become
f̈ + 〈R(Y,T )T,Y〉 f = 0
f (0) = 0

ḟ (0) =
1
r
〈

d
dθ

(r, θ),Y(0)〉 =
1
r
|

d
dθ

(r, θ)| = 1

(5.3.4)

Recall we have constant sectional curvature in R2, S 2, H2. Therefore, we need solve
f̈ + K f (t) = 0
f (0) = 0

ḟ (0) = 1

(5.3.5)

The solution is given by

f (t) =


t, K = 0
sin t, K = +1
sinh t, K = −1

(5.3.6)

Therefore, we recover the results: 
c0(r) = 2πr

c+(r) = 2π sin r

c−(r) = 2π sinh r
(5.3.7)

Therefore, (**) establish the relations between c(r) and the curvature.

5.4 What is a Jacobi field?
We have already seen the definition of Jacobi fields . Now, we want to understand this
concept further.

As we have explained, it is a solution of a system of second order ODE:

d2 f j

dt2 + f i〈R(Yi,T )T,Y j〉 = 0, j = 1, · · · , n.

and Y1, · · · ,Yn are parallel orthonormal vector fields along γ. And the Jacobi field is
given by V(t) = f i(t)Yi(t).
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Proposition 5.4. Let γ : [a, b]→ M be any geodesic.
(1) Given V,W ∈ Tγ(a)M, there exists a unique Jacobi field U(t), t ∈ [a, b] such that

U(0) = V, ∇̃ ∂
∂t

U(t) := U̇(0) = W.
(2) The linear space of all Jacobi fields along γ is of 2n dim’l.
(3) The zero points of a Jacobi field U along γ are discrete, if U is not identically 0

along γ.

Proof. (1),(2) follows directly from the theory of 2nd linear ODEs. Given U(0), U̇(0),
the 2nd order linear ODE has a unique solution.

For (3), assume the zero points are not discrete. Then there is an accermulated point
γ(t0). Then U(t0) = 0, and

U̇(0) = ∇̃ ∂
∂t

( f i(t)
∂

∂xi ) =
d f i

dt
(t0)

∂

∂xi + f i(t0)∇̃ ∂
∂t

(t0)

pick (xi) to be the normal coordinate around t0, then

U̇(t0) =
d f i

dt
(t0)

∂

∂xi = 0.

Then U is identically zero along γ � �

From our discussion in section 5.3, we have seen that the variational dield odf a
geodesic variation of a geodesic γ is a Jacobi field along γ. In fact, the converse also
hold.

Proposition 5.5. Let γ : [a, b] → M be a geodesic and U be a vector field along γ.
Then U is a Jacobi field if and only if U is the variational field of a geodesic variation
of X.

Proof. (⇐) The calculations in the end of !!! proves this directions.
(⇒) Let U be a Jacobi field along γ. Let β : (−ε, ε)→ M be the geodesic withβ(0) = γ(0)

β̇(0) = U(0)
(5.4.1)

We put

F : [0, b] × (−ε, ε)→ M, (t, s) 7→ exp
β(s)

t(V(s) + sW(s)).
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where V,W are parallel vector fields along β with

V(0) = γ̇(0), W(0) = U̇(0) = ∇̃ ∂
∂t

U(0).

Then
F(t, 0) = exp

β(0)
tV(0) = exp

γ(0)
tγ̇(0) = γ

and F(t, s) = expβ(s) t(V(s) + sW(s)) are all geodesics for s ∈ (−ε, ε). That is F is a
geodesic variation of γ. Therefore its variational field

Y(t) =:
∂F
∂s

(t, 0) =
∂F
∂s

(t, s)|s=0

is a Jacobi field. Meanwhile, we have

Y(0) =
∂

∂s
|s=0F(0, s) =

∂

∂s
|s=0 exp

β(s)
0 = β̇(0) = U(0)

and

Ẏ(0) =∇̃ ∂
∂t

∂

∂s
F(t, s)|s=0

=∇̃ ∂
∂s

∂

∂t
F(t, s)|s=0

=∇̃ ∂
∂s

(V(s) + sW(s))|s=0

=W(0) = U̇(0).

Then Proposition 5.4(1) implies that U = Y . thqat is U is the variational field of
F. � �

Remark 5.3. We summarize what we learned about Jacobi fields up to now:
(1) Let β : (−ε, ε) → M be a curve, V(s), W(s) are parellel vector fields along β.

Then the family of geodesics

γs(t) := exp
β(s)

t(V(s) + sW(s))

leads to a geodesic variation F(t, s) := γs(t) whose variational field along γ0(t) is a
Jacobi field U(t) with

U(0) = β̇(0), U̇(0) = W(0).

In particular, when β(s) = p ∈ M is a constant curve, we have.
(2) The 1-parameter family of geodesics

γs(t) = exp
0

t(V + sW), V, W ∈ TpM

gives the Jacobi field U(t) along γ0 with

U(0) = β̇(0) = 0, U̇(0) = W.
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Since TpM is an inner product space, we can restrict 〈V,W〉 = 0. Then, we have
(3) The 1-parameter family of geodesics

γs(t) = exp
p

t(V + sW), 〈V,W〉 = 0

givea a “normal Jacobi field” U(t) with U(0) = 0, U̇(0) = W, and 〈U(t), γt0(t)〉 =

0, ∀t.
Observe 〈tW, tV〉 = 0. Recall the Gauss lemma we derived from the First variation

formula, we have, since U(t) is the variational fields, 〈U(t), γ̇0(t)〉 = 0. �

We will se later that normal Jacobi fields with U(0) = 0 are very important for any
further investigation.

Relations with the SVF:
Recall for proper variations of a geodesic γ, we have

∂2

∂v∂w
|(0,0)E(v,w) = I(V,W) =

∫ b

a
〈∇T W,∇T W〉 − 〈R(W,T )T,V〉dt.

Observe that T (V,W) is bilinear. I(V,W) is also symmetric since E is C∞ in (u,w).
Resturning to the original problem: to determine whether a geodesic is (locally)

minimizing. For that purpose, we hope to decide whether det( ∂2

∂v∂w )|(0,0)E(v,w) is
positive or not. We will see the existance of Jacobi field(vanishing at the two ends
γ(a), γ(b)) will be an obstruction.

Proposition 5.6. Let γ : [a, b] → M be a geodesic and U be a vector field along γ.
Then U is a Jacobi field if and only if

I(U,Y) = 0

for all vector fields Y along γ with Y(a) = Y(b) = 0.

Proof.

I(U,Y) =

∫ b

a
〈∇T U,∇T Y〉 − 〈R(U,T )T,Y〉dt

=

∫ b

a
〈−∇T∇T U,Y〉 − 〈R(U,T )T,Y〉dt

since ∇ is compatible with g and Y(a) = Y(b) = 0.

=

∫ b

a
〈−∇T∇T U − R(U,T )T,Y〉dt

for all Y with Y(a) = Y(b) = 0.
Therefore ∇T∇T U + R(U,T )T = 0 holds by the fundamental lemma of the calculus

of variatiuons. � �
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Proposition 5.7. Let γ : [a, b] → M be a geodesic and U be a vector field along γ.
Then U is a Jacobi field if and only if it is a critical point of I(X, X) w.r.t. all variations
with fixed endpoints, i.e.

d
ds
|s=0I(X + sY, X + sY) = 0

for all vector fields Y along γ with Y(a) = Y(b) = 0

Proof. We compute

d
ds
|s=0I(X + sY, X + sY) == 2I(X,Y).

Then Proposition 5.6 follows directly from Proposition 5.5. �

Remark 5.4. The Jacobi equation is the Euler-Lagrange equation for I(X) = I(X, X).
In fact, one can consider the second variation for each critibal point os a variational
problem. The second variation then is a quadratic integral in the variation fields,
and the second variation may be considered as a new variational problem. This new
variational problem is called accessary variational problem of the original one.

5.5 Conjugate Points and ,Minimizing Geodesics
From Proposition 5.5, we see that if there exists nonzero Jacobi field U along the
geodesic γ : [a, b] → M with U(a) = U(b) = 0, then I(U,U) = 0, i.e. I is not positive
definite, and hence γ|[a,b] may not be strictly local minimizing. This phenomena can
be observed explicitly. For any semicircle from the north pole p to the south pole q, ∃
nonzero Jacobi field U along it with U(a) = U(b) = 0, each semicircle has the same
length π.

Definition 5.3. (Conjugate points) Let γ : [a, b]→ M be a geodesic. For t0, t1 ∈ [a, b],
if there exists a Jacobi field U(t) along γ that does not vanish identically, but satisfies

U(t0) = U(t1) = 0

then t0, t1 are called conjudate values along γ. The multiplicity of t0 and t1 as con-
jugate values is defined as the dimensions of the vector space consisting of all such
Jacobi fields. We also say γ(t0), γ(t1) are conjugate points of γ.(This terminology is
ambiguous when γ has self-intersetions).

Recall a Jacobi field U is determined by its initial values U(t0), U̇(t0) at any point
to. Hence, the multiplicity of two conjugate values t0, t1 is clearly ≤ n. Actually, it is
≤ n − 1. This is because a Jacobi field which is tangent to γ and vanish at to will not
vanish at t1.

Proposition 5.8. Let γ : [a, b]→ M be a geodesic with velocity field T (t) = γ̇(t).
(1) The vector field f T along γ is a Jacobi field if and only if f is linear.
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(2) Every Jacobi field U along γ can be written uniquely as

f T + U⊥,

where f is linear and U⊥ is a Jacobi field prependicular to γ.
(3) If a Jacobi field U along γ is prependicular to γ at two points t0 and t1, then

U is prependicular to γ everywhere. In particular, if U(t0) = U(t1) = 0, then U is
perpendicular to γ everywhere.

Proof. (1) f T is a Jacobi field⇒

0 = ∇T∇T ( f T ) = R( f T,T )T = f ′′(t)T.

Hence f is linear.
(2) Let U be a Jacobi field along γ, we can write U = f T + U⊥ for some f and

some U⊥ with 〈U⊥,T 〉 = 0.
U is Jacobi⇒ 0 = ∇T∇T ( f T + U⊥) + R( f T + U⊥,T )T = f ′′T + ∇T∇T U⊥ +

R(U⊥,T )T.
In particular, we have

0 = f ′′T + 〈∇T∇T U⊥,T 〉 + 〈R(U⊥,T )T,T 〉.

By symmetry, 〈R(U⊥,T )T,T 〉 = 0.

0 = 〈U⊥,T 〉 ⇒0 =
d
dt
〈U⊥,T 〉 = 〈∇T U⊥,T 〉

⇒0 =
d
dt
〈∇T U⊥,T 〉 = 〈∇T∇T U⊥,T 〉

Hence 0 = f ′′ and
∇T∇T U⊥ + R(U⊥,T )T = 0,

i.e. U⊥ is a Jacobi field. Uniqueness is obvious.
(3) Write U = f T + U⊥. When 〈U(t0),T 〉 = 〈U(t1),T 〉 = 0 implies f (t0) = f (t1) =

0. Recall f is linear, we have f ≡ 0. Therefore U = U⊥. � �

Proposition 5.9(3) shows that for the purpose of investigating conjugate values, we
need consider only normal Jacobi fields.

Conjugate points play an important role in the study of local minima for length. A
geodesic γ : [a, b]→ M can not locally minimizi length if ∃τ ∈ (a, b) conjugate to a.

Intuitive arguement:

γ(τ) conjugate to γ(a), ∃ a geodesic η from γ(a) to γ(τ) with nearly the same length
as γ|[0,τ].
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Then η followed by γ|[τ,b] has nearly the same length as γ. By the first curve has a
corner, and can be shorten by replacing the corner with a minimal geodesic. Therefore
γ is not a minimizing curve.

In fact we have the following theorem of Jacobi.

Theorem 5.4. (Jacobi) Let γ : [a, b]→ M be a geodesic from p = γ(a) to q = γ(b).
(1) If there is no conjugate points of p along γ, then there exists ε > 0 so that for

any piecewise smooth curve c : [a, b] → M from p to q satisfying d(γ(t), c(t))〈ε, we
have

L(c) ≥ L(γ)

with equality holds if and only if c is a reparametrization of γ.
(2) If there exists t ∈ (a, b) so that q = γ(t) is a conjugate point of p, then there is a

proper variation of γ so that

L(γs) < L(γ)

for any 0 < |s| < ε.

The above results are direct consequences of the corresponding properties of index
forms, which will be discussed in the next subsection,

Next, we derive a characterization of the conjugate points in terms of critical point
of the exponential map.

Theorem 5.5. Let γ : [0, 1]→ M be a geodesic with γ(0) = p ∈ M and γ̇ = V ∈ TpM,
so that γ can be described as

t 7→ exp
p

tV.

Then 0 and 1 are conjugate values for γ if and only if V is a critical points of expp .
Moreoverm the multiplicity of the conjugate values 0 and 1 is the dimension of the
kernel of d expp : TV (TpM)→ Tγ(1)M.

Proof. “⇐” Supposs that V ∈ TpM is a critical point for expp. That is 0 = d expp(V̇)(X)
for some nonzero X ∈ TV (TpM). Let c be a path in TpM with c(0) = V, ċ(0) = X.

We put

F(t, s) = exp
p

t(c(s)), t ∈ [0, 1].

Then F(t, 0) = expp tV = γ, and γs(t) = expp tc(s) is a geodesic. That is, F is a
geodesic variation of γ. So the variational field

U(t) :=
∂

∂s
|s=0 exp

p
tc(s)

is a Jacobi field along γ. We compute U(0) = ∂
∂s |s=0 expp 0 = 0, and U(1) = ∂

∂s |s=0 expp c(s) =

d expp(c(s))(ċ(0)) = d expp(V̇)(X) = 0. Next, we hope to show U is not identically
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zero. This is because

U̇(0) =∇̃ ∂
∂t

U(t)|t=0 = ∇̃ ∂
∂t
|t=0

∂

∂s
|s=0 exp

p
t(c(s))

=∇̃ ∂
∂s
|s=0

∂

∂t
|t=0 exp

p
tc(s) = ∇̃ ∂

∂s
|s=0c(s)

(the covariant derivative o f the vector f ield s 7→ c(s) along the constant curve s 7→ p)
=ċ(0) = X , 0.

Therefore, we show 0 and 1 are conjugate values for γ.
(“⇒”) We argue by contridiction. Suppose V is not a critical point for expp . If

X1, · · · , Xn ∈ TV (TpM) are m linearly independent vectors, then d expp(V)(X1), · · · , d expp(V)(Xn) ∈
Tγ(1)M are linearly independent. Choose paths c1, · · · , cn in TpM withci(0) = V

ċi(0) = Xi, i = 1, · · · , n,
(5.5.1)

And F(t, s) := d expp tc1(s) are geodesic variation of γ with variational fields Vi(t). The
Vi are Jacobi fields along γ which vanish at 0. Moreover, the Vi(1) := d expp(V)(Xi)
are independent, so no nontrivial linear combination of the Vi can vanish at 1. Since
the vector space of Jacobi fields along γ which vanish at 0 has dimension exactly n, it
follows that no nonzero Jacobi field along γ vanishes at 0 and also at 1. � �

5.6 Index forms
In this section, we discuss the minimizing property of a geodesic via Index forms: For
that purpose, we need consider a piecewise C∞ proper variation of a geodesic γ. That
is, we compare the length of a geodesic γ : [a, b]→ M with the length of any piecewise
C∞ curve from γ(a) to γ(b). The corresponding variational field of γ is then a piecewise
C∞ vector field along γ. Recall our calculations for the second variation formula(SVF),
the result is the same as the case of smooth variation:

∂2

∂v∂w
|(v,w)=(0,0)E(v,w) = 〈∇WV,T 〉|ba +

∫ b

a
〈∇T V,∇T W〉 − 〈R(W,T )T,V〉dt,

where 〈∇WV,T 〉
∫ b

a = 0 when the variation is proper.

Definition 5.4. (Index form) The index form of a geodesic γ is

I(V,W) =

∫ b

a
(〈∇T V,∇T W〉 − 〈R(W,T )T,V〉)dt

where V,W are two piecewise smooth vector fields along γ.

Remark 5.5. (1) If V,W are C∞ on each [ti, ti+1] where

a = t0 < t1 < · · · < tn < tn+1 = b
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is a subdivision of [a, b]. Then by integration by parts,

I(V,W) =

∫ b

a
〈∇T V,∇T W〉 − 〈R(W,T )T,V〉dt

=

k∑
i=0

〈V,∇T W〉|ti+1
ti +

∫ b

a
〈−∇T∇T W,V〉 − 〈R(W,T )T,V〉dt

⇒ I(V,W) = −

∫ b

a
〈∇T∇T W + R(W,T )T,V〉dt + 〈∇T W,V〉|ba

−

k∑
j=1

〈∇T (t+j )W − ∇T (t−j )W,V〉. (5.6.1)

(2) Note for a proper variation

∂2

∂v∂w
|(v,w)=(0,0)E(v,w) = I(V,W).

LetV := the set of all piecewise smooth vector fields along γ : [a, b]→ M, and

V0 = {x ∈ V|X(a) = 0, X(b) = 0}.

We need extend Proposition 5.6 to piecewise smooth vector fields.

Proposition 5.9. Let γ : [a, b] → M be a geodesic and U ∈ V. Then U is a Jacobi
field if and only if I(U,Y) = 0, ∀Y ∈ V0.

Proof. Note that, comparing with Proposition 5.6, we here have U ∈ V may be piece-
wise smooth, and so does Y . However, a Jacobi field is smooth. (The result and proof
here is very much similar in sprit to the characterization of geodesic.(see previous exer-
cise); A piecewise smooth curve c is a geodesic if and only if, for every proper variation
Fof c, we have E′(0) = 0.)

(⇒) If U is a Jacobi field, then I(U,Y) = 0, ∀Y ∈ V0

I(U,Y) =

∫ b

a
(〈∇T U,∇T Y〉 − 〈R(Y,T )T,U〉)dt

Remark(1)
= −

∫ b

a
〈∇T∇T U + R(U,T )T,Y〉dt + 〈∇T U,Y〉|ba

−

k∑
j=1

〈∇T (t+j )U − ∇T (t−j )U,Y〉.

Y ∈ V ⇒ 〈∇T U,Y〉|ba = 0

U is smooth⇒
k∑

j=1

〈∇T (t+j )U − ∇T (t−j )U,Y〉 = 0

U is Jacobi
= 0
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(⇐) Assume I(U,Y) = 0, ∀Y ∈ V0. Let f : [a, b]→ R be a smooth function s.t.

f (ti) = 0, i = 0, · · · , k + 1

and f 〉0 otherwise. Set W = U, V = Y = f (∇T∇T U + R(U,T )T ). Note that Y is
well-defined and Y ∈ V0.

Therefore

0 = T (U,Y) = −
∑

i

∫ ti+1

ti
f (t)|∇T∇T U + R(U,T )T |2dt.

Hence, we have ∇T∇T U + R(U,T )T = 0 on each [ti, ti+1].
That is, “piecewisely”, U is a Jacobi field. (∗)
Next, for any j = 1, · · · , k, let Y ∈ V0 s.t.Y(t j) = 0, ∀i , j

Y(t j) = ∇T (t+j )U − ∇T (t−j )U
(5.6.2)

Then 0 = I(U,Y) = |∇T (t+j )U − ∇T (t−j )U |2.
Hence ∇T (t+j )U = ∇T (t−j )U.
Therefore U is a C1 vector field along γ. Combining with the fact (*) and using the

uniqueness of Jacobi fields with given initial data, we conclude U is the Jacobi field on
[a, b]. � �

Recall our previous discussions about SVF, we say the property “γ is loccaly min-
imizing” is equivalent to “I(V,V) = 0, ∀0 , V ∈ V0”. Since I(V,W) is a biliear,
symmetric from on the vector space V0, the later condition is equivalent to say “I is
positive definite onV0”.

To illustrate the idea, we can compare the index form with the Hessian of a function
f : Rn → R. Consider a curve ξ in Rn, with ξ(0) ∈ Rn. Then the second order derivative
of f along ξ is d2

ds2 f (ξ(s)). Hessian of f valued at the vector ξ̇(0) is

d2

dt2 f (ξ(s))|s=0 = Hess f (ξ̇(0), ξ̇(0)).

In particular d2

ds2 f (ξ(s))|s=0 only depends on ξ̇(0). Once we know d2

ds2 f (ξ(s))|s=0, ∀ξ,
then we have Hess f (v, v) for any v, and hence

Hess f (v,w) =
1
2

(Hess f (v + w, v + w) − Hess f (v, v) − Hess f (w,w)).

Analogously, we replaceRn by the space ℘ of all curves c : [a, b]→ M. Given a “point”
of ℘, i.e. a curve γ ∈ ℘, consider a “curve” through it, i.e. a 1-parameter family of
curves {γs}. Let E be a function E : ℘→ R. The restriction R ◦ γs := E(s), and

d2

ds2 E(γs)|s=0 =
d2

ds2 E(s)|s=0 = “ Hess E〈V(t),V(t)〉′′.
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By polaritation, one have “Hess E(V,W)”, the Hessian of E on the “Hilbert space of
curves”. All formal discussion here can ve made rigorous,

In particular, when considering ℘0 of all curves c : [a, b] → M s.t. c(a) =

γ(a), c(b) = γ(b), the “Hessian of E” is given by the index form.
Next, our aim is discuss the relation between Algeraic properties of the index form

of the geodesic γ and Minimizing properties of the geodesic γ. Given a normal geodesic
γ : [a, b] → M, we can imagine the end point γ(b) move from γ(a) slowly to γ(b).
When |b − a| is small enough, γ|[a.b] is minimizing, hence we can expect I is positive
definite onV0.

By the rough idea we explained before Theorem 5.4, when |b− a| is large, s.t. there
is a conjugate value of a in (a, b), γ|[a,b] is not(locally) minimizing, then we can expect
∃ X s.t. I(X, X) < 0.

In the case of a and b are conjugate values of γ, we have from Proposition 5.6, for
any Jacobi field U along γ with U(a) = U(b) = 0, we have I(U,U) = 0.

Theorem 5.6. Let γ : [a, b]→ M be a geodesic from p = γ(a) to q = γ(b).
(1) p = γ(a) has no conjugate point along γ⇔ the index form I is positive definite

onV0.

(2) q = γ(b) is a conjugate point of p along γ, and ∀t ∈ (a, b), γ(a) and γ(t) are
not conjugate point.(i.e. q is the first conjugate point of p)⇔I is positive semidefinite
but not positive definite onV0.

(3) ∃ t ∈ (a, b), s.t. p = γ(a) and q = γ(t) are conjugate points⇔I(X, X) < 0 for
some X ∈ V0

Remark 5.6. Theorem refz.23 tells if γ(a) has no conjugate point along γ|[a,b], then
for any [a, β] ⊂ [a, b], (α < β), γ(α) also has no conjugate point along γ|[α,β]. Since
otherwise, let J̃ be a nonzero Jacobi field along γ|[α,β] with J̃(α) = 0 = J̃(β). Let I s

r be
the index form of γ|[r,s]. Then let J|[a,α] ≡ 0 ≡ J|[β,b], J|[α,β] = J̃.

Ib
a (J, J) = Iαa (0, 0) + Iβα(J̃, J̃) + Ib

β(0, 0) = Iβα(J̃, J̃) = 0.

Hence (1) tells, p = γ(a) does have a conjugate along γ|[a,b]. �

To show Theorem 5.6(1), we first prove the following useful Lemma.

Lemma 5.1. Let γ : [a, b]→ Mn be a geodesic, and γ(1) has no conjugate point along
γ. Then for any Va ∈ Tγ(a)M and Vb ∈ Tγ(b)M, there exists a unique Jacobi field U such
that

U(a) = Va, U(b) = Vb.

Proof. By proposition 5.4(2), the vector space of all Jacobi fields along γ is of dimen-
sion 2n. Let `′ be the subspace of Jacobi fields U with U(a) = Va. Then dim `′ = n.
Note that Tγ(b)M is also a vector space with dim Tγ(b)M = n. In fact, the linear trans-
formation

A : `′ → Tγ(b)M, U 7→ U(b)

is injective. This is because if we have U1, U2 ∈ `
′ s.t. U1(b) = U2(b).
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Then U1 − U2 is again a Jacobi field along γ, we check

U1 − U2(a) − 0, U1 − U2(b) = 0.

Since γ(a) and γ(b) are not conjugate points, we have U1 − U2 ≡ 0. Therefore A is
injective, and hence, an isomorphism,

Proof of (1):
(⇒) Let {γ̇(b), E2, · · · , En} be an orthonormal basis of Tγ(b)M. From Lemma 1, ∃!

Jacobi field Ji along γ s.t.

Ji(0) = 0, Ji(b) = Ei, i = 2, · · · , n.

Moreover, Proposition 5.9(3) tells 〈Ji(t), γ̇(t)〉 = 0, ∀t ∈ [a, b]. By the arguement in the
proof of Theorem ??, {Ji(t)} are linearly independent in any Tγ(t)M.

For any U ∈ V0, note

I( f γ̇(t), f γ̇(t)) =

∫ b

a
〈 ḟ (t)γ̇(t), ḟ (t)γ̇(t)〉dt ≥ 0,

and “ =′′⇒ f ≡ 0. Only consider U = f iJi for some functions f i s.t. f i(a) = f i(b) = 0.
Next, we compute

I(U,U) =

∫ b

a
〈∇T ( f iJi),∇T ( f jJ j)〉 − 〈R( f iJi,T )T, f jJ j〉dt

=

∫ b

a
〈 ḟ iJi, ḟ jJ j〉dt +

∫ b

a
〈 ḟ iJi, f j∇T J j〉 +

∫ b

a
〈 f i∇T Ji, ḟ jJ j〉

+

∫ b

a
f i f j〈∇T Ji,∇T J j〉dt −

∫ b

a
f i f j〈R(Ji,T )T, J j〉dt.

S uppose C =

∫ b

a
〈 f i∇T Ji, ḟ jJ j〉, D =

∫ b

a
f i f j〈∇T Ji,∇T J j〉dt

E =

∫ b

a
f i f j〈R(Ji,T )T, J j〉dt

Observe that

D =

∫ b

a
f i f j〈∇T Ji,∇T J j〉dt

=

∫ b

a
{

d
dt

( f i f j〈∇T Ji, J j〉) − ḟ i f j〈∇T Ji, J j〉 − f i ḟ j〈∇T Ji, J j〉 − f i f j〈∇T∇T Ji, J j〉}dt

= f i f j〈∇T Ji, J j〉|
b
a −

∫ b

a
ḟ i f j〈∇T Ji, J j〉 −C + E

= −

∫ b

a
ḟ i f j〈∇T Ji, J j〉 −C + E

In fact, 〈∇T Ji, J j〉 = 〈Ji,∇T J j〉. This is because

〈∇T Ji, J j〉 − 〈Ji,∇T J j〉|t=0 = 0 (since Ji(0) = J j(0) = 0)
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and

d
dt

(〈∇T Ji, J j〉 − 〈Ji,∇T J j〉) = 〈∇T∇T Ji, J j〉 − 〈Ji,∇T∇J j〉

= − 〈R(Ji,T )T, J j〉 + 〈R(Ji,T )T, Ji〉 = 0, ∀t.

Therefore D = −B −C + E, and hence

I(U,U) =

∫ b

a
〈 ḟ iJi, ḟ jJ j〉dt ≥ 0.

Moreover

“ =′′ holds⇔
ḟ i = 0

f i(0) = 0 = f i(b)

⇔ f i = 0⇔ U = 0. (5.6.3)

This proves the positive definiteness of I onV0. �
Proof of (2):
(⇒) Choose any c ∈ (a, b). Pick a parallel orthonormal vector fields {γ̇(t), E2(t), · · · , En(t)}.

Then any U ∈ V0 = V0(a, b),

U(t) =

n∑
i=2

f i(t)Ei(t)

for some functions f i with f i(a) = f i(b) = 0.
Define τ : V0(a, b)→V0(a, c) by

τ(V)(t) =

n∑
i=2

f i(a +
b − a
c − a

(t − a))Ei(a +
b − a
c − a

(t − a)) = .

By Theorem ??(1), we know Ic(τ(V), τ(V)) > 0. We can check by definition that

lim
c→b

Ic(τ(V), τ(V)) = I(V,V) =

∫ b

a
( ḟ i)2 − f i f j〈R(Ei,T )T, E j〉dt ≥ 0.

Hence I is positive sedefinite, since for any nonzero Jacobi field U with U(a) = U(b) =

0, we have I(U,U) = 0. �
Proof of (3):
(“⇒”) Let t is conjugate to a along γ, and there is a nonzero Jacobi field J along γ

s.t. J(a) = J(t) = 0. Let J̃ be the vector field along γ with

J̃(t) = J(t), a ≤ t ≤ t

J̃(t) = 0, t ≤ t ≤ b

Notice that the discontinuity of ∇̃ ∂
∂t

J̃ − ∇T J̃ since

∇T (t+) J̃ − ∇T (t−) J̃ = −∇T (t−) J̃ , 0.

(Otherwise, together with J̃(t) = 0, this implies J̃ ≡ 0.)
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Choose a vector field along γ which satisfies

U(a) = 0 = U(b), 〈U(t),∇T (t+) J̃ − ∇T (t−) J̃〉 = −1.

Define the vector field along γ

X :=
1
c

J̃ − cU,

where c is a small number.
Then I(X, X) = 1

c2 I(J̃, J̃) − 2I(J̃,U) + c2I(U,U), where

I(J̃, J̃) = 0 since J̃ ∈ V0(a, b).

I(J̃,U) = −〈U(t,∇T (t+) J̃ − ∇T (t−) J̃)〉 = 1.

Hence I(X, X) = −2 + c2I(U,U).
For sufficiently small c, this is < 0. �
(1)⇐)follows from (2)⇒(3)⇒.
Similarly, (2)(⇐), (3)⇐ are proved. � �

Let us mention a very useful lemma. Recall in Proposition 5.7, we have shown a
Jacobi field U is the critical point of I(X, X).

Lemma 5.2. (Minimizing property of Jacobi field) Let γ : [a, b] → M be a geodesic
without conjugate points, U be a Jacobi field along γ, and X a piecewise C∞ vector
field along γ with

X(a) = U(a), X(b) = U(b).

Then I(U,U) ≤ I(X, X) where “=” holds iff X = U.

Proof. From (5.6.1), we see for any piecewise C∞ vector field W along γ, we have

I(U,W) = 〈∇T U,W〉|ba.

Since X − U ∈ V0(a, b), Theorem ??(1)(⇒) tells

0 ≤I(X − U, X − U) = I(X, X) + I(U,U) − 2I(X,U)

=I(X, X) + 〈∇T U,U〉|ba − 2〈∇T U, X〉|ba
=I(X, X) − 〈∇T U,U〉|ba
=I(X, X) − I(U,U)

If I(X, X) = I(U,U), we have I(X − U, X − U) = 0.
Therefore Theorem ??(1) tells X − U = 0. � �

Remark 5.7. In the case, we derive Lemma 5.6.2 from Theorem ??(1)(⇒). In face, the
converse is also true.

In fact, the results in Theorem?? can be pushed forward much further to the cele-
brated Morse index Theorem.

We particularly observe that for a geodesic γ : [a, b] → M γ(a) has a conjugate
point in (a, b)⇔ ∃X ∈ V0(a, b), I(X, X) < 0.
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Definition 5.5. (index and nullity of γ). We call for a geodesic γ : [a, b]→ M

ind(γ) = max dim{A ⊂ V0|I is negatively de f inite on the subspaceA}

the index of γ.
We call

N(γ) = dim{X ∈ V0|I(X,Y) = 0, ∀Y ∈ V0}

the nullity of γ.

Remark 5.8. In fact, N(γ) is equal to the multiplicity of a and b as conjugate values.
If γ(b) is not conjugate to γ(a), then N(γ) = 0.

In this language, Theorem ??(3) can be restated as

∃ t s.t. N(γ|[a,t]) ≥ 1⇔ index(γ) ≥ 1.

A far-reaching generalization is the following celebrated Theorem.

Theorem 5.7. (Morse index Theorem:) The index of γ : [a, b] → M is the number
of t ∈ (a, b) which are conjugate to a, each conjugate value being counted with its
multiplicity. The index is always finite. That is

ind(γ) =
∑

a<t<b

N(γ|[a,t]) < ∞.

In particular, γ(a) has only finite many conjugate points along γ.

For the proof, one need to show the index of γ increases by at least v as t passes
a conjugate value t with multiplicity v. This can be handled by essentially the same
trick which was used in the proof of Theorem ??(3). We refer to [WSY, Chapter 9] for
details of proof.(see [JJ, section 4.3] for an analytic proof!!)

It is a good point to reflect our proof of Bonet-Myers Theorem. We show that if
sectionalcurvature ≥ k〉0, for a geodesic γ of length l > π

√
k
, we have for

V(t) = sin(
π

l
t)E(t)

where E(t) is a parallel vector field along γ,

I(V,V) = 0.

Note when l = π
√

k
, sectional curvature=k > 0

V(t) = sin(
√

kt)E(t)

is a Jacobi field along γ.(Exercise)
In particular, when sectional curvature = k > 0, a geodesic γ of length l > π

√
k

contains at least a conjugate point of γ(0). Hence ind(γ) ≥ 1, and γ is not (locally)
minimizing.
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The proof of Bonnet-Myers tells when sectional curvature ≥ k, a geodesic of
length l > π

√
k

also contains at least a conjugate point, and ind(γ) ≥ 1.
On the other hand, if sectional curvature = 0 or sectional curvature = −k, k >

0, the Jacobi field along γ with J(0) = 0 are linearly combinations of dtE(t) and
d sinh(kt)E(t) which will never vanish anywhere other than 0. Hence γ does not contain
conjugate points. In fact, this is true for the case sectional curvature ≤0. This is the
our next topic.

5.7 The proof of Morse index theorem

Recall we have I( f T, f T ) =
∫ b

a ( ḟ )2dt ≥ 0, “ =′′⇔ f ≡ 0. And

I( f T,U) = 0, ∀U ∈ V0(a, b), 〈U,T 〉 = 0.

So we can restrict ourself to the subspace

V⊥0 (a, b) := {X ∈ V0(a, b)|〈X,T 〉 = 0}

when studying index and nullity of γ.
For simplicity, let’s take (a, b) = (0, 1). Firstly,we show ind(γ) < ∞:
We first explain that we can find a finite-dim subspace T − 1 of V⊥0 (0, 1) s.t. the

index, nullity of I do not change when restricting to T1.
By considering the open covers of γ|[0,1] by the totally normal neighborhood of each

γ(t), t ∈ [0, 1], we can find a finite subdivision, 0 = t0 < t1 < · · · < tk < tk+1 = 1 such
that γ|[ti,ti+1] lies in a totally normal neighborhood Ui. In particular, γ|[ti,ti+1] contains no
conjugate point for each i.

Define:

T1 := T1(1) := {X ∈ V0 : X is Jacobian along each γ|[ti,ti+1], ∀ i = 0, · · · , k}.
T2 := T2(1) := {X ∈ V0 : X(ti) = 0, ∀ i = 0, · · · , k + 1}

Lemma 5.3. we have

(i)V⊥0 (0, 1) = T1

⊕
T2

(ii) I(T1,T2) = 0
(iii) I|T2 is positive de f inite.

Proof. Consider the map

ϕ : T1 → Tγ(t1)M
⊕
· · ·

⊕
Tγ(tk)M, J 7→ (J(t1), · · · , J(tk)).

Clearly, this is a linear map, and 1-1.(Since on γ|[ti,ti+1], J is uniquely determined by
J(ti) and J(ti+1).)

Therefore ϕ is a linear isometry, In particular, dim T1 = nk < ∞.
Given any X ∈ V⊥0 (0, 1). Let JX := ϕ−1(X(t1), · · · , X(tk)). Then we have JX ∈

T1, X − JX ∈ T2.
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Moreover, T1
⋂

T2 = {0} since J(ti) = 0 = J(ti+1)⇒ J ≡ 0 on γ|[ti,ti+1].
This shows (i)V⊥0 (0, 1) = T1

⊕
T2.

For (ii), we have ∀ X1 ∈ T1, X2 ∈ T2

I(X1, X2) = 〈∇T X1, X2〉|
1
0 −

k∑
j=1

〈∇T (t+j )X1 − ∇T (t−j )X1, X2〉 = 0.

For (iii), any X ∈ T2

I(X, X) =

k∑
i=0

Iti+1
ti (Xi, Xi)〉0

� �

By Lemma 5.7.1, we obtain immediately

ind(γ) ≤ dim(T1) ≤ ∞

and the index, nullity of I|T1 equal to ind(γ), N(γ) respectively.

Lemma 5.4. (i) ∀ τ ∈ (0, 1], ∃ δ > 0, s.t. ∀ ε ∈ [0, δ], we have ind(τ − ε) = ind(τ).
(ii) ∀ τ ∈ [0, 1), ∃ δ > 0, s.t. ∀ ε ∈ [0, δ], we have ind(τ + ε) = ind(τ) + N(τ).

Proof. For given τ, we can assume the division we choose previously has the property
that τ ∈ (t j, t j+1).

Define T1(τ) := {X ∈ V⊥0 (0, 1), X|[ti,ti+1] is Jacobian, i = 0, · · · , j−1.X|[t j,τ] is also Jacobian.}.
Similarly, consider

ϕτ : T1(τ)→ Tγ(t1)M
⊕
· · ·

⊕
Tγ(t j)M, X 7→ (X(t1), · · · , X(t j))

is a linear isometry.
Iτ|T1(τ) can be considered as a quadratic form over Tγ(t1)M

⊕
· · ·

⊕
Tγ(t j)M in the

sense
Iτ0(x, y) := Iτ0((ϕτ)−1(x), (ϕτ)−1(y)).

Note ind(τ) is the index of Iτ0 |T1(τ).
Hence ∀ X, Y ∈ T1(τ), denote Xi = X|[ti,ti+1], X j = X|[t j,τ].

Iτ0(x, y) =

j−1∑
i=0

〈∇T Xi,Y〉|
ti+1
ti − 〈∇T X j(t j),Y(t j)〉.

For given division 0 = t0 < t1 < · · · < t j < t j+1 < · · · < tk+1 = 1,

T1(τ) � Tγ(t1)M
⊕
· · ·

⊕
Tγ(t j)M

is a fixed vector space. So when τ changes, only 〈∇T Ẋ j(t j),Y(t j)〉 change in Iτ0(x, y),

where x = (x1, · · · , x j), y = (y1, · · · , y j) ∈
j⊕

i=1
Tγ(ti)M.
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X j and Y are Jacobi field on [t j, τ) with

X j(t j) = x j, X j(τ) = 0

Y(t j) = y j, Y(τ) = 0

By construction, γ|[t j,t j+1] ⊂ U j a totally normal neighborhood.
Hence geodesics lying inside U j depends smoothly on their endpoints.
Since Jacobi fields are variational vector fields geodesic variations, we have X j, Y |[t j,τ]

also depends continuouly on endpoint γ(t j) and γ(τ).
Therefore −〈∇T X j(t j),Y(t j)〉 are smooth w.r.t. τ. That is Iτ0(x, y) is a continuous w.r.t

τ for given x, y. So for x ∈
j⊕

i=1
Tγ(ti)M, Iτ0(x, y) < 0(> 0) implies

∃ δ > 0 s.t. Iτ±ε0 (x, x) < 0, ∀ε ∈ [0, δ].

This tells

ind(τ ± ε) ≥ ind(τ) (5.7.1)
ind+(τ ± ε) ≥ ind+(τ) (5.7.2)

By linear algebraic theory, the linear space T1(τ) can be decomposed into:
� maximal positive definite subspace
� maximal negative definite subspace
� null space {X ∈ T1(τ)|I(X,Y) = 0, ∀ Y ∈ T1(τ)}

n j = dim(
j⊕

i=1
Tγ(ti)M) = ind+(τ) + ind(τ) + N(τ).

Using ind+(τ) = n j − ind(τ) − N(τ), we derive from (5.7.2) that

n j − ind(τ ± ε) − N(τ ± ε) ≥ n j − ind(τ) − N(τ)

i.e.
ind(τ ± ε) ≤ ind(τ) + N(τ) − N(τ + ε) ≤ ind(τ) + N(τ) (5.7.3)

Combining (5.7.1) and (5.7.3) gives

ind(τ) ≤ ind(τ ± ε) ≤ ind(τ) + N(τ) (5.7.4)

For any ξ, t j〈ξ < τ < t j+1, ∀x ∈
j⊕

i=1
Tγ(ti)M, we have

Iξ0(x, x) − Iτ0(x, x) = Iξt j
(X j,ξ, X j,ξ) − Iτt j

(X j,τ, X j,τ)

where X j,ξ is the Jacobi field with X j,ξ(t j) = x j, X j,ξ(ξ) = 0, X j,τ is the Jacobi field with
X j,τ(t j) = x j, X j,τ(τ) = 0.

By minimizing property of Jacobian field, we have

I(X j,τ, X j,τ) ≤ I(X j,ξ, X j,ξ)
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and “=” holds iff X j,τ = X j,ξ ⇔ X j,τ = 0.
That is,

Iτ0(x, x) ≤ Iξ0(x, x),

and “ =′′ holds iff X j,τ = 0
Hence

(i) Iξ0(x, x) < 0⇒ Iτ0(x, x) < 0

(ii)Let x be in the null space o f Iξ0 . Then (ϕξ)−1(x) ∈ V⊥0 (0, ξ) is a Jacobi f ield vanishing at 0 and ξ.

Observe that x j = (ϕξ)−1(x)(t j) , 0. Since otherwise, we have (ϕξ)−1(x)|[t j,ξ] ≡ 0. (γ|[t j,ξ]
contains no conjugate point) and therefore (ϕξ)−1(x)(x) ≡ 0 ⇒ x ≡ 0, contradicting to
x , 0.

Therefore, we have

Iτ0(x, x) < Iξ0(x, x) = 0, ∀ x ∈ the null space o f Iξ0 .

In conclusion, (i)+(iiimplies

ind(τ) ≥ ind(ξ) + N(ξ).

We have
ind(τ) ≤ ind(τ − ε) ≤ ind(τ) − N(τ − ε) ≤ ind(τ).

⇒ ind(τ) = ind(τ − ε).

ind(τ + ε) ≤ ind(τ) + N(τ) ≤ ind(τ + ε).

⇒ ind(τ + ε) = ind(τ) + N(τ). �

Proof pf Morse:
Lemma 4.7.2⇒if γ(τ) is not a conjugate point of γ(0), ∃ δ > 0 s.t. ind(t)|(τ−δ,τ+δ) is

constant.
� If γ(τ) is conjugate to γ(0), ∃ δ > 0 s.t. ind(t)|(τ−δ,τ) is constant and ind(t)|(τ,τ+δ) is

also constant.
And the jump size of ind(t) at t = τ is N(τ).
So when t changes from 0 to 1, ind(t) changes from 0, and jump where τ is con-

jugate value. Since ind(1) < ∞, we know this jump can only happen finitely many
times.
⇒ ind(1) =

∑
0<τ<1

N(τ). �

5.8 Cartan-Hadamard Theorem
Recall in (IV) §5 we have shown that when sec ≤ 0, every geodesic is locally minimiz-
ing. This indicates that no conjugate points exist in this setting.

Proposition 5.10. If all sectional curvature of (M, g) are ≤ 0, the no two points of M
are conjugate along any geodesic.
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Proof. Let γ be a geodesic with velocity field along velocity field T (t) = γ̇(t) it. Let
U(t) be a Jacobi field along γ. Then

∇T∇T U + R(U,T )T = 0.

So 〈∇T∇T U,U〉 = −〈R(U,T )T,U〉 ≥ 0.
Therefore, d

dt 〈∇T U,U〉 = 〈∇T∇T U,U〉 + 〈∇T U,∇T U〉 ≥ 0, that is, 〈∇T U,U〉 is
non-decreasing.

Note that d
dt 〈∇T U,U〉 = 1

2
d2

dt2 〈U,U〉.

That is, we have shown d2

dt2 |U(t)|2 ≥ 0, i.e. |U(t)|2 is convex. So U(t0) = 0 = U(t1)
⇒ U ≡ 0.

�

Remark: In fact, for a normal Jacobi field U(t) with U(0) = 0, define f : (0,∞) →
R by f (t) = |U(t)| = 〈U(t),U(t)〉

1
2 . At the values t with U(t) , 0, we compute

ḟ =
d
dt

f (t) =

d
dt 〈U(t),U(t)〉

2〈U(t),U(t)〉
1
2

=
〈U̇(t),U(t)〉
|U(t)|

f̈ (t) =

(
〈Ü(t),U(t)〉 + 〈U̇(t), U̇(t)〉

)
|U(t)| − 〈U̇(t),U(t)〉 〈U̇(t),U(t)〉

|U(t)|

|U(t)|2

= −
〈U̇(t),U(t)〉2

|U(t)|3
+
|U̇(t)|2

|U(t)|
−

1
|U(t)|

〈R(U,T )T,U〉 (By Cauchy − Schwarz)

≥ −
|U̇(t)|2

|U(t)|
+
|U̇(t)|2

|U(t)|
−

1
|U(t)|

K(U,T )
(
〈U,U〉〈T,T 〉 − 〈U,T 〉2

)
= − K(U,T )|U(t)|.

That is, d2

dt2 f (t) ≥ −K(U,T ) f (t), where f (t) = |U(t)|, and f (0) = 0.
A comparison result: 

f ′′(t) ≥ − β f (t)
f (0) =0

ḟ (0) =1

and 
g′′(t) = − βg(t)
g(0) =0
ġ(0) =1

Then f (t) ≥ g(t). (Use ( f − g)′′ ≥ 0 and ( f − g)(0) = 0 = d
dt ( f − g)(0).)

This is a very useful principle to investigate the geometry of a Riemannian manifold
via its Jacobi field and that of the space form. (Lecture 20. 2017.05.02)
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Theorem 5.8 (Cartan-Hadamard). A complete, simply-connected, n-dimensional Rie-
mannian manifold (M, g) with all sectional curvature ≤ 0 is diffeomorphic to Rn, more
precisely,

expp : TpM → M

is a diffeomorphism.

Remark: In 1898, Hadamard proved such properties for a complete, simply-connected
surface with non-positive Gauss curvature. In 1928, E.Cartan extended it to n-dimensional
Riemannian manifolds. In fact, Hadamard’s result has been proved by von Mongoldt
in 1881.

The assumption of ’simply-connectivity’ is necesary. For example, the cylinder
C ≡ {(x, y, z) ∈ R3 : x2 = z2 = 1, y ∈ R}

is complete and with secitonal curvature zero. Its exponential map expp : TpM → M
is a non-trival covering map.

An important feature of theorem 5.8 is that it not only asserts that M and Rn

are diffeomorphic, but also gives the diffeomorphism map explicitly. Recall we have
mentioned Gromall −Meyer(1969) Theorem: any non-compact complete Riemannian
manifold (Mn, g) with positive sectional curvature is diffeomorphic to Rn. But in this
case, the diffeomorphism map is not necessarily given explicitly by expp. This is a big
difference between our understanding about nonpositively curved complete simply-
connnected Riemannian manifold and positively curved non-compact complete Rie-
mannian manifold, although their topology are both trival.

Theorem 5.8 is a direct consequence of Proposition 5.10 and the following general
result.

Theorem 5.9. Let (M, g) be a complete, connected, n-dimensional Riemannian man-
ifold, and let p be a point of M such that no point of M is conjugate to p along any
geodesic. Then

expp : TpM → M

is a covering map. In particular, if M is simply-connected, then M is diffeomorphic to
Rn.

Proof. We first make it clear what the assuption ”p has no conjugate point” tell us:
For expp : TpM → M, we have the tensor

(
expp

)∗
g on TpM which is defined as

∀V,W ∈ TX(TpM),∀X ∈ TpM,
(
expp

)∗
g(V,W) = g

(
(d expp)XV, (d expp)XW

)
.

”p has no conjugate point” ⇒
(
d expp

)
X

: TX(TpM) → Texpp
M is 1-1. There-

fore (expp)∗g(V,V) = 0 ⇔
(
d expp

)
X

(V) = 0 ⇔ V = 0. And, hence,
(
expp

)∗
g is a

Riemannian metric on TpM. That is,

expp : (TpM,
(
expp

)∗
g)→ (m, g)
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is a local isometry.
Moreover, we claim (TpM,

(
expp

)∗
g) is complete.

That is beacuase, all straight lines throgh 0 ∈ TpM are geodesics of (TpM,
(
expp

)∗
g)

since their images under the local isometry expp : TpM → M are geodeisc in M. That
is, all geodesics through 0 ∈ TpM can be defined for all t. It follows that TpM is
geodesic complete and, hence, complete, by Hopf-Rinow.

In concluision, ”p has no conjugate point”⇒ ”expp is a local isometry and TpM is
complete”. Then theorem 5.9 is a consequence of the following lemma:

Lemma 5.5. Let M and N be connected Riemannian manifolds with M complete and
let φ : M → N be a local isometry. Then N is complete1 and φ a covering map2 onto3
N.

Remark: Lemma 5.5 has 3 conclusions. Note that the completeness of M is needed.
For example the inclusion map i : B(0, 1) ⊂ R2 → R2 is a local isometry but the open
disk B(0, 1) is not complete. i is not a covering map.

Proof of Lemma 5.5.
1, N is complete: We will show any geodesic on N is depend for all t. For any

geodesic γ : (−ε, ε)→ N, there exists a p0 ∈ M s.t. γ(0) = φ(p0).

Then we find the geodesic c in M with c(0) = p0, ċ(0) =
(
dφp0

)−1
γ̇(0). This is

possible since φ is a local isometry.
One can check the curve φ ◦ c is a geodesic (since φ is a local isometry which

preserves geodesic), and φ ◦ c(0) = φ(p0), ˙(φ ◦ c)(0) = dφp0 ċ(0) = γ̇(0).
Hence γ = φ ◦ c.
M is complete⇒ c is defined for all t⇒ γ is defined for all t . Hopf-Rinow tells N

is complete.
2, φ is onto N: That is, we have to show φ(M) = N. Since φ is everywhere regular

(i.e. ∀p ∈ M, dφp is 1-1), by iverse function theorem, φ is open and, in particular, φ(M)
is open.

In fact, φ(M) is also closed, and, hence, φ(M) = N. Following is the reason.
Let q ∈ φ(M), and let V be a totally normal neighborhood of q. There is a q′ ∈ V

of the form q′ = φ(p′) for p′ ∈ M. Let γ be the geodesic in V s.t. γ(0) = q′, γ(1) = q.
Consider the geodesic c in M s.t. c(0) = p′, ċ(0) =

(
dφp′

)−1
γ̇(0). Then γ = φ ◦ c.

Define p = c(1), then φ(p) = φ(c(1)) = phi ◦ c(1) = γ(1) = q. Therefore q ∈ φ(M).
That is φ(M) ⊂ φ(M), so φ(M) is closed.
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3, φ is a covering map:

For fixed q ∈ N, let B(0, 2ε) = {Y ∈ TqN : ||Y || < 2ε} ⊂ TqN, where ε > 0 is small
enough such that expp is a diffeomorphism. Suppose p ∈ φ−1(q). We have

B(0, 2ε) ⊂ TpM

expp

��

dφp // B(0, 2ε) ⊂ TqN

expq

��

(♥)

Bp(2ε) ⊂ M
φ // Bq(2ε) ⊂ N

where φ ◦ expp = expq ◦dφp.
This is because, ∀V ∈ B(0, 1) ⊂ TpM, γ(t) = φ ◦ expp(tV), t ∈ [0, 2ε) is a geodesic

in N s.t. γ(0) = φ(p) = q, γ̇(0) = dφp(V). On the other hand, c(t) = expp ◦dφp(tV) =

expp

(
tdφp(V)

)
is a geodesic in N with c(0) = expq O = q, ċ(0) = dφp(V). Hence

expq ◦dφp(tV) = φ ◦ expp(tV), ∀V ∈ B(0, 1) ⊂ TpM, ∀t ∈ [0, 2ε)⇒

expq ◦dφp|B(0,2ε)⊂Tp M = φ ◦ expp(tV)|B(0,2ε)⊂Tp M (5.8.1)

That is, the diagram (♥) commutes.
Therefore, we have (using the fact expq : B(0, 2ε) ⊂ TpM → Bq(2ε) ⊂ N is a

diffeomorphisms) the LHS of (5.8.1) is a diffeomorphism. Since expp : B(0, 2ε) ⊂
TpM → Bp(2ε) ⊂ M is surjective, and φ ◦ expp is a diffeomorphism by (5.8.1), we
have B(0, 2ε) ⊂ TpM → Bp(2ε) ⊂ M is a diffeomorphism. Therefore, (5.8.1) ⇒
φ = expq ◦dφp ◦ exp−1

p is also a diffeomorphism.
Now let, W = expq(B(0, ε)) ⊂ N and ∀p ∈ M, Wp = exp(B(0, 2ε)) ⊂ M. We claim

that
(1): φ−1(W) = ∪p∈φ−1(q)Wp.
Now that φ : Wp → W is a diffeomorphism by our previous argument. So in order

to show φ : M → N is a covering map, we only need to show the claim and
(2): Wpi ∩Wp j , φ, ∀pi, p j ∈ φ

−1(q), pi , p j.
Proof of (1)
φ : Wp → W is a diffeomorphism tells ∪p∈φ−1(q)Wp ⊂ φ

−1(W). Now ∀p′ ∈ φ−1(W),
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let γ be the geodesic in W with γ(0) = φ(p′), γ(1) = q and of length d(φ(p′), q).

Let c be the geodesic in M with c(0) = p′, ċ(0) =
(
dφ−1

p′
)
γ̇(0). Then γ = φ ◦ c. M

is complete ⇒ q = γ(1) = φ ◦ c(1) is well defined. In particular, c(1) ∈ φ−1(q) and
p′ = c(0) ∈ Wc(1). This implies φ−1(W) ⊂ ∪p∈φ−1(q)Wp. Hence, we prove the claim (1).

Proof of (2)
Suppose ∃p1, p2 ∈ φ−1(q), p1 , p2 s.t. Wp1 ∩ Wp2 , φ, then we have p2 ∈

expp1
(B(0, 2ε)).

But φ is a diffeomorphism on the B(0, 2ε) ⊂ Tp1 M → Bp1 (2ε) ⊂ M. Hence
φ(p1) = φ(p2)→ p1 = p2.

�

5.9 Uniqueness of simply-connected space forms
Now we can prove the ’uniqueness part’ of Theorem (5.1) which we started in the very
beginning of this Chapter. In fact, we can prove.

Theorem 5.10 (Uniqueness). Let (M, g) and (M, g) be two n-dimensional simply-
connected space form with sectional curvature c ∈ R. Let p ∈ M, p ∈ M, {e1, . . . , en},
{e1, . . . , en} be orthonormal basis of TpM, TpM, respectively. Then there exists a unique
isometry φ : M → M such that φ(p) = p, dφp(ei) = ei, ∀i.

Proof. Since K(Ag) = 1
A K(g), we only need consider the cases c = 0,+1,−1. We first

show the existence of such an isometry.
Case 1. c = 0,−1. By Cartan-Hadamard, the maps expp : TpM → M and expp :

TpM → M are both diffeomorphisms. Let Φ be the unique isometry from TpM to TpM
(as inner product) such that Φ(ei) = ei, i = 1, . . . , n.

TpM Φ //

expp

��

TpM

expp

��
M

φ // M

This leads to φ : M → M where φ = expp ◦Φ ◦ (expp)−1. Notice that φ is a
diffeomorphism. So it remains to show φ∗g = g.

It is enough to show ∀q ∈ M ∀X ∈ TqM, φ∗g(X, X) = g(X, X) i.e. the lenghth of
dφ(X) equals the length of X, ∀X ∈ TpM, ∀q.
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Recall Lemma ... tells, there is a unique Jacobi field U along the geodesic from p
to q s.t. U(0) = 0 and U(1) = X. So we can calculate |X|2 = g(X, X) by calculate the
whole Jacobi field U(t). In fact we can construct U(t) explicitly.

Let Vp ∈ TpM be such that expp Vp = q. Let W ∈ TVp (TpM) be such that(
d expp

)
Vp

(W) = X. Consider the variation F(t, s) = expp t
(
Vp + sW

)
. We know

the variational field U(t) = ∂
∂s |s=0F(t, s) is the Jacobi field with U(0) = p, U(1) =

∂
∂s expp

(
Vp + sW

)
=

(
d expp

)
Vp

(W) = X, U̇(0) = X, U̇(0) = W.

Next, we show g
(
dφp(X), dφp(X)

)
can also be calculated by computing a whole

Jacobi field.
Consider F(t, s) = expp t

(
Φ(Vp) + sΦ(W)

)
(we identify TVp (TpM) with TpM).

Similarly, the variation field ∂
∂s |s=0F(t, s) = U(t) is a Jacobi field with U(0) = 0, U̇(t).

We claim U(1) = dφq(X). This is seen from

φ ◦ F(t, s) = expp ◦Φ ◦ (expp)−1 ◦ expp t(Vp + sW)

= expp ◦Φ(t(Vp + sW))

= expp t(Φ(Vp) + sΦ(W))

=F(t, s)

Hence

dφF(t,s)((U(t)) =dφ ◦
∂

∂s
|s=0F(t, s)

=
∂

∂s
|s=0 (φ ◦ F(t, s))

=
∂

∂s
|s=0F(t, s)

=U(t)

In particular, U(1) = dφF(1,0)((U(1)) = dφq(X). Hence, it remains to show |U(1)| =
|U(1)|.
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Pick parallel orthonormal vector fields {e1(t), . . . , en(t)}, {e1(t), . . . , en(t)} along γ0,
γ0 respectively such that ei(0) = ei, ei(0) = ei. Then U(t) = f i(t)ei(t), U(t) = f

i
(t)ei(t)

for some functions f i, f
i
.

Solving Jacobi equation in M, M respectively:
in M: ∇T∇T U + R(U,T ) = 0, T = γ̇0(t) ⇔ f̈ i(t)ei(t) + R( f je j,T )T = 0 ⇔

f̈ i(t) + f j〈R(e j,T )T, ei〉 = 0, i = 1, . . . , n. (sectional curvature=c ⇒ 〈R(e j,T )T, ei〉 =

c(δi j〈T,T 〉 − 〈T, ei〉〈T, e j〉) ⇔ 〈Vp,Vp〉 = 〈γ̇0(0), γ̇0(0)〉 = 0, i = 1, . . . , n.). Recall
we have further U(0) = 0, U̇(0) = W. Hence f i, i = 1, . . . , n satisfing the following
equation. 

f̈ i(t) + c f j(t)
(
δi j〈Vp,Vp〉 − 〈Vp, ei〉〈Vp, e j〉

)
= 0, i = 1, . . . , n

f i(0) = 0

ḟ i(0) = 〈W, ei〉

in M: f
i
, i = 1, . . . , n satisfies


¨
f

i
(t) + c f

j
(t)

(
δi j〈Φ(Vp),Φ(Vp)〉 − 〈Φ(Vp), ei〉〈Φ(Vp), e j〉

)
= 0, i = 1, . . . , n

f
i
(0) = 0

˙
f

i
(0) = 〈Φ(W), ei〉

Since Φ : TpM → TpM is an isometry, we have 〈Vp,Vp〉 = 〈Φ(Vp),Φ(Vp)〉,
〈Vp, ei〉 = 〈Φ(Vp),Φ(ei)〉 = 〈Φ(Vp), ei〉, 〈W, ei〉 = 〈Φ(W),Φ(ei)〉 = 〈Φ(W), ei〉. By

the uniqueness of the solution, we have f i(t) = f
i
(t), ∀t, ∀i ∈ {1, . . . , n}. In particular,

|U(1)|2 =
∑

i f i(1)2 =
∑

i f
i
(1)2 = |U(1)|2. This proves the existence of an isometry

claimed in Theorem for the case c = 0 or t. The uniqueness of the isometry φ follows
from the following lemma.

Lemma 5.6. Let M be a connected Riemannian manifold and N be a Riemannian
manifold. Let φ1, φ2 : M → N be two locally isometry such that ∃x ∈ M, φ1(x) =

φ2(x) = x′ ∈ N, (dφ1)x = (dφ2)x : TxM → Tx′N. Then φ1 = φ2.

Proof. Define A ⊂ M to be A = {z ∈ M : φ1(z) = φ2(z), (dφ1)z = (dφ2)z}. By
assumption, x in A, i.e. A , φ. From the definition, A is closed.

Next, we show A is open. Thus since M is connected, we have A = M. Suppose
z ∈ A, then z′ = φ1(z) = φ2(z) ∈ N. Choose δ > 0 small enough, such that expz :
B(0, δ) ⊂ TzM → Bz(δ) ⊂ M is a diffeomorphism and expz′ : B(0, δ) ⊂ Tz′N is defined.

B(0, δ) ⊂ TzM
(dφi)z //

expz

��

B(0, δ) ⊂ Tz′N

expz′

��
Bz(δ) ⊂ M

φi // Bz′ (δ) ⊂ N
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By similar argument in the proof of Lemma 5.5, we have φi ◦ expz = expz′ ◦(dφi)z,
i = 1, 2. Notice that expz |Bz(δ)⊂M is invertible, we have φi = expz′ ◦(dφi)z ◦ (expz)

−1.
Now we check ∀y ∈ Bz(δ),

φ1(y) = expz′ ◦(dφ1)z ◦ (expz)
−1(y) = expz′ ◦(dφ2)z ◦ (expz)

−1(y) = φ2(y)

and (dφ1) = (dφ2). Therefore, we have Bz(δ) ⊂ A⇒ A is open. �

Case 2. c = +1. We can suppose M = Sn. ∀p ∈ Sn, any two geodesic from p will
together at its antipodal point p′. Therefore, exp−1

p : Sn\{p′} → TpS
n is a well-defined

smooth map.

TpS
n Φ // TpM

expp

��
Sn\{p′}

exp−1
p

OO

M

where Φ is the isometry (of inner product spaces) with Φ(ei) = ei.
Then φ : expp ◦ Φ ◦ exp−1

p is a local isometry by the same argument as in the first
case.

Next, we extend φ to be defiend on the whole Sn. Pick any z ∈ Sn\{p′}, z , p. Let
z1 = −z is the antipodal point of z. Let φ(z) = z ∈ M, then (dφ)z : TzS

n → TzM. Define
ψ : Sn\{z′} → M as ψ = expz ◦(dφ)z ◦ exp−1

z .
Similar arguments tell that ψ is also a locally isometry. Consider the connected

Riemannian manifold W = Sn\{p′, z′}. We have two local isometries φ, ψ : W → M.
Oberserve that ψ(z) = expz ◦(dφ)z ◦ exp−1

z (z) = z = φ(z), (dψ)z = (dφ)z. By lemma
5.6, we have φ = ψ|W . Now define θ : Sn → M by

θ(y) =

φ(y), if y ∈ Sn\{p′}

ψ(y), if y ∈ Sn\{z′}

This is a well-defined c∞ map on Sn, and θ is a local isometry. By lemma 5.5, we
have θ is a covering map. Since M is simply-connected, θ is a diffeomorphism and
hence an isometry. Moreover dθ(ei) = ei. This proves the existence. The uniqueness
follows again from lemma 5.6.

�

Theorem 5.10 has ery interesting consequnces. When M = M, we have

Corollary 5.1. Let M be a n-dimensional complete simply-connected Riemannian
manifold. Then M is a space-form iff ∀p, p ∈ M, and any orthonormal basis {e1, . . . , en},
{e1, . . . , en} of TpM, TpM, respectively, there exists an isometry φ : M → M s.t.
φ(p) = p, dφ(ei) = ei, ∀i.

Definition 5.6 (Homogenous Riemannian manifolds). A Riemannian manifold (M, g)
is called homogenous is ∀p, q ∈ M, there exists an isometry

φ : M → M
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such that φ(p) = q
(M, g) is called two-point homogenous, if for any two pairs of points p1, p2 and

q1, q2 ∈ M with d(p1, p2) = d(q1, q2), there exists an isometry φ : M → M s.t. φ(pi) =

qi, i = 1, 2.

Corollary 5.2. All simply-connected space forms are two-point homogenous.

Proof.

Let d(p1, p2) = d(q1, q2) = d. Let η, ξ : [0, α] → M be two normal geodesics
with ξ(0) = p1, ξ(α) = p2, η(0) = q1, η(α) = q2. (The existence is guaranted by
completeness via Hopf-Rinow).

Pick orhtonormal basis {e1, . . . , en} and {e′1, . . . , e
′
n} of Tp1 M and Tq1 M, respectively,

where e1 = ξ̇(0), e′1 = η̇(0). Then Theorem 5.10 ⇒ ∃ an isometry φ : M → M with
φ(p1) = q1, dφ(ei) = e′i ∀i. So φ ◦ ξ is a geodesic with φ ◦ ξ(0) = φ(p1) = q1,
( ˙φ ◦ ξ) = dφ(ξ̇(0)) = dφ(e1) = e′1 = ˙η(0).

Therefore φ ◦ ξ = η. In particular φ(p2) = φ(ξ(α)) = η(α) = q2.
�

5.10 Convexity: Another application of Cartan-Hadamard
Theorem

Convex functions and convex (sub)sets are important and useful concepts in analysis.
We discuss these topics on Riemannian manifolds in this section.

What is a convex function?
Recall that we call a function f : [a, b] → R to be convex if f (λx1 + (1 − λ)x2) ≤

λ f (x1) + (1− λ) f (x2), ∀x1, x2 ∈ [a, b], λ ∈ [0, 1]. One can prove that a convex function
must be Lipschitz continuous.

Recall for a C∞ function f : [a, b] → R, it is convex iff f ′′ ≥ 0 on [a, b]. This can be
shown via its Taylor expansion. That is

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)2 + . . .

= f (x0) + f ′(x0)(x − x0) +
f ′′(x∗)

2
(x − x0)2
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for some x∗ lying between x0 and x.
(⇒) Apply to the case x = x + h, x0 = x and x = x − h, x0 = x, we have f ′′(x) =

limh→0
f (x+h)+ f (x−h)−2 f (x)

h2 . Also convexity implies f (x) = f
(

x+h
2 + x−h

2

)
≤

f (x+h)+ f (x−h)
2 .

Hence f ′′(x) ≥ 0.
(⇐) Apply to x0 = λx1 + (1 − λ)x2, x = x1 gives f (x1) ≥ f (λx1 + (1 − λ)x2) +

f ′(x0)(1 − λ)(x1 − x2). Apply to x0 = λx1 + (1 − λ)x2, x = x2 gives f (x2) ≥ f (λx1 +

(1 − λ)x2) + f ′(x0)λ(x2 − x1). Multiply the first by λ, multiply the second by (1 − λ),
and add them up providing λ f (x1) + (1 − λ) f (x2) ≥ f (λx1 + (1 − λ)x2).

We say a C∞ function f is strictly convex, if f ′′ > 0. Now consider a function
f : M → R where M is a Riemannian manifold. A suitable definition of convexing is:

Definition 5.7 (convex functions). We call a function f : M → R a convex function if
for any geodesic γ : [a, b] → M, f ◦ γ is convex, i.e. if ∀t1, t2 ∈ [a, b], ∀λ ∈ [0, 1], it
holds that f (λ(λt1 + (1 − λ)t2)) ≤ λ f (γ(t1)) + (1 − λ) f (γ(t2)).

Proposition 5.11. A C∞ fucntion f : M → R is convex iff ( f ◦ γ)′′ ≥ 0 for all geodesic
γ, which is further equivalent to Hess f ≥ 0, i.e. Hess f is positive semidefinite.

Proof. C∞ f : M → R is convex iff ( f ◦ γ)′′ ≥ 0, ∀γ follows from our previous
discussions.

Notice further that for any p ∈ M, any Vp ∈ TpM, letting γ(t) be the geodesic with
γ(0) = p, γ̇(0) = Vp, we have

Hess f (Vp,Vp) = Hess f (γ̇(t), γ̇(t))|t=0

=∇2 f (γ̇, γ̇)|t=0 = ∇(∇ f )(γ̇(t), γ̇(t))|t=0

=∇γ̇(0)(∇γ̇(t) f ) − ∇∇γ̇ γ̇ f = ( f ◦ γ)′′.

Hence ( f ◦ γ)′′ ≥ 0, ∀γ⇔ Hess f (Vp,Vp) ≥ 0, ∀p, ∀Vp ∈ TpM.
�

We say a C∞ function f : M → R to be a strictly convex funciton if Hess f > 0.
Next, let us consider a particular function on M. Given a fixed point O ∈ M,

consider the funtion %(·) = d(·,O) : M → R.

Theorem 5.11. Let M be a complete, simply-connected Riemanian manifold with non-
positive sectional curvature. Let O ∈ M. Then the function %2 is C∞ and strictly
convex.

Example: In Rn with the canonical Euclidean metric, let O = 0 ∈ Rn, we compute

Hess%2(X, X) =XiX j ∂2

∂xi∂x j %
2(x) = XiX j ∂2

∂xi∂x j

∑
k

(xk)2

=XiX j2
∑

k

δk jδki = 2
∑

k

(xk)2 = 2|X|2

First, we observe, without any curvature restriction, %2 is always ”locally” strictly
convex.
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Lemma 5.7. Let M be a Riemannian manifold, and O ∈ M. Then there exists a
neighbor U0 of O s.t. %2 is smooth and strictly convex in U0.

Proof. Let (U, x1, . . . , xn) be a normal coordinate neighborhood of O ∈ M, such that
xi(O) = 0. Then %2(0) =

∑n
i=1(xi)2, ∀x ∈ U.

Recall any geodesic γ with γ(0) = O, γ̇(0) = V(= V1, . . . ,Vn) ∈ TOM, can be
written as γ(t) = (x1(t), . . . , xn(t)) where xi(t) = V it, %2 ◦ γ =

∑n
i=1 t2(V i)2. Hence

Hess%2(V,V) = (%2 ◦ γ)′′ = 2
∑n

i=1(V i)2 > 0. Therefore, there exists a neighborhood of
O, UO ⊂ U, s.t. Hess%2 is positive definite on UO.

�

But for ”global” results, we need curvature restriction. Let us recall the first(second)
variation formula for length functions.

Lemma 5.8. Let γ : [a, b] → M be a normal geodeisc, and F : [a, b] × (−ε, ε) → M
be a variation of γ with variational field V(t), t ∈ [a, b]. Then

L′(0) =
d
ds
|s=0L(s) = 〈V(t), γ̇(t)〉|ba −

∫ b

a
〈V(t),∇γ̇γ̇〉dt

L′′(0) =
d2

ds2 |s=0L(s) = 〈∇VV, γ̇〉|ba +

∫ b

a
〈∇γ̇V⊥,∇γ̇V⊥〉 − 〈R(V⊥, γ̇)γ̇,V⊥〉dt

where V⊥ = V − 〈V, γ̇〉γ̇.

Proof. of Theorem 5.11.
By Cartan-Hadamard Theorem and the definition of expO, we have x ∈ M, %2(x) =

g
(
exp−1

O (x), exp−1
O (x)

)
= | exp−1

O (x)|2 is a C∞ function on M. By Lemma 5.7, it remains
to show that Hess%2(V,V) > 0 for any x ∈ M, any 0 , V ∈ TxM.

Let ξ : [0, ε] → M be the geodesic of M with ξ(0) = x, ξ̇(0) = V . Let γs, s ∈ [0, ε]
be the geodesic from O to ξ(s) . Let us parametrize γs to be γs : [0, r] → M where
r = %(x). Hence γ = γ0 is a normal geodesic.

Hence, we have the following variation F : [0, r] × [0, ε] → M, where F(t, s) =

γs(t). Notice that the corresponding variational field V(t), satisfies V(0) = O, and

V(r) =
∂

∂s
|s=0F|t=r =

∂

∂s
|s=0F(r, s)

=
∂

∂s
|s=0ξ(s) = ξ̇(0) = V
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Now we compute

Hess%2(V,V) =(%2 ◦ ξ)′′(O)

=
d2

ds2 (%2 ◦ ξ(s))|s=0

=2%(ξ(s))
d2

ds2 %(ξ(s))|s=0 + 2
(

d
ds
%(ξ(s))|s=0

)2

=2r
d2

ds2 %(ξ(s))|s=0 + 2
(

d
ds
%(ξ(s))|s=0

)2

Recall by Cartan-Hadamard Theorem, %(ξ(s)) = d(ξ(s),O) = L(γs). Therefore
Lemma 5.8 tells us Hess%2(V,V) = 2rL′′(0) + 2(L′(0))2 = 2rL′′(0) + 2(〈V, γ̇(r)〉)2.

Notice that we have ∇VV |t=0orr = 0, and hence

L′′(0) =

∫ r

0

(
〈∇T V⊥,∇T V⊥〉 − 〈R(V⊥, γ̇)γ̇,V⊥〉

)
dt

≥

∫ r

0
〈∇T V⊥,∇T V⊥〉dt

That is, Hess%2(V,V) ≥ 2r
∫ b

a 〈∇T V⊥,∇T V⊥〉dt + 2(〈V, γ̇(r)〉)2.

1. If 〈V, γ̇〉 , 0, we obtain Hess%2(V,V) ≥ 2〈V, γ̇(r)〉2 > 0.

2. Otherwise if 〈V, γ̇〉 = 0. Since V is a Jacobi field and 〈V, γ̇(0)〉 = 〈0, γ̇(0)〉 = 0,
proposition (5.8) tells 〈V(T ), γ̇(t)〉 = 0 ∀t ∈ [0, r]. Therefore, V(t) = V⊥(t).
We observe that ∇T V . 0. Since otherwise V(t) is parallel along γ, which
contradicts to the fact V(0) = 0, V(r) = V , 0. That is, Hess%2(V,V) ≥∫ r

0 〈∇T V⊥,∇T V⊥〉dt > 0.

�

Definition 5.8 (Convex and totally convex subsets of M). Let M be a Riemannian
manifold. A subset Ω ⊂ M is called convex, if whenever p, q ∈ Ω and γ is a minimizing
geodesic from p to q, then γ ⊂ Ω. Ω is called totally convex if whenever p, q ∈ Ω and
γ is a geodesic from p to q, then γ ⊂ Ω.

Recall by Cartan-Hadamard Theorem, on a complete simply-connected Rieman-
nian manifold with nonpositive sectional curvature, and geodesic is minimizing, and,
hence, any convex subset is totally convex. However these two concepts do have dif-
ference.

Example. On S2 ⊂ R3 the unit sphere {p ∈ S2|d(p,O) < r} where r ≤ π
2 , is convex,

but is not totally convvex. {p ∈ S2|d(p,O) < π
2 } is not convex.
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Convex functions and convex subsets are related by the following result.

Proposition 5.12. Let τ : M → R be a convex function on a complete Riemannian
manifod M. Then the sub-level set

Mc = {x ∈ M : τ(x) < c}

is totally convex.

Proof. ∀p, q ∈ Mc, and any geodesic γ : [a, b]→ M from p to q, we have (τ ◦ γ)′′ ≥ 0.
Therefore τ ◦ γ : [a, b]→ R : [a, b]→ R attains its maximum at the two ends. Hence

τ ◦ γ(t) ≤ max{τ ◦ γ((a), τ ◦ γ(b)} = max{τ(p), τ(q)} < c

.
This is γ ⊂ Mc.

�

Therefore, Theorem 5.11 tells that any (open or closed) geodesic balls

{x ∈ M : d(x,O) < (≤)r}

is totally convex on a complete simply-connected Riemannian maniflod with nonposi-
tive curvature. In particular, every point is totallly convex (i.e. no nontrivial geodesic
γ : [a, b]→ M with γ(a) = γ(B) = x exists).

Proper totally convex sets (Ω , M) do not exists in many manifolds. Existence of
such kind of subsets has significant to pological implications.

Theorem 5.12 (The Soul Theorem, Cheeger-Gromoll 1972). If (M, g) is a complete
non-compact Riemannian manifold with nonnegative sectional curvature, then M con-
tains a closed totally convex submanifold S , such that M is diffeomorphic to the normal
bundle over S .

S is called a soul of M.

{(x, y, z)|z = c} is a soul of the cylinder.
We also explain the geodesic meaning of the local result Lemma 5.7.
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Theorem 5.13 (Whitehead 1932). Let (M, g) be a Riemannian manifold. Any p ∈ M
has a convex neighborhood.

Proof. Recall for any p ∈ M, there exists a totally normal neighborhood, that is, a
neighborhood p ∈ W and a number δ > 0 such that any two q1, q2 ∈ W can be joined
by a unique minimizing geodesic. However, such a geodesic may not lie completely in
W.

By Lemma 5.7, there exists a neighborhood Up s.t. d2(·, p) is strictly convex in
Up. Pick r small enough s.t. Bp(r) = {q ∈ M, d(q, p) < r} ⊂ Up ∩ W. The proof of
proporsition 5.12 tells Bp(r) is convex.

�



Chapter 6

Comparison Theorem

Recall in our discusions about Cartan-Hadamard and Bonnet-Myers Theorems, we, in
fact, have model spaces in mind.

1. Cartan-Hadamard: use Rn as a model, and replace the ”zero curvature” of ”Rn”
by ”cur ≤ 0”.

2. Bonnet-Myers: use Sn as a model, and replace ”Ricci curvature = n − 1” of S n

by ”Ricci cur≥ (n − 1)”.

In this chapter, we aim at estabilshing quantitative comparison result with model spaces.

6.1 Sturm Comparison Theorem1

We start from a pure analysis result of Sturm.

Theorem 6.1 (Sturm). Let f and h be two continuous functions satisfying f (t) ≤ h(t)
for all t in an interval I, and let φ and η be two functions satisfying the differential
equations: φ′′ + fφ = 0

η′′ + hη = 0
on I. (6.1.1)

Assume that φ is not the zero function and let a, b ∈ I be two consecutive zeros of
φ. Then:

1Spivak IV, Chap 8, 15-17

157



158 CHAPTER 6. COMPARISON THEOREM

1. The function η must have a zero in (a, b), unless f = h everywhere on [a, b] and
η is a constant multiple of φ on [a, b],

2. Suppose that η(a) = 0, and also η′(a) = φ′(a) > 0. If τ is the smallest zero of η
in (a, b), then

φ(t) ≥ η(t) f or a ≤ t ≤ τ

and equality holds for some t only if f = h on [a, t].

Remark: The restriction η′(a) = φ′(a) > 0 in the theorem 6.1 case 2 can be achieved
by choosing a suitable multiple of η, and changing φ to −φ if necessary.

Proof. (6.1.1) gives

ηφ′′ − φη′′ = (h − f )φη. (6.1.2)

Suppose that η were nowhere zero on (a, b). W.o.l.g., we can assume

η, φ > 0 on (a, b). (6.1.3)

Thus (6.1.2) gives

ηφ′′ − φη′′ = (h − f )φη ≥ 0.

Therefore,

0 ≤
∫ b

a
(ηφ′′ − φη′′) =

∫ b

a
(ηφ′ − φη′)′

= η(b)φ′(b) − η(a)φ′(b) − φ(b)η′(b) + φ(a)η′(a)
= η(b)φ′(b) − η(a)φ′(a)

. (6.1.4)

On the other hand, (6.1.3) implies

φ′(a) > 0,φ′(b) < 0
η(a) ≥ 0,η(b) ≥ 0

⇒ η(b)φ′(b) − η(a)φ′(a) ≤ 0. (6.1.5)

If f , h, we have

0 <
∫ b

a
(ηφ′′ − φη′′).

which is a contradiction to (6.1.5). Hence η must have a zero on [a, b).
If f = h, then by (6.1.4) and (6.1.5)

0 = η(b)φ′(b) − η(a)φ′(a)⇒ η(a) = η(b) = 0.

Now φ and η satisfy the same equationφ′′ + fφ = 0
η′′ + fη = 0

on [a, b].

and φ(a) = φ(b) = 0. The solution η must be a constant multiple of φ on [a, b].
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Next suppose η(a) = 0, η′(a) = φ′(a) > 0. (recall φ(a) = 0). Let τ be the smallest
zero of η in [a, b]. Then φ > 0, η > 0 on (a, τ). Hence

(φ′η − η′φ)′ = φ′′η − η′′φ = (h − f )φη ≥ 0

on (a, τ). Recall φ′(a)η(a) − η′(a)φ(a) = 0, this implies φ′η − η′φ ≥ 0 on (a, τ).
Since η > 0 on (a, τ), we obtain

φ′η − η′φ

η2 =

(
φ

η

)′
≥ 0

on (a, τ).
But by L’Hôpital’s Rule and our assumption, we have

lim
t→a

φ(t)
η(t)

= lim
t→a

φ′(t)
η′(t)

= 1.

Therefore, φ
η
≥ 1 on (a, τ).

This proves φ(t) ≥ η(t) for a ≤ t ≤ τ. If φ(t) = η(t) for some t, then φ
η

= 1 on (a, t).

Hence
(
φ
η

)′
= 0⇒ φ′η − η′φ = 0 on (a, t)⇒ φ′′η − η′′φ = 0 on (a, t)⇒ f = h on (a, t).

By continuity, f = h on [a, t].
�

Geometric translations

Theorem 6.2 (Bonnet 1855). Let M be a surface, and γ : [0, L] → M be a normal
geodesic. Let k > 0.

1. If K(p) ≤ k for all p = γ(t), and γ has length L < π
√

k
then γ contains no

conjugate points.

2. If K(p) ≥ k for all p = γ(t), and γ has length L > π
√

k
then there is a point

τ ∈ (0, L) conjugate to 0, and therefore γ is not of minimal length.

Proof. Let Y be a unit parallel vector field along γ with 〈Y, γ̇〉 = 0, ∀t. Any normal
Jacobi field U can be written as U = φY for some function φ.

Jacobi equation ∇T∇T U + R(U,T )T = 0 implies

φ′′ + K(Y,T )φ(t) = 0. (6.1.6)

The corresponding discussion on constant curved surfaes (model spaces) gives

η′′(t) + kη(t) = 0 (6.1.7)

with a solution η(t) = sin(
√

kt). Note 0 and π
√

k
are two consecutive zeros of η.

1. K(Y,T ) ≤ k, ∀t. Theorem 6.1 case (1) implies (6.1.6) cannot have a solution φ
vanishing at 0 and at L < π

√
k
. Since otherwise, sin(

√
kt) has to vanish at some

point on (0, L), which is false.
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2. K(Y,T ) ≥ k, ∀t. Theorem 6.1 case (1) implies any Jacobi field φY must has a

zero on
(
0, π
√

k

)
⊂ (0, L). So if we choose any nonzero Jacobi field Y along γ with

η(0) = 0, this Jacobi field will also vanish at some τ ∈ (0, L). Thus τ is conjugate
to 0.

�

Theorem 6.2 case (2) is the result which Bonnet used to show his diameter estimate.
From the above proof, we observe the following facts: The Jacobi field U = φY

where Y is a unit parallel vector field along γ with 〈Y, γ̇〉 = 0, we have

φ′′(t) + K(γ(t))φ(t) = 0,
φ(a) = 0⇔ U(a) = 0,

φ′(a) =
∣∣∣U̇(a)

∣∣∣ ,
|φ(a)| = |U(a)| .

So Sturm comparison theorem case(2) can be translated as:
Given two surfaces M and M̄. Let γ : [a, b] → M and γ̄ : [a, b] → M̄ be two

normal geodesics such that

K(γ(t)) ≤ K̄(γ̄(t)). (6.1.8)

Let τ ∈ (a, b] such that γ, γ̄ have no point in [a, τ] conjugate to γ(a), γ̄(a) respec-
tively.

Let U, Ū be normal Jacobi fields along γ, γ̄ respectively with U(a) = Ū(a) = 0 and∣∣∣U̇(a)
∣∣∣ =

∣∣∣∣ ˙̄U(a)
∣∣∣∣. Then

∣∣∣U̇(a)
∣∣∣ ≥ ∣∣∣∣ ˙̄U(a)

∣∣∣∣, for a ≤ t ≤ τ. And ’=’ holds for some t only if
K ◦ γ = K̄ ◦ γ̄ on [a, t].

Remark The above ”comparison of Jacobi fields” implies Bonnet Theorem 6.2 by

choose one of M, M̄ to be the sphere S2
(

1
√

k

)
. In fact in theorem 6.1, case (2) ⇒ (1)

when η(a) = 0 is the case.

6.2 Morse-Schoenberg Comparison and Rauch Com-
parison Theorems2

It is natural to ask for higher-dimensional generalizations of the geometric translation
of Theorem (6.1). Let (M, g) be an n-dimensional Riemann manifold γ : [a, b] → M

2Spivak IV, Chap 8, 18-23
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be a normal geodesic.

Now a normal Jacobi field U along γ cannot always be written as φY where Y is a unit
normal parallel vector field along γ. In fact, let {Y1, . . . ,Yn} be an orthornormal parallel
vector field along γ with γ̇(t) = Y1(t). Then a normal Jacobi field U along γ can be
written as

U(t) =

n∑
i=2

φi(t)Yi(t).

Jacobi equation⇒
n∑

i=2
φ′′i (t)Yi(t) +

n∑
i=2
φi(t)R(Yi(t),T )T = 0

⇒ φ′′j (t) +
n∑

i=2
φi(t)〈R(Yi,T )T,Y j〉 = 0 ∀2 ≤ j ≤ n.

This system of equations do not involve the sectional curvature directly.

d2

dt2 (φ2(t), . . . , φn(t)) + (φ2(t), . . . , φn(t))


〈R(Y2,T )T,Y2〉 . . . 〈R(Y2,T )T,Yn〉

...
. . .

...
〈R(Yn,T )T,Y2〉 . . . 〈R(Yn,T )T,Yn〉

 = 0.

Recall the space of normal Jacobi fields along γ vanishing at t = a is of dimension
n − 1. We actually have to solve the following to solve the equation to compute Jacobi
fields:  d2

dt2 A + AR = 0
A(0) = 0 dA

dt (0) = Idn−1
(6.2.1)

where R =
(
〈R(Yi,T )T,Y j〉

)
i j

is symmetric.
We will not discuss the generalization of Theorem (6.1) to the equation (6.2.1),

but instead, will discuss the generalizaion of its geometric translations. These two are
different aspect of the same result.(See[WSY, Chap8, Appendix])

From the geometirc viewpoint, we are going to compare the Jacobi fields along
geodesics in two Riemann manifolds, whose sectional curvatures satisfy certain com-
parison estimate. For that purpose, we need ”move” a vector field along a geodesic γ
to a geodesic γ̄ in another Riemann manifold M̄.

Lemma 6.1. Let (M, g), (M̄, ḡ) be two Riemann manifolds of the same dimension n,
and let γ (γ̄) : [a, b]→ M (M̄) be a normal geodesic in M (M̄). Then there is a vector
space isomorphism

Φ : {piecewise C∞ vector f ields along γ̄} → {piecewise C∞ vector f ields along γ}
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such that for all t ∈ [a, b], we have for any piecewise C∞ vector field X along γ

1. If ∇T X B ∇̃ ∂
∂t

X is continuous at t, then ∇T̄ Φ(X) B ∇̃ ∂
∂t

Φ(X) is continuous at t.

2. 〈X(t),T (t)〉g = 〈Φ(X)(t), T̄ (t)〉ḡ.

3. |X(t)|g = |Φ(X)(t)|ḡ, where |X(t)|g =
√

g(X(t), X(t)).

4. |∇T X|g = |∇T̄ Φ(X)|ḡ, it being understood that this equation refers to left and right
hand limit at discontinuous points.

where T = γ̇ and T̄ = ˙̄γ.

Proof.

What could be a natural choice of such a Φ?
An isomorphism between Tγ(t0)M and Tγ̄(t0)M̄ for a fixed point is easy: Pick φt0 :

Tγ(t0)M → Tγ̄(t0)M̄ be one isomorphism which preserve the inner products given by g
and ḡ respectively.

How to extend it?
For any t ∈ [a, b], we define φt : Tγ(t)M → Tγ̄(t)M̄, which is given by

Vt
parallel transport along γ toγ(t0)
−−−−−−−−−−−−−−−−−−−−−−−−→ Pγ,t,t0 (Vt)

φt0
−−→

φt0 (Pγ,t,t0 (Vt)) 7−→ Pγ̄,t0,t(φt0 (Pγ,t,t0 (Vt)))

Then define Φ(X)(t) = φt(X(t)) .
Next, we give Φ an explicit expression. Let Y1, . . . ,Yn be parallel, everywhere

orthonormal vector fields along γ with Y1(t0) = γ̇(t0). Let Ȳ1, . . . , Ȳn be parallel, every-
where orthonormal vector fields along γ with Ȳ1(t0) = ˙̄γ(t0).

A piecewise C∞ vector field X(t) along γ can be written as

X(t) =

n∑
i=1

fi(t)Yi(t)
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for certain functions fi : [a, b]→ R.
φt0 is chosen such that φt0 (Yi(t0)) = Ȳi(t0), for i = 1, . . . , n. Then

Φ(X)(t) = φt(X(t)) =

n∑
i=1

fi(t)Ȳi(t).

This shows Φ(X) is C∞ everywhere that X is, and that

〈X(t), γ̇(t)〉g = f1(t) = 〈Φ(X)(t), ˙̄γ(t)〉ḡ,

|X(t)|g =

n∑
i=1

f 2
i (t) = |Φ(X)(t)|ḡ ,

|∇T X|g =

n∑
i=1

(
f ′i (t)

)2
= |∇T̄ Φ(X)|ḡ .

�

Theorem 6.3. Let M and M̄ be two Riemann manifold of the same dimension n, and
let γ (γ̄) : [a, b] → M (M̄) be a normal geodesic in M (M̄). For each t ∈ [a, b], sup-
pose that for all 2-dimensional sections Πγ(t) ⊂ Tγ(t)M, and all 2-dimensional sections
Π̄γ̄(t) ⊂ Tγ̄(t)M̄, the sectional curvatures satisfy K(Πγ(t)) ≤ K̄(Π̄γ̄(t)).

Then we have
ind(γ) ≤ ind(γ̄).

In particular, if I(W,W) < 0 for some W ∈ V0(a, b), then also Ī(W̄, W̄) < 0 for some
W̄ ∈ V̄0(a, b), whereV0(a, b) is the set of the piecewise C∞ vector fields along γ with
W(a) = W(b) = 0.

Proof. Let W ∈ V0(a, b), recall that

I(W,W) =

∫ b

a
{〈∇T W,∇T W〉 − 〈R(W,T )T,W〉} dt.

Let Φ be constructed as in Lemma (6.1). Then Φ(W) ∈ V̄0(a, b) and 〈∇T W,∇T W〉g =

〈∇T̄ Φ(W),∇T̄ Φ(W)〉ḡ. Also we have

〈R(W,T )T,W〉g = K(W,T )
(
〈W,W〉〈T,T 〉 − 〈W,T 〉2

)
≤ K̄(Φ(W), T̄ )

(
〈Φ(W),Φ(W)〉〈T̄ , T̄ 〉 − 〈Φ(W), T̄ 〉2

)
= 〈R̄(Φ(W), T̄ )T̄ ,Φ(W)〉.

That is, I(W,W) ≥ Ī(Φ(W),Φ(W)).
So if A ⊂ V0(a, b) is a subspace on which I is negative definite, then Φ(A) ⊂

V̄0(a, b) is a subspace of the same dimension on which Ī is again negative definite. By
definition, this means ind(γ) ≤ ind(γ̄).

�

Corollary 6.1 (The Morse-Schoenberg Comparison Theorem). Let (M, g) be a Rie-
mann manifold of dimension n, and let γ : [0, L] → M be a normal geodesic. Let
k > 0.
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1. If K(Πγ(t)) ≤ k for all Πγ(t) ⊂ Tγ(t)M, and γ has lenghth L < π
√

k
, then ind(γ) = 0

and γ contains no cojugate point.

2. f K(Πγ(t)) ≥ k for all Πγ(t) ⊂ Tγ(t)M, and γ has lenghth L > π
√

k
, then there is a

point τ ∈ (0, L) conjugate to 0, and γ is not of minimal length.

Remark

1. This is a high-dimensional generalization of Bonnet Theorem (6.2).

2. Case 1 above is a generalization of proposition 5.10, which asserts M contains
no conjugate points if sec ≤ 0.

Proof. For case 1, we apply Theorem 6.3 to M = M, M̄ = S n
(

1
√

k

)
. Choosing γ :

[0, L]→ M, γ̄ : [0, L]→ S n
(

1
√

k

)
to be normal geodesic. We have ind(γ) ≤ ind(γ̄).

Now ind(γ̄) = 0 since γ̄ contains no conjugate points (The Morse Index Theorem).
Therefore ind(γ) = 0 which implies γ contains no conjugate point.

For case 2, similar argument. Recall case 2 has already been proved when we
discussed Bonnet-Myers Theorem. Now it is a good chance to understand the proof
there in a more structural way: We choose V(t) = sin

(
π
L t

)
E(t) along γ in M and show

I(V,V) < 0. Here V(t) is the image of a Jacobi field on Sn via the isomorphism map Φ

defined in Lemma 6.1.
�

Remark: Recall in the proof of Bonnet-Myers Theorem, we already show that
Corollary 1 case 2 can be improved by weakening the sectional curvature restriction
to Ricci curvature restriction.

We still miss the generalization of the 2nd part of Sturm comparison theorem: we
have not compared |Φ(W)|ḡ with |W |g up to the first zero of Φ(W). Such information is
providede by

Theorem 6.4 (Rauch Comparison Theorem). Let M, M̄ be two Riemann manifolds of
the same dimension n, and let γ : [a, b] → M, γ̄ : [a, b] → M̄ be normal geodesics.
Let U, Ū be normal Jacobi fields along γ, γ̄ respectively with U(a) = Ū(a) = 0, and
|∇T U(a)|g =

∣∣∣∇T̄ Ū(a)
∣∣∣
ḡ. Suppose:

1. γ̄ has no conjugate point on [a, b].

2. K(Πγ(t)) ≤ K̄(Π̄γ̄(t)) for all t ∈ [a, b], all 2-dimensional sections Πγ(t) ⊂ Tγ(t)M,
Π̄γ̄(t) ⊂ Tγ̄(t)M̄.

Then we have |U(t)|g ≥
∣∣∣Ū(t)

∣∣∣
ḡ, for all t ∈ [a, b].

Remark

1. This is a generalization of the second part of Sturm Comparison Theorem. No-
tice that the Morse-Schoenberg Comparison Theorem (Cor 6.1) is also a direct
consequence of theorem 6.4
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2. ”U, Ū be normal Jacobi fields”: In fact, we only need require 〈U̇(a), γ̇(a)〉 =

〈 ˙̄U(a), ˙̄γ(a)〉 = 0. This is because, from proposition (5.8), U = f T + U⊥ where
f is linear. And f (a) = 0, f ′(a) = 0 forces f ≡ 0. Hence U = U⊥.

Proof. If Ū ≡ 0, it is trival.
If Ū . 0, then Ū(t) , 0 for all t ∈ (a, b], since γ̄ has no conjugate points.
It suffices to prove that

lim
t→a

|U(t)|g∣∣∣Ū(t)
∣∣∣
ḡ

= 1, (6.2.2)

d
dt
|U(t)|g∣∣∣Ū(t)

∣∣∣
ḡ

≥ 0 ∀t ∈ (a, b]. (6.2.3)

It turns out it is equivalent (but much easier) to consider the norm suquare.

lim
t→a

〈U(t),U(t)〉g
〈Ū(t), Ū(t)〉ḡ

= 1, (6.2.4)

d
dt
〈U(t),U(t)〉g
〈Ū(t), Ū(t)〉ḡ

≥ 0 ∀t ∈ (a, b]. (6.2.5)

To prove (6.2.4), we note that:

lim
t→a

〈U(t),U(t)〉g
〈Ū(t), Ū(t)〉ḡ

= lim
t→a

〈U(t),∇T U(t)〉g
〈Ū(t),∇T̄ Ū(t)〉ḡ

= lim
t→a

〈∇T U(t),∇T U(t)〉g + 〈U(t),∇T∇T U(t)〉g
〈∇T̄ Ū(t),∇T̄ Ū(t)〉ḡ + 〈Ū(t),∇T̄∇T̄ Ū(t)〉ḡ

=1.

To prove (6.2.5), we note that

d
dt
〈U(t),U(t)〉g
〈Ū(t), Ū(t)〉ḡ

=
2〈U(t),∇T U(t)〉〈Ū(t), Ū(t)〉 − 2〈U(t),U(t)〉〈Ū(t),∇T̄ Ū(t)〉

〈Ū(t), Ū(t)〉2
.

(6.2.6)
Hence (6.2.5)⇔

〈U(t),∇T U(t)〉〈Ū(t), Ū(t)〉 ≥ 〈U(t),U(t)〉〈Ū(t),∇T̄ Ū(t)〉. (6.2.7)

So for each t0 ∈ [a, b], it suffices to show that

〈U,∇T U〉(t0) ≥
〈U,U〉(t0)
〈Ū, Ū〉(t0)

〈Ū,∇T̄ Ū〉(t0). (6.2.8)
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We denote 〈U,U〉(t0)
〈Ū,Ū〉(t0) = c2. For any piecewise C∞ vector field W along γ, the index

form

I(W,W) =

∫ b

a
{〈∇T W,∇T W〉 − 〈(R(W,T )T,W〉}dt

= −

∫ b

a
〈(R(W,T )T + ∇T∇T W,W〉dt + 〈∇T W,W〉

∣∣∣∣b
a

−

k∑
j=1

〈∇T (t+j )W − ∇T (t−j )W,W〉.

Since U, Ū are Jacobi fields, with U(a) = Ū(a) = 0, we have

〈U,∇T U〉(t0) = It0
a (U,U),

〈Ū,∇T̄ Ū〉(t0) = Īt0
a (Ū, Ū).

So, it remains to show It0
a (U,U) ≥ c2 Īt0

a (Ū, Ū), or It0
a

(
U
|U(t0)| ,

U
|U(t0)|

)
≥ Īt0

a

(
Ū
|Ū(t0)|

, Ū
|Ū(t0)|

)
Consider the map Φ constructed in Lemma 6.1, as the input, at t0, we choose φt0

such that φt0

(
U(t0)
|U(t0)|

)
=

Ū(t0)
|Ū(t0)|

.

Then Φ
(

U
|U(t0)|

)
is a smooth vector field along γ̄, such that Φ

(
U
|U(t0)|

)
(t0) =

Ū(t0)
|Ū(t0)|

.

As in the proof of Theorem 6.3, we see

It0
a

(
U
|U(t0)|

,
U
|U(t0)|

)
≥ Īt0

a

(
Φ

(
U
|U(t0)|

)
,Φ

(
U
|U(t0)|

))
. (6.2.9)

Now using the minimizing property of Jacobi field in lemma (5.2), we have

Īt0
a

(
Φ

(
U
|U(t0)|

)
,Φ

(
U
|U(t0)|

))
≥ Īt0

a

 Ū∣∣∣Ū(t0)
∣∣∣ , Ū∣∣∣Ū(t0)

∣∣∣
 . (6.2.10)

This is applicable since Φ
(

U
|U(t0)|

)
(a) =

Ū(a)
|Ū(t0)|

= 0, and Φ
(

U
|U(t0)|

)
(t0) =

Ū(t0)
|Ū(t0)|

= 0

Comnining (6.2.9) and (6.2.10) yields

It0
a

(
U
|U(t0)|

,
U
|U(t0)|

)
≥ Īt0

a

 Ū∣∣∣Ū(t0)
∣∣∣ , Ū∣∣∣Ū(t0)

∣∣∣
 . (6.2.11)

�

Recall from the proof of uniqueness of simply-connected space forms (Theorem
5.10), we have used the idea of comparing the norm of Jacobi field. Therefore, we have
the same sectional curvatures, and the corresponding Jacobi field has the same norm.
(It definitely deserves to read through that proof again with this new perspective).
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Recall for given t ∈ [a, b], the Jacobi field U(t) at t can be expressed as U(t) =(
d expγ(a)

)
(V)

(W) for some W.

Hence we have the following equivalent form of Rauch Comparison Theorem.

Theorem 6.5. Let M, M̄ be two Riemann manifolds of the same dimension n, and let
p ∈ M, p̄ ∈ M̄, φ : TpM → T p̄M̄ be an isometry (of inner product spaces), V ∈ TpM,
V̄ = φ(V).

Let γ(t) = expp tV, t ∈ [0, 1], γ̄ = expp̄ tV̄, t ∈ [0, 1] be geodesics in M, M̄
respectively. Let X ∈ TV

(
TpM

)
, φ(X) ∈ TV̄

(
T p̄M̄

)
. Suppose

1. γ̄ has no conjugate point.

2. K(Πγ(t)) ≤ K̄(Π̄γ̄(t)) for all t ∈ [0, 1], all 2-dimensional sections Πγ(t) ⊂ Tγ(t)M,
Π̄γ̄(t) ⊂ Tγ̄(t)M̄.

Then we have (
d expp

)
(V)

(X) ≥
(
d expp̄

)
(V̄)

(X̄).

Proof. The geodesic variation

F(t, s) = expp t(V + sX)

has variational field U(t) which is a Jacobi field such that

U(0) = 0,
U̇(0) = X,

U(1) =
(
d expp

)
(V)

(X).
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Similarly F̄(t, s) = expp̄ t(V̄ + sX̄), gives Jacobi field Ū(t) such that

Ū(0) = 0,
˙̄U(0) = φ(X) = X̄,

Ū(1) =
(
d expp

)
(V̄)

(X̄).

Recall from Gauss lemma,

〈X,V〉 =
〈
(d expp)(V)(V), (d expp)(V)(X)

〉
and d expp is an isometry along the radical direction, we only need to consider the

case 〈X,V〉 = 0. (and, hence, 〈Φ(X),Φ(V)〉 = 0).
Therefore, theorem 6.5 follows from theorem 6.4.

�

A particular interesting case:

Corollary 6.2. Let (M, g) be a complete Riemann manifold with nonpositive sectional
curvature. Then ∀p ∈ M, expp : TpM → M satisfies(

d expp

)
(V)

(X) ≥ |X|

where the right hand side means the norm of the flat metric on TpM. ∀V ∈ TpM, ∀X ∈
TV

(
TpM

)
' TpM. In particular, for any curve γ ⊂ TpM, one have L(γ) ≤ L(expp ◦γ).

Remark: This strengthen the result Proposition 5.10 where we show expp has no
critical points.

Corollary 6.3. Let (M, g) be a complete simply-connected Riemann manifold with non-
positive sectional curvature. Consider a geodesic triangle in M(i.e. each side of the
triangle is a minimizing geodesic). Let the side lengths are a, b, c with opposite angles
A, B,C respectively.

Then

1. a2 + b2 − 2ab cos C ≤ c,

2. A + B + C ≤ π.

Moreover, if M has negative sectional curvature, then the inequalities are strict.
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Proof. Denote the vertex at the angle C by p.
In TpM, draw a triangle 4OPQ,

where O is the origin, such that |OP| = a, |OQ| = b, ∠O = C. In particular, expp
−−→
OP,

expp
−−→
OQ is the other two verties of the geodesic triangle. Let ξ be the preimage of the

geodesic c in TpM. Then

|PQ| ≤ L(ξ) ≤ c. (6.2.12)

The Euclidean cosine law tells |PQ|2 = a2 + b2 − 2ab cos C.
Since a, b, c satisfy triangle inequalities, we can construct a triangle in R2 with side

length a, b, c. Denote the corresponding opposite angles by A′, B′,C′. Then.

(6.2.12)⇒ a2 + b2 − 2ab cos C′ = c2 ≥ a2 + b2 − 2ab cos C

⇒ C′ ≥ C.

Similarly, we show A′ ≥ A, B′ ≥ B. Hence π = A′ + B′ + C′ ≥ A + B + C.
When sec < 0, the inequality in Rauch’s theorem is also strict. And hence inequal-

ity in Cor (6.2) is strict. the last conclusion of this corallary then follows.
�

Final Remark: ”γ̄ hs no conjugate point” in Rauch Comparison theorem is nec-
essary. For example, let us consider two spheres M = S 2(2), M̄ = S 2(3). Let
γ : [0, 3π] → S 2(2), γ̄ : [0, 3π] → S 2(3) are normal geodesics. Let W, W̄ be unit
parallel normal vector fields along γ, γ̄ respectively. Then

U(t) = 2 sin
t
2

W(t),

Ū(t) = 3 sin
t
3

W̄(t).

are Jacobi fields such that U(0) = Ū(0) = 0,
∣∣∣U̇(0)

∣∣∣ =
∣∣∣∣ ˙̄U(0)

∣∣∣∣ = 1.

Recall sec
(
S 2(r)

)
= 1

r2 . sec
(
S 2(2)

)
= 1

4 > sec
(
S 2(3)

)
= 1

9 . but
∣∣∣Ū(3π)

∣∣∣ = 0 <

|U(3π)| =
∣∣∣2 sin 3π

2

∣∣∣ = 2.
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6.3 Cut Point and Cut Locus
Next, we are going to discuss two more important comparison theorems:

Hessian and Laplacian comparison theorems. That is, we compare Hess% of the
distance function %(x) B d(O, x) on different Riemannian manifolds whose sectional
curvatures can be ”well-compared”. Laplacian is the trace of Hessian, so it is nat-
ural to expect a Laplacian comparison result based on Ricci curvature-comparison-
assumption.

Hess% is closely related to the SVF. This has been shown when we discussed
the convexity of %2 in (V)§(9). Recall Hess% (V,V) = d2

ds2

∣∣∣∣
s=0
% (ξ(s)), where ξ is the

geodesic with ξ(0) = X, ξ̇(0) = V . And we hope to calculate d2

ds2

∣∣∣∣
s=0
% (ξ(s)) via the sec-

ond variation formula of length. For that purpose, we consider the family of geodesics
γs : [0, %(x)]→ M from 0 to ξ(s), we hope

1. %(ξ(s)) = Length(γs),

2. F(s, t) B γs(t) gives a variation.

For this purpose, we have to require that γ does not contain ”cut point”! Recall in
the comparison of Jacobi fields (Rauch), we have to do the comparison before the first
conjugate point.

Another motivation is from the Bonnet/ Morse-Schoenberg comparison theorem.
K ≥ k and geodesic γ of length > π

√
k

contains conjugate point, and hence γ is not
minimizing⇒ diam≤ π

√
k
.

A counterexample is the projective space Pn (Rn), with constant sectional curvature
=1 and diameter only π

2 . Hence, we may add the hypothesis of simply-connectivity.
Question: Should a complete simply-connected manifold with all sectional curva-

ture ≤ k have diameter ≥ π
√

k
?

One might expect to prove as follows: Pick p, q ∈ M maximal distance apart, and
consider a minimizing geodesic

γ : [0, L]→ M

from p to q. If L < π
√

k
, then γ contains no conjugate point on (0, L). Extend γ to

γ′ : [0, L′] → M where L < L′ < π
√

k
. Thus γ′ contains no conjugate point on (0, L′),

and hence γ is a local minimum for length.
Notice, if we can conclude γ is a global minimum for length, we will get a contra-

dictionand conclude diam≥ π
√

k
.

Example: consider S 1 × R
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choose γ to be a horizontal circle. curvature=0, Cartan-Hadamard ⇒ no conjugate
point, but γ is not global minimizing, although it is loally minimizing.

There are NO general criterion to decide whether a given geodesic is minimizing.
For simplicity, we will deal only with the case of a complete Riemannian manifold

(M, g). Let γ : [0,∞) → M be a normal geodesic starting at a point O = γ(0) in M.
Then γ|[0,t0] is minimizing iff d (O, γ(t0)) = t0 = Length

(
γ|[0,t0]

)
.

By triangle inequality, we see if γ|[0,t0] is minimizing so does γ|[0,t] for any t < t0.
On the other hand, we know for small enough t, γ|[0,t] is minimizing. So the set

A = {t > 0 : d(O, γ(t)) = t}

= {t > 0 : γ|[0,t] is a minimizing geodesic}

is either (0,∞) or (0, a] for some a > 0.(Notice that, the latter case means γ|[0,t] is
not minimizing for all t > a).

1. If A = (0, a], we say that γ(a) is the cut point of O along the geodesic γ.

2. If A = (0,∞), we say that O has no cut point along γ.

3. The cut locus C(O) ⊂ M of O is the set of all points which are cut points of O
along some normal geodesic starting from O.

4. The cut locus C̃(O) of O in T0M is the set of all vectors aX ∈ T0M for which
X is a unit vector and expOaX is the cut point of O along the geodesic γX(t) =

expO tX.

Thus we have
expO

(
C̃(O)

)
= C(O).

The first conjugate locus of O in T0M is the set of all vectors aX ∈ T0M. For which
X is a unit vector and a is the first conjugate value of O along γX .

For a geodesic γ : [a, b] → M, recall that if ∃τ ∈ (a, b) conjugate to a, then γ
is not local minimizing. Hence γ also contains a cut point γ(t′), with t′ ≤ t. Briefly
expressed, the cut point comes before or at the first conjugate point.

What happens if t′ , τ?
In the example of a cylinder S 1 × R, there are no conjugate points. But when a cut

point happens,

we see there are two minimizing geodesic from γ(a) to γ(t′). In fact, if there are
two distinct minimizing geodesics γ, c from γ(a) to γ(t′), we see γ|[a,t′+ε] can not be
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minimizing for any ε > 0, This is because the path ξ : [a, t′ + ε]→ M,

ξ(t) =

c(t), t ∈ [a, t′ + ε]
γ(t), t ∈ [t′t′ + ε]

is of the same length as γ|[a,t′+ε] and is not smooth at t′, and hence it can be made
shorter.

In other words, if there are two distinct minimizing geodesics from γ(a) to γ(t′),
and t′ is the minimal value such that this happens, γ(t′) is a cut point of γ(a) along γ.

Indeed, this is the only possible case.

Theorem 6.6 (cut points). Let (M, g) be complete and let γ : [0,∞)→ M be a normal
geodesic with cut point γ(a). Then at least one of the following holds:

1. The number a is first conjugate value of O along γ,

2. These are at least two minimal geodesic from p = γ(0) to q = γ(a). And a is the
minimal value such that this case happens.

Proof. Choose a sequence a1 > a2 > a3 such that lim
t→∞

ai = a.

Since γ(a) is a cut point, bi = d(p, γ(ai)) < ai. Let Xi ∈ TpM be the unit vectors such
that t → expp tXi, 0 ≤ t ≤ bi is a minimal geodesic from p to γ(ai). Let X = γ̇(0).
Since γ is normal, we have γ(t) = expp tX, 0 ≤ t ≤ a. All Xi are distinct from X. We
have

lim
t→∞

bi = lim
t→∞

d(p, γ(ai)) = d(p, γ(a)) = a.

Therefore, the vectors biXi are contained in a compact subset of TpM. Choosing a
subsequence if necessary, we have

lim
t→∞

biXi = aY

for some unit vector Y ∈ TpM.
Since expp(aY) = lim

i→∞
expp(biYi) = lim

i→∞
γ(ai) = γ(a), the geodesic t 7→ expp(tY),

0 ≤ t ≤ a is a minimizing geodesic from p to q.
If X , Y , we have two minimizing geodesics from p to q. If ∃0 < t0 < a, such that

there is another geodesic c from p to γ(t0),
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which is of the same length as γ|[0,t0], we observe the path ξ : [0, a]→ M,

ξ(t) =

c(t), t ∈ [0, t0]
γ(t), t ∈ [t0, a]

can be made shorter. But Length
(
ξ|[0,a]

)
= Length

(
γ|[0,a]

)
. This contradicts to the

fact that γ(a) is a cut point.
If X = Y , we have lim

i→∞
biXi = aY = aX = lim

i→∞
aiX. But expp(biXi) = γ(ai) =

expp(aiX). Moreover, aiX and biXi are distinct for each i, since bi < ai, Xi , X. So
expp is not 1-1 in any small neighborhood of aX in TpM, i.e. aX is a critical point of
expp. By theorem (5.5, we conclude that a is a conjugate value of O along γ.

�

Recall along a geodesic γ : [a, b] → M, p is a conjugate to q implies q is also
conjugate to p. It turns out that this is also true for cut points.

Corollary 6.4. In a complete manifold M, if q is the cut point of p along a geodesic γ
from p to q, then p is the cut point of q along the geodesic γ obtained by traversing γ
in the opposite direction.

Proof. By assumption, we have that γ is a minimizing geodesic from p to q. So γ is
also minimizing from p to q. So the cut point of q along γ, if exists, occurs past or at
p.

If q is conjugate to p along γ, then p is conjugate to q along γ. The cut point of q
along γ must occur before or at p. So if must occur at p.

If there is another minimizing geodesic from p to q, then again p must be the cut
point.

�

Let p ∈ M. Denote by S p the unit sphere of TpM. Let R∗ = R ∪ {∞} be the real
numbers together with some other set ”∞”. Consider the following topology of R∗:
a basis consists of all sets of the form (a, b) ⊂ R together with all sets of the form
(a,∞] = (a,∞) ∪ {∞}.

We now define a function τ : S p → R
∗ by

τ(x) =

a > 0,i f expp(aX) is the cut point o f p along the geodesic γX = expp tX

∞,i f γX has no cut point

Theorem 6.7. If M is a complete manifold, and p ∈ M. Then the function τ : S p → R
∗

is continuous.
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Proof. Let X1, X2, . . . be a sequence of unit vectors in S p converging to X ∈ S p. We
have to show {τ(Xi)} converge to τ(X). Since the values of τ lie in the compact set
{α ∈ R∗ : α ≥ 0}, we can assume, by chooosing a subsequence, that τ(Xi) converges to
some α ∈ R∗.

If α = ∞, then for any given t, there exsits N s.t. τ(xi) > t, ∀i ≥ N. hence

d(p, expp tX) = d
(
p, lim

i→∞
expp tXi

)
= t. By definition, τ(X) ≥ t.

If α < ∞, then τ(Xi)Xi → αX. Therefore d(p, expp αX) = α. Hence τ(X) ≥ α. So
limi→∞τ(Xi) ≤ τ(X)(♥).

Next, if τ(X) > α, then expp(αX) is not a conjugate point of p along expp tX since a
conjugate point cannot come before a cut point. So the map expp is a diffeomorphism
on some neighborhood U around αX in TpM. W.l.o.g., we assume all τ(Xi)Xi lie in U.

Therefore expp τ(Xi)Xi is not a conjugate point of p along expp tXi. then theorem
6.6 implies that there exists another minimizing geodesic from p to expp τ(Xi)Xi, i.e.
∃Yi ∈ S p s,t, expp τ(Xi)Xi = expp τ(X)Yi.

Since expp |U is 1-1, we have τ(Xi)Yi < U. By choosing a subsequence, we can
assume Yi → Y . Then αY also lies outside U. So

expp(αY) = lim
i→∞

expp (τ(Xi)Yi) = lim
i→∞

(τ(Xi)Xi) = expp(αX).

That is, expp(tX), t ∈ [0, α] and expp(tY), t ∈ [0, α] are two distinct minimizing
geodesics from p to expp(αX). This contradicts to α < τ(X). Hence τ(X) ≤ α.

Combinig with (♥), we obtain

τ ≤ lim inf
i→∞

τ(Xi) ≤ lim sup
i→∞

≤ τ(X).

This completes the proof.
�

Corollary 6.5. The cut locus C(p) of p ∈ M and the cut locus C̃(p) of p in TpM are
closed subset of M and TpM respectively.

Proof. Let q ∈ M s.t. ∃pi ∈ C(p) with pi → q. Let γi(t) be the minimizing normal
geodesic from p to pi with γi(ti) = pi. Then ti = τ(γ̇i(0)). W.l.o.g., we can assume
γ̇i(0) converges to Y ∈ S p. Then

q = lim
i→∞

pi = lim
i→∞

γ(ti) = lim
i→∞

expp (τ(γ̇i(0))γ̇i(0)) = expp(τ(Y)Y) ∈ C(p).

C̃(p) is the preimage of C(p) under expp, and hence also closed.
�
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Theorem 6.8. Let M be complete, p ∈ M. Define

E(p) = {tV : V ∈ S p and 0 ≤ t < τ(V)}.

Then expp maps E(p) differmorphically onto an open subset of M, and M is the disjoint
union of exp E(p) and C(p).

Proof. Clearly, d expp is 1-1 on E(p), since the first conjugate point can not occur
before the cut point. Next we show expp is 1-1 on E(p). Suppose not, ∃ω1, ω2 ∈ E(p)
with ||ω1|| ≤ ||ω2||, say, such that expp tω1 = expp tω2 = q.

Then the geodesic expp tω1, t ∈ [0, 1], has length from p to q less than or equal to
that of the geodesic expp tω2, t ∈ [0, 1]. But these contradicts to the minimal property
of expp tω2, t ∈ [0, 1 + ε], since q comes before the cut point of γ. Therefore, expp is
diffeomorphic on E(p) onto an open subset of M(since E(p) open).

We next show that exp E(p) and C(p) are disjiont. If not, ∃ω ∈ E(p) and V ∈ C̃(p)
with expp ω = expp V = q

If ||V || ≤ ||ω||, similar arguments as above, we have a contradiction.
If, otherwise, ||V || > ||ω||, then the geodesic expp tV, t ∈ [0, 1] is longer than the

geodesic expp tω, t ∈ [0, 1] from p to q. This contradicts to the minimizing property of
expp tV, t ∈ [0, 1](since V ∈ C̃(p)).

Clearly, expE(p)∪C(p) ⊂ M. On the other hand, ∀q ∈ M completeness implies
that there is a normal minimizing geodesic γ(t) = expp tV from p = γ(0) to q = γ(a).
Clearly a ≤ τ(V) so aV ∈ E(p) or aV ∈ C̃(p).

�

Remark(injectivity raius): Recall the injectivity radius of p ∈ M is defined as

i(p) = sup{ρ > 0 : expp is a di f f eomorphism on B(O, ρ) ⊂ TpM}

Then Theorem 6.6 and theorem 6.8 together implies

i(p) = sup{ρ > 0 : B(O, ρ) ⊂ E(p)}.

Notice each ray tX, X ∈ S p intersect with C̃(p) at at most one point. Hence, we
have

Proposition 6.1. The cut locus C̃(p) of p in TpM is of zero measure for any p ∈ M.

Observe that for any compact Riemannian manifold M given p ∈ M, each ray tX
must intersect with c̃(p). In fact, we have
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Proposition 6.2. A complete Riemannian manifold M is compact i f f for any p ∈ M,
the cut locus C̃(p) is homeomorphisc to the unit sphere S p ⊂ TpM.

Proof. If M is compact, Let diam(M)=δ. Then any normal geodesic from p of length>
δ is not minimizing. Hence τ(X) < δ + 1, ∀X ∈ S p. Define the map

β : S p → C̃(p)
X 7→ τ(X)X

So β is a homeomorphism.
On the other hand, if C̃(p) is homeomorphic to S p ⊂ TpM, we have in particular

C̃(p) is compact. Let A ⊂ S p be the set of X ∈ S p s.t. τ(X) < ∞, i.e. A = τ−1 ([0,∞]).
Then the map β : A→ C̃(p) is a homeomorphism. This tells further that A is compact.
So A is closed subset. Theorem 6.6 implies that A is open: ∀X ∈ A, ∃U, s,t, X ∈ U ⊂
A.(Since otherwise, ∃Xi → X s.t. τ(Xi) → ∞. Continuity of τ tells τ(X) = ∞. This
contradicts to X ∈ A.)

Therefore A = S p. That is, every geodesic from p has a cut point. In other words,
∀X ∈ S p, τ(X) < ∞. Hence max

X∈S p
< ∞. ∀p, q ∈ M, ∃ a minimizing geodesic γ from p

to q, s.t. d(p, q) = L(γ) ≤ max
X∈S p

< ∞. ∀p, q ∈ M which implies that M is compact.

�

6.4 Hessian Comparison Theorem

Theorem 6.9 (Hessian Comparison). Let M,M be two Riemannian manifolds of the
same dimension n and let γ : [a, b] → M, γ : [a, b] → M be two normal geodesics.
Denote p = γ(a), p = γ(a), and % = d(p, .), % = d(p, .) be the distance function resp.

Suppose:

• γ|[a,b] and γ|[a,b] are minimizing and contain no cut point.

• K(Πγ(t)) ≤ K(Πγ) for all t ∈ [a, b], all 2-dim sections.

Then we have %, % are C∞ in a neighborhood of γ, γ resp(except p,p). and Hess% ≥
Hess% along γ, γ.

Remark

1. ”Hess% ≥ Hess% along γ, γ” means for any t ∈ (a, b], and for any X ∈ Tγ(t)M, X ∈
Tγ(t)M satisfying |X|g = |X|g, 〈X, γ̇(t)〉g =

〈
X, γ̇(t)

〉
g
, and we have Hess%(X, X) ≥

Hess%(X.X).

2. Since γ(b) is not a cut point, we have (b− a)γ̇(0) < C̃(p). By Corollary 6.5, C̃(p)
is closed, hence ∃ an open neighborhood U = {V ∈ TpM : |V − (b − a)γ̇(0)| < ε}
s.t. U ∩ C̃(p) = φ.
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Notice we can write U = {(b − a)V ∈ TpM : |V − γ̇(0)| < ε
b−a }. Let U = {(t −

a)V ∈ TpM : t ∈ [a, b], |V − γ̇(0)| < ε
b−a }. Theorem 6.8 tells that expp on U is a

diffeomorphism, and %(expp W) = |W |, ∀W ∈ U. So % is C∞ on exppU\{p}. This
proves the smoothness of %, % claimed in the theorem.

Proof. For any X ∈ Tγ(t)M for some t, we can decompose X = aγ̇(t) + X⊥, where〈
X⊥, ˙γ(t)

〉
= 0.

Observe that

Hess%
(

˙γ(t), ˙γ(t)
)

= ∇2%
(

˙γ(t), ˙γ(t)
)

= ∇(∇%)
(

˙γ(t), ˙γ(t)
)

= ∇γ̇∇γ̇% − ∇∇γ̇ γ̇% = γ̇γ̇% − ∇γ̇γ̇% = 0.

Hess%
(
γ̇, X⊥

)
= ∇X⊥∇γ̇% − ∇∇X⊥

˙γ(t)%

= − (∇X⊥ γ̇) (%) = − 〈∇X⊥ γ̇, grad%〉 .

(Recall γ̇% = 1 = 〈γ̇, grad%〉, and 〈grad%, E〉 = 0 for any 〈E, γ̇〉 = 0.)
We have

grad% = γ̇ = − 〈∇X⊥ γ̇, γ̇〉 = −
1
2

X⊥〈γ̇, γ̇〉 = 0.

That is

Hess%(X, X) = Hess%
(
aγ̇(t) + X⊥, aγ̇(t) + X⊥

)
= Hess%(X⊥, X⊥).

So we only need to consider X ∈ Tγ(t)M, X ∈ Tγ(t)M, which are perpendic to γ̇(t)
and γ̇(t) resp..

W.l.o.g., we let t = b. X ∈ Tγ(b)M, X ∈ TγM, 〈X, γ̇(b)〉 = 0, 〈X, γ̇(t)〉 = 0.

Let ξ be the geodesic s.t. ξ(0) = γ(b), ξ̇(0) = X. Since γ(b) is not a cut point, by
the same argument as in Remark (2), there exists a neighborhood U s.t. expp : U →
exppU is a diffeomorphism, and ∀W ∈ U, expp tW is minimizing. Therefore ∃ε > 0
s.t. the minimizing geodesic γs : [a, b] → M, s ∈ [0, ε] from p to ξ(s) forms a well-
defined variation F(t, s) = γs(t), t ∈ [a, b], s ∈ [0, ε]. The corresponding variational
field U(t) = ∂

∂s |s=0F(t, s) is a Jacobi field with U(0) = 0, U(b) = X. And U is also a
normal field.
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Notice that %(ξ(s)) = Length(γs) = L(γs) = L(s). We have Hess%(X, X) = L′′(s).
Recall from lemma 5.8.

L′′(0) = 〈∇UU, γ̇〉
∣∣∣b
a +

∫ b

a
〈∇T U⊥,∇T U⊥〉 − 〈R(U⊥,T )T,U⊥〉dt = I(U,U).

Similarly, Hess%(X, X) = I(U,U), where U is a normal Jacobi field along γ with
U(0) = 0, U(b) = X. It remains to show I(U,U) ≥ I(U,U).

Using the construction of Φ in Lemma 6.1. (firstly, choose φb : Tγ(b)M → Tγ(b)M be
the isometry of inner product spaces which sends X to X, γ̇(b) to γ̇. This is possible
since |X| = |X|, 〈X, γ̇(b)〉 = 〈X, γ̇(b)〉, |γ̇(b)| = |γ̇(b)| = 1).

As in Theorem 6.3, we have I(U,U) ≥ I(Φ(U),Φ(U)). By minimizing property of
Jacobi field I(Φ(U),Φ(U)) ≥ I(U,U). So I(U,U) ≥ I(U,U).

�

Corollary 6.6. Under the same assumption of Thm6.9, and let f : [0, b − a]→ R be a
C∞ function which satisfies f ′ ≥ 0. Then we have Hess f (%) ≥ Hess f (%) along γ, γ.

Proof. Note for any X ∈ Tγ(t)M for any t,

Hess f (%)(X, X) =
d2

ds2 |s=0 f (%(ξ(s)))

=
d
ds

(
f ′(%(ξ(s)))

d
ds
%(ξ(s))

)
|s=0

= f ′′(%(t))
(

d
ds
|s=0%(ξ(s))

)2

+ f ′(%(t))
d2

ds2 |s=0%(ξ(s))

= f ′′(%) (X%)2 + f ′(%)Hess%(X, X)

= f ′′(%)〈X, grad%〉2 + f ′(%)Hess%(X, X)

= f ′′(%)〈X, γ̇(t)〉2 + f ′(%)Hess%(X, X).

Hence we have Hess f (%)(X, X) ≥ Hess f (%)(X, X) for X, X s.t. |X| = |X|, 〈X, γ̇(t)〉 =

〈X, γ̇(t)〉. �

Example(Hess% on manifolds with constant sectional curvature)
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Let γ : [0, b] → M be a normal minimizing geodesic. From the proof of thm6.9,
we see for X ∈ Tγ(b)M, 〈X, γ̇(b)〉 = 0,

Hess%(X, X) = I(U,U)

where U is a normal Jacobi field along γ with U(0) = 0, U(b) = X. Recall

I(U,U) =

∫ b

a
〈∇T U,∇T U〉 − 〈R(U,T )T,U〉dt

= −

∫ b

a
〈∇T∇T U + R(U,T )T,U〉dt + 〈∇T U,U〉|ba

= 〈∇T U(b),U(b)〉.

That is Hess%(X, X) = 〈∇T U(b),U(b)〉.
Let γ̇(t), E2(t), . . . , En(T ) be parallel orthonormal vector fields along γ. If M has

constant sectional curvature K, the Jacobi fields U with U(0) = 0 is given by U(t) =

f (t)
∑n

i=2 Ei(t), where  f ′′(t) + K f (t) = 0
f (0) = 0

⇒ f (t) =


ct,K = 0

c sin
√

Kt,K > 0

c sinh
√
−Kt,K < 0

f or some constant c.

Hence ∇T U(b) = f ′(b)
∑

Ei(b), 〈∇T U(b),U(b)〉 = (n − 1) f ′(b) f (b) and |X|2 =

(n − 1) f (b)2. Therefore

Hess%(X, X) = (n − 1) f ′(b) f (b)

=
f ′(b)
f (b)
|X|2.

In particular, if K = 0, Hess%(X, X) = 1
%
g(X, X) for < X, γ̇ >= 0(FACT1).

In general, for X ∈ Tγ(b)M, we have

Hess%(X, X) = Hess%(X⊥, X⊥) =
f ′(b)
f (b)
|X⊥|2

=
f ′(b)
f (b)

〈X − 〈X, γ̇(b)〉γ̇(b), X − 〈X, γ̇(b)〉γ̇(b)〉

=
f ′(b)
f (b)

(
〈X, X〉 − 〈X, γ̇(b)〉2

)
.

Again when K = 0, we have

Hess%2(X, X) = 2(X%)2 + 2%Hess%(X, X)

= 2〈X, γ̇(b)〉2 + 2g(X⊥, X⊥)
= 2g(X, X) (FACT2).
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Corollary 6.7. Let M be a complete simply-connected Riemannian manifold with non-
positive sectional curvature, % = d(p, .), p ∈ M. Then on M \ {p}, we have

Hess%2 ≥ 2g, (6.4.1)

∆% ≥
n − 1
%

. (6.4.2)

Proof. By Cartan-Hadamard, there is no cut point. Then apply Thm 6.9 and FACT2,
we get (6.4.1), and apply FACT1, we get (6.4.2). �

Remark:

1. Corollary(6.7) is a stengthen result of the convexity (Theorem 5.11). We dis-
cussed in the end of last chapter.

2. Under the same assumption of thm(6.9), by taking trace, we obtain ∆%(γ(t)) ≥
∆%(γ(t)) (F).

A natural question is: In order to obtain the comparison (F), is it enough to assume
Ricci curvature comparison instead of sectional curvature comparison?

6.5 Laplacian Comparison Theorem

Theorem 6.10 (Laplacian Comparison). Let M,M be two Riemannian manifolds of
the same dimension n and let γ : [a, b]→ M, γ : [a, b]→ M be two normal geodesics.
Denote p = γ(a), p = γ(a), and % = d(p, .), % = d(p, .) be the distance function resp.
Ric, Ric, ∆, ∆ be the Ricci curvature tensor and Laplacian of M, M resp.

Suppose:

• 1- γ|[a,b] and γ|[a,b] are minimizing and contain no cut point.

• 2- Ric(γ̇, γ̇)(t) ≤ Ric
(
γ̇, γ̇

)
(t), ∀t ∈ [a, b].

• 3- M is a space form of sectional curvature k.

Thus we have ∆%(γ(t)) ≥ ∆%((t)), ∀t ∈ [a, b]. Moreover , ∆%(γ(b)) = ∆%((b)) iff
∀t ∈ [0, b], any section in tangent bundle of M containing γ̇ has sectional curvature
k, and any normal Jacobi field U(t) along γ with U(a) = 0 can be represented as
U(t) = f (t)E(t), where E(t) is parallel along γ and f : [a, b]→ R is a solution of f ′′ + k f = 0

f (0) = 0

Remark:

1. On a space form of sectional curvature k, we have ∆% (γ(t)) = (n − 1) f ′(t)
f (t) where

f (t) =


ct, k = 0

c sin(
√

kt), k > 0

c sinh(
√
−kt), k < 0
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2. We will explain why we have to add the assumption (3) during the proof.

Proof. W.l.o.g., we consider t = b, and an orthonormal basis {e1, . . . , en} of Tγ(b)M
with e1 = γ̇(b). Then Delta%(γ(b)) =

∑n
i=2 Hess%(ei, ei). Same argument as in the proof

of Theorem 6.9, we obtain Hess%(ei, ei) = I(Ui,Ui), where Ui is a normal Jacobi field
along γ with Ui(0) = 0, Ui(b) = ei.

Do similar thing on M: let {e1, . . . , en} be a orthonormal basis of Tγ(b)M with e1 =

γ̇(b). We have Hess%(ei, ei) = I(U i,U i). Then let φb : Tγ(b)M → Tγ(b)M be the isometry
with φb(ei) = ei, i = 1, . . . , n. Then construct Φ as in Lemma 6.1 optinal ransport. Then
we obtain (n − 1) vector fields Φ(Ui), i = 1, . . . , n along γ with

Φ(Ui)(a) =0 = U i(a),

Φ(Ui)(b) = φb(Ui(b)) =φb(ei) = ei = U i(b).

By the minimizing property of Jacobi fields, we have

I (Φ(Ui),Φ(Ui)) ≥ I(U i,U i) (6.5.1)

for i = 2, . . . , n
The Laplacian Comparison is reduced to show

n∑
i=2

I (Ui,Ui) ≥
n∑

i=2

I(U i,U i). (6.5.2)

Since

n∑
i=2

I (Φ(Ui),Φ(Ui)) ≥
n∑

i=2

I(U i,U i). (6.5.3)

it is enough to show

n∑
i=2

I (Ui,Ui) ≥
n∑

i=2

I(U i,U i). (6.5.4)

Recall, if we have ”sectional-curvature comparison”, we conclude the above in-
equlity immediately. If we only have ”Ricci-curvature comparison”, it turns out, we
have to assume assumption 3 in order to get (6.5.4).

(6.5.4)⇔

n∑
i=2

∫ b

a
(〈∇T Ui,∇T Ui〉 − 〈R(Ui,T )T,Ui〉) dt

≥

n∑
i=2

∫ b

a

(
〈∇T Φ(Ui),∇T Φ(Ui)〉 − 〈R(Φ(Ui),T )T ,Φ(Ui)〉

)
dt.

Lemma 6.1⇒ |∇T Ui| = |∇T Φ(Ui)|. Hence
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(6.5.4)⇔ ∫ b

a

n∑
i=2

〈R(Ui,T )T,Ui〉dt

≤

∫ b

a

n∑
i=2

〈R(Φ(Ui),T )T ,Φ(Ui)〉dt.

Notice that at γ(b), T = e1, Ui = ei is an orthornomal basis and
∑n

i=2〈R(Ui,T )T,Ui〉(b) =

Ric (γ̇, γ̇) (b). Similarly,
∑n

i=2〈R(Φ(Ui),T )T ,Φ(Ui)〉(b) = Ric
(
γ̇, γ̇

)
(b). But in general,

{T,U2, . . . ,Un} is not orthonormal any more at t , b. A solution is to add the assump-
tion. In that case, M is a space form of constant curvature k. And we know the Jacobi
field Ui(t) = f (t)ei(t), where {ei(t)} is a parallel orthononormal vector fields along γ
with ei(b) = ei and f is a solution of f ′′ + k f = 0

f (a) = 0, f (b) = 1

Hence
∑n

i=2〈R(Ui,T )T,Ui〉(t) = f 2(t)
∑n

i=2〈R(ei,T )T, ei〉 = f 2(t)Ric(T,T ) = f 2(t)Ric(γ̇, γ̇)(t).
And by the construction of Φ, we know Φ(Ui) = f (t)ei(t). So

∑n
i=2〈R(Φ(Ui),T )T ,Φ(Ui)〉 =

f 2(t)Ric
(
γ̇, γ̇

)
. The assumption (2) implies f 2(t)Ric(γ̇, γ̇)(t) ≤ f 2(t)Ric

(
γ̇, γ̇

)
, ∀t ∈

[a, b]. We then prove (6.5.4) and hence the Laplacian comparison.
If ∆%(γ(b)) = ∆%(γ(b)), we have ”=” holds in (6.5.1). Recall the minimizing prop-

erty of Jacobi field, this can only happen when ∀i = 2, . . . , n, Φ(Ui) = U i. By the
construction, we know Φ(Ui) = f (t)ei(t). Any normal Jacobi field U(t) along γ with
U(0) = 0 cab be expressed as a linear combination of Φ(Ui), i = 2, . . . , n.

U =

n∑
i=2

ci f (t)ei(t), ci ∈ R

= f (t)
n∑

i=2

ciei(t).

By Jacobi equation, Φ(Ui) = f (t)ei(t) is a Jacobi field implies 〈R(ei,T )T, ei〉 = k.
�

Corollary 6.8. Under the same assumption of thm (6.10), and let f : [a, b] → R be a
smooth function with f ′ ≥ 0. Then

∆ f (%)(γ(t)) ≥ ∆ f (%)((t))

∀t ∈ [a, b]

Proof.

∆ f (%) = f ′′(%) + f ′(%)∆%,

∆ f (%) = f ′′(%) + f ′(%)∆%.

�
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6.6 Comments on Injectivity Radius Estimate and Sphere
Theorems

Is it always true for a simply-connected complete two dimensional Riemannian mani-
fold (M, g) with Gauss curvature ≤ β, β > 0 that expO : TOM → M is a diffeomorphism
on B(0, π

√
β
).

This is not always true unfortunately.

By comparison theorem, Gauss curvature ≤ β implies expO

(
B(0, π

√
β
)
)

contains no
conjugate point of O. But this is not enough to conclude that expO is a diffeomorphism.
Actually, in other words, we are asked to show in jM ≥

π
√
β
. For that result, we need

further restrict Gauss curvature > 0. This is actually Klingenberg’s injectivity radius
estimate.

Theorem 6.11 (Klingenberg,1959). Suppose (M, g) is an orientable even-dimensional
manifold with 0 <sectional curvature≤ β. Then in jM ≥

π
√
β
. If M is not orientable, then

in jM ≥
π

2
√
β
.

For the proof, we refer to [Spivak IV, Chap8 34-36] or [PP,§6.2]. Here, we explain
the rough ideas

Proof. We need to show expO

(
B(0, π

√
β
)
)

has no cut point. If there is a cut point of q

of O along γ, since q can not be a conjugate point of O, we have by 6.6, there exists
exactly two minimal geodesics from O to q. (denoted by γ,γ1)

In fact, one can further argue that when q is the closest one to O in C(0), γ̇|q =

−γ̇1|q. Moreover, when O is a point such that it is the minimum point of the function
d(p,C(p)), we have the two geodesics γ, γ1 give a close geodesic.

Recall in the proof of Synge theorem, under the assumption ”orientable, even-
dimensional”, any closed geodesic has a variation F(t, s) such that the curves γs(t) =

F(t, s) has length L(γs(t)) < L(γ0(t)), with 0 < s small. Hence the whole curve γs lie
in the interior of the cut locus. So there exists a minimal geodesic σs from γs(0) to the
fartherst point γs(ts) along γs.

Choose subsequence if necessary, those geodesicsσs converge to a minimal geodesic
σ from O to q which is different from γ and γ1. This contradicts to the assumption that
q is a cut point and γ, γ1 are the only minimizing geodesic from O to q. So there is no

cut point in expO

(
B(0, π

√
β
)
)

. �
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A much deeper result by Klingenberg asserts that if a simply-connected manifold
has all its sectional curvature in the interval ( 1

4β, β], then in jM ≥
π
β
. There are further

improvement on the left end of the interval.
Actually, those injectivity radius estimate and Rauch comparison theorem are cru-

cial tools to establish fascinating Sphere Theorems

Theorem 6.12 (Topological Sphere Theorem). Let (M, g) be a simply-connected com-
plete Riemannian manifold. Suppose M has all its sectional curvatures in the interval
( 1

4β, β], β > 0. Then M is homeomorphic to the sphere.

This result is due to Rauch (prove in the case sec ∈ ( 3
4β, β]), Klingenberg, Berger.

Very brief explanation: In topology, Brown theorem tells that: if a compact mani-
fold M is the union of two open sets, each of which is diffeomorphic to Rn, then M is
diffeomorphic to Sn.

So let p, q ∈ M, s.t. d(p, q) = diam(M, g) ≤ 2π
√
β
. expp : TpM → M, expq : TqM →

M are diffeomorphisms on B(0, δp), B(0, δq) at least when δp, δq are small enough.

expp(B(0, δp)) ∪ expq(B(0, δq)) ⊂ M

On the other hand, if we have δp, δq large enough, we have expp(B(0, δp))∪expq(B(0, δq)) =

M.
Scaling β to be 1, diam(M, g) ≤ 2π, then Klingenberg ⇒ in jM ≥ π. It remain to

show
M ⊂ expp(B(0, δp)) ∪ expq(B(0, δq))

That is for any x ∈ M, if d(p, x) ≥ in jM ≥ π, then we need show d(q, x) < in jM . For
this purpose, we need a global version of the Rauch theorem:

Toponogov triangle comparison theorem. (This has been discussed in the tutorial)

6.7 Volume Coparison Theorems
Now let us come back to investigate a geometric quantity which we have discussed at
the very beginning of this course: the volume.

Recall E(p) = {tV : V ∈ S pand 0 ≤ t < τ(V)} from 6.8. Let us denote by
Ep = expp E(p). We have shown that

expp : E(p)→ Ep

is a diffeomorhism, and E(p) is diffeomorphic to an open ball. Since the cut locus is of
zero measure, we have

Vol(M) =

∫
M

dvol =

∫
Ep

dvol.

Note Ep ⊂ M can be considered as a coordinate neighborhood!
Hence
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Vol(M) =

∫
Ep

√
det(gi j)dx1 . . . dxn

=

∫
Ep

√
det(gi j)dx1 ∧ · · · ∧ dxn.

(This is another way to see the definition of volume does not depend on orientabil-
ity).

For the ball Bp(r) = {q ∈ M|d(p, q) < r} we have Vol(Bp(r)) =
∫

Bp(r) dvol =∫
Ep∩Bp(r)

√
det(gi j)dx1 ∧ · · · ∧ dxn.

How to calculate vol(Bp(r)) in a Riemannian manifold?
We first prepare some algebraic results: Let f : Ṽ → V be a linear transformation

between two n-dimensional inner product spaces. Let {ẽ1, . . . , ẽn}, {e1, . . . , en} be their
orthonormal basis, and {ω̃1, . . . , ω̃n}, {ω1, . . . , ωn} be their dual basis. Let Ω̃ = ω̃1 ∧

· · · ∧ ω̃n, Ω = ω1 ∧ · · · ∧ ωn. Then f ∗Ω is defined as

f ∗Ω(X1, . . . , Xn) = Ω
(

f (X̃1), . . . , f (X̃n)
)
.

Therefore, ∃a0 ∈ R s.t. f ∗ω = a0Ω̃.
On the other hand, let f (ẽi) =

∑n
j=1 α

j
i e j, i = 1, . . . , n. Then a0 = det[a j

i ] = det( f ).
Claim: Let {Ã1, . . . , Ãn} be a basis of Ṽ . Then

|a0| = |det( f )| = |
f ∗Ω
Ω̃
| =
| f (Ã1) ∧ · · · ∧ f (Ãn)|
|Ã1 ∧ · · · ∧ Ãn|

.

Proof. Recall ∀Xi ∈ V , i = 1, . . . , n, we have

|X1 ∧ · · · ∧ Xn| = 〈X1 ∧ · · · ∧ Xn, X1 ∧ · · · ∧ Xn〉
1
2

=

√
det[< Xi, X j >].

In particular, if {Xi} are orthonormal, |X1 ∧ · · · ∧ Xn| = 1. Therefore, letting Ãi =∑n
j=1 β

j
i ẽ j, i = 1, . . . , n. We have

| f (Ã1) ∧ · · · ∧ f (Ãn)| = |det[β j
i ]| × | f (ẽ1) ∧ · · · ∧ f (ẽ j)|

= |det[β j
i ]| × |det[α j

i ]| × |e1 ∧ · · · ∧ en|

= |det[β j
i ]| × |det( f )|.

On the other hand,

|Ã1 ∧ · · · ∧ Ãn| = |det[β j
i ]| |ẽ1 ∧ · · · ∧ ẽn| = |det[β j

i ]|.

This proves the claim.
�
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Now, let γ : [a, b] → M be a normal geodesic with γ(0) = p. Let Ω̃ be a volume
n-form of the Euclidean space TpM, and Ω(t) be a volume n-form at γ(t) ∈ M. Then
we have

expp : TpM → M,

(d expp)tγ̇(0) : Ttγ̇(0)

(
TpM

)
→ Tγ(t)M.

Define a function φ : [0, b]→ R to be

φ(t) =

∣∣∣∣∣∣ (d expp)∗tγ̇(0) (Ω(t))

Ω̃

∣∣∣∣∣∣ .
Note that Ω(t), Ω̃ depend on the choice of different orientations, but φ does not. We

can always choose proper orientation s.t.

φ(t) =
(d expp)∗ (Ω(t))

Ω̃
.

(we omit the subscript: tγ̇(0)).
(because we are working in the single coordinate neighborhood Ep!!)
We in fact can define a function. φ : E(p)→ R as below: ∀ỹ ∈ E(p),

φ(ỹ) =

∣∣∣∣∣∣ (d expp)∗ (Ω(y))

Ω̃(ỹ)

∣∣∣∣∣∣ =
(d expp)∗ (Ω(y))

Ω̃(ỹ)

where y = expp ỹ.
Then we can rewrite the volume of M as

Vol(M) = Vol(Ep) =

∫
Ep

Ω =

∫
expp(E(p))

Ω

=

∫
E(p)

(d expp)∗Ω =

∫
E(p)

φΩ̃

=

∫
E(p)

φdvolTp M

and Vol(Bp(r)) =
∫

E(p)∩B(0,r) φdvolTp M .
So the key point is to complete the funtion φ, for which we need employ results

about Jacobi fields again.

Lemma 6.2. Let γ : [0, b] → M be a normal geodesic containing no conjugate point.
Let J1, . . . , Jn−1 be (n-1) linearly independent normal Jacobi fields along γ with Ji(0) =

0, i = 1, 2, . . . , n − 1. Thus we have

φ(t) =
|J1(t) ∧ · · · ∧ Jn−1(t)|

tn−1|J̇1(0) ∧ · · · ∧ J̇n−1(0)|

t ∈ (0, b]
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Proof.
d expp : Tγ(t)TpM → Tγ(t)M.

Note that J1(t), . . . , Jn−1(t), γ̇ are n linearly independent vectors in Tγ(t)M, and
hence form a basis of Tγ(t)M. By ”dimension consideration”,, this also implies J̇1(0) . . . J̇n−1(0)
are linearly independent.
〈Ji(t), γ̇(t)〉 = 0, t ∈ [0, b] implies 〈J̇i(0), γ̇(0)〉 = 0. Hence J̇1(0) . . . J̇n−1(0), γ̇(0)

form a basis of TpM. Recall for the variation F(t, s) = expp t(γ̇(0) + sW), we have
its variational field U(t) is a Jacobi field with U(0) = 0, U̇(0) = W, and U(t) =(
d expp

)
tγ̇(0)

(tW). Pick W = J̇i(0), we then obtain Ji(t) =
(
d expp

)
tγ̇(0)

(tJ̇i(0)). Notice

that for any t ∈ (0, b], tJ̇1(0) . . . tJ̇n−1(0), γ̇(0) also form a basis of TpM.
Hence

φ(t) =
|γ̇(t) ∧ J1(t) ∧ · · · ∧ Jn−1(t)|∣∣∣γ̇(0) ∧ tJ̇1(0) ∧ · · · ∧ tJ̇n−1(0)

∣∣∣
=

|J1(t) ∧ · · · ∧ Jn−1(t)|
tn−1

∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)
∣∣∣ .

�

Theorem 6.13 (Bishop). Let M be a Riemannian maninfold with Ric ≥ (n−1)k. Let γ :
[0, b] → M be a normal geodesic containing no cut point, then φ(t)

φk(t) is nonincreasing,
∀t ∈ (0, b]. (φk is the funcion on the simply-connected space form Mk of sectional
curvature k).

By lemma 6.2, we can check φk(t) =
(

fk(t)
t

)n−1
, where

fk(t) =



f , k = 0
1
√

k
sin
√

kt, k > 0

1
√
−k

sinh
√
−kt, k < 0

We will show this result by reduce it to the Laplacian comparison via the following
lemma.

Lemma 6.3. Let γ : [0, b] → M be a normal geodesic with no cut point of γ(0). Let
%(x) = d(x, γ(0)). Then

φ′

φ
(t) =

(
∆% −

n − 1
%

)
(γ(t)) (6.7.1)

t ∈ (0, b]

Proof. We only need prove (6.7.1) at γ(b). Let J1, . . . , Jn−1 be Jacobi fields along γ
with Ji(0) = 0, i = 1, . . . , n − 1 s.t. 〈Ji(b), J j(b)〉 = δi j, 1 ≤ i, j ≤ n − 1. Recall
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Hessρ(γ̇, γ̇) = 0. Hence we have

∆%(γ(b)) =

n−1∑
i=1

Hess%(Ji(b), Ji(b)) (6.7.2)

=

n−1∑
i=1

I(Ji(b), Ji(b)) =

n−1∑
i=1

〈∇T J̇i(b), Ji(b)〉. (6.7.3)

On the other hand,
φ′

φ
(b) =

d
dtφ

2

2φ2 (b)

where

φ(b) =
|J1(b) ∧ · · · ∧ Jn−1(b)|

bn−1
∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)

∣∣∣
=

1
bn−1

∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)
∣∣∣ .

We have

d
dt
φ2(b) =

d
dt
|t=b
〈J1(t) ∧ · · · ∧ Jn−1(t), J1(t) ∧ · · · ∧ Jn−1(t)〉

t2n−2
∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)

∣∣∣2
=

2
∑n−1

i=1 〈J1(t) ∧ · · · ∧ J̇i(t) ∧ · · · ∧ Jn−1(t), J1(t) ∧ · · · ∧ Jn−1(t)〉

t2n−2
∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)

∣∣∣2 − 2(n − 1)
|J1(t) ∧ · · · ∧ Jn−1(t)|2

t2n−1
∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)

∣∣∣2 |t=b

=
2∣∣∣J̇1(0) ∧ · · · ∧ J̇n−1(0)

∣∣∣2
∑n−1

i=1 〈J̇i(b), Ji(b)〉
b2n−2 −

n − 1
b2n−1

 .
Hecne, we calculate

φ′(b)
φ(b)

=

d
dtφ

2

2φ2 (b) =

n−1∑
i=1

〈J̇i(b), Ji(b)〉 −
n − 1

b
. (6.7.4)

Combining (6.7.2), (6.7.3) and (6.7.4), we obtain

φ′

φ
(b) = ∆%(γ(b)) −

n − 1
%(γ(b))

=

(
∆% −

n − 1
%

)
(γ(b)).

�

Proof. of Theorem 6.13. Let γ : [0, b] → Mk be a normal geodesic in the simply-
connected space form Mk of sectional curvature k.
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Note that γ has no cut point iff b < π
√

k
( π
√

k
= ∞ if k < 0). By our assumption

γ : [0, b]→ M is a normal geodesic in M without cut point, hence b < π
√

k
, by Bonnet-

Myers Theorem. Therefore, the above assertion implies γ : [0, b] → Mk has no cut
point too. So the Laplacian comparison Theorem is applicable. Hence Lemma 6.3 tells

φ′

φ
(t) ≥

φ′k
φk

(t)

Hence (lnφ)′(t) ≥ (lnφk)′(t), which implies (lnφ − lnφk)′(t) ≥ 0. This means(
φ
φk

)′
(t) ≥ 0. This completes the proof.

�

Theorem 6.14 (Bishop-Gromov). If (M, g) is a complete Riemannian manifold with
Ric ≥ (n − 1)k, k ∈ R. Let p ∈ M be an arbitrary point. Then the function

r 7→
vol(Bp(r))
vol(Bk(r))

is nondecreasing, where Bk(r) is a geodesic ball of radius r in the simply-connected
space form Mk.

Corollary 6.9 (Bishop). If (M, g) is a complete Riemannian manifold with Ric ≥ (n −

1)k > 0. Then Vol(M) ≤ Vol
(
S n( 1

√
k
)
)
. The equality holds iff M is isometric to S k( 1

√
k
).

Proof. of Theorem 6.14.
What is Vol(Bp(r))? First note that when Bp(r) ⊂ Ep, we have

Vol(Bp(r)) =

∫
Bp(r)

dvolM

=

∫
B(0,r)

φdvolTp M

=

∫ r

0

∫
Sn−1

φ(t, θ)tn−1dtdθ.

The assumption Bp(r) ⊂ Ep means rθ ∈ E(p) for any θ ∈ Sn−1.
How to go beyond cut point?
Let χ be the characteristic function of E(p) ⊂ TM , i.e.

χ(r, θ) =

1,when(r, θ) ∈ E(p)
0, otherwise

Then for any Bp(r) ⊂ M,

vol(Bp(r)) =

∫
B(0,r)∩Ep

φdvolTp M

=

∫
B(0,r)

χφdvolTp M

=

∫ r

0

∫
Sn−1

χ(t, θ)φ(t, θ)tn−1dtdθ.



190 CHAPTER 6. COMPARISON THEOREM

Remark: Recall that for (t, 0) ∈ E(p), φ(t, θ)tn−1 =
|J1(t)∧···∧Jn−1(t)|
|J̇1(0)∧···∧J̇n−1(0)|

. On the simply-

connected space form Mk, we have φk(t, θ)tn−1 = φk(t)tn−1 = ( fk(t))n−1, where

fk(t) =



f , k = 0
1
√

k
sin
√

kt, k > 0

1
√
−k

sinh
√
−kt, k < 0

We also define the characteristi funtion χk on Mk. Recall, when k ≤ 0, χk ≡ 1, when
k > 0, χk = 0 only at the one point. Since ∀p ∈ Mk, C(p) = −p and d (p,C(p)) = π

√
k
.

Therefore we have χ(r, θ) ≤ χk(r, θ) = χk(r). That is, the function

r 7→
χ(r, θ)
χk(r)

is non-increasing (where we use 0
0 = 0).

Recall Theorem 6.13 tells r 7→ φ(r,θ)
φk(r) is non-increasing (r < τ(0)). Hence

r 7→
χ(r, θ)φ(r, θ)
χk(r)φk(r)

(6.7.5)

is non-creasing.
Consider the function

a(t) =

∫
Sn−1

χφ(t, θ)tn−1dθ,

ak(t) =

∫
Sn−1

χkφk(t, θ)tn−1dθ.

First observe ak(t) = χkφk(t)tn−1vol(Sn−1). Hence we have a(t)
ak(t) = 1

vol(Sn−1)

∫
Sn−1

χφ(t,θ)
χkφk(t) dθ.

(6.7.5) implies immediately that t 7→ a(t)
ak(t) is non-increasing. This tells r 7→ Vol(Bp(r))

Vol(Bk(r)) =∫ r
0 a(t)dt∫ r

0 ak(t)dt
is non-increasing due to the following Lemma 6.4.

�

Lemma 6.4. Let f , g : [0,∞) → (0,∞) be two positive function and the funcion

t 7→ f (t)
g(t) is non-increasing. Then the funcion t 7→

∫ t
0 f∫ t
0 g

is also non-increasing.

Proof. Let us denote h =
f
g . For t1 ≤ t2, we hope to show∫ t1

0 f∫ t1
0 g
≥

∫ t2
0 f∫ t2
0 g

i.e.
∫ t1

0
f
∫ t2

0
g ≥

∫ t2

0
f
∫ t1

0
g.
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We observe

∫ t1

0
f
∫ t2

0
g =

∫ t1

0
f
∫ t1

0
g +

∫ t1

0
f
∫ t2

t1
g,∫ t2

0
f
∫ t1

0
g =

∫ t2

t1
f
∫ t1

0
g +

∫ t1

0
f
∫ t1

0
g.

Hence it remains to show
∫ t1

0 f
∫ t2

t1
g ≥

∫ t2
t1

f
∫ t1

0 g.
This follows from the calculation:∫ t1

0
f
∫ t2

t1
g =

∫ t1

0
gh

∫ t2

t1
g ≥

(∫ t1

0
g
)

h(t1)
∫ t2

t1
g

≥

(∫ t1

0
g
) (∫ t2

t1
hg

)
=

∫ t2

t1
f
∫ t1

0
g.

�

Remark: Recall we actually have φ(r, θ) =
√

det(gi j) ◦ x−1(r, θ), r < τ(θ), and

φk(r) =
(

fk(r)
r

)n−1
. limr→0 φ(r, θ) = 1 ⇒ limr→0

φ(r,θ)
φk(r) = 1. Hence Theorem 6.13 ⇒

φ(r, θ) ≤ φk(r), when r < τ(θ)⇒ χφ(r, θ) ≤ χkφk(r)⇒

Vol
(
Bp(

π
√

k
)
)

= Vol(M) ≤ Vol(Mk). (6.7.6)

In fact, noe have limr→0
Vol(Bp(r))
Vol(Bk(r)) = 1. So (6.7.6) can be derived from Theorem

6.14.

Proof. of Corollary 6.9.
Recall the sphere of radius 1

√
k

has constant sectional curvature k. Hence Theorem

6.13 ⇒ Vol(M) ≤ Vol
(
Sn( 1

√
k
)
)
. If ”=” holds, then all inequalities in the proof of

Theorem 6.13 should be ”=”. Particularly, ∆%(γ(t)) = ∆%k(γ(t)) for any t s.t. tγ̇ ∈
E(γ(0)) ⊂ Tγ(0)M ∀γ.

Recall from the Laplacian comparison theorem. this means any secion in Tγ(t)M
containing γ̇(t) has sectional curvature k. Since γ is arbitrary, we have M has constant

sectional curvature k. So its universal covering space is isometric to S
(

1
√

k

)
(by the

uniqueness of simply-connected space forms). But since Vol(M) = Vol
(
S( 1
√

k
)
)
, we

have M is isometric to S
(

1
√

k

)
.

�

Next we explore two applications of Volume Comparison Theorem.
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6.7.1 Maximal Diameter Theorem
Theorem 6.15 (Maximal Diameter Theorem, Shiu-Yuen Cheng 1975). Let M be a
complete Riemannian manifold with Ric ≥ (n − 1)k > 0 and diamM = π

√
k
. Then M is

isometric to S
(

1
√

k

)
.

Remark

1. This is a good complement of Bonnet-Myers Diameter Estimate: the ”=” holds

in Bonnet-Myers iff M is isometric to S
(

1
√

k

)
.

2. When assuming sec ≥ k > 0, this result has been proved by Toponogov in
1959. Cheng’s original proof uses his comparison theorems for first eigenvalues.
Shioham (Trans. AMS. 1983) gives a much more elementary proof using the
Volume Comparison .

Proof. of Theorem 6.15.
By scaling, we only need deal with the case k = 1. Let p, q ∈ M be two points

such that d(p, q) = diamM = π. Then Bp(r) ∩ Bq(π − r) = φ, ∀r ∈ [0.π]. Hence
Vol(Bp(r)) + Vol(Bq(π − r)) ≤ Vol(M), ∀r ∈ [0.π].

Using Theorem 6.14, we have

Vol(M) ≥ Vol(Bp(r)) + Vol(Bq(π − r))

=
Vol(Bp(r))
Vol(B′(r))

Vol(B′(r)) +
Vol(Bq(π − r))
Vol(B′(π − r))

Vol(B′(π − r))

≥
Vol(Bp(π))
Vol(B′(π))

Vol(B′(r)) +
Vol(Bq(π))
Vol(B′(π))

Vol(B′(π − r))

=
Vol(M)

Vol(B′(π))
(
Vol(B′(r)) + Vol(B′(π − r))

)
= Vol(M).

Hence all ”≤” are ”=”. Particulary,

Vol(Bp(π))
Vol(B′(π))

=
Vol(Bp(r))
Vol(B′(r))

∀r ∈ (0, π].
Let r → 0, we have 1 =

Vol(Bp(π))
Vol(B′(π)) =

Vol(M)
Vol(Sn(1)) . Then corollary 6.9 implies that M is

isometric to Sn(1).
�

6.7.2 Volume Growth Rate Estimate
Theorem 6.16. Let (Mn, g) be a complete Riemannian manifold with Ric ≥ 0.

1. we have Vol(Bp(r)) ≤ Vol(B0(r)) = ωnrn and = holds iff M is isometric to Rn.
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2. If, furthermore, Mn is non-compact, then there exists a positive constant c de-
pending only on p and n such that Vol(Bp(r) ≥ cr, for any r > 2. (Calabi,
Notices AMS 1975, ST Yau, Indiana Univ. Math J 1976. independently.)

Proof. (1). follows directly from Theorem 6.13, and limr→0
Vol(Bp(r))
Vol(B0(r)) = 1. Then ”=”

case again following from that in Laplacian Comparison Theorem.

(2). (Following Gromov). From the following proof, we see again that Vol(Bp(r))
Vol(B0(r))

decreases tells much more than only Vol(Bp(r)) ≤ Vol(B0(r)) !!
Since M is non-compact complete, for any p ∈ M, there exists a ray, i.e. a geodesic

γ : [0,∞)→ M with γ(0) = p, and d(p, γ(t)) = t, ∀t ≥ 0.

Let t > 3
2 , Theorem 6.13 tells

Vol
(
Bγ(t)(t + 1)

)
Vol

(
Bγ(t)(t − 1)

) ≤ ωn(t + 1)n

ωn(t − 1)n =
(t + 1)n

(t − 1)n . (6.7.7)

On the other hand,

Vol
(
Bp(1)

)
Vol

(
Bγ(t)(t − 1)

) ≤ Vol
(
Bγ(t)(t + 1)

)
− Vol

(
Bγ(t)(t − 1)

)
Vol

(
Bγ(t)(t − 1)

) ≤
(t + 1)n − (t − 1)n

(t − 1)n .

(6.7.8)
i.e. Vol

(
Bγ(t)(t − 1)

)
≥ 1

t
(t−1)n

(t+1)n−(t−1)n Vol(Bp(t))t.

Observe that ∃Cn > 0 s.t. (t−1)n

(t+1)n−(t−1)n ≥ Cn on [ 3
2 ,∞). Since Bγ( r

2 + 1
2 )

(
r
2 −

1
2

)
⊂

Bp(r),
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∀r > 2. ⇒

Vol(Bp(r)) ≥ Vol
(
Bγ( r

2 + 1
2 )

(
r
2
−

1
2

))
≥ CnVol(Bp(1))(

r
2

+
1
2

).

�

Final Remark: Recall we used Lapkacian Comparison to prove the volume com-
parison: Ric ≥ (n − 1)k ⇒ Vol(Bp(r)) ≤ Vol(Bk(r)). (Inside the cut locus, this is due
to Bishop. Gromov made the crucial step to show it for any r, and to a ”full” use of
the fact that Vol(Bp(r))

Vol(Bk(r)) decrease.) It is natural to ask the ”other direction”. Recall we do
not have the ”other direction” in Laplacian Comparison, but we do have it in Hessian
Laplacian.

Excercise(Gunther, 1960) Let (M, g) be a complete Riemannian manifold, with
sectional curvature ≤ k. Let Bp(r) be a ball in M which does not meet the cut locus of
p. Then Vol(Bp(r)) ≥ Vol(Bk(r)).



Chapter 7

Candidates for Synthetic
Curvature Conditions

In the last part of our course , we discuss properties of a Riemannian manifold which
does not necessarily depend on the smooth structure of the underlying spaces. Those
properties may be taken to be definition of a general (metric, measure) space with
aurvature restrictions.

7.1 Nonpositive Sectional Curvature and Convexity

Theorem 7.1. Let (M, g) be a complete, simply-connected Riemannian manifold with
nonpositive curvature. Let p ∈ M, γ : [0, 1]→ M be a geodesic. Then

d2(p, γ(t)) ≤ (1 − t)d2(p, γ(0)) + td2(p, γ(1)) − t(1 − t)d2(γ(0), γ(1)). (7.1.1)

Remark: Actually, on a complete Riemannian manifold with sec ≤ 0, 7.1.1 holds
whenever γ(t) ⊂ Ep. For simplicity, we suppose M is simply-connected, then Ep = φ
and expp : TpM → M is a diffeomorphism.

Proof. Let k0 : [0, 1]→ R be given by

k0(t) = (1 − t)d2(p, γ(0)) + td2(p, γ(1)) − t(1 − t)d2(γ(0), γ(1)).

195



196 CHAPTER 7. CANDIDATES FOR SYNTHETIC CURVATURE CONDITIONS

We have

k0(0) = d2(p, γ(0)),

k0(1) = d2(p, γ(1)),

k′′0 (t) = −2d2(γ(0), γ(1)) = −2|γ̇(t)|2.

Let %(x) = d2(x, p), then % ◦ γ(t) satisfies

% ◦ γ(0) = d2(p, γ(0)) = k0(0),

% ◦ γ(1) = d2(p, γ(1)) = k0(1),

% ◦ γ′′(t) = Hess% (γ̇(t), γ̇(t)) ≥ 2|γ̇(t)|2 = k′′0 (t).

Therefore the function h : [0, 1] → R given by h(t) = (% ◦ γ − k0) (t) satisfies that
h(0) = h(1) = 0, h′′(t) ≥ 0, ∀t ∈ [0, 1]. Therefore h(t) ≤ 0. (Convex functions attains
maximum on the boundary). That is % ◦ γ(t) ≤ k0(t), ∀t ∈ [0, 1]. �

Corollary 7.1. Let (M, g) be a compact simply-connected Riemannian manifold with
sec ≤ 0. Let γ1, γ2 : [0, 1]→ M be geodesics with γ1(0) = p = γ2(0).

Then for 0 ≤ t ≤ 1,
d(γ1(t), γ2(t)) ≤ td(γ1(1), γ2(1)).

Proof. Appling Theorem 7.1 twice:

d2(γ1(1), γ2(t)) ≤ td2(γ1(1), γ2(1)) + (1 − t)d2(γ1(1), p) − t(1 − t)d2(p, γ2(1)), (7.1.2)

d2(γ2(1), γ1(t)) ≤ td2(γ1(1), γ2(t)) + (1 − t)d2(γ2(t), p) − t(1 − t)d2(p, γ1(1)). (7.1.3)

Inserting 7.1.2 into 7.1.3, and observing d2(γ2(t), p) = t2d2(γ1(t), p), we complete
the proof. �

Remark: The property (7.1.1) for all p and all geodesic γ is actually equivalent to
the nonpositive sectional curvature of M. Namely, if the sectional curvature ≥ k > 0 in
a neighborhood of p, then locally (% ◦ γ)′′(t) = Hess%(γ̇(t), γ̇(t)) ≤ Hess%(γ̇(t), γ̇(t)).

Then one can show ”>” in (7.1.1). In fact, this is taken to be the definition of a
length space with nonpositive sectional curvature in the sense of Alexandrow.

Corollary 7.1 is also equivalent to nonpositive sectional curvature, and is taken as a
general curvature bound notion by Busemann. see[Chap2, Jost, Nonpositive Curvature:
Geometric and Analytic Aspects, Birkhāuser].
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Theorem 7.2 (Reshetnyak’s quadrilateral comparison theorem). Let (M, g) be a com-
pact simply-connected Riemannian manifold with sec ≤ 0. Let γ1, γ2 : [0, 1]→ M.

Then

d2(γ1(0), γ2(1)) + d2(γ2(0), γ1(1))

≤d2(γ1(0), γ2(0)) + d2(γ1(1), γ2(1)) + d2(γ1(0), γ1(1))

+d2(γ2(0), γ2(1)) − (d(γ1(0), γ2(0)) − d(γ1(1), γ2(1)))2 .

Proof. For simplicity, denote the distance as a1, a2, b1, b2, d1, d2 as in the above figure.
Let δ be the geodesic from γ1(0) to γ2(1) whose length is d2. Consider

d2,0
λ = d(γ2(0), δ(λ)),

d1,1
λ = d(γ1(1), δ(λ)).

Then theorem 7.1⇒

(d2,0
λ )2 ≤ (1 − λ)b2

1 + λa2
2 − λ(1 − λ)d2

2 ,

(d1,1
λ )2 ≤ (1 − λ)a2

1 + λb2
2 − λ(1 − λ)d2

2 .

Therefore, for ε > 0,

d2
1 ≤

(
d0,2
λ + d1,1

λ

)2
≤ (1 + ε)

(
d2,0
λ

)2
+ (1 +

1
ε

)
(
d1,1
λ

)2

≤ (1 + ε)(1 − λ)b2
1 + (1 + ε)λa2

2 + (1 +
1
ε

)(1 − λ)a2
1

+ (1 +
1
ε

)λb2
2 − (2 + ε +

1
ε

)λ(1 − λ)d2
2 .

Set ε = 1−λ
λ

so that the coefficent of d2
2 becomes

(
2 + 1−λ

λ
+ λ

1−λ

)
λ(1 − λ) = 2λ(1 −

λ) + (1 − λ)2 + λ2 = 1. This yeilds d2
1 + d2

2 ≤
1−λ
λ

b2
1 + a2

2 + a2
1 + λ

1−λb2
2. Set λ = b1

b1+b2
⇒

d2
1 + d2

2 ≤ a2
1 + a2

2 + 2b1b2 = a2
1 + a2

2 + b2
1 + b2

2 − (b1 − b2)2. �

Corollary 7.2. Let (M, g) be as in Theorem 7.2, and γ1, γ2 : [0, 1]→ M be geodesics.



198 CHAPTER 7. CANDIDATES FOR SYNTHETIC CURVATURE CONDITIONS

Then ∀0 ≤ t ≤ 1, 0 ≤ s ≤ 1

d2(γ1(0), γ2(t)) + d2(γ1(1), γ2(1 − t)) ≤ d2(γ1(0), γ2(0))

+ d2(γ1(1), γ2(1)) + 2t2d2(γ2(0), γ2(1)) + t
(
d2(γ1(0), γ1(1)) − d2(γ2(0), γ2(1))

)
− ts (d(γ1(0), γ1(1)) − d(γ2(0), γ2(1)))2

− t(1 − s) (d(γ1(0), γ2(0)) − d(γ1(1), γ2(1)))2 .

Proof. Notice that Theorem 7.2 is the case t = 1, s = 0. By symmetry, we also have
the above inequation holds for t = 1, s = 1. i.e.

d2
1 + d2

2 ≤ a2
1 + a2

1 + b2
1 + b2

2 − (a1 − a2)2.

Taking convex combinations yields the inequlity for t = 1, 0 ≤ s ≤ 1,

d2
1 + d2

2 ≤ a2
1 + a2

1 + b2
1 + b2

2 − s(a1 − a2)2 − (1 − s)(b1 − b2)2.

Therefore, for 0 ≤ t ≤ 1, Theorem 7.1 implies

d2(γ1(0), γ2(t)) + d2(γ(1), γ2(1 − t)) ≤ (1 − t)b2
1 + td2

2 − t(1 − t)a2
2 + td2

1 + (1 − t)b2
2 − t(1 − t)a2

2

≤ t
(
a2

1 + a2
2 + b2

1 + b2
2 − s(a1 − a2)2 − (1 − s)(b1 − b2)2

)
+ (1 − t)

(
b2

1 + b2
2

)
− 2t(1 − t)a2

2

= b2
1 + b2

2 + 2t2a2
2 + t

(
a2

1 − a2
2

)
− ts(a1 − a2)2 − t(1 − s)(b1 − b2)2.

�

Exercise: Let (M, g) be as above, and γ1, γ2 : [0, 1] → M be geodesics. Then we
have ∀0 ≤ t ≤ 1, 0 ≤ s ≤ 1.

d2(γ1(t), γ2(t)) ≤ (1 − t)d2(γ1(0), γ2(0)) + td2(γ1(1), γ2(1))

− t(1 − t)
{
s[d(γ1(0), γ1(1)) − d(γ2(0), γ2(1))]2 + (1 − s)[d(γ1(0), γ2(0)) − d(γ1(1), γ2(1))]2

}
.

Hint: Using the above corollary.
Remark: The above exercise tells particular that d2 : M × M → R where M is

a compact simply-connected Riemannian manifold with sec≤ 0, is a convex function.
This is because a geodesic γ on M × M is given as (γ1, γ2) where γ1, γ2 are geodesics
in M. Exercise tells that d2 ◦ γ = d2(γ1(t), γ2(t)) is a convex function. ([JJ,Corollary
4.8.2]).
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7.2 Bochner technique and Bakry-Émery Γ-calculus

7.2.1 A computation trick

When we verify tensor equalities or tensor inequalities, we can pick a proper local
coordinate or a proper local frame at a point, and check the equality or inequality at
two points.

1. normal coordinate system around p ∈ M x : U → Rn such that
xi(p) = 0

gi j(p) = g(
∂

∂xi ,
∂

∂x j )(p) = δi j

Γi
jk(p) = 0

2. (local) coordinate frame: { ∂
∂xi }

3. (local) orthonormal frame: {e1} with 〈ei, e j〉 = δi j.

4. local normal frame at x: {Ei} with ∇Ei E j(x) = 0, ∀i, j.

Exercise: Pick an orthonormal basis {e1, . . . , en} for the vector space TxM.

Choose any p ∈ M near to x, let γ be the geodesic from x to p. Let Ei(p) be the vector
in TpM which is obtained by transport ei parallelly along γ. The local frame obtained
in this way is what we want.

Let us discuss an exomple.

Lemma 7.1. Choosing any local frame {Vi}
n
i=1 on M and its dual coframe {ωi}ni=1, then

we have
d =

∑
i

ωi ∧ ∇Vi . (7.2.1)

Recall d : Ap(M)→ Ap+1(M) is the exterior derivative where Ap(M) stands for the
vector space of smooth p-forms on M.

Proof. Let us denote by d =
∑

i ω
i ∧ ∇Vi . Notice this does not depend on the choice

of different frames. Indeed, for the frame Xk = ci
kVi and its dual ηk = dk

i ω
i, where
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∑
k ci

kdk
j = δi

j. Hence∑
k

ηk ∧ ∇Xk =
∑
k, j,i

dk
jω

j ∧ ∇ci
kVi

=
∑
k, j,i

dk
jc

i
kω

j ∧ ∇Vi =
∑

j,i

δi
jω

j ∧ ∇Vi =
∑

i

ωi ∧ ∇Vi .

As both sides of (7.2.1) are independent of the choice of frames, we can prove it
pointwise, and choose the normal coordinate {xi} around a fixed point p ∈ M, and
consider the local coordinate frame { ∂

∂xi } and its dual {dxi}.
First, we observe(

∇ ∂

∂xi
dxi

) (
∂

∂xk

)
= ∇ ∂

∂xi

(
dx j(

∂

∂xk )
)
− dx j

(
∇ ∂

∂xi

∂

∂xk

)
= − dx j

(
Γl

ik
∂

∂xl

)
= −Γl

ikδ
j
k = −Γ

j
ik.

This means that ∇ ∂

∂xi
dx j = −Γ

j
ikdxk. Hence at p, we have(
∇ ∂

∂xi
dx j

)
(p) = 0. (7.2.2)

By the linear property of d and RHS of (7.2.1), we only need to verify (7.2.1) when
applying to any q-form η = f dx1 ∧ · · · ∧ dxq. Then∑

i

dxi ∧ ∇ ∂

∂xi

 η =
∑

i

dxi ∧ ∇ ∂

∂xi

(
f dx1 ∧ · · · ∧ dxq

)
=

∑
i

dxi ∧
∂ f
∂xi dx1 ∧ · · · ∧ dxq =

∑
i

∂ f
∂xi dxi ∧ dx1 ∧ · · · ∧ dxq

=dη.

�

7.2.2 The Hodge Laplacian

On a Riemannian manifold (M, g), g induces an inner product on TxM for each x ∈ M:
Let us denote g(X,Y) = 〈X,Y〉, ∀X,Y ∈ TxM. Choose a local orthonomal frames {Ei}

n
i=1

on M, i.e. 〈Ei, E j〉 = δi j. Let {ωi}ni=1 be the dual coframe of {Ei}
n
i=1, i.e. ωi(X j) = δi

j.
We stipulate that these 1-forms are orthonormal pairwise, i.e. we define 〈ωi, ω j〉 = δi j.

Extend it by linearly: ∀φ, ψ ∈ A1(M), suppose φ =
∑

i φiω
i, ψ =

∑
j ψ jω

j. Then
〈φ, ψ〉 =

∑
i φiψ. We can check that the above definition is independent of the choice of

frames. In this way, each cotangent space T ∗x M becomes an inner product space.
We can continue to assign a natural inner proudct on the space ∧pT ∗x M: we stipulate

that the p-forms are {ωi1∧· · ·∧ωip : i1 < · · · < ip} are orthonormal. For ∀φ, ψ ∈ Ap(M),
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suppose

φ =
∑

i1<···<ip

φi1...ipω
i1 ∧ · · · ∧ ωip ,

ψ =
∑

i1<···<ip

ψi1...ipω
i1 ∧ · · · ∧ ωip .

Then define

〈φ, ψ〉(x) =
∑

i1<···<ip

φi1...ipψi1...ip (x).

We can check that this definition is independent of the choice of frame.
Now let M be an n-dimensional orientable manifold and we suppose {ωi}ni=1 is a

locally orthonormal coframe such that

ω1 ∧ · · · ∧ ωn

is the volume form Ω on M. Recall Ω determines an orientaion on M. Then we
define the Hodge star operator ? : Ap(M) → An−p(M) by pairing φ ∧ ?ψ = 〈φ, ψ〉Ω,
∀φ, ψ ∈ Ap(M).

For that purpose, we obeserve that we have to define

?
(
ω1 ∧ · · · ∧ ωp

)
= ωp+1 ∧ · · · ∧ ωn. (7.2.3)

If 1 ≤ i1 < · · · < ip ≤ n, 1 ≤ ip+1 < · · · < in ≤ n and {ip+1, . . . , in} = {1, . . . , n} \
{i1, . . . , ip}, then {ωi1 , . . . , ωip , ωip+1 , . . . , ωin−1 , εi1...inω

in } is also an orthonormal coframe
determining the same orientaion, where εi1,...,in is the sign of the permutaion

(1, . . . , n)→ (i1, . . . , ın)ωi1 ∧ · · · ∧ ωip ∧ ωip+1 ∧ · · · ∧ ωin−1 ∧ εi1...inω
in

=ω1 ∧ · · · ∧n = Ω


Hence, by the definition (7.2.3), we have

?
(
ωi1 ∧ · · · ∧ ωip

)
= εi1,...,inω

ip+1 ∧ · · · ∧ ωin .

Extendind ? as an A0(M)-linear operator, for f =
∑

i1<···<ip
fi1...ipω

i1 ∧ · · · ∧ ωip we
have

? f =
∑

i1<···<ip

fi1...ip ?
(
ωi1 ∧ · · · ∧ ωip

)
=

∑
i1<···<ip,ip+1<···<in

εi1...in fi1...ipω
ip+1 ∧ · · · ∧ ωin .
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We can check that this definition is independent of the choice of an orthonormal
frame. Moreover we have for

φ =
∑

i1<···<ip

φi1...ipω
i1 ∧ · · · ∧ ωip ,

ψ =
∑

i1<···<ip

ψi1...ipω
i1 ∧ · · · ∧ ωip .

that

φ ∧ ?ψ =

 ∑
i1<···<ip

φi1...ipω
i1 ∧ · · · ∧ ωip

 ∧
 ∑

j1<···< jp, jp+1<···< jn

ε j1... jnψ j1... jpω
jp+1 ∧ · · · ∧ ω jn


=

∑
i1<···<ip,ip+1<···<in

εi1...inφi1...ipψi1...ipω
i1 ∧ · · · ∧ ωip ∧ ω jp+1 ∧ · · · ∧ ω jn

=

 ∑
i1<···<ip

φi1...ipψi1...ip

ω1 ∧ · · · ∧ ωn = 〈φ, ψ〉Ω.

Proposition 7.1. We have
?Ω = 1, ?1 = Ω,

? ? φ = (−1)p(n−p), ∀φ ∈ Ap(M),

〈φ, ψ〉 = 〈?φ, ?ψ〉, ∀φ, ψ ∈ Ap(M).

Proof. We only show that the last:

? ? φ = ?

 ∑
i1<···<ip,ip+1<···<in

εi1...inφi1...ipω
ip+1 ∧ · · · ∧ ωin


=

∑
i1<···<ip,ip+1<···<in

εi1...inεip+1...ini1...ipφi1...ipω
i1 ∧ · · · ∧ ωip

=
∑

i1<···<ip

φi1...ip (−1)p(n−p)ωi1 ∧ · · · ∧ ωip

= (−1)p(n−p)φ.

Then 〈?φ, ?ψ〉Ω = ?φ∧?(?ψ) = (−1)p(n−p)?φ∧ψ = φ∧?ψ = 〈ψ, φ〉Ω = 〈φ, ψ〉Ω.
Hence 〈?φ, ?ψ〉 = 〈φ, ψ〉.

�

Definition 7.1 (Hodge Laplacian). We define the operator

δ : Ap(M)→ Ap−1(M)

by δ = (−1)np+n+1?d?. Then Hodge Laplacian ∆ is defined as ∆ = δd + dδ : Ap(M)→
Ap(M).
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Let us explain why we define δ like that, especially with such a complicated sign.
Let M be an n-dimensional, closed orientable Riemannian manifold. We can introduce
an inner product in the space of the whole exteror Algebra A∗(M) = ⊕n

p=0Ap(M) as
below:
∀φ, ψ ∈ Ap(M), set

(φ, ψ) =

∫
M
〈φ, ψ〉Ω =

∫
M
φ ∧ ?ψ

∀φ ∈ Ap(M) ∀ψ ∈ Aq(M) with p , q set

(φ, ψ) = 0.

Excercise: Check this definition gives an inner product in A∗.
Proposition 7.1 implies (?φ, ?ψ) = (ψ, φ). That is, ? is an isometry tansformation

beween A∗ and itself. The definition of δ is carefully given to ensure the following
property:

Proposition 7.2. ∀α ∈ Ap−1(M), β ∈ Ap(M), we have (dα, β) = (α, δβ).

Proof.

(dα, β) =

∫
M

dα ∧ ?β

=

∫
M

d(α ∧ ?β) − (−1)p−1α ∧ d ? β

= −(−1)p−1
∫

M
(−1)(n−p+1)(p−1)α ∧ ? ? (d ? β)

= (−1)(n−p+2)(p−1)+1
∫

M
α ∧ ?(?d ? β)

= (−1)np+n+1
∫

M
α ∧ ?(?d ? β).

Hence (dα, β) =
∫

M α ∧ ?(δβ) = (α, δβ).
�

Now the definition of δ is justified. Notice that δ2 = 0 following from d2 = 0.
Hence ∆ = (δ + d)(δ + d).

Proposition 7.3. The Hodge Laplacian ∆ is a self-adjoint operator.

Proof. ∀α, β ∈ A∗, we have

(∆α, β) = ((δ + d)(δ + d)α, β)
= (d(δ + d)α, β) + (δ(δ + d)α, β)
= ((δ + d)α, δβ) + ((δ + d)α, dβ)
= ((δ + d)α, (δ + d)β)
= (α, (δ + d)(δ + d)β) = (α,∆β)
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.
�

As a direct corollary, ∆ is a positive operator on A∗(M). That is, ∀ f ∈ A∗, (∆ f , f ) =

((δ + d) f , (δ + d) f ) = (d f , d f ) + (δ f , δ f ) ≥ 0.
Suppose λ is any eigenvalue of ∆, i.e., ∆ f = λ f for some nontrival f , then λ( f , f ) =

(∆ f , f ) ≥ 0. ⇒ λ ≥ 0. Furthermore, f ∈ A∗ is harmonic (∆ f = 0) iff d f = δ f = 0.
Next, we aim at establishing an expression for δ similar to lemma 7.1 for d. Recall

for any vector field X on M, the inerior product

i(X) : Ap(M)→ Ap−1(M)

by (i(X)φ)(Y1, . . . ,Yp−1) = φ(X,Y1, . . . ,Yp−1), ∀φ ∈ Ap(M), and any vector fields
Y1, . . . ,Yp−1.

Proposition 7.4. For any φ ∈ Ap(M), ψ ∈ Aq(M), we have

1. i(X)(φ ∧ ψ) = (i(X)φ) ∧ ψ + (−1)pφ ∧ (i(X)ψ),

2. i(X)( fφ) = f (i(X)φ),

3. i(X) ◦ i(X) = 0.

Proof. Direct proof. We check 3. ∀φ ∈ Ap(M), we have

((i(X) ◦ i(X) = 0)φ)(Y1, . . . ,Yp−2) = φ(X, X,Y1, . . . ,Yp−2) = 0.

�

Lemma 7.2. Choosing any local orthonomal frame {Ei}
n
i=1 on M, we have

δ = −

n∑
j=1

i(E j)∇E j . (7.2.4)

Proof. Denote δ = −
∑n

j=1 i(E j)∇E j . We can check δ is independent of the choice of
local orthonormal frames. So we only need to prove (7.2.4) at a fixed point x ∈ M.
We pick a local normal frame {Ei} at x. Let {ωi} be the dual coframe. Since ∇Ei E j =∑

k Γk
i jEk, we have

(
∇Eiω

j
)

(Ek) = ∇Ei

(
ω j(Ek)

)
− ω j

(
∇Ei E j

)
= −ω j(Γl

ikEl) = −Γ
j
ik.
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⇒ ∇Eiω
j = −Γ

j
ikω

k. Therefore at x ∈ M, we have ∇Eiω
j(x) = 0, 1 ≤ i, j ≤ n. By

linearity, we only need to verify δη = δη for η = fω1 ∧ · · · ∧ ωp. We compute

δη = −

p∑
j=1

i(E j)∇E j ( fω1 ∧ · · · ∧ ωp)

= −

p∑
j=1

i(E j)
(
E j( f )

)
ω1 ∧ · · · ∧ ωp

= −

p∑
j=1

E j( f )
p∑

k=1

(−1)k−1ω1 ∧ · · · ∧ ωk−1 ∧ i(E j)ωk ∧ · · · ∧ ωp


= −

p∑
j=1

E j( f )(−1) j−1ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωp

=

p∑
j=1

(−1) jE j( f )ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωp.

On the other hand, note that for j = 1, . . . , p.

?
(
ω j ∧ ωp+1 ∧ · · · ∧ ωn

)
= (−1)(n−p)(p−1) × (−1) j−1ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωp

= (−1)np+n+1+ jω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωp.

Therefore

(δη)(p) = (−1)np+n+n+ ? d ? ( fω1 ∧ · · · ∧ ωp)

= (−1)np+n+1 ? d( fωp+1 ∧ · · · ∧ ωn)

= (−1)np+n+1 ?

 n∑
j=1

ω j ∧ ∇E j ( fωp+1 ∧ · · · ∧ ωn)


= (−1)np+n+1 ?

 n∑
j=1

E j( f )ω j ∧ ωp+1 ∧ · · · ∧ ωn


= (−1)np+n+1

n∑
j=1

E j( f ) ? (ω j ∧ ωp+1 ∧ · · · ∧ ωn)

=

n∑
j1

(−1) jE j( f )ω1 ∧ · · · ∧ ω̂ j ∧ · · · ∧ ωp

= (δη)(p).

This completes the proof. �
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Observation: for f ∈ C∞(M), we have

∆ f = −δd f = −
∑

j

i(E j)∇E j

∑
i

ωi ∧ ∇Ei f


= −

∑
j

i(E j)∇E j

(
Ei( f )ωi

)
= −

∑
i, j

E j (Ei( f ))ωi(E j) = −
∑

i

Ei((E j)( f ))

= trHess f .

So Hodge Lapalacian is the negative of the Laplace-Beltrani operator we defined
before.

7.2.3 Weitzenböck formula

For ω ∈ Ap(M), which can be considered as a (0, p) tensor, recall ∇2ω is a (0, p + 2)-
tensor. Let {ei} be a local orthonormal frame. We define

tr(∇2ω)(. . . ) =
∑

i

∇2ω(. . . , ei, e j).

One can check this definition is independent of the choice of an orthonormal frame,
and

tr(∇2ω)(. . . ) =
∑

i

(
∇ei∇eiω − ∇∇ei eiω

)
.

Theorem 7.3 (Weitzenböck formula). For any ω ∈ Ap(M), let {ei} be a local orthonor-
mal frame and {ωi} its dual, then

∆ω = −tr(∇2ω) − ωi ∧ i(e j)R(ei, e j)ω. (7.2.5)

Proof. We can check that the RHS is independent of the choice of othonormal frame.
So we will prove the W-formula at a point x ∈ M, and pick a local normal frame {Ei}.
We again use {ωi} for its dual.

Recall the covariant derivative is commutable with the contraction, i.e.

∇Ei

(
C(E j ⊗ ∇E jω)

)
= C∇Ei (E j ⊗ ∇E jω)

= C
(
E j ⊗ ∇Ei∇E jω

)
.

Hence ∇Ei

(
i(E j)∇E jω

)
= i(E j)∇Ei∇E jω. Recall ∇Ei E j = 0, ∀i, j ⇒ ∇E jω

j = 0,
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∀i, j. Therefore, we compute

∆ω = dδω + δdω =
∑

i

ωi ∧ ∇Ei (δω) −
∑

j

i(E j)∇E j (dω)

= −
∑

i

ωi ∧ ∇Ei

∑
j

i(Ei)∇E jω

 −∑
j

i(E j)∇E j

∑
i

ωi ∧ ∇Eiω


= −

∑
i j

ωi ∧ ∇Ei

(
i(Ei)∇E jω

)
−

∑
j,i

i(E j)∇E j

(
ωi ∧ ∇Eiω

)
= −

∑
i j

ωi ∧ i(Ei)∇Ei∇E jω −
∑
i, j

i(E j)
(
ωi ∧ ∇E j∇Eiω

)
= −

∑
i j

ωi ∧ i(Ei)∇Ei∇E jω −
∑
i, j

δi
j∇E j∇Eiω +

∑
i, j

ωi ∧ i(E j)∇E j∇Eiω

= −
∑

i

∇Ei∇Eiω −
∑
i, j

ωi ∧ i(E j)
(
∇Ei∇E jω − ∇E j∇Eiω

)
= −tr(∇2ω) −

∑
i, j

ωi ∧ i(E j)R(Ei, E j)ω.

�

Corollary 7.3 (Bochner). For any ω ∈ Ap(M), we have

−
1
2

∆|ω|2 = −〈∆ω,ω〉 + |∇ω|2 + F(ω) (7.2.6)

where F(ω) = −〈ωi ∧ i(E j)R(ei, e j)ω,ω〉

Remark: Here we are using Hodge Laplacian.

Proof. We complete in local normal frame {Ei}, we have

−〈∆ω,ω〉 + F(ω) = 〈−∆ω − ωi ∧ i(E j)R(Ei, E j)ω,ω〉

= 〈tr(∇2ω), ω〉

= 〈
∑

i

∇Ei∇Eiω,ω〉

=
∑

i

(
∇Ei〈∇Eiω,ω〉 − 〈∇Eiω,∇Eiω〉

)
=

1
2

∑
i

∇Ei∇Ei〈ω,ω〉 − |∇ω|
2

= −
1
2

∆|ω|2 − |∇ω|2.

�

In particular, when ω ∈ A1(M), the curvature term becomes simpler. Let ]ω =

〈ω,ωi〉Ei, we have
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F(ω) = −〈ωi ∧ i(E j)R(Ei, E j)ω,ω〉

= −i(E j)R(Ei, E j)ω〈ωi, ω〉

= −
(
R(Ei, E j)ω

)
(E j)〈ωi, ω〉.

Claim:

(R(X,Y)(ω)) (Z) = −ω ( R(X,Y)Z )

=
(
∇X∇Yω − ∇Y∇Xω − ∇[X,Y]ω

)
(Z),

(∇X∇Yω) (Z) = (∇X(∇Yω)) (Z) = X ((∇Yω)(Z)) − (∇Yω)(∇XZ)
= X{Y(ω(Z)) − ω(∇YZ)} − Y(ω(∇XZ)) + ω(∇Y∇XZ)
= X(Y(ω(Z))) − X(ω(∇YZ)) − Y(ω(∇XZ)) + ω(∇Y∇XZ),(

∇[X,Y]ω
)

(Z) = [X,Y](ω(Z)) − ω(∇[X,Y](Z)).

Hence (R(X,Y)(ω)) (Z) = ω(∇Y∇XZ) − ω(∇X∇YZ) + ω(∇[X,Y](Z)) = −ω(R(X,Y)Z).
Now we continue our computation:

F(ω) = −
(
R(Ei, E j)ω

)
(E j)〈ωi, ω〉

= ω
(
R(Ei, E j)E j

)
〈ωi, ω〉

= 〈]ω,R(Ei, E j)ωE j〉〈ω
i, ω〉

= 〈]ω,R(〈ωi, ω〉Ei, E j)E j〉

= 〈]ω,R(]ω, E j)E j〉 = 〈R(]ω, E j)E j, ]ω〉

=
∑

j

R(]ω, E j, ]ω, E j) =
∑

j

R(E j, ]ω, E j, ]ω)

= trR(�, ]ω, �, ]ω) = Ric(]ω, ]ω).

Corollary 7.4. For any ω ∈ A1(M), we have

−
1
2

∆|ω|2 = −〈∆ω,ω〉 + |∇ω|2 + Ric(]ω, ]ω). (7.2.7)

Theorem 7.4 (Bochner). Let (M, g) be a closed oriented Riemannian manifold.

1. If Ric ≥ 0, then any harmonic 1-form ω is parallel, i.e. ∇ω = 0.

2. If Ric ≥ 0 on M and Ric > 0 at one point, then there is no non-trival harmonic
1-form.

Proof. Recall
∫

M −∆|ω|dvolM = 0. Hence we have

0 = −

∫
M
〈∆ω,ω〉 + |∇ω|2 + Ric(]ω, ]ω)dvolM

=

∫
M
|∇ω|2 + Ric(]ω, ]ω)dvolM ≥ 0.
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⇒ ∇ω = 0, i.e. ω is parallel. If Ric > 0 at some point, we must have ]ω = 0,
i.e.ω = 0.

�

Corollary 7.5. For any f ∈ C∞(M), we have

1
2

∆LB|grad f |2 = |Hess f |2 + 〈grad(∆LB f ), grad f 〉 + Ric(grad f , grad f ). (7.2.8)

Proof. We see d f ∈ A1(M), and |d f |2, ](d f ) = grad f .

−〈∆d f , d f 〉 = −〈(dδ + δd)d f , d f 〉 = −〈dδd f , d f 〉

= −〈d(δd f ), d f 〉 = −〈d(∆ f ), d f 〉

= −〈grad(∆ f ), grad f 〉 = 〈grad(∆LB f ), d f 〉.

|∇d f |2 =
∑

i

〈∇Ei d f ,∇Ei d f 〉

=
∑

i

〈∇Ei grad f ,∇Ei grad f 〉

=
∑

i

〈∑
j

〈∇Ei grad f , E j〉E j,
∑

k

〈∇Ei grad f , Ek〉Ek

〉
=

∑
i j

〈∇Ei grad f , E j〉
2 =

∑
i j

Hess f (Ei, E j)2

= |Hess f |2.

�

Let (M, g) be a closed Riemannian manifold. We say λ ∈ R is an eigenvalue of ∆LB

if ∃ a smooth function u , 0 such that ∆LBu + λu = 0. It is konwm that the eigenvalues
can be listed as 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ↗ ∞.

Theorem 7.5 (Lichnerowicz). Let (Mn, g) be a closed Riemannian manifold with Ric ≥
k > 0. Then we have λ1 ≥

n
n−1 k.

Proof. Integrate the Bochner formula in corallary 7.5, we have

0 =

∫
M
|Hess f |2 + 〈grad(∆LB f ), grad f 〉 + Ric(grad f , grad f )

=

∫
M
|Hess f |2 − λ1

∫
M
〈grad f , grad f 〉 +

∫
M

Ric(grad f , grad f )

≥

∫
M
|Hess f |2 − λ1

∫
M
|grad f |2 +

∫
M
|grad f |2.

⇒ λ1 ≥ k.
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We can make more use of |Hess f |2 term.

|Hess f |2 =
∑

i j

Hess f (Ei, E j)2 ≥
∑

i

Hess f (Ei, Ei)2

≥
1
n

∑
i

Hess f (Ei, Ei)

2

=
1
n

(∆LB f ) =
1
n
λ2

1 f 2

⇒

∫
M
|Hess f |2 ≥

1
n
λ1

∫
M
λ1 f 2 =

λ1

n

∫
M
〈 f ,−∆LB f 〉

=
λ1

n

∫
M
〈grad f , grad f 〉

⇒ 0 ≥
(
λ1

n
− λ1 + k

) ∫
M
|grad f |2

⇒ λ1 ≥
nk

n − 1
.

�

Like for the Bonnet-Myers Theorem, we have the following RIGIDITY result due
to Obata.

Theorem 7.6 (Obata). Let (Mn, g) be a closed Riemannian manifold with Ric ≥ (n −

1)k, k > 0. Then λ1 = nk iff (Mn, g) is isometric to the space S
(

1
√

k

)
.

Proof. W.l.o.g., we can suppose k = 1. If λ1 = n, then the proof of 7.5 implies

Ric(grad f , grad f ) = (n − 1)|grad f |2.

Since ∆LBu2 = 2|grad f |2 + 2u∆LBu.

⇒
1
2

∆LB

(
|∇ f |2 + f 2

)
=

1
2

∆LB|∇ f |2 + |grad f |2 + f ∆LB f

≥
λ1

n
〈 f ,−∆LB f 〉 − n|grad f |2 + (n − 1)|grad f |2

+ |grad f |2 + f ∆LB f

=0.

Recall
∫

M
1
2 ∆LB

(
|∇ f |2 + f 2

)
= 0. Hence ∆LB

(
|∇ f |2 + f 2

)
= 0. That is,

|grad f |2 + f 2 ≡ const.

Normalize f so that maxM f 2 = 1. Since at the maximum/minimum points of f , we
have grad f = 0. Therefore we have |grad f |2 + f 2 = 1 and maxM f = −minM f = 1.
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Let p, q ∈ M be points s.t. f (p) = −1, f (q) = 1.

Let γ be a normal minimizing geodesic from p to q. Note that

d
dt f ◦ γ(t)√

1 − ( f ◦ γ(t))2
≤
|grad f (γ(t))|2√
1 − ( f ◦ γ(t))2

= 1.

Integrating over t,

∣∣∣∣∣∣∣
∫ d(p,q)

0

d
dt f ◦ γ(t)√

1 − f ◦ γ(t)2

∣∣∣∣∣∣∣ =

∫ 1

−1

1
√

1 − x2
dx = π

≤

∫ d(p,q)

0

∣∣∣ d
dt f ◦ γ(t)

∣∣∣√
1 − f ◦ γ(t)2

≤ d(p, q).

On the other hand, Ric ≥ (n − 1) ⇒ d(p, q) ≤ π ⇒ diam = π ⇒ M is isometric to
S(1).

�

7.2.4 Bakry-Émery Γ-calculus:A systematic way of understanding
the Bochner formula

For any f , g ∈ C∞(M), define

Γ( f , g) =
1
2

(∆LB( f g) − f ∆LBg − g∆LB f )

Observe Γ( f , f ) = |grad f |2.
Interatively, define Γ2( f , g) = 1

2 (∆(Γ( f , g)) − Γ( f ,∆LBg) − Γ(∆LB f , g)).
Observe that Γ2( f , f ) = 1

2 ∆LB|grad f |2 − 〈grad f , grad(∆LB f )〉. So the Bochner for-
mula in Corollary 7.5 implies

Γ2( f , f ) =|Hess f |2 + Ric(grad f , grad f )

≥
1
n

(∆LB f )2 + Ric(grad f , grad f ).

Moreover Ric ≥ k implies Γ2( f , f ) ≥ 1
n (∆LB f )2 + kΓ( f , f ), ∀ f ∈ C∞(M).

The above property enables us to define ”Ricci curvature lower bound” for a general
operator, which can be operators on more general spaces. Here we discuss possibilites
on discrete metric spaces: a combinatorial graph G = (V, E), where
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1. V is the set of vertices (points),

2. E is the set of edges,

3. metric: combinatorial distance (length of shortest path).

For example, a discrete set {p1, . . . , pn} with the metric d(pi, p j) = δi j can be rep-
resented by a complete graph Kn. Define the degree of a vertex p to be deg(p) =∑

q∈V,d(p,q)=1 1.
We can consider the graph Laplacian ∆ defined via ∆ f (x) =

∑
y∈V,d(y,x)=1( f (y) −

f (x)),

for f : V → R. We say λ is eigenvalue of ∆ if ∃ f , 0 s.t. ∆ f + λ f = 0. We can list
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λ|V |−1.

Definition 7.2. A graph G = (V, E) is said to satisfy the curvature dimension inequality
CD(K, n) for some K ∈ R, n ∈ (0,∞] if for all f : V → R, it holds

Γ2( f , f )(x) ≥
1
n

(∆ f )2(x) + KΓ( f , f )(x)

∀x ∈ V.

Since we do not have a proper understanding about the ”dimension” of a graph,
quite oftenly we assume CD(K,∞) conditions.

Theorem 7.7 (L.-Münch-Peyerimhoff,arXiv:1608.09998,arXiv:1705.08119). Let G =

(V, E) be a connected graph satisfying CD(K,∞), and degmax < ∞. Then

diamd(G) ≤
2 degmax

K
.

Moreover, ”=” holds iff G is a degmax-dimensional hypercube. Under the same assump-
tion, (By standard argument, we have λ1 ≥ K) λdegmax

= K iff G is a degmax-dimensional
hypercube.

Remark: (1)Hypercube:
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(2) λ1 = K is not strong enough to conclude the Rigidity Theorem. counterexam-
ple:

Open question: Let G = (V, E) be a connected graph satisgying CD(0,∞). What is
the volume growth rate? Polynomial? This is equivalent to ask for the (non-)existence
of a family of expanders in the class of Graphs satisfying CD(0,∞).
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