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Problem: Min Expansion and Max Cut
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Expansion of S

φ(S) =
|E(S, S)|
vol(S)

Cut ratio of V1, V2

φ(V1, V2) =
2|E(V1, V2)|
vol(V1 ∪ V2)

Multi-way dual Cheeger constants
Given an undirected weighted finite graph G = (V,E,w),

• k-way Cheeger constant (Miclo ’08, k = 2: extended to discrete
setting from Cheeger ’69)

h(k) = min
S1,S2,...,Sk

max
1≤i≤k

φ(Si),

where the minimum is taken over all k-subpartition of V ;

• k-way dual Cheeger constant (k = 1: Bauer-Jost [1], bipar-
titeness ratio of Trevisan [3])

h(k) = max
(V1,V2),...,(V2k−1,V2k)

min
1≤i≤k

φ(V2i−1, V2i),

where the maximum is taken over all k-sub-bipartition of V .
We only require V2i−1 ∪ V2i 6= ∅, ∀ 1 ≤ i ≤ k.

Intuitions of h(k)
{h(k)} describe how far/close a graph is from being a bipartite one.

connected G is bipartite ⇔ h(1) = 1;

G is bipartite ⇔ h(k) + h(k) = 1, 1 ≤ k ≤ N ;

G is an odd cycle ⇒ h(k) + h(k) = 1, 2 ≤ k ≤ N.

Any proper subgraph of an odd cycle is bipartite. Roughly speaking,
if a graph can satisfy h(k) + h(k) = 1 for a small k, then it possess a
"large" bipartite subgraph.

Spectrum of normalized Laplace operator
Normalized graph Laplacian ∆ : for any f : V → R, and u ∈ V

∆f(u) :=
1

du

∑
v,v∼u

wuv(f(u)− f(v)).

In matrix form, ∆ = I −D−1A.
List of its spectrum: 0 = λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN ≤ 2.

• λ2 = 0⇔ G is disconnected (Cheeger inequality),

λ2/2 ≤ h(2) ≤
√

2λ2;

• λN = 2 ⇔ G is bipartite (dual Cheeger inequality, Bauer-Jost
[1], independently Trevisan [3] for regular graph case),

2− λN
2

≤ 1− h(1) ≤
√

2(1− h(1));

• Higher-order Cheeger inequalities (Lee-Gharan-Trevisan [2])

λk/2 ≤ h(k) ≤ Ck2
√
λk,

where C is a universal constant.

Higher-order dual Cheeger inequalities
Theorem 1. For every graph G, and each natural number 1 ≤ k ≤ N , we have

2− λN−k+1

2
≤ 1− h(k) ≤ Ck3

√
2− λN−k+1,

where C is a universal constant.

Remark: λN−k+1 = 2 ⇔ h(k) = 1 ⇔ G has at least k bipartite connected
components.
Example: For any unweighted cycle, we have for each 1 ≤ k ≤ N

√
2

π

√
2− λN−k+1 ≤ 1− h(k) ≤ 3√

π

√
2− λN+k−1.

Proof: Hostile spectral clustering
Goal: finding k disjoint subsets each of which has a bipartition such that 1−φ
is small, i.e. each is close to be bipartite.

• Spectral representation: using the top k eigenfunctions fN−k+1, . . . , fN of
∆ to represent V as points in Rk

F : V → Rk, v 7→ (fN−k+1(v), . . . , fN (v)).

Ignoring those vertices on which F vanishes, we further consider,

F̃ : V → Sk−1, v 7→ F (v)

‖F (v)‖
.

• Projective space with a rough metric:

The canonical antipodal projection,

P : Sk−1 → P k−1R, {x,−x} 7→ [x].

Assign the following metric,

d([x], [y]) := min{‖x+ y‖, ‖x− y‖}.

• Partition points in (P k−1R, d) that represent V via P ◦ F̃ .

Remark: The classical spectral clustering algorithm verified by Lee-Gharan-
Trevisan employs the bottom k eigenfunctions and the spherical distance.

An inspiring example
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• Cluster on S1 ⇒ V1 ∪ V3 and Goal: obtain the 2-sub-bipartition
V2 ∪ V4; {(V1, V2), (V3, V4)}.

• Cluster on P 1R ⇒ V1 = V2 and
V3 = V4.

Remark: Think of edges as "hostile" relations. Vertices are clustered because
of sharing common enemies. Compare the classical spectral clustering, edges
are considered as "friendly" relations. Vertices are clustered because of being
friends.

Acknowledgements and References
This work was supported by the EPSRC Grant EP/K016687/1 "Topology, Geometry and
Laplacians of Simplicial Complexes".

[1] F. Bauer and J. Jost, Bipartite and neighborhood graphs and the spectrum of the nor-
malized graph Laplacian, Comm. Anal. Geom. 21 (2013), no. 4, 787-845.

[2] J. R. Lee, S. Oveis Gharan and L. Trevisan, Multi-way spectral partitioning and higher-
order Cheeger inequalities, STOC’12, 1117-1130, ACM, New York, 2012.

[3] L. Trevisan, Max cut and the smallest eigenvalue. SIAM J. Comput. 41 (2012), no. 6,
1769-1786.


