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Abstract The branching structure of uniform recursive trees is investigated in this paper.
Using the method of sums for a sequence of independent random variables, the distribution
law of n,, the number of branches of the uniform recursive tree of size n are given first.
It is shown that the strong law of large numbers, the central limit theorem and the law
of iterated logarithm for 7, follow easily from this method. Next it is shown that n, and
&, the depth of vertex n, have the same distribution, and the distribution law of (» m, the
number of branches of size m, is also given, whose asymptotic distribution is the Poisson
distribution with parameter A = L. In addition, the joint distribution and the asymptotic
joint distribution of the numbers of various branches are given. Finally, it is proved that the
size of the biggest branch tends to infinity almost sure as n — oc.
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1 Introduction

A tree is a connected simple graph without cycles [, The recursive tree of size n is a
kind of random trees on n particles that attach to each other randomly. The process of gen-
erating a recursive tree is as follows (see ref. [2]): let the set of particles be {1,2,---,n},
and {px, t =1,2,---,k},k =1,2,---,n—1, be a sequence of probability mass func-
tions, i.e.

k
Dk, = 0, Zpk,i=1, k=1,2,---,n—1.
=1

At step 1, put all particles in a plane; at step 2, particle 2 attaches to particle 1; at step 3,
particle 3 attaches to particle 1 with probability p,; or to particle 2 with probability pss. In
general, at step k + 1, particle k + 1 attaches to one of the particles in the set {1,2,-- -, k}
with the probabilities py ;,¢ = 1,2, -, k, respectively. After n steps, the resulting tree
with the root vertex 1 is called a recursive tree. If

pk,izg) Z=1,2,7ka k=1a2""an_11

i.e. at each step the new particle attaches to a uniformly selected particle from the previ-
ous ones, independent of previous attachments, then we call it a uniform recursive tree,
denoted by 7,,. At the kth(k > 2) step we can make k — 1 choices, so (n — 1)! different
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trees can be obtained, and each tree occurs with the same probability ﬁ

With many applications, recursive trees have been proposed as models for the spread of
epidemics!®, the family trees of preserved copies of ancient or medieval texts!), pyramid
schemes!®], etc. Here we give an example of the model for the spread of epidemics.

Suppose there exist n persons infected by a specific infectious disease (e.g. SARS) in
turn in some area, and only one of them is the original case. The second case must be
infected by the original one. Unknowing the law of infection, we suppose that the third
case was infected by one of the previous two with the probability 1/2. In general, we
suppose that the kth case was infected by one of the previous k — 1 cases with respective
probabilities lel , k = 2,3,---,n. Let vertex k represent the kth case, and vertex
attaches to vertex § (1 € 2 < 7 < n) if and only if the jth case was infected by the ith
case. Then we obtain a uniform recursive tree. By this token, such a study of the uniform

recursive trees can make the law of infection clear to a certain extent.

In 7,,, D; denotes the set of vertices of the jth generation. A subtree with the root in
D is called a branch, which is also a uniform recursive tree (6. Obviously, the number
of branches is the total number of vertices in the set D,, denoted by 7,,. If the size of a
branchis m (1 < m < n— 1), we call it an m-branch, and let ¢,, ,,, denote the number of
the m-branches. In particular, if m = 1, the only vertex in the branch is called a child-leaf
of the root 1. It is easy to see that 7, = 2?2—11 Cn,i- Furthermore, if vertex k € D;, we
say that the depth of vertex k is 7, and let £, denote the depth of vertex k.

Many authors have studied the depth of vertices. For example, Szymariski has given
the distribution of &,, the depth of vertex n!”l; Devroye has proved the central limit theo-
rem for {,[18]; Mahmoud has done some further studies on the limiting behavior of &, and
ZZ=1 £, 919 Meir and Moon have given the distribution of the number of vertices in
each generation (6],

It is easy to see that the branching structure is one of the important properties of the
uniform recursive trees, but as far as we know, no one has considered it. In this paper, our
main purpose is to study it. In Section 2, taking advantage of the mutual independence of
the events (2 € D,),(3 € D,),---,(n — 1 € D), we establish easily the strong law of
large numbers, the central limit theorem and the law of iterated logarithm for 7,,, and give
the distribution law of 7,, directly. In Section 3, we prove that 7, and &, have the same
distribution law. In Section 4, we give the distribution law and asymptotic distribution
law of (,, ., but also give the joint distribution of the numbers of various branches and
their expectations and covariance matrix, and simultaneously we prove the asymptotic
independence of them. Finally, in Section 5, we show that v,,, the size of the biggest
branch of 7,,, tends to infinity almost sure as n — o0.

2 The number of branches of 7,
In this section, we shall discuss the properties of 7,,. Meir and Moon have given the
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distribution law of 7,,, but their method is more complex and they have not discussed the
properties of 7,, ulteriorly [,

Let X; = I(j + 1 € Dy). According to the process of generating a uniform recursive
tree, it is just related to the jth step of the process that vertex j is in D or not. Therefore,

X1, X,, -+, X,_1 are mutually independent Bernoulli random variables, and
n—1 n—1
M= X; =1+ X, )
j=1 F=2

It is easy to see that
1
then
1 1

EXj=3, VarXJ=-J;

1
j2 , E|X]—EX]|3<EX?=3, J:]_,,n_]_

Let log z = In max{e, z}. Furthermore, as n — 00, we have

n—1 n-—1
1
En, = » EX; =) = =logn+0(1); )
7=1 j=1 J
n—1 n—1 . -1
B, :=Var77n=z:Vaer=z]j2 = logn + O(1); 3)
j=1 j=1
n—1 n~—1 n—1 1
Gn:=)Y E|IX,—EX;,’<C) EX;=C)» -=Clogn+0(1). 4
5=1 =1 =17
Theorem 1 (Marcinkiewicz SLLN). Foranyl < p < 2,asn — 00,
M, — logn
—_—— — 0, a.s. 5
log!/" n ©)
In particular,
T
— 1 .8.
Togn —1, a.s ©)

Proof. By (1), 7, is a sum for mutually independent random variables, X,, X,
Ty X, n—1s and

o oo

Var X, 1
E — < E —_—— <0
~log*Pn “— n(log n)?/»

Therefore, according to Theorem 6.6 in ref. [11],

n

il(Xj - EX;)

=~ Bl _ J — 0, as
log'/? n log'/? n ’
And it is easy to see that
En, —logn En,
7 0, 1.
log™ /" n logn
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Hence, Theorem 1 holds. D

Theorem 2 (CLT).
7, — logn

d
N(0,1).
F——logn - ( ) )

Proof. Asn — oo,
1 n—1

=7 D EIX; ~BX, < Clogn) ™/ 0.

Then X, X5, - - - satisfy the Lyapunov’s condition, i.e.,
n E n
% -, N(0,1).
Thus, by (2) and (3), Theorem 2 holds. O

Theorem 3 (LIL).

Jj=1

lim su I —logn
n_.oop v2lognlogloglogn

lim inf T — logn =
n—oo +/2lognlogloglogn

=1 as;

-1 as.

Proof. By (1), 7, is a sum for uniform bounded mutually independent random vari-
ables, and as n — oo,

En, =logn+ 0O(1), B, =logn+ O(1), loglogB, ~ logloglogn.
Therefore, Theorem 3 follows by the well-known Kolmogorov’s law of iterated logarithm.

(]
Using (1), we can write out the distribution law of #,, easily. Assume that m,;, 1 =
1,2, - - - only can take values on nature numbers, and let
:Bn,Ozly /Bn,k= Z my - - Mg, k=1a2,"':n_27 (7)
I€mi< - <mgEn—2
where the sum extends over all mq,---,m; € N satisfyingl < m; < -+ < my <
n—2,forafixedk € {1,2,--- ,n —2}.
Theoremd. Ifn > 2, then\
p(nn:k)zm k=1,---,n—1. (8)

(n—1)1"
Proof. Since 7, is the sum of 7 — 1 mutually independent Bernoulli random variables,

X1, X3, -+, Xn-1, the event (1, = k) occurs, if and only if k of them equal 1 and the
rest equal 0. Thus,

== > (IF 11 (-3

1< < <rkn=1 \é=1 7" jg{5,jx} J

1 .
z(n—l)! Z H -1

1< < <ge€n—15¢{j1, - Jx}
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1 ﬂn n—1—k
_ _ Prn-l-k m]
- 1) 2 M=k = T T

1I€mi < <Mmp_1_E<n—2

3 The depth of vertex n

In this section, we shall prove that £, the depth of vertex n, and 7,, have the same
distribution law.

There exists only a shortest path between the root and vertex n in 7,,, denoted by Z,,.
Except the root, the number of vertices in Z,, is just the depth of vertex n. Obviously,
n € Z,, thus,

n—1
=2

We shall discuss the distribution law of I(j € Z,,) first. Obviously, P(n —1 € Z,,) =
—L_. The event (n — 2 € Z,) occurs, if and only if vertex n — 2 is the parent or the

n—1"

grandparent of vertex n, therefore,

1 1 1 1
—-2€Z,)= . = .
P(n € Zn) n—1+n—1 n—2 n-—2

Similarly, by induction,
1
P(iGZn)=Z> 1=2,---,n— 1. (10)

In fact, we assume that for some 2 < ¢ < n — 2, (10)holds foralli < j < n — 1. We
only need to prove that it also holds for i. Let A; ; be the event that vertex j is a child of
vertex 4. It is easy to see that

IG€Z,) =Y I(€Zn A ;)
j=i+l
A;, ; is related to the jth step of the generating process only and the event (j € Z,) is just
related to step j + 1,- - -, n, therefore, the two events A; ; and (j € Z,) are mutually
independent. Hence,

Jj=i+1 Jj=i+1
n n—1
1 1 1

Fj=i+1 Jj=i+1

Secondly, the random variables I(2 € Z,),---,I(n — 1 € Z,,) are mutually indepen-
dent. Forany2 < k< n—2and2 < jx < -+ < J < j1 < n — 1, the event

(i €Z,)=1,1(j€Z,)=0,#7;1=1,2,--- k)
‘represents that vertex n is a child of j; and j; is a child of j;.;, ¢ = 1,---k — 1. Let
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Jo = n. And by the rule of generating process,
(I(JzGZ)—l I(j € Z,) =0, j #ji; i=1,2,--+ k)

1 k1 i—1
-H = =D II 6-v= [L— I JT

i=0 Ji = g {Gr,dk} J€{d1, g}

= HP(I(ji €z.)=1 ][] PUGi€Z)=0),
i=1 3 {51, 3k}
which yields that I(2 € Z,),---,I(n — 1 € Z,) are mutually independent random
variables.

Comparing (9) with (1), the expression of 7, (in (1), X; = I[(2 € D,) = 1), we
can see that they are the same, then &,, and 7,, have the same distribution law. Therefore,
Theorem 1, Theorem 2 and Theorem 3 still hold for &,. The first two results can be found
in Devroye® and Mahmoud!'%, but their proof are much more complex.

4 The number of m-branches

In this section, we will give not only the distribution law and the asymptotic distribution
of the numbers of various branches, but also the joint distribution law and the asymptotic
joint distribution of all the different branches.

4.1 The distribution law and the asymptotic distribution of ¢, 1

In fact, the result in this subsection is a part of Theorem 6 in the next, but for the
particularity of child-leaves, we give a different way here.

First we give a recursive formula for (, ;. According to the total probability formula,
P(Cus1,1 = k) =P(Cna = k)P(Cas1n = K | Gy =)
+ P(Cn,l =k- 1)P(Cn+1,1 =k | Cn1=k— 1)

+ Py =k +1)P((rp1 =k | 1=k +1)

=P LR = )

n
PG = k= 1)+ TR = 1)
That is,
nP(Cny1,1 = k) — (n — 1)P(r1 = k)
=P(Cny =k —1)+ (k+1)P(Cn,1 =k+41) — kP(Goy = k).
Replace n by 7 and sum up for ] =1,2,---,n,then

nP(Cnir1 = k) =EP -—k—1)+z (k+ 1P =k+1)

= > kP(( = k). (1)
j=1
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Branching structure of uniform recursive trees 775

Using the recursive formula (11), we can prove the following theorem.

Theorem 5. Foranyn € N,

P(gn,1=k)=“7c;’“, k=0,1,---,n—1, (12)
where ‘ 1.
(=1}
=Z(_%—) i>1. (13)
=0 I

Furthermore, as n — o0, the asymptotic distribution of (, ; is the Poisson distribution
with parameter A = 1.

Proof. It is easy to verify that the sequence {a,} satisfies the following recursive
relation:

Cl1=]., (12:0, a; = J—lza“ ./ ’ (14)
and (12) holds forn = 1, 2.

Suppose that (12) holds for n (n > 2). It suffices to prove that it still holds for n + 1.
Obviously,

P((nt11=n—=1)=0, P((rp11=n)= ,riy

By (11), (14) and 1nduct1ve assumption, then forany k € {0,1,- 2}
nP((nirn = k) = Zp(gj =k—-1)+ Z(k + 1P =k+1) — Z kP((; =
Jj=1 j=1 i=1
@j—(k—1) aJ k
Z 1)'+2(+1 1) Zk
j=k+1
an_(k 1) L1 17 iy la. _ (k+n—k)an_(k_1)
ool ;=
IRV k!
_nan+1—k
Tk

which yields that (12) holds for any n € N.

From (12), it is obvious that the asymptotic distribution of {, ; is the Poisson distribu-
tion with parameter A = 1. a

Moreover, by (12), a consequence of Theorem 5 is as follows.

Corollary. For any nature number n 2> 3,
ECn,l = 1, Var(,m =1.

4.2 The general cases

Obviously, for any m € {1,---,n — 1}, we have
n—1

P((im 20)=1, P (Cn,m > [TD =0, (15)
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where [t] is the biggest integer not more than ¢.

Now we prove the following theorem.

Theorem 6. In uniform recursive trees of size n, the distribution law of (, ,,,, the
number of the m-branches, is as follows:

[2=2]-k .
1 5 (-1) n-—1 )

Specially, if m > 252, {, ,, is a Bernoulli random variable, i.e.
1
Gom =1 =1 =P(Gm = 0) = =

Proof. From the set {2,3, - ,n}, i subsets of size m are chosen to make i m-
branches (each may have (m — 1)! forms), and the rest of n — mi — 1 vertices attach
arbitrarily by the above rule . Therefore, the number of the ways of generating a recursive
tree is
("_1) ("'m“l) s (""m(i_l)_l) ((m — 1)!)i (n —mi — 1)!

m m m

il

— 1 -
_(n-1 1<¢<[” 1]. amn
mig! m
On the other hand, by (15),
(221
Z P(Cn,m = .7) =1.
j=0

Seti = 11in (17), then
("N (m - 1)} (n —m —1)! 1

m

(n—1)! T m
In view of the fact that each recursive tree which has j m-branches exactly is counted j

n-=1

times and [7,,| = (n — 1)!, the left of the above formula is i ())P({n,m = 4)- Hence,

=1

2=,

3 (7)P(Gm =) = ~. (18)
: 1 n,m m

j=1

Similarly,

El (;) P(Com =J) = —:52— (19)
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on= Pl (B ])rlene [5))
mPEE (] - D

?(om = [%5]) = iy

Consider the [2=2] + 1 formulae above from the bottom up, then it is easy to yield (16).

If m > 251, (, . only can take values of 0 or 1. Since [25%] = 1,

P(Cn,m = 1) =1- P(Cn,m = O) - %a

by (16). O
By (18) and (19), we can obtain the expectation and variance of (, m:
Corollary. (1) Foranyn > 2,
1
E(Cn,m):R7 m=1,---,n—1;

(2) Forany n > 3,

L 1<mgnt

Var($nm) = " S (20)

T % <m<n-l

Proof. It follows from (18) that E(,, ., = i And by (19),if 1 < m < ”T‘l,
1
2 .
E( n,m) - E(Cn,m) = Wa
thus, .

Var((nm) = E(C2 ) — (B(Grym))® = =

if 1‘;—1 < m < n — 1, the result is obvious. a

From Theorem 6, it is easy to see

Theorem 7. For any m € N, the asymptotic distribution of (, ,, is the Poisson

distribution with the parameter A = X, as n — 00, i.e.
. _1ym 1
Jim P(Gom = k) =€ 1 — k=0,1,---; m=12,---. (21)
4.3 The joint distribution of ¢,
Next we give the joint distribution of random vector ({1, (n,2,** * s Cnn—1)-

Theorem 8. In 7, the joint distribution of the numbers of various branches

(Cn,la Cn,Za Ty Cn,n—l)

is as follows:

n—1
1
P(C’n,l =Ty, Cn,2 =T2, """, (’n.,n—l = wn—l) = H T (22)
o m ™ L)
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where {z1, -+, Z,_1} is any sequence of nonnegative integers satisfying the condition

Z ir;=n— 1.
i=1
Proof. It suffices to compute the number of the elementary events (corresponding to a
certain recursive tree) in the event {(, 1 = 21, *,{n.n—1 = Zn-1}. Consider the groups
of n — 1 vertices (the vertices of a group belong to the same branch). The number of the
ways of grouping is
(n—1)! 1
(= @2z - ((n = D)Fn1 z1zs! - Ty !
And m-branch has (m — 1)! different forms, so the number of the elementary events in
{Gra=2x1,  Cana1 =T } s
(n—1)! on= (112 ... [(n — 2)!]*-*
(1= (202 < ((n — 1))z T To! - Ty
_ (n—1)!
S 1m2m .. (n — 1)z !z, !
Since the elementary events occur with the same probability ﬁ
P(Cn,l =T, Cn,? =g, Cn,n—l = xn—l)
n—1
_ 1 (n—1)! _ H 1 O

(n—1) 1m2% . (n = 1)Fnzylay - gl 2 memg,l

In the previous subsection, we have obtained the expectation of random vector (Cn,l,

Cn,Q’ Tt aCn,n—l)y ie.

1 1
E L) = ... . 23
(Cn,h Cn,'b ’ Cn,n 1) (1, 2, ’ n — 1> ( )

Now we give its covariance matrix.
Theorem9. Foranyl <k <I<n—-1ifk+Il<n~-1,

Cov(Cn ks Cni) = 0; (24)

andifk+1>n-1,
1

Cov(nky Cnt) = M (25)

Proof. Ifl<k<l<n-1landk+!>n — 1,itis obvious that

P(Cn,k = i, Cn,l = .7) = Oa Z,] > Ov

thus,
1

BCukCat =0, Cov(Cuk, Gnp) = —EGusBln = — 17

Forl<k<lg<n—-—landk+I<n-1if4,73 >0, tk+j50 < n-1,
the number of the uniform recursive trees which exactly have ¢ k-branches and j -
branches is (n — 1)! - P((nx = %,{n; = Jj). Let A and B be two disjoint subsets of
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Branching structure of uniform recursive trees 779

the set {2,3,- - -, n}, whose sizes are k and /, respectively. Then the number of uniform
recursive trees, which have a k-branch and a /-branch consisting of the vertices in A and
B,is (k — 1)!(I — 1)Y(n — k — | — 1)!. Noting that A and B can be chosen arbitrarily,
the number multiplied by (”;1) . ("'7‘1) is

M= (";1)-<””’;_1>(k—1)!(1—1)!(n—k—z-1)!=(ﬁ-;lﬁ!.

It is easy to see that in M, each recursive tree which exactly has ¢ k-branches and j
[-branches is counted ¢j times. Then

. . , n— 1)!
> (=Pl =1Cn=7) =M = £T)
(4,5): 4,5>0, th+jl<n—1
That is
. . . 1
> iP(Cnk =6 6na =7) = L
(i,): $5>0, tk+il<n—1
hence,
1
ECn,kCn,l = k_l' = ECn,kECn,la 1< k<li<n- 1a k+li<n- 1’
by (23). And Cov((p ks $n,i) = O follows. a
From this theorem, the following consequence is obvious.
Corollary. The covariance matrix of random vector ((,.1,Cn.2, " " s $nn—1) 18
Bn = (bij)(n—l)x(n—l), where
1 C
-, 1<iga 0, i#ji+j<n-1
bi=14 ;%1 ;b= .
= ﬂ;—1<i<n——1 —i—j, i#4,i+53>n—-1

4.4 The asymptotic joint distribution of (;, m
To study the asymptotic joint distribution of ¢, ., we prove a lemma first.

Lemma 1. Forany m € N, asn — oo, the limit of P((,; =0, -+, {pnm = 0)
exists.

Proof. It holds for m = 1 by Theorem 7. Consider the case m = 2. Let

P(Cn,l = 07 Cn,Z = 0) = Qp, P(C'n,l = 0) = bn'
By Theorem 8,

b, = P(Cn,l = 0) = Z

—1—2
2zo+43z3+ -+ (n—1)zn_1=n—1 m=2

n
1
meEmg,,!’

n—1—1<

an = P(Cn,l = Oa Cn,2 = 0) = Z i—I E;r;%

3z3+ A+ (n—1)zn-1=n—1 m=2
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Therefore,
[(n-1)/2]

1 1
bo= D o > Hm

2741
7=0 J 3z3+-+(n—-1)zp_1=n—-2j—1 m=3

[(n—1)/2] 1
= D o (26)
j=0 I

Suppose that the limit of a,, does not exist as 7 — 0o, then there exist 0 < a < § < 1,
satisfying
liminf a, = «, limsup a, = 8.

Noting that 16 — 91/ > /256 — /81 x 3 > 0, let
5=ﬁ;“>o, 51=( —9—\/_3)5>0.

4
For any fixed 0 < € < (11,/e — 18)4, since lim b, = e™!, there exists an 7, such that
n—x
for any ny > ny > ny,
|bn, — b, | < €. (27)
And when ny is sufficiently large,
a—-6<a,<fB+46, n=ng (28)
|
Z ﬁ <&, n=ng. (29)
j=n+1

Then fix an ng, which satisfies the above three formulae (27)—(29).

When n is sufficiently large, rewrite (26) as follows:
mo g [(n—-1)/2] 1
b, = a, + Z 23.—j!an_2j + Z ij—j!an_gj. (30)
=1 j=no+1
Since limsup a,, = 8, liminf a,, = «, there exist ny > n; > 3ny, satisfying

n—00 n—+00
Up, > B =81, Qn, <+
Noting thatny, —2ng > ny—2ny > ng, (28) holds foralln = ny —2j, n =ny—2j, j €
{1,2,--,m0}. Hence, combining (29) and (30), we have that

no [(n—1)/2] 1
bn1 =Gy, + Z ﬁanr—ﬁ + Z _ﬁanl_zj
j=1 j=no+1
no 4 [(n-1)/2] 1
>B-0)+ Y gae=9+ 3 gmen-y
j=1 j=no+1
= 1
> (3-8 + (E-Da=0) - > 5
J=no+

> (B —81)+ (Ve—1)(a—26) -4
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and
no [(n—1)/2] 1
bp, = apn, + Z gj‘!anz—Zj + éj_j!a’nz—zj
j=1 j=no+1
no_ [(n=1)/2]
< (a+61)+ }: EJ—]—'('B +0) + Z zj—j!anl—zj
j=1 j=no+1
= 1
<(a+8&)+(We=1B+8)+ 57
j=ngo+1
< (a+d)+ (Ve—1)(B+8)+ b
Therefore,

bn, — bn, > (2 — VE)(B — @) — 2(vVe — 1)6 — 45,
=43 — 2(y/e — 1)d — (16 — 9v/e)é = (11/e — 18)§,
which is in contradiction with (27). Thus, as n — oo, the limit of P({,; = 0, (5,2 = 0)
exists.
It is not hard to prove that Lemma 1 is holds for all m € A by induction, whose process
is similarasm =1 = m = 2. O
The main result in this subsection is the following theorem.

Theorem 10. In uniform recursive trees, the numbers of various branches are asymp-
totical independent. Furthermore, for any m € AN and any sequence of nonnegative

integers {Z1, ", Tm },
. T T -1, 1
Jim PGas =21, s Gum = 2m) = [] lim PGy = 25) = [ [ 7,
j=1 j=1 J 7°

Proof. The proofis divided into two parts: (1) the limit lim P(¢,1 =21, *,(am =

T, ) exists; (2) for any m € N and sequence of nonnegative integers {1, , Tm },
. P |
Jm PG =21, o Gum = o) = [ [ (1)
j=1 7
By Theorem 7, it is shown that for any j € N and nonnegative integer i,
1
i =) = e~ Vi
lim P(Gn; =17) = i

which yields that the theorem holds for 7 = 1. In particular,
lim P(¢,; =0) =€ . (32)

Consider the case k = 2. By (22),

1 n—1-—% 1
P(Cn1 =1, $n2=1J) =5—F7= Z H

il 2ig!

memT,,!
3z34 -+ (n—1—8)Tp_1~i=n—1—i—-25 m=3 Lm
1
=—i' - 2jj|P(Cn—i—2j,1 =0, Cn—z'-2j,2 = 0)-
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Hence, by Lemma 1, the limit

Jingo P((ny =14, Cuz =7J) = il -12le 71131010 P(Gni-25,1=0, (noi_g;2=0)
exists. We only need to prove that
Jim P(G =0, Grz =0) = e 72 (33)
Let
T}HEO P((h1=0,(2=0)=P((,=0,{=0):=p, 0<p<L (34)
Note that

n—1 1

P(Cn,l = Oa Cn,Z = 0) = Z H W

3zg+-+(n—1-i)zn_1=n—1 m=2

On the other hand, (32) can be rewrite as follows:

n—1
. 1
lim ) j
n0o memx,,!

2z2+43z3+ -+ (n—1—1)zp_1=n—1 m=2

{(n—-1)/2] 1 n—1-2j 1

=lim ) 21 > IT ———
j=0 3zg+-+(n—1-2§)xpn_1-2;=n—1-25 m=3

[(n—1)/2]
= |i —_ . e . — — -1
—nh_{& j_Zo 2jj!P(Cn—2_7,1 =0, (nozj2 = 0)=e".

That is,
[(n—1)/2] 1
nl_i_{{.loe zo: ZJ—jIP(Cn—%, 1 =0, (oogj2=0)=1. (35)
j=

And (35) shows that for a sufficiently large nature number ng and if n > 3ng, we have
no 1
e ZO ZTﬂP(Cn—zj, 1=0, (r-2;,2=0)
]:

[(n—-1)/2] 1
> 21'_j!P(<n—21, 1 =0, (nozj 2 =0)
7=0

no 1 o0 1
<6202J'(<n2]1—0 <n2]2—0 Z 2_
i=
y (34) and (35), let n — oo, then

no 1 o0 1
S cicad e S L
273 = 27 4! P/ 27 41
Andletng — o0 in the above formula, too. Then
eltip =1,
i.e. (33) follows and the theorem holds for m = 2.

Copyright by Science in China Press 2005

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Branching structure of uniform recursive trees 783

For the case m > 3, by induction, it is not hard to be proved, whose process is similar
asm = 1 = m = 2. Hence the proof is completed. a

5 The biggest branch of 7,

As described in the introduction, in 7, v,, denotes the size of the biggest branch, i.e.
v, = max{m: (,m = 1}.
In the model for spread of epidemics, v, represents the largest number of the sufferers,
who were infected directly or indirectly by someone infected by the origin case directly.

Proposition 1.
) n—1
lim P (Vn > —2—) =1n2.

n—oo

Proof. The event

(W”;l): U w=m

m=((n—1)/2]+1
and two of the events (v,, = [(n—1)/2]+1), (v, = [(n—-1)/2]+2), ---, (v, =n—~1)
cannot occur at the same time, therefore, as n — oo,

n—1 n—1
- 1
P(Un>nTl>= E P(v, =m) = E — —In2. O

m=[(n—1)/2}]+1 m=((n—1)/2]+1 m

Remark. The theorem shows that the probability of an existing branch, whose size is
more than [(n — 1)/2], is very large. To a certain extent, it shows that there existed some
super-infectors in the spread of SARS.

Moreover, it can be proved that v, tends to infinity almost sure, as n — 00. It is easy
to see that
Vp < Vn+l < Vp + 1’

then v, is increasing in 7 and the limit of v,, exists.

Theorem 11.
lim v, =00, a.s.

n—oo

Proof. Recall that 7,, denotes the number of all branches, and v,, denotes the size of
the biggest branch, then 7,,v,, 2 n — 1, from this and (6),

.. Jdogn-v . logn
hmmf—g—-——n- > lim BT _ 1, as.
n—00 n n—oo T’n
Since lim &% = 0, we have lim v, = 0o, a.s. m]
n—0o0 n—00
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