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Abstract

As models for spread of epidemics, family trees, etc., various authors have used a rand
called the uniform recursive tree. Its branching structure and the length of simple random dow
walk (SRDW) on it are investigated in this paper. On the uniform recursive tree of sizen, we first
give the distribution law ofζn,m, the number ofm-branches, whose asymptotic distribution is
Poisson distribution with parameterλ = 1

m . We also give the joint distribution of the numbers
various branches and their covariance matrix. OnLn, the walk length of SRDW, we first give th
exact expression of P(Ln = 2). Finally, the asymptotic behavior ofLn is given.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A tree is a simple connected graph without cycles [16]. The recursive tree of sizn is
a kind of random trees onn particles that attach to each other randomly. The proce
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generating a recursive tree is as follows (see [2]): let the set of particles be{1,2, . . . , n},
and{pk,i , i = 1,2, . . . , k}, k = 1,2, . . . , n−1, be a sequence of probability mass functio
i.e.,

pk,i � 0,

k∑
i=1

pk,i = 1, k = 1,2, . . . , n − 1.

At step 1, put all particles in a plane; at step 2, particle 2 attaches to particle 1; at
particle 3 attaches to particle 1 with probabilityp21 or to particle 2 with probabilityp22. In
general, at stepk +1, particlek +1 attaches one of the particles in the set{1,2, . . . , k} with
the probabilitiespk,i , i = 1,2, . . . , k, respectively. Aftern steps, the resulting tree with th
root vertex 1 is called a recursive tree. If

pk,i = 1

k
, i = 1,2, . . . , k, k = 1,2, . . . , n − 1,

i.e., at each step the new particle attaches to a uniformly selected particle from the
ous ones, independently of previous attachments, then we call it a uniform recursiv
denoted byTn. For any nature numberk � 2, at thekth (k � 2) step we can makek − 1
choices, so(n − 1)! different trees can be obtained, and each tree occurs with the
probability 1

(n−1)! .
With many applications, recursive trees have been proposed as models for the

of epidemics [13], the family trees of preserved copies of ancient or medieval texts
and pyramid schemes [5], etc. Here we give an example of the model for the spr
epidemics:

Example 1.1. Suppose there existsn persons infected a specific infectious disease (
SARS) in turn in some area, and only one of them is the original case. The secon
must be infected by the original one. Unknowing the law of infection, we suppose th
third case was infected by one of the previous two with the probability 1/2, respectively.
In general, we suppose thekth case was infected by one of the previousk − 1 cases with
respective probabilities1

k−1, k = 2,3, . . . , n. Let vertexk represent thekth case, and ver
tex i attaches to vertexj (1� i < j � n) if and only if thej th case was infected by theith
case. Then we obtain a uniform recursive tree. By this taken, such a study of study u
recursive trees can make the law of infection clear to a certain extent.

In Tn, Dj denotes the set of vertices of thej th generation. A subtree with the root inD1
is called a branch, which is also a uniform recursive tree [12]. Obviously, the numb
branches is|D1|, denoted byηn. If the size of a branch ism (1� m � n − 1), we call it an
m-branch, and letζn,m denote the number of them-branches. In particular, ifm = 1, the
only vertex in the branch is called a child-leaf of the root 1. It is easy to see thatηn =∑n−1

i=1 ζn,i . Furthermore, if vertexk ∈ Dj , we say that the depth of vertexk is j , and letξk

denote the depth of vertexk.
Many authors have studied the depth of vertices. For example, Szymański [15] has

given the distribution ofξn, the depth of vertexn; Devroye [3] has proved the central lim
theorem ofξn; Mahmoud [9,10] has done some further study on the limiting behavio
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ξn and
∑n

k=1 ξk ; Meir and Moon [12] have given the distribution of the number of verti
in each generation.

It is easy to see that the branching structure is one of the important properties
uniform recursive trees, but as far as we know that no one has considered it. Fo
nature numbern and 1� m � n − 1, we shall show that

P(ζn,m = k) = 1

mkk!
[ n−1

m
]−k∑

i=0

(−1)i

i!mi
, k = 0,1, . . . ,

[
n − 1

m

]
,

where[t] is the biggest integer not more thant . Then for each fixedm,

P(ζn,m = k) ∼ Poisson

(
1

m

)
,

asn → ∞, where Poisson(λ) denotes the Poisson distribution with the parameterλ.
As well as the structure of the branches in uniform recursive trees, we have stu

random walk on them. LetG be a finite or infinite undirected graph with numerical ver
labels and a designated initial vertexs. By a local search onG, we mean the following
Place a particle on the initial vertexs. Examine the neighbors ofs in turn until a vertexs′
with a higher label is discovered. (If none exists, the process terminates.) Then mo
particle tos′ and continue. An evolutionary walk on a tree is local search beginnin
the root [1]. The evolutionary walk is a stochastic process, which has been used to
local search in combinatorial optimization and molecular evolution. It was first corr
analyzed by Macken, Hagan and Perelson. Most of their results can be founded in [

Simple random downward walk (SRDW) on uniform recursive trees defined as fo
is a special case of the evolutionary walks: beginning at the root 1, the particle mo
one of the children with the uniform probability, until the process terminates on some
Throughout this paper we assume thatn � 2. The walk length of SRDW, denoted byLn,
is defined to be the number of times the particle is moved, including its first place
ThenLn is a random variable which takes values on{2,3, . . . , n}. Using the method o
generating function, Meir and Moon [11] have shown that for each nature numberk � 2,

P(Ln = k) ∼ (log logn)k−2

(k − 2)! logn
, (1.1)

asn → ∞. In this paper, based on the branching structure and using the method of
ability, we have given the exact expression for the casek = 2 and an alternative proof o
the relation (1.1), which has shown the inner relations between the random walk a
branching structure. For eachn, as we shall show that

P(Ln = 2) = E
ζn,1

ηn

and for 3� k � n − 1,

P(Ln = k) =
n−1∑

m=k−1

P(Lm = k − 1)E
ζn,m

ηn

.

In the model for the spread of epidemics,(Ln = k) represents the random event thak

persons were infected in turn and none else was infected by the last case.
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The results in this paper are organized as follows. In Section 2, we give the distrib
the asymptotic distribution and joint distribution of the branches’ number inTn. Based on
them, we come to study P(Ln = k). In Section 3, we give the exact expression of P(Ln = 2)

and point out that it is strictly decreasing inn. In Section 4, using the method of probabili
we newly proved the expression (1.1).

2. Branches of uniform recursive trees

To studyLn, we consider the properties of the branches first.

2.1. Distribution and asymptotic distribution of the branches’ number

Obviously, for anym ∈ {1, . . . , n − 1}, we have

P(ζn,m � 0) = 1, P

(
ζn,m >

[
n − 1

m

])
= 0. (2.1)

Now we prove the following proposition.

Proposition 2.1. In uniform recursive trees of size n, the distribution law of ζn,m, the
number of the m-branches, is the following:

P(ζn,m = k) = 1

mkk!
[ n−1

m
]−k∑

i=0

(−1)i

i!mi
, k = 0,1, . . . ,

[
n − 1

m

]
. (2.2)

Specially, if m > n−1
2 , ζn,m is a Bernoulli random variable, i.e.,

P(ζn,m = 1) = 1− P(ζn,m = 0) = 1

m
.

Proof. From the set{2,3, . . . , n}, i subsets of sizem are chosen to makei m-branches
(each may have(m − 1)! forms), and the rest ofn − mi − 1 vertices attach arbitrarily b
the rule above. Therefore, the number of the ways of generating a recursive tree is(

n−1
m

)(
n−m−1

m

) · · · (n−m(i−1)−1
m

)
((m − 1)!)i(n − mi − 1)!

i! = (n − 1)!
mii! ,

1� i �
[
n − 1

m

]
. (2.3)

On the other hand, by(2.1),

[ n−1
m

]∑
j=0

P(ζn,m = j) = 1.

Seti = 1 in (2.3), then(
n−1
m

)
(m − 1)!(n − m − 1)! = 1

.

(n − 1)! m
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In view of the fact that each recursive tree which hasj m-branches exactly is countedj

times and|Tn| = (n − 1)!, the left of the equation above is
∑[ n−1

m
]

j=1

(
j
1

)
P(ζn,m = j). Thus,

[ n−1
m

]∑
j=1

(
j

1

)
P(ζn,m = j) = 1

m
. (2.4)

Similarly,

[ n−1
m

]∑
j=2

(
j

2

)
P(ζn,m = j) = 1

2m2
,

· · ·
[ n−1

m
]∑

j=i

(
j

i

)
P(ζn,m = j) = 1

mii! ,

· · ·
P

(
ζn,m =

[
n − 1

m

]
− 1

)
+

([
n − 1

m

])
P

(
ζn,m =

[
n − 1

m

])

= 1

m[ n−1
m

]−1([n−1
m

] − 1
)! ,

P

(
ζn,m =

[
n − 1

m

])
= 1

m[ n−1
m

]([n−1
m

])!
. (2.5)

Consider the[n−1
m

] + 1 formulae above from the bottom up, then it is easy to yield(2.2).
If m > n−1

2 , ζn,m only can take values of 0 or 1. Since[n−1
2 ] = 1,

P(ζn,m = 1) = 1− P(ζn,m = 0) = 1

m

follows by (2.2). �
By (2.4) and (2.5), we can obtain the expectation and variance ofζn,m.

Corollary 2.1.

(1) For any n � 2,

E(ζn,m) = 1

m
, m = 1, . . . , n − 1.

(2) For any n � 3,

Var(ζn,m) =
{

1
m

, 1� m � n−1
2 ;

m−1
m2 , n−1

2 < m � n − 1.
(2.6)
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Proof. It follows from (2.4) that E(ζn,m) = 1
m

. And by (2.5), if 1� m � n−1
2 ,

E
(
ζ 2
n,m

) − E(ζn,m) = 1

m2
,

thus,

Var(ζn,m) = E
(
ζ 2
n,m

) − (
E(ζn,m)

)2 = 1

m
;

if n−1
2 < m � n − 1, the result is obvious. �

Let N be the set of nature numbers. From Proposition 2.1, it is easy to see that

Proposition 2.2. For any m ∈ N , the asymptotic distribution of ζn,m is the Poisson distri-
bution with parameter λ = 1

m
, as n → ∞.

2.2. Joint distribution and numerical characteristics of the branches’ numbers

Next we give the joint distribution of random vector(ζn,1, ζn,2, . . . , ζn,n−1).

Proposition 2.3. In Tn, the joint distribution of the numbers of various branches

(ζn,1, ζn,2, . . . , ζn,n−1)

is the following:

P(ζn,1 = x1, ζn,2 = x2, . . . , ζn,n−1 = xn−1) =
n−1∏
m=1

1

mxmxm! , (2.7)

where {x1, . . . , xn−1} is any sequence of nonnegative integers satisfying the condition

n−1∑
i=1

ixi = n − 1.

Proof. It suffices to compute the number of the elementary events (each one corre
to a recursive tree) in the event{ζn,1 = x1, . . . , ζn,n−1 = xn−1}. Consider the groups o
n − 1 vertices (vertices of a group belong to the same branch). The number of the w
grouping is

(n − 1)!
(1!)x1(2!)x2 · · · ((n − 1)!)xn−1

· 1

x1!x2! · · ·xn−1! .

And m-branch has(m − 1)! different forms, so the number of the elementary event
{ζn,1 = x1, . . . , ζn,n−1 = xn−1} is

(n − 1)!
(1!)x1(2!)x2 · · · ((n − 1)!)xn−1

· (0!)x1(1!)x2 · · · [(n − 2)!]xn−1

x1!x2! · · ·xn−1!
= (n − 1)!

x1 x2 xn−1
.

1 2 · · · (n − 1) x1!x2! · · ·xn−1!
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Since the elementary events occur with the same probability1
(n−1)! ,

P(ζn,1 = x1, ζn,2 = x2, . . . , ζn,n−1 = xn−1)

= 1

(n − 1)! · (n − 1)!
1x12x2 · · · (n − 1)xn−1x1!x2! · · ·xn−1! =

n−1∏
m=1

1

mxmxm! . �

In the previous subsection, we have obtained the expectation of random vector(ζn,1,

ζn,2, . . . , ζn,n−1), i.e.,

E(ζn,1, ζn,2, . . . , ζn,n−1) =
(

1,
1

2
, . . . ,

1

n − 1

)
. (2.8)

Now we give its covariance matrix.

Proposition 2.4. For any 1� k < l � n − 1, if k + l � n − 1,

Cov(ζn,k, ζn,l) = 0; (2.9)

and if k + l > n − 1,

Cov(ζn,k, ζn,l) = − 1

kl
. (2.10)

Proof. If 1 � k < l � n − 1 andk + l > n − 1, it is obvious that

P(ζn,k = i, ζn,l = j) = 0, i, j > 0,

thus,

E(ζn,kζn,l) = 0, Cov(ζn,k, ζn,l) = −E(ζn,k)E(ζn,l) = − 1

kl
.

For any 1� k < l � n − 1 andk + l � n − 1, if ij > 0, ik + j l � n − 1, the number o
the uniform recursive trees which exactly havei k-branches andj l-branches is(n − 1)! ·
P(ζn,k = i, ζn,l = j). Let A andB be two disjoint subsets of the set{2,3, . . . , n}, whose
sizes arek and l, respectively. Then the number of uniform recursive trees, which
a k-branch and al-branch consisting of the vertices inA andB, is (k − 1)!(l − 1)!(n −
k − l − 1)!. Noting thatA and B can be chosen arbitrarily, the number multiplied(
n−1
k

) · (n−k−1
l

)
is

M :=
(

n − 1
k

)(
n − k − 1

l

)
(k − 1)!(l − 1)!(n − k − l − 1)! = (n − 1)!

kl
.

It is easy to see that inM , each recursive tree which exactly hasi k-branches andj
l-branches is countedij times. Then∑

(i,j): ij>0, ik+j l�n−1

ij (n − 1)!P(ζn,k = i, ζn,l = j) = M = (n − 1)!
kl

.

That is ∑
ijP(ζn,k = i, ζn,l = j) = 1

kl
.

(i,j): ij>0, ik+j l�n−1
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Hence, by (2.8),

E(ζn,kζn,l) = 1

k · l = E(ζn,k)E(ζn,l), 1� k < l � n − 1, k + l � n − 1,

and Cov(ζn,k, ζn,l) = 0 follows. �
From this proposition, the following corollary is obvious.

Corollary 2.2. The covariance matrix of random vector (ζn,1, ζn,2, . . . , ζn,n−1) is Bn =
(bij )(n−1)×(n−1), where

bii =
{

1
i
, 1� i � n−1

2 ,

i−1
i2 , n−1

2 < i � n − 1,
bij =

{
0, i �= j, i + j � n − 1,

− 1
ij

, i �= j, i + j > n − 1.

3. The exact expression of P(Ln = 2)

From this section on, we shall discuss the probability on{Ln = k}. The main purpose
in this section is to give the exact expression of P(Ln = 2). In the model for the sprea
epidemics, as described in the introduction, it means the ratio of the sufferers w
not infect others, in the group infected by the first sufferer. First, we give a eleme
expression of it.

Proposition 3.1.

P(Ln = 2) = E
ζn,1

ηn

. (3.1)

Proof. By the rule of SRDW, conditioning on{ζn,1 = j, ηn = k}, the event{Ln = 2} occurs
with the probabilityj

k
. According to total probability formula,

P(Ln = 2) =
∑

1�j�k�n−1

P(Ln = 2 | ζn,1 = j, ηn = k)P(ζn,1 = j, ηn = k)

=
∑

1�j�k�n−1

j

k
P(ζn,1 = j, ηn = k) = E

ζn,1

ηn

.

Acting similarly as above, the following consequence holds.

Corollary 3.1. For any 3� k � n,

P(Ln = k) =
n−1∑

m=k−1

P(Lm = k − 1)E
ζn,m

ηn

. (3.2)

The expression (3.1) relates to the joint distribution ofζn,1 andηn, which is hard to
calculate. To get a expression of P(Ln = 2) which just relates toηn, we give a lemma in
the following.
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Lemma 3.1. For 0� j � k � n − 1 and 1� m � n − 1, we have

1

m(j + 1)
P(ζn,m = j, ηn = k) = P(ζn+m,m = j + 1, ηn+m = k + 1).

Proof. Conditioning on that the event{ζn,m = j} occurs, it is easy to see that the s
of the biggest branch ofTn is at mostn − 1 − mj or m. Using the joint distribution o
(ζn,1, ζn,2, . . . , ζn,n−1) (see (2.7)), we have

P(ζn,m = j, ηn = k) =
∑

�

1

mjj !
∏

1�i�n−mj−1, i �=m

1

mxmxm! ,

where
∑

� is taken over all integers{x1, x2, . . . , xm−1, xm+1, . . . , xn−mj−1} satisfying the
conditions ofx1 + x2 + · · · + xm−1 + j + xm+1 + · · · + xn−1−j = k andx1 + 2x2 + · · · +
(m − 1)xm−1 + mj + (m + 1)xm+1 + · · · + (n − mj − 1)xn−mj−1 = n − 1. Thus,

1

m(j + 1)
P(ζn,m = j, ηn = k) =

∑
�

1

mj+1(j + 1)!
∏

1�i�n−mj−1, i �=m

1

mxmxm!
= P(ζn+m,m = j + 1, ηn+m = k + 1). �

The following theorem is one of our main results.

Theorem 3.1. For any 1� m � n − 1, we have

E
ζn,m

ηn

= 1

m
E

1

ηn−m + 1
. (3.3)

In particular,

P(Ln = 2) = E
ζn,1

ηn

= E
1

ηn−1 + 1
= 1

(n − 2)!
1∫

0

n−3∏
j=0

(x + j) dx. (3.4)

Proof. For any 1� m � n − 1,

1

m
E

1

ηn−m + 1
= 1

m

n−m−1∑
k=1

1

k + 1
P(ηn−m = k)

=
n−m−1∑

k=1

1

m(k + 1)

k∑
j=0

P(ζn−m,m = j, ηn−m = k)

=
∑

0�j�k, 1�k�n−m−1

j + 1

k + 1

1

m(j + 1)
P(ζn−m,m = j, ηn−m = k)

=
∑

0�j�k, 1�k�n−m−1

j + 1

k + 1
P(ζn,m = j + 1, ηn = k + 1)

=
∑ i

l
P(ζn,m = i, ηn = l) = E

ζn,m

ηn

,

1�i�l�n−m
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and (3.3) holds. By Proposition 3.1, setm = 1 in this equation, then

P(Ln = 2) = E
ζn,1

ηn

= E
1

ηn−1 + 1
.

Since (see [3,9] or [4])

P(ηn = k) = βn,n−k−1

(n − 1)! , k = 1, . . . , n − 1, (3.5)

where

βn,0 = 1, βn,k =
∑

1�m1�···�mk�n−2

m1 · · ·mk, k = 1, . . . , n − 2,

we have

P(Ln = 2) = E
1

ηn−1 + 1
= 1

(n − 2)!
n−2∑
k=1

βn−1,n−k−2

k + 1
= 1

(n − 2)!
1∫

0

n−3∏
j=0

(x + j) dx.

(3.6)

In the above expression, the sum is not only hard to calculate ifn is large, but also hard t
see how the probability P(Ln = 2) varies asn → ∞. In the next section, we will make
further discussion.

Corollary 3.2. The probability P(Ln = 2) is strictly decreasing in n, i.e.,

P(Ln = 2) > P(Ln+1 = 2), n � 2.

Proof. It is easy to see that

P(Ln+1 = 2) = 1

(n − 1)!
1∫

0

(x + n − 2)

n−3∏
j=0

(x + j) dx

<
n − 1

(n − 1)!
1∫

0

n−3∏
j=0

(x + j) dx = P(Ln = 2). �

Obviously, the event(Ln = k) can only occur onTn of sizen � k. It is easy to get the
following:

P(Lk = k) = 1

(k − 1)! , P(Lk+1 = k) =
(
k+1

2

) − 1

2 · k! .

If k � 4, thenk2 − 3k − 2 > 0 and P(Lk+1 = k) > P(Lk = k). It is shown that the proba
bility P(Ln = k) is not strictly decreasing fork � 4.
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4. The length of SRDW

As described in the introduction, we shall study the asymptotic behavior of the p
bility P(Ln = k), k � 2.

Theorem 4.1. For any positive integer k � 2, we have

lim
n→∞

(k − 2)! logn

(log logn)k−2
· P(Ln = k) = 1. (4.1)

The probability P(Ln = 2) is the inductive base of the result, so we discuss its asy
totic behavior first.

4.1. The case k = 2

Proposition 4.1.

lim
n→∞ logn · P(Ln = 2) = 1. (4.2)

Proof. Write

P(Ln = 2) = 1

(n − 2)!
1∫

0

n−3∏
j=0

(x + j) dx =
1∫

0

n−2∏
j=1

(
1+ x − 1

j

)
dx.

It is easy to see that

1+ t � et , t > −1;
1+ t � et−t2

, −1

2
< t < 0.

Then
n−2∏
j=1

(
1+ x − 1

j

)
� exp

{
(x − 1)

n−2∑
j=1

1

j

}
= exp

{
−(1− x)

n−2∑
j=1

1

j

}

and

logn · P(Ln = 2) � logn ·
1∫

0

exp

{
−(1− x)

n−2∑
j=1

1

j

}
dx

= logn ·
1∫

0

exp

{
−x

n−2∑
j=1

1

j

}
dx

= logn∑n−2
j=1

1
j

(
1− exp

{
−

n−2∑
j=1

1

j

})
→ 1, n → ∞. (4.3)

On the other hand, if1 < x < 1, then 1− x > (1− x)2 and
2
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ich are
tions

:

ing
n−2∏
j=1

(
1+ x − 1

j

)
� exp

{
−(1− x)

n−2∑
j=1

1

j
− (1− x)2

n−2∑
j=1

1

j2

}

� exp

{
−(1− x)

n−2∑
j=1

j + 1

j2

}
.

Therefore,

logn · P(Ln = 2) � logn ·
1∫

1
2

exp

{
−(1− x)

n−2∑
j=1

j + 1

j2

}
dx

= logn ·
1
2∫

0

exp

{
−x

n−2∑
j=1

j + 1

j2

}
dx

= logn∑n−2
j=1

j+1
j2

(
1− exp

{
−1

2

n−2∑
j=1

j + 1

j2

})
→ 1, n → ∞.

(4.4)

By (4.3) and (4.4), Proposition 4.1 holds.�
From Corollary 3.1, we can write out the exact expressions for general cases, wh

too complex to utilize. Using the above method, it is hard to get the asymptotic distribu
of P(Ln = k) for k = 3,4, . . . , so we shall use another method. First we give a lemma

Lemma 4.1. For any 0< ε < 1 and slowly varying sequence l(n) as n → ∞,

lim
n→∞ l(n)P

(∣∣∣∣ηn − logn

logn

∣∣∣∣ � ε

)
= 0.

In particular,

lim
n→∞ logn · P

(
ηn � (1− ε) logn

) = 0; (4.5)

lim
n→∞ logn · P

(
ηn � (1+ ε) logn

) = 0. (4.6)

Proof. Let Xj = I (j + 1∈ D1), then (see [4])

ηn =
n−1∑
j=1

Xj , n � 2,

whereX1,X2, . . . ,Xn−1 are mutually independent Bernoulli random variables satisfy

P(Xj = 1) = 1− P(Xj = 0) = 1

j
, j � 1.

Therefore,
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lace.
EetXj =
(

1− 1

j

)
+ 1

j
et = 1+ 1

j

(
et − 1

)
� exp

{
1

j

(
et − 1

)}
, ∀t ∈R, j � 1.

(4.7)

In the following,C shall denote an absolute constant, possibly varying from place to p
Hence, for anyt > 0,

P
(
ηn � (1+ ε) logn

)
� exp

{
−t (1+ ε) logn +

n−1∑
j=1

1

j

(
et − 1

)}

� exp
{
C

(
et − 1

)}
exp

{
logn · (et − 1− (1+ ε)t

)}
.

Choose at1 ∈ (0, log(1+ ε)), thenα1 := −(et1 − 1− (1+ ε)t1) > 0 and

P
(
ηn � (1+ ε) logn

)
� exp

{
C

(
et1 − 1

)}
n−α1. (4.8)

Similarly, for anyt > 0,

P
(
ηn � (1− ε) logn

) = P(logn − ηn � ε logn)

� exp

{
t (1− ε) logn +

n−1∑
j=1

1

j

(
e−t − 1

)}

� exp
{
C

(
e−t − 1

)}
exp

{
logn · (e−t − 1+ (1− ε)t

)}
� exp

{
logn · (e−t − 1+ (1− ε)t

)}
.

Choose at2 > 0 such thatα2 := −(e−t2 − 1+ (1− ε)t2) > 0, then

P
(
ηn � (1− ε) logn

)
� n−α2. (4.9)

By (4.8) and (4.9), for anyε > 0 and slowly varying sequencel(n) asn → ∞,

lim
n→∞ l(n)P

(∣∣∣∣ηn − logn

logn

∣∣∣∣ � ε

)
= 0.

Specially, takel(n) = logn, then (4.5) and (4.6) holds.�
Using Lemma 4.1, we can prove Proposition 4.1 in another way.

An alternative proof of Proposition 4.1. It is easy to see that

ζn,1 � ηn � n − 1. (4.10)

According to (3.1), to prove the proposition, it suffices to prove that

lim
n→∞ E

logn · ζn,1

ηn

= 1. (4.11)

Note that (see [9] or [4])

E(ζn,1) = Var(ζn,1) = 1, ∀n � 3; ηn

logn

p→ 1, n → ∞.

For anyε > 0,
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1 = E(ζn,1) = E
(
ζn,1I

(
ηn � (1+ ε) logn

)) + E
(
ζn,1I

(
ηn < (1+ ε) logn

))
:= In,1 + In,2. (4.12)

Then E(ζ 2
n,1) = Var(ζn,1) + (E(ζn,1))

2 = 2, for all n � 3, and

In,1 �
√

E
(
ζ 2
n,1

)
P
(
ηn � (1+ ε) logn

)
�

√
2 · P

(∣∣∣∣ ηn

logn
− 1

∣∣∣∣ � ε

)
→ 0, n → ∞.

Thus,

lim
n→∞ In,2 = lim

n→∞ E
(
ζn,1I

(
ηn < (1+ ε) logn

)) = 1. (4.13)

Similarly,

lim
n→∞ E

(
ζn,1I

(
ηn � (1− ε) logn

)) = 1. (4.14)

By (4.13),

lim inf
n→∞ E

logn · ζn,1

ηn

� lim inf
n→∞ E

(
logn · ζn,1

ηn

I
(
ηn < (1+ ε) logn

))

� 1

1+ ε
lim

n→∞ E
(
ζn,1I

(
ηn < (1+ ε) logn

)) = 1

1+ ε
.

Therefore,

lim inf
n→∞ E

logn · ζn,1

ηn

� 1, (4.15)

from the arbitrariness ofε > 0.
On the other hand, for anyε > 0, write

E
logn · ζn,1

ηn

= E

(
logn · ζn,1

ηn

I
(
ηn < (1− ε) logn

))

+ E

(
logn · ζn,1

ηn

I
(
ηn � (1− ε) logn

))
:= Jn,1 + Jn,2. (4.16)

By (4.14),

lim sup
n→∞

Jn,2 = lim sup
n→∞

E

(
logn · ζn,1

ηn

I
(
ηn � (1− ε) logn

))

� 1

1− ε
lim

n→∞ E
(
ζn,1I

(
ηn � (1− ε) logn

)) = 1

1− ε
. (4.17)

Sinceζn,1 � ηn,

lim
n→∞Jn,1 � lim

n→∞ logn · P
(
ηn < (1− ε) logn

) = 0 (4.18)

follows by Lemma 4.1. And by (4.16)–(4.18),

lim supE
logn · ζn,1 � 1

.

n→∞ ηn 1− ε
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t

Thus,

lim sup
n→∞

E
logn · ζn,1

ηn

� 1, (4.19)

also from the arbitrariness ofε > 0. Then (4.1) follows by (4.19) and (4.15).�
An interesting consequence of Proposition 4.1 is as follows.

Corollary 4.1.

E
1

ηn

∼ 1

logn
, n → ∞. (4.20)

Proof. To prove (4.20), it suffices to show that

lim
n→∞ logn

∣∣∣∣E 1

ηn

− E
1

ηn + 1

∣∣∣∣ = 0. (4.21)

Sinceηn � 1,

logn

∣∣∣∣E 1

ηn

− E
1

ηn + 1

∣∣∣∣
=

∣∣∣∣E logn

ηn(ηn + 1)

∣∣∣∣
�

∣∣∣∣E logn

ηn(ηn + 1)
I

(
ηn � 1

2
logn

)∣∣∣∣ +
∣∣∣∣E logn

ηn(ηn + 1)
I

(
ηn <

1

2
logn

)∣∣∣∣
� 2E

1

ηn + 1
+ logn · P

(
ηn <

1

2
logn

)
.

Thus, by (3.4), (4.5) and Proposition 4.1, (4.21) follows.�
4.2. The general cases

Now we give our proof of the expression (1.1).

Proof of Theorem 4.1. By Corollary 3.1, to prove the theorem, it suffices to prove tha

lim
n→∞

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

= 1. (4.22)

The result fork = 2 has been proved. Suppose that the equation above holds fork − 1
(k � 3). We shall prove it still holds fork in the following.

First we show that

lim sup
n→∞

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

� 1. (4.23)

In fact, for any 0< ε < 1, write
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(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

= (k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E

(
ζn,m

ηn

I
(
ηn > (1− ε) logn

))

+ (k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E

(
ζn,m

ηn

I
(
ηn � (1− ε) logn

))

:= I1(n) + I2(n). (4.24)

In view of the fact that P(Lm = k − 1) � 1 andηn = ∑n−1
m=1 ζn,m,

I2(n) � (k − 2)! logn

(log logn)k−2
E

((
1

ηn

n−1∑
m=k−1

P(Lm = k − 1)ζn,m

)
I
(
ηn � (1− ε) logn

))

� (k − 2)! logn · P
(
ηn � (1− ε) logn

)
.

Hence,

lim
n→∞ I2(n) = 0

by Lemma 4.1. And by (2.8) and the inductive assumption, we have

I1(n) <
1

1− ε

(k − 2)!
(log logn)k−2

E

(
n−1∑

m=k−1

P(Lm = k − 1)ζn,mI
(
ηn > (1− ε) logn

))

� 1

1− ε

(k − 2)!
(log logn)k−2

·
n−1∑

m=k−1

P(Lm = k − 1)Eζn,m.

Since

lim
m→∞

P(Lm = k − 1)(k − 3)! logm

(log logm)k−3
= 1

and

lim
n→∞

1

(log logn)k−2

n−1∑
m=k−1

(k − 2)(log logm)k−3

m logm
= 1,

it is easy to know

lim
n→∞

k − 2

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)Eζn,m

= lim
n→∞

k − 2

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)(k − 3)! logm

(log logm)k−3
· (log logm)k−3

m logm

= 1. (4.25)
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Thus, from the above, for any 0< ε < 1,

lim sup
n→∞

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

� 1

1− ε
,

which yields (4.23) from the arbitrariness ofε > 0.

To prove the theorem, we need only to prove that

lim inf
n→∞

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

� 1. (4.26)

First, for anyε > 0, we have

lim
n→∞

1

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
(
ζn,mI

(
ηn > (1+ ε) logn

)) = 0. (4.27)

In fact, by (2.8) and (4.25),

lim
n→∞

1

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)Eζn,mP
(
ηn > (1+ ε) logn

) = 0.

Hence, to prove(4.27), it suffices to show that

lim
n→∞

1

(log logn)k−2

×
n−1∑

m=k−1

P(Lm = k − 1)E
(
(ζn,m − Eζn,m)I

(
ηn > (1+ ε) logn

)) = 0. (4.28)

And by Lemma 2.2,

Cov(ζn,i , ζn,j ) � 0, ∀i �= j, Varζn,m � 1

m
,

thus,

1

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
((

ζn,m − E(ζn,m)
)
I
(
ηn > (1+ ε) logn

))

= 1

(log logn)k−2

× E

((
n−1∑

m=k−1

P(Lm = k − 1)
(
ζn,m − E(ζn,m)

))
I
(
ηn > (1+ ε) logn

))

� 1

(log logn)k−2

×
(

E

(
n−1∑

P(Lm = k − 1)
(
ζn,m − E(ζn,m)

))2

P
((

ηn > (1+ ε) logn
)))1/2
m=k−1
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2

� 1

(log logn)k−2

((
n−1∑

m=k−1

P2(Lm = k − 1)Var(ζn,m)

)
P
((

ηn > (1+ ε) logn
)))1/

� 1

(log logn)k−2

((
n−1∑

m=k−1

P2(Lm = k − 1)

m

)
P
((

ηn > (1+ ε) logn
)))1/2

.

By the inductive assumption,

∞∑
m=k−1

P2(Lm = k − 1)

m
=

∞∑
m=k−1

(
P(Lm = k − 1) logm

(log logm)k−3

)2
(log logm)2(k−3)

m log2 m

� C

∞∑
m=k−1

(log logm)2(k−3)

m log2 m
< ∞.

And note that

lim
n→∞ P

(
ηn > (1+ ε) logn

) = 0,

then (4.28) follows. Therefore,

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

� (k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E

(
ζn,m

ηn

I
(
ηn � (1+ ε) logn

))

� 1

1+ ε

(k − 2)!
(log logn)k−2

·
n−1∑

m=k−1

P(Lm = k − 1)E
(
ζn,mI

(
ηn � (1+ ε) logn

))

= 1

1+ ε

(k − 2)!
(log logn)k−2

·
n−1∑

m=k−1

P(Lm = k − 1)Eζn,m

− 1

1+ ε

(k − 2)!
(log logn)k−2

·
n−1∑

m=k−1

P(Lm = k − 1)E
(
ζn,mI

(
ηn > (1+ ε) logn

))
.

Thus, by (4.25) and (4.27),

lim inf
n→∞

(k − 2)! logn

(log logn)k−2
·

n−1∑
m=k−1

P(Lm = k − 1)E
ζn,m

ηn

� 1

1+ ε
.

Sinceε > 0 is arbitrary, (4.26) holds. The proof of the theorem is completed.�
Remark 4.1. In other words, for any nature numberk � 2, asn → ∞,

P(Ln = k) ∼ (log logn)k−2

.

(k − 2)! logn
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. Trees
4–48.
1988)

r publi-

ath. 51

(1989)

(Eds.),

ci. 5

) 237–

978)

, vol. 13,

tions to

, 1998.
Note that
∞∑

k=2

(log logn)k−2

(k − 2)! logn
= 1

logn

∞∑
k=0

(log logn)k

k! = 1,

which shows that the result is reasonable.
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