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Abstract

As models for spread of epidemics, family trees, etc., various authors have used a random tree
called the uniform recursive tree. Its branching structure and the length of simple random downward
walk (SRDW) on it are investigated in this paper. On the uniform recursive tree ofi size first
give the distribution law ot ,;, the number ofrn-branches, whose asymptotic distribution is the
Poisson distribution with parametar= % We also give the joint distribution of the numbers of
various branches and their covariance matrix. Kn the walk length of SRDW, we first give the
exact expression of(@, = 2). Finally, the asymptotic behavior @f,, is given.
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1. Introduction

A tree is a simple connected graph without cycles [16]. The recursive tree of sze
a kind of random trees om particles that attach to each other randomly. The process of
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generating a recursive tree is as follows (see [2]): let the set of particlgs Be .., n},
and{pr;,i=1,2,...,k},k=1,2,...,n—1, be asequence of probability mass functions,
ie.,

k
peiz0. Y pri=1 k=12...n-1
i=1

At step 1, put all particles in a plane; at step 2, particle 2 attaches to particle 1; at step 3,
particle 3 attaches to particle 1 with probabiljty; or to particle 2 with probability,. In
general, at step+ 1, particlek + 1 attaches one of the particles inthe&e®, ..., k} with

the probabilitieyy ;, i =1, 2, ..., k, respectively. Aften steps, the resulting tree with the
root vertex 1 is called a recursive tree. If
1
pri=—, i=1L2,...k, k=1,2,...,n—1,

e
i.e., at each step the new particle attaches to a uniformly selected particle from the previ-
ous ones, independently of previous attachments, then we call it a uniform recursive tree,
denoted by7,. For any nature numbér> 2, at thekth (k > 2) step we can make — 1
choices, san — 1)! different trees can be obtained, and each tree occurs with the same
probability -5

With many applications, recursive trees have been proposed as models for the spread
of epidemics [13], the family trees of preserved copies of ancient or medieval texts [14],
and pyramid schemes [5], etc. Here we give an example of the model for the spread of
epidemics:

Example 1.1. Suppose there exisis persons infected a specific infectious disease (e.g.,
SARS) in turn in some area, and only one of them is the original case. The second case
must be infected by the original one. Unknowing the law of infection, we suppose that the
third case was infected by one of the previous two with the probabifigy despectively.

In general, we suppose th¢h case was infected by one of the previgus 1 cases with
respective probabilitie§f—, k=2,3,...,n. Let vertexk represent théth case, and ver-

texi attaches to vertex (1 <i < j < n) if and only if the jth case was infected by thth

case. Then we obtain a uniform recursive tree. By this taken, such a study of study uniform
recursive trees can make the law of infection clear to a certain extent.

In7,, D; denotes the set of vertices of tlith generation. A subtree with the rootiy
is called a branch, which is also a uniform recursive tree [12]. Obviously, the number of
branches i$D1]|, denoted by, . If the size of a branch im (1< m <n—1),wecallitan
m-branch, and let, ,, denote the number of the-branches. In particular, i = 1, the
only vertex in the branch is called a child-leaf of the root 1. It is easy to seejjhat
Z?;ll ¢n,i- Furthermore, if vertex € D;, we say that the depth of vertéxs j, and letg;
denote the depth of vertéx

Many authors have studied the depth of vertices. For example, $skinfl5] has
given the distribution of,,, the depth of vertex; Devroye [3] has proved the central limit
theorem oft,,; Mahmoud [9,10] has done some further study on the limiting behavior of
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&, and)_;_; &; Meir and Moon [12] have given the distribution of the number of vertices
in each generation.

It is easy to see that the branching structure is one of the important properties of the
uniform recursive trees, but as far as we know that no one has considered it. For each
nature number and 1< m < n — 1, we shall show that

[2A]—k

PG =k) = —— 3 S k=o,1,...,[”_l},

m~<k! i'mi m

where[t] is the biggest integer not more tharirhen for each fixed:,

1
P(enm =k) ~ Poissor(—),
m

asn — oo, where Poissofi) denotes the Poisson distribution with the paramgter
As well as the structure of the branches in uniform recursive trees, we have studied a
random walk on them. L&t be a finite or infinite undirected graph with numerical vertex
labels and a designated initial vertexBy a local search o7, we mean the following.
Place a particle on the initial vertex Examine the neighbors efin turn until a vertexs’
with a higher label is discovered. (If none exists, the process terminates.) Then move the
particle tos’ and continue. An evolutionary walk on a tree is local search beginning at
the root [1]. The evolutionary walk is a stochastic process, which has been used to model
local search in combinatorial optimization and molecular evolution. It was first correctly
analyzed by Macken, Hagan and Perelson. Most of their results can be founded in [6-8].
Simple random downward walk (SRDW) on uniform recursive trees defined as follows
is a special case of the evolutionary walks: beginning at the root 1, the particle moves to
one of the children with the uniform probability, until the process terminates on some leaf.
Throughout this paper we assume that 2. The walk length of SRDW, denoted ly,,
is defined to be the number of times the particle is moved, including its first placement.
Then L, is a random variable which takes values @3, ..., n}. Using the method of
generating function, Meir and Moon [11] have shown that for each nature number

(loglogn)k—2
(k —2)!logn’
asn — oo. In this paper, based on the branching structure and using the method of prob-
ability, we have given the exact expression for the dase2 and an alternative proof of

the relation (1.1), which has shown the inner relations between the random walk and the
branching structure. For eaghas we shall show that

P(L, =k) ~ (1.1)

P(L, = 2) = L
M
andfor3<k<n—1,
n—1 é_
P(Ly=k)= Y P(Ln=k—1DE™".
m:k—l nn

In the model for the spread of epidemi¢s,, = k) represents the random event that
persons were infected in turn and none else was infected by the last case.
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The results in this paper are organized as follows. In Section 2, we give the distribution,
the asymptotic distribution and joint distribution of the branches’ numb@&j; ilBased on
them, we come to study(B,, = k). In Section 3, we give the exact expression gf P= 2)
and point out that it is strictly decreasinginin Section 4, using the method of probability,
we newly proved the expression (1.1).

2. Branches of uniform recursivetrees
To studyL,, we consider the properties of the branches first.
2.1. Distribution and asymptotic distribution of the branches' number
Obviously, for anym € {1, ..., n — 1}, we have
n—1
P(Cn,m >0=1 P<§n,m > |: m :|> =0. (2-1)

Now we prove the following proposition.

Proposition 2.1. In uniform recursive trees of size n, the distribution law of ¢, ,,, the
number of the m-branches, is the following:

[n—l]_k .
1 m (_1), P l
Peam =0 =05 2 T k=o,1,...,[ - } 2.2)
1=
Soecially, if m > ”—51 Zn.m 1S@Bernoulli randomvariable, i.e,

1
Pim =1 =1=P(pm=0 = e

Proof. From the se{2,3,...,n}, i subsets of sizen are chosen to makem-branches
(each may havém — 1)! forms), and the rest of — mi — 1 vertices attach arbitrarily by
the rule above. Therefore, the number of the ways of generating a recursive tree is
(n—l) (n—m—l) . (n—m(in—l)—l)((m _ 1)')[(1’1 —mi — 1)' B (n _ l)'

m m

i! mii!

1<i<["_1] (2.3)
m

On the other hand, b§2.1),
[*5

-
—

P(;zz,nl = ]) =1

ANghl

I
o

j
Seti = 1in (2.3), then

(@mm—mm—m—mzl

(n —1)! m’
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In view of the fact that each recursive tree which hias-branches exactly is counted
n=ly .
times and7,| = (n — 1)!, the left of the equation abovegg.z'"l] (1)P&n.m = j). Thus,

j 1
(i) P(é‘n,m = J) = (2-4)
m

Neg, - -t
<2> ({n,m - ]) — W»

j 1
C>w9m=ﬂ= =
‘ 1 m-i.

B 1
I
n—1 1
P(Cn,m = |: p ]) = m[%]([n’_;l])!' (2.5)

Consider the{%] + 1 formulae above from the bottom up, then it is easy to yi{&la).
If m > "5%, ¢, ,, only can take values of 0 or 1. Sinp&52] = 1,

1
P(é‘n,m = 1) =1- P({n,m = O) =
m
follows by (2.2). O
By (2.4) and (2.5), we can obtain the expectation and varian¢g ef
Corollary 2.1.

(1) Foranyn > 2,

1
E(Cn,m)z—, m=1,...,n—1.
m
(2) Foranyn > 3,
& l<m<gh
Var(Cn,m)= mfl, ”—El<m<n—1. (2.6)

H12
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Proof. It follows from (2.4) that K¢, ) = % And by (2.5), if 1<m < ”—51

1
E(¢2 ) — EGnm) = —5

mz’
thus,

Var(g, m) =E(¢2,,) = (E@um))’ =

’

o Se

if 251 <m <n — 1, the result is obvious.
Let \V be the set of nature numbers. From Proposition 2.1, it is easy to see that

Proposition 2.2. For any m € NV, the asymptotic distribution of ¢, ,, is the Poisson distri-

bution with parameter A = £, asn — oo.

m 1
2.2. Joint distribution and numerical characteristics of the branches’ numbers

Next we give the joint distribution of random vect@r, 1, £,.2 - - -, Cnn—1)-

Proposition 2.3. In 7,,, the joint distribution of the numbers of various branches

(Cn,l, Cn,Z, ey é‘n,nfl)
isthe following:

n—1
1
Pt = X1, 62 =22, Gan-1=X0-1) = [ | = (2.7)
=1m )71xm_

where {x1, ..., x,—1} isany sequence of nonnegative integers satisfying the condition
n—1

Zixizn—l.

i=1

Proof. It suffices to compute the number of the elementary events (each one corresponds
to a recursive tree) in the eveft, 1 = x1, ..., {nn—1 = xn—1}. Consider the groups of
n — 1 vertices (vertices of a group belong to the same branch). The number of the ways of
grouping is
(n—1)! 1
A2+ ((n — DY¥-1 xqlxgl--xy—1!
And m-branch hagm — 1)! different forms, so the number of the elementary events in
{Cn,l =X1,.-,{pn-1= Xp—1} is
(n—1)! on*1@ah*2...[(n — 211
A)*1(2N*2 - ((n — D)!)*n-1 x1lxo! - xp_1!
_ (n —1)!
- 1X12X2 e (n — 1)xn—1xl!x2! .. .xn_l! '
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Since the elementary events occur with the same probalg}}%,

P(gn,l =x1,8n2=X2,...,Cpn-1= Xp—1)

n—1 1

mm x|

O

1 (n—1)! B l_[
T (n—1)! 1M22...(n—D)¥n-1xqlxol oo x,_q! et

In the previous subsection, we have obtained the expectation of random gctor
é-n,Z, ey {n,n—l)n i-e-,

1 1
E(é‘l’l,la Cn,25 MR Cn,nfl) = (17 5’ ce n— 1) (28)

Now we give its covariance matrix.

Proposition24. Forany 1<k <Ii<n—1,ifk+I1<n—-1,
COV({n,k, é‘n,l) = O; (29)
andifk+1/>n—-1,
1
CoV(&n ks Ent) = h (2.10)
Proof. If1 <k <l<n-—1andk+1[>n—1,itis obvious that
P(é‘n,kziﬂ é‘ﬂ,lzj)zoa la./ >0’
thus,
1
E(gn,kgn,l) = 0, COV(Cn,ka Cn,l) = _E(Cn,k)E(Cn,l) = _E~
Forany 1<k <i<n—landk+I1<n—1,ifij >0,ik + jl <n— 1, the number of
the uniform recursive trees which exactly havie-branches ang /-branches ign — 1)! -
P(¢uwk =1i,801 = j). Let A and B be two disjoint subsets of the sg&, 3, ..., n}, whose
sizes arek and!, respectively. Then the number of uniform recursive trees, which have

a k-branch and d-branch consisting of the vertices ihand B, is (k — 1)!({ — 1)!(n —
k —1 — 1)!. Noting thatA and B can be chosen arbitrarily, the number multiplied by

("N (Y s
M= (”;1> (n—llc—l) G- DI =Dl —k—1— 1= " ;ll)!-

It is easy to see that i, each recursive tree which exactly hag-branches and
[-branches is counted times. Then

Z ij(n_l)!P(gn,k:ivgn,l:j):M: (n kll)'
(. )): ij>0, ik+ji<n—1
Thatis
> PGk =i G = ) = =
’ ’ kl

(i,)): ij>0, ik+ji<n—1
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Hence, by (2.8),

1
E(gn,kgn,[) = m = E(é‘n,k)E(gn,l)s 1<k<i<n—-1 k+1<n—-1,

and CoV(¢, k. ¢,;) =0 follows. O
From this proposition, the following corollary is obvious.

Corollary 2.2. The covariance matrix of random vector (£,.1,%n.2,-- - {nn—1) IS By =
(i) (n—1)x (n—1), Where

:%, 1<i <15, 0, i#jitj<n-1,

bii = bij=1_1

St ci<n-1, —&, iFji+j>n-1

3. Theexact expression of P(L, = 2)

From this section on, we shall discuss the probability{ bp = k}. The main purpose
in this section is to give the exact expression oL P= 2). In the model for the spread
epidemics, as described in the introduction, it means the ratio of the sufferers who do
not infect others, in the group infected by the first sufferer. First, we give a elementary
expression of it.

Proposition 3.1.

é‘n,l
Nn

P(L,=2)=E

(3.1)

Proof. By the rule of SRDW, conditioning oft,, 1 = j, n, = k}, the even{L,, = 2} occurs
with the probability%. According to total probability formula,

P(L,=2) = Z P(Ly=21¢u1=J,mu=0PCu1=j,mn=k)
1< <h<n—1

= Y Pa=jm=b=E
1< <h<n—1

Cn,l
Mn

Acting similarly as above, the following consequence holds.

Corollary 3.1. For any 3< k < n,
n—1 C
P(Ly=k)= Y P(Ln=k—1E™". (3.2)
m=k—1 n

The expression (3.1) relates to the joint distributionzpf and n,,, which is hard to
calculate. To get a expression ofIF, = 2) which just relates tay,,, we give a lemma in
the following.
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Lemma3l For0<j<k<n—land1l<m<n-—1, wehave
1 . .
%P(gn,m =JsMn =k)= P(Ql—&-m,m =Jj+ 1, Nn+m =k+1.
m(j+1)

Proof. Conditioning on that the evert, ,, = j} occurs, it is easy to see that the size
of the biggest branch df,, is at mostn — 1 — mj or m. Using the joint distribution of
(gn,l, Cn,Z, cees Cn,nfl) (See (2-7))1 we have

. 1 41
P(Cn,m=J’77n=k)=ijj| l—[ mxmxm!’

1Ki<n—mj—1, i#m

where})_ is taken over all integerfc, x2, ..., Xu—1, Xm41, - - ., Xn—mj—1} Satisfying the
conditions ofxy + x4+ -+ xp_1+ j +xpyp1+ - Fx-1-; =k andxy + x4+ - +
m—Dxp_1+mj+m+Dxpi1+---+0m—mj— 1)xn—mj—l =n— 1. Thus,

1

1 1
nG i G =im=0=3 —mregn I

R . ' m |
m(j+1) = DY G it i ™!

= P(é-n—ﬁ—m,m =j+ 1L n4m=k+1). O

The following theorem is one of our main results.

Theorem 3.1. For any 1 < m < n — 1, we have
Eg"_*m 1 1

=—E———. (3.3)

Mn m Np—m+1
In particular,

1
-3
In1 1 1 / .
P(L,=2)=E—=E = x+ j)dx. 3.4
(Ly =2 =E== =B —— 2 j]l( ) (3.4)

Proof. Forany 1< m<n —1,

1 —m-—
—E = — P =k
mnnm+1m§ Ol = k)
n—m-—1 1
+1 1 .
= Z J—.ip(fnfm,m = j, M-m=k)

0 j <k, 1<kn—m—1 k+1m(j+1)

= Z mp(é'nm J+Llm=k+1)
0<j<k, 1<k<n—m—1

i . Cn,
= Z iP(é‘n,m =i,n=0)= EM:

1<i<I<n—m I
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and (3.3) holds. By Proposition 3.1, set= 1 in this equation, then

1
Eé‘n,l —E

nn 77n—1 + 1
Since (see [3,9] or [4])

P(L, =2) =

,Bn n—k—1
Pn,=k)y=———=, k=1,...,n-1, 3.5
(Mn ) n—1)! n ( )
where
/3n,0=1» ,Bn,k= Z ma---mg, k=17"'7n_29
I<my < Smy<n—2
we have

1 1 n_zﬂ Ln—k—2 &
P(L,=2)=E = none / d
En=2=F 1 (n—2)!]; k+1 (n—2)' H(”’) -

0
(3.6)

In the above expression, the sum is not only hard to calculatésifarge, but also hard to
see how the probability @.,, = 2) varies as: — oo. In the next section, we will make a
further discussion.

Corollary 3.2. The probability P(L,, = 2) isstrictly decreasinginn, i.e.,
P(L,=2)>P(L,4+1=2), n=2

Proof. Itis easy to see that

P(Lpt1=2) =

/(x+n—2)1_[(x+])dx

1)' i<o

(n_l)‘/l_[(x—i-])dx—P(L =2). O

Obviously, the eventL, = k) can only occur or¥,, of sizen > k. It is easy to get the
following:

1 (k+1) -1
Pli=b=g=gn  Plu=k =57

If k >4, thenk? — 3k —2> 0 and RL; 1 = k) > P(L; = k). It is shown that the proba-
bility P(L,, = k) is not strictly decreasing far > 4.
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4. Thelength of SRDW

As described in the introduction, we shall study the asymptotic behavior of the proba-
bility P(L,, = k), k > 2.

Theorem 4.1. For any positive integer k£ > 2, we have
(k —2)!logn

The probability RL,, = 2) is the inductive base of the result, so we discuss its asymp-
totic behavior first.

4.1. Thecasek =2
Proposition 4.1.

lim logn-P(L,=2) =1 4.2)

n—-oo

Proof. Write

1 1)173 11172 1
. x_
P(L,,:Z):(n_z)!/l_[(x+j)dx=/1_[(l+ > )dx.
o /=0 o /=1

It is easy to see that

1+r<e, t>-1;

1+t>e”’2, —%<t<0.
Then
n—2 n—2 n—2
-1 1 1
[1 <1+ x—) <exp{(x - 1)2—.} =exp{—(1—x>2—.}
j=1 / =1’ =1’
and

! n—2
|Og}’l -P(L, =2) < |Ogn ./exp{_(l_x)Zl'}dx
—J
j=1

0
1 n—2 1
:Iogn-/exp{—xZ—,}dx
0 =
logn 2
=T21<1—exp{—z—,})—>1, n— oo. (4.3)
217 =

On the other hand, # < x <1, then 1- x > (1 - x)? and
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n—2

y—1 n721 n721
H<1+—,) sexpl—(1-0)) Z—(1-x02) =
J il P

j=1
n—2 i1
>exp{—(1—x)zj,—2}.
J

j=1
Therefore,
1 n—-2 .
1
Iogn-P(Ln=2)>|09n'/eXp _(1_’5)2]?; }dx
1 j=1 !
3
3
n—2
i+ 1
0 J=1
o 1n72 . 1
- %’iﬂ(l—exp{—é %}) —>1 n-oo
=157 =7

(4.4)

By (4.3) and (4.4), Proposition 4.1 holdsO

From Corollary 3.1, we can write out the exact expressions for general cases, which are
too complex to utilize. Using the above method, it is hard to get the asymptotic distributions
of P(L, =k) fork =3, 4, ..., sowe shall use another method. First we give a lemma:

Lemma4.1. For any 0 < ¢ < 1 and slowly varying sequence /(n) asn — oo,

lim l(n)P( m —logn| g) —o0.
n— 00 logn
In particular,
lim logn - P(nn <(1-9) |Ogn) =0; (4.5)
n—oQ
lim logn - P(n, > (1+¢)logn) =0. (4.6)
n—od

Proof. LetX; =1(j + 1€ Dy), then (see [4])

n—1
nn = ZX_]v n 2 27
j=1
whereX1, Xo, ..., X,,—1 are mutually independent Bernoulli random variables satisfying
1
PX;=D)=1-PX;=0=-, j>1
J

Therefore,
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1 1 1 1
Ee'Xi = <1— —.) + e =1+=( 1) <exp{—.(e’ —1)}, VieR, j=>1
J J J J @.7)

In the following, C shall denote an absolute constant, possibly varying from place to place.
Hence, for any > 0,

n—1

P(1: = (1+¢)logn) < exp{ —t(1+¢)logn + E 1(e’ — 1)}
—J
j=1

<exp{C(e' —1)}exp{logn - (¢! —1— (1+¢))}.
Choose a; € (0, log(1+ ¢)), thenay := —(e'* — 1 — (1+¢)t1) > 0 and
P(n. > (14 ¢)logn) < exp{C (et — 1) }n~*1. (4.8)
Similarly, for anyr > 0,
P(nn <(A-¢) IOgn) =P(logn —n, > elogn)

n—1

<exp t(l—s)logn+21(e_’ -1)
—J
j=1

<exp{C(e™" —1)}expllogn - (e7" — 1+ (1—e)t)}
<expllogn - (e7" —1+ @ —e))}.
Choose a, > 0 such thatry := —(e™2 — 1+ (1 — &)12) > 0, then
P(n: < (1—¢)logn) <n™%2. (4.9)
By (4.8) and (4.9), for any > 0 and slowly varying sequenéé:) asn — oo,

lim l(n)P( n —logn | g> —0.
n— 00 |ogn

Specially, takd(n) = logn, then (4.5) and (4.6) holds.O

Using Lemma 4.1, we can prove Proposition 4.1 in another way.

An alternative proof of Proposition 4.1. It is easy to see that

1Sy sn— 1 (410)
According to (3.1), to prove the proposition, it suffices to prove that
. logn -
lim g9 4l g (4.11)
n—oo r}l’l

Note that (see [9] or [4])

Mn p
-1, n—o0.
logn

E(Gny) =Var@,,1) =1, Vn=3;

For anye > 0,
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1= E(tn1) =E(Gn.11 (nn > L+ ) logn)) + E(¢n,11 (1, < (1+ &) logn))
=TI+ 12 (4.12)
Then E¢2,) = Var(Z,.1) + (E(Z.1))? = 2, for alln > 3, and

\/E nl > (1+¢)logn) < \/2 P(

—l’ >—>O, n— oo.

logn
Thus,
lim 7,2= I|m E({n 1I(n, < (L+¢)logn)) = (4.13)
n—>oo
Similarly,
lim E(¢n,1/ (0 = (1 —e)logn)) = 1. (4.14)
n—oo
By (4.13),
I e . I e
liminf 29511 - jiming E(Ml(nn <(1+e) Iogn))
n— o0 }’]n n—>oo nn
> lim E(z,.11 1 I
1—|—gn|m (é'nl (nn<( +3)Ogn)) 1te
Therefore,
fiminf E/°97 " Snl o 4 (4.15)
n—oo nn
from the arbitrariness of > 0.
On the other hand, for any> 0, write
| . [ e
EM - E<09n—§1,11(nn <(1-2¢ |Ogn)>
7711 n
I e
+ E(Ml(nn > (1—8)|0gn)>
Mn
=Jn1+ Jn2. (4.16)
By (4.14),
. ) I <L
limsupJ, 2 =lim supE(Ml(nn >(1-¢ Iogn))
n—00 n— 00 Mn
< i > — = . .
<75 im E(6nal (1, > (1 - &) logn)) = —— (4.17)
Sinceg,.1 < N,
lim J,1< I|m logn - P(n, < (1—¢)logn) = (4.18)

n—0o0

follows by Lemma 4.1. And by (4.16)—(4.18),

. logn - 1
lim supE gn 5”’1< )
n—00 Nn 1-¢
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Thus,

lim supELgn nd

n—00 U

<1, (4.19)
also from the arbitrariness ef> 0. Then (4.1) follows by (4.19) and (4.15)O0

An interesting consequence of Proposition 4.1 is as follows.

Corollary 4.1.
1 1
E— ~ , n— oo. (4.20)
n, logn

Proof. To prove (4.20), it suffices to show that

1 1
E——-E

lim logn
Mn m+1

n—oo

—0. (4.21)

Sincen,, > 1,

logn

1 1
E— —-E ‘

Mn e+ 1
_ ‘E logn

Mn(Mn + 1)

logn ( 1 )
+lE—2" 1y, < Zlogn
‘nn(nn+1) =319

logn ( 1 )
<|[E—=——1I{n, > Zlogn
‘ e+ 1)\ 29
1
<2E logn - P —lo .
77n+1+ gn (nn< 2 gn)

Thus, by (3.4), (4.5) and Proposition 4.1, (4.21) followsi

4.2. The general cases
Now we give our proof of the expression (1.1).

Proof of Theorem 4.1. By Corollary 3.1, to prove the theorem, it suffices to prove that
n—1
Z P(L, =k — 1)E§”"" =1 (4.22)
m=k—1 I
The result fork = 2 has been proved. Suppose that the equation above holdsfdr

(k = 3). We shall prove it still holds fok in the following.
First we show that

(k —2)!logn
n—oo (loglogn)*—2

-2
Iimsup(k )tlogn

bl L <1 .
n—oo (loglogn)k—2 <1 (4.23)

n—1 ;
> P(Ly=k-DE™"
m=k—1 M

In fact, for any O< ¢ < 1, write
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(k—2)logn =%
(loglogn)x—2 Xk:lP(L

_ (k—=2)!logn Cnm
(Ioglogn)k (loglogn)k=2 - Z P(Lm k_l)E< ™ (> 1—¢) Iogn))

(k —2)!logn Enm
+ W mzle’(Lm =k— 1)E< " ( M < (1—¢g) |Ogn))

= I1(n) + L(n). (4.24)

In view of the fact that PL,, =k — 1) < 1 andy, = Y724 ¢um,

(k — 2)!logn 1 =t
I2(n) < WE<<—" m;_lP(Lm =k— 1)§n,m> I(n,<(A—¢) |09”)>
< (k—2)!logn - P(n, < (1—¢)logn).
Hence,
lim 1o(n) =0

by Lemma 4.1. And by (2.8) and the inductive assumption, we have

I = k-2! o n_lPL Y 1—¢)lo
1) < 17 Goglogn2 > Py =k =Dyl (nn > (1—¢)logn)

m=k—1
n—1
1 (k—2)!
. P(L,, =k — DE¢,; .
1— ¢ (loglogn)k—2 m§—1 ( k= DEL
Since
. P(Lypy=k—1(k—3)'logm
lim =
m— 00 (loglogm)k—3
and
1 "1 (k —2)(loglogm)c—23
m, k=2 Z =1
(loglogn) = mlogm
it is easy to know
im — =2 nz_:l P(L, =k —1E
n=oo (loglogn)k=2 £ " S
k=2 f P(Ly, =k — 1)(k — 3)!logm  (loglogm)<—3
" n—oo (loglogn)k—2 =, (loglogm)*—3 mlogm

=1 (4.25)
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Thus, from the above, for any9e < 1,

. k— 2 = wm 1
limsup-* — 2097 3 Pl =k—DEDM < 2
n—oo (l0glogn)k—2 St} o l—e
which yields (4.23) from the arbitrarinessof- 0.
To prove the theorem, we need only to prove that
n—1
k—2)!1 n.m
limint = 20gn > P(L, =k - DEZ" > 1. (4.26)
n—oe (loglogn)t—2 &~ M
First, for anye > 0, we have
n—1
fim S PLy =k — DE(Gunl (1 > (1+£) logn)) =0. (4.27)
n—oo (loglogn)*—2 i '

In fact, by (2.8) and (4.25),
1 n—1
im ———. P(Ly =k — DE¢, mP(n, > (1 I =0.
M, Goglogni 2 2 P EGnP(mn > (L+ ¢ logn)
Hence, to prové4.27), it suffices to show that

n“—>moo (loglogn)*—2

n—1
X Z P(Lim =k — DE((Gn,m — E¢nm)I (nn > (L+ ) logn)) =0. (4.28)
m=k—1

And by Lemma 2.2,

Cov(¢n,i, ¢n,j) <0, Vi# ], varg, m < i
m
thus,
1 n—1
W . mglP(Lm =k— 1)E((§n,m — E(gn,m))[(rln >(1+e) |Ogl’l))
-t
~ (loglogn)*—2
n—1
x E(( > P =k = 1)(om — E(;,,,m>)>1(nn > (1+e) Iogn))
m=k—1
1

< —
= (loglogn)k—2

n—1 2
X (E( Z P(Ly =k — 1)(§'n,m - E(C,,,m))> P((nn >(A+e¢) |Ogn)))

m=k—1

1/2
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n—1 1/2
1
< fogiognt2 (( > Pm=k- 1)Var(;n,m>) P((nn > (1+¢) Iogn))>

m=k—1

n—1 e
1 << » M)P((nn>(l+8)|09n))> :

<
= k=2
(loglogn) =, m

By the inductive assumption,

y Pln=k-b_ 5 (P(Lm =k — Dlogm \ * loglogm)2+-2
m=k—1 " 5.\ (oglogm)t3 mlog?m
° 2(k—3)
<c y loglogm®
ey mlog®m
And note that
lim P(n, > (1+¢)logn) =0,
n—oo
then (4.28) follows. Therefore,
n—1
(k—2)!logn Cnm
P P(Ly, =k —-1)E=
(log logn)k—2 m§—1 ( ) P
n—1
(k—2)!logn Cnm
> P(Ly =k — DE( 221 (n, < A+e)l
(log logn)*—2 m:Xk:—l ( ) ( " (m<A+e) Ogn)>
n—1
1 (k=2
> . —f— <
~ 1+ ¢ (loglogn)*—2 mg_lp(Lm k = DE(Zn.m! (na < (1+¢)logn))
n—1
1 (k-2
= : P(Ly =k — DEgy,m
1+ ¢ (loglogn)*—2 mgzl ( USI
n—1
1 (k=2
_ . P(L,, =k — DE(¢y mI(n, 1 [ )
1+ ¢ (loglogn)k—2 Z ( k — DE(Luml (nn > (L+¢)logn))

m=k—1
Thus, by (4.25) and (4.27),

n—1

Z P(L, =k — 1E

m=k—1

b 1

_ |
liminf £ = 2ogn > .
Nn l+e

n—oo (loglogn)k—2

Sincee > 0 is arbitrary, (4.26) holds. The proof of the theorem is completeul.

Remark 4.1. In other words, for any nature numbep: 2, asn — oo,

(loglogn)k—2

PLn =8~ 2 llogn*
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Note that

o0 o0

Z (loglogn)*—2 1 Z (loglogn)*
(k—2)!logn  logn k! -

11

k=2 k=0

which shows that the result is reasonable.
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