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A social network is composed of social individuals and their relationships. In many real-
world applications, such a network will evolve dynamically over time and events. A social
network can be naturally viewed as a multiagent system if considering locally-interacting
social individuals as autonomous agents. In this paper, we present an Autonomy-
Oriented Computing (AOC) based model of a social network, and study the dynamics
of the network based on this model. In the AOC model, the profile of agents, service-
based interactions, and the evolution of the network are defined, and the autonomy of
the agents is emphasized. The model can reveal dynamic relationships among global
performance, local interaction (partner selection) strategies, and network topology. The
experimental results show that the agent network forms a community with a high clus-
tering coefficient, and the performance of the network is dynamically changing along
with the formation of the network and the local interaction strategies of the agents. In
this paper, the performance and topology of the agent network are analyzed, and the

factors that affect the performance and evolution of the agent network are examined.

Keywords: Autonomy-Oriented Computing (AOC); dynamics of social networks; service
transactions; network topology; network performance.

1. Introduction

In social systems, individuals interact with each other and form different social
networks. In a social network, a node denotes an individual in various granularities,
such as a person, a class, a company, or a community. Accordingly a link represents
a specific relationship between two individuals. The individuals are autonomous
and self-organizing, that is, their behaviors are determined by their knowledge,
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characteristics, relations, and local information, and are not directed by any global
factors. The individuals and relationships are evolving dynamically over time, as a
result of their local interactions.

Autonomy-Oriented Computation (AOC) is a new computing paradigm, which
explicitly utilizes the notion of autonomy, i.e. one of the natural characteristics of
entities in a complex system, in the development of efficient methods to solve com-
putationally challenging problems (e.g. to solve large-scale, distributed constraint
or optimization problems) and to understand complex behaviors (e.g. to reveal
the underlying mechanisms of a complex system).17,18 There have been success-
ful AOC applications in characterizing Web user surfing behaviors16 and model-
ing HIV-Immune interaction dynamics.35 In AOC, the autonomy of individuals is
emphasized. By autonomy, we mean the ability of agents to manage their behav-
iors according to the local environment and their profiles. AOC is also appealing in
characterizing the dynamics of social networks by taking into account the auton-
omy of individuals. In an AOC-based social network model, the social agents can
only interact with each other according to their local information, and decide their
behaviors independently without the direct influence from any global information.

In our work, we consider social networks as being both dynamic and adaptive.
Generally speaking, there are two types of dynamics in a social network: The first
is concerned with the dynamic changes in topological structures and the second is
related to the dynamics of agent behaviors as well as the resulting network per-
formance based on the various behavioral strategies of social agents. In a social
network, there is a dynamic interplay between (1) changes in the memberships and
relationships (as well as the topological structures) of social agents and (2) local
interactions among the agents. As a result, the performance of the network as a
whole will also evolve over time.

In any social network, the local interactions among social agents aim to sat-
isfy certain demands or needs of agents. Thus, the events happening between two
agents can be viewed as those taking place in a service transaction process; agents
cooperate to complete a certain service request from other agents, gain some ben-
efits for doing this, and then establish new relations as a result of the interactions.
For instance, asking and answering a question is an information exchange service,
whereas buying and selling commodities can be viewed as a business transaction
service. A service-oriented agent network represents a typical social network, and
hence, is well suited to in-depth studies on the dynamics of network topology, local
interaction (partner selection) strategies, and network performance.

The aims of our present work are two-fold: (1) we will study the dynamics of
social networks. The dynamics not only involve the topological changes of a social
network and the activities happening in the network, but also address the changes
in the individuals’ behaviors/profiles and the network performance; (2) we will
develop an AOC-based multiagent system to model the above-mentioned dynamic
social networks. In the AOC model, the behaviors of agents are autonomy-oriented,
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and their interactions are defined as a service-transaction process. The AOC-based
model and some preliminary empirical studies have been previously reported.36,37

The remainder of the paper is organized as follows. Section 2 surveys related
work on social networks. Section 3 introduces the AOC-based model of a social
network. Section 4 provides an illustrative example of the proposed model. Section 5
presents the local interaction strategies of social agents that determine the structure
and dynamics of a network. Section 6 describes several measurements as used to
evaluate the dynamics of a social network. Section 7 discusses a set of simulation-
based experiments that are designed to examine the network dynamics based on
the AOC model. Section 8 focuses on the dynamics of a network with respect to
various local interaction strategies. Section 9 concludes the paper by summarizing
the important features of the AOC-based model.

2. Related Work

Research on social networks has been carried out for over sixty years, and has
become more active today, due to their ubiquity and practical impacts in the net-
worked world. Early research focused primarily on analyzing the relative positions of
individuals in a network and their corresponding roles and functions. Later research
was focused on the characterization of network topology and evolution. Having dis-
covered some important topological characteristics in social networks, recent studies
started to examine the activities happening in a certain network, search strategies in
social networks, and dynamic social network models, among other topics. Neverthe-
less, previous studies are generally lacking in addressing: (1) the roles and impacts
of the autonomy of individuals in a social network, and (2) both the topological
and performance dynamics of a social network.

2.1. Centrality metrics

Early studies on social networks have focused on the analyses of the role of an
individual and how the position of the individual influences its function. Many
analyses are based on the centrality metrics of individuals, such as connection degree
which calculates the number of an individual’s partners, closeness which calculates
the average distance with which the individual contacts other individuals of the
network, and between-ness which denotes the times that the shortest path between
any pair of individuals in the network passes the individual.5,12

Centrality metrics measure the static characteristics of an individual, and denote
the degree in which the individual accesses information, broadcasts, and controls
information flow, respectively. Studies on centrality metrics help realize and pre-
dict the ability of social individuals. For instance, after 911 Terrorist Attack, Krebs
analyzed the centrality metrics of terrorist networks. He pointed out that the head
of a terrorist network has the highest connection degree, closeness, and between-
ness.14 Recently, Newman presented a formulation of between-ness that is based on
a random-walk strategy, which can be more efficiently computed than calculating
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the times of an individual being passed by shortest paths.22 In the above work,
most analyses on centrality metrics are based on the static scenarios of social net-
works, and the evolution of centrality metrics is not considered. If the dynamics of
centrality metrics are further explored, it will be possible to predict and reveal the
covert network.

2.2. Network topology

Besides using centrality metrics as a microscopic characterization of a social net-
work, studies have also addressed the macroscopic characterization problems by
examining network topologies. In recent years, many social and natural networks
have been verified to exhibit the small-world, high-clustering, and scale-free topolo-
gies. By small-world it is meant the average length of the shortest path between any
arbitrary pair of individuals is small. Clustering characterizes a clustering property
by calculating the average proportion that the neighbors of an individual are also
neighbors to each other. Scale-free means that the distribution of connection degree
follows a power-law distribution.

Small-world phenomenon has been first studied by Milgram in a mail-delivery
experiment19 and he coined the term of “six degree of separation” to refer to the
average number of connections that can be made between any two persons. Later,
Newman et al. pointed out that the average shortest path in a small-world network
would increase very slowly along with the growth of network size.25 Watts et al.
have shown that besides the small average value of the shortest path lengths, many
social networks have high clustering coefficients.28 They also provided a rewired
link model based on a regular network to construct a small-world network with a
high clustering coefficient. Barabasi et al. have studied the distribution of connec-
tion degree of individuals in many social and natural networks, and have pointed
out that the distribution of connection degree follows a power-law. He termed the
networks as scale-free networks.2,3 However, the scale-free phenomenon cannot be
observed in Watts’ rewiring model. Barabasi et al. introduced a growth and pref-
erential attachment factor into the evolution of a network, and obtained a power
distribution of connection degree. The resulting network has a low clustering coef-
ficient which cannot account for the cluster phenomena in many social networks.
Barabasi et al. observed that a scale-free network can resist randomly removing indi-
viduals, and it is easy to collapse while continuing to remove the highest connective
individuals.1

In order to reveal the origin of the typical topologies in natural or social systems,
Ebel et al. have developed a simple model that introduces transitive linking into an
acquaintance network. They observed a power distribution of connection degree,
a high clustering coefficient, and a small diameter simultaneously in the evolved
network.9,11

In the above models, social individuals are often simplified into nodes with
simple rules, which means the autonomous characteristics of the individuals are
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omitted. In fact, in the long-time evolution of a social network, the behaviors of
individuals are managed by the individuals themselves. Local interaction strategies
of the individuals may change and further affect the formation of the network.

2.3. Activities in social networks

After the topological characteristics of social networks are discovered, many models
accounting for the characteristics have appeared. With these models, the activities
happening in the networks can also be studied.

Kuperman et al. have studied an epidemiological model, called SIR (suscepti-
ble, infected, refractory), on networks ranging from regular networks to random
networks, and analyzed the synchronization phenomena with respect to the dis-
order degrees of the networks.15 Satorras et al. have examined computer virus
on the Internet and identified the spreading characteristics of virus on scale-free
networks. They have shown that the epidemic threshold on scale-free networks is
absent, which means an epidemic is prevalent whether the spreading rate is small
or not.26 The same characteristic is found in the spreading of computer virus via
email networks.23 Dezso et al. have found that curing infected individuals according
to their connective degrees can halt the virus effectively.10 Epidemic diffusion in a
finite sized scale-free and a weighted scale-free network has also been explored.27,30

The above studies were all based on SIR models. However, a percolation model
on epidemic spreading was also developed. In the percolation model, the occupied
probabilities of nodes and bonds were represented by susceptibility and transmissi-
bility, respectively. Various spreading characteristics have been explored based on
percolation theory.20,21,24

Besides the epidemic spreading on social networks, information flow in net-
works is also worth studying. With such studies, we can analyze the efficiency of
information spreading on social networks. Zanette presented a rumor spreading
model on a small-world network. He found a phase transition in rumor spread-
ing according to the randomness level of the network.34 However, information
spreading is different from epidemic spreading in that information spreading is
highly selective, and there is a decay in the transmission probability for orga-
nization distance. Huberman et al. studied information flow in email networks
and indicated that information spreading is limited by the decay in transmission
probability.13,29

Generally speaking, the networks used to study epidemic or information spread-
ing can be classified into three categories according to their constructing models:
Watts’ rewiring model and its variants; Barabasi’s growth and preferential attach-
ment model and its variants; the networks constructed from real data. In these
models, the topology of the networks is static while studying the activities on the
networks, which is not realistic. The activities are simplified into spreading behav-
iors based on the probabilities, which also omits the autonomy of individuals and
the influence of local interaction strategies given the topology of networks.
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2.4. Modeling a social network

From the above introduction, we note that it is most important to construct a
realistic network model in the studies of social networks. This is one of the major
objectives of our project.

In a social network, individuals often interact according to the cumulative
knowledge about their local environment, such as the trust and reputation of
their neighbors. Carter et al. studied the relationship among trust and reputa-
tion, and constructed a value-based agent model in which agent roles and activities
are decided by various values of agents.8

Cano et al. emphasized social exchanges in social networks and presented a
framework of constructing a socio-cognitive grid in which social exchanges through
mediators are the building blocks of social networks.6 Yolum et al. presented a multi-
agent model based on a referral network. They regarded referral as the basic behav-
ior when searching information in a social network. In the network, the agent model
and interaction process are elaborately defined. The performance of the evolved net-
work, the efficiency in mining and searching communities, are also examined.31–33

Recently, Carly proposed the concepts of dynamic social networks. She used
a meta-matrix to describe relations among individuals and pointed out that the
relations in dynamic social networks should be treated as probabilistic.7 She also
developed an agent model, named DIFS (Dynamic Information Flow Simulation),
to analyze the structure, function, and activities of an intelligent organization.4 In
the model, the dynamics mainly concerned the activities, especially the information
flow in the social networks.

To summarize, in the past several years, many researchers have analyzed the
topologies of static social networks, discovered various topological characteristics,
and tried to reveal the determining factors of those characteristics. With various
models for discovering topological characteristics, many activities, such as disease
diffusion and information spreading on social networks, have been examined. The
methods of partitioning social networks have also been developed. However, social
individuals have so far been considered as nodes with simple update mechanisms.
That is, the most significant characteristic of social individuals, autonomy, has not
been addressed.

Although later the developed multiagent models of social networks have started
to emphasize the behaviors of individuals, social exchanges, referral networks, or
DIFS have captured only partial aspect of social behaviors. In our work, we will
present a more realistic, representative model of social networks, called service-based
agent networks. In this model, all interactions are modeled as service-transaction
processes with certain constraints. The autonomy of agents is explicitly incor-
porated. That is, the behaviors of the agents can only be determined by them-
selves, according to their local information with no direct influence of any global
information.
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The objective of our work is to develop an Autonomy-Oriented Computing
(AOC) based model to study the dynamics of social networks, in which interac-
tions among agents are modeled as service-transaction processes. The agents are
autonomy-oriented, which means the agents determine their behaviors only accord-
ing to their local information and their own profiles. With such a model, we can
obtain a better understanding of: (1) how a social network evolves and (2) how
a better network performance can be achieved based on certain local interaction
strategies. That is, we will study the dynamics of network formation, agent profile,
and network performance. The proposed AOC-based network model will also enable
future studies on the development of various activities and efficient interactions or
search strategies for service-based agent networks.

3. Autonomy-Oriented Modeling of a Service-Based Agent
Network

In order to reveal the dynamics of an agent network, the profile and behaviors of an
agent should be modeled. Each agent has a certain ability in finishing tasks under
some constraints. Besides this, there are also other parameters to characterize the
profile of an agent. Firstly, the agent aims to earn more utility by dealing with
the tasks. Cumulative utility is used to describe the utility that the agent has
earned in its past service-based activities. Cooperative degree is a fixed value to
characterize the intrinsic willingness that the agent accepts a cooperative service
request. Partnership degree denotes how well the agent can cooperate with and
finish a requested service with another agent. To summarize, ability, cumulative
utility, cooperative degree, and partnership degree are defined to characterize the
profile of a social agent.

In a social network, all activities can be modeled in terms of service-based inter-
actions. A service consists of various tasks and constraints about the tasks. The
interactions between an agent and its partners are described as service-transaction
processes. A service transaction process consists of the following steps: service
matching, service evaluation, service propagation, and the evolution of agent pro-
files, as described below.

First of all, after an invoked service request arrives at an agent, the agent will
start a service matching process. In the matching process, the agent will decompose
the service into two parts. The first part is the candidate service which is composed
of the subtasks that can be finished by the agent while satisfying the associated
constraints; the second part is the remaining part of the service, whose subtasks
cannot be finished by the agent.

Next, the agent will perform a service evaluation process. Based on its profile
and the reward from such a service, the agent will judge whether to accept the
candidate service and propagate the remaining service to its neighbors. If the agent
declines the service request, the partnership between the agent and its partner who
sends the service request will be downgraded. If the agent accepts the service, it
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will select a cooperative partner from its current partners and send the remaining
service to it.

Once the service has been completed, there will be a reward for all the agents
who are involved in accomplishing the service. On the other hand, if the service
request is refused, there will be no reward. When the service is finished, the agents
involved in the service-transaction processes will also build or strengthen their part-
nership for future cooperation. Thus the profiles of the agents will be updated as a
result of service-based interactions.

With the above-mentioned model, network performance can be defined as the
proportion of the services that are finished. Network topology is characterized by
(1) the number of partners each agent has and (2) the clustering coefficient of
the network. Different local interaction strategies may lead to different network
topology, network performance, and the profiles of agents.

In the following section, we will detail the formulations of an agent profile and
service-based interactions.

3.1. Agent profile formulation

We assume that there are N agents in an agent network. The profile of agent i is
described by Ai that is defined in Eq. (1). Ai is dynamically changing along with
the interactions among agents.

Ai = [Bi, ηi, βi, Λi] (1)

where Bi, ηi, βi, and Λi denote agent ability, cumulative utility, cooperative (will-
ingness) degree, and the set of partnership degrees, respectively.

(1) Agent ability Bi characterizes the ability of a social agent in accomplishing
various tasks under certain constraints. It is an important characteristic of
social individuals, which determines the behaviors of an individual. Here, we
use two vectors to describe the tasks and the constraints:

Bi = [Contentsi, Constraintsi]

Contentsi = [ti1, . . . , tik, . . . , tiNit ]

Constraintsi = [ri1, . . . , ril, . . . , riNir ]

(2)

where Contentsi denotes the tasks agent i can finish, and Constraintsi denotes
under what conditions or constraints agent i can finish Contentsi. tik is the kth
task that agent i can accomplish. Nit and Nir are the total number of tasks
and constraints, respectively. ril is the lth constraint when agent i accomplishes
the tasks, which consists of quality, cost, sequence, workload, and/or other
attributes with respect to the tasks that the agent is to finish. In our later
illustrative example, we will define the constraints as quality qil and cost cil.

(2) Cumulative utility ηi describes the cumulative rewards that agent i has earned
in the past service-based interactions. A high cumulative utility means the agent
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has a strong ability or occupies a good position. Cumulative utility also affects
the future behaviors of agent i.

(3) Cooperative degree βi describes the willingness with which an agent cooperates
with its partners. It is an intrinsic characteristic. In our model, it comes with an
agent and does not change in the interactions. If an agent has a low cooperative
degree, it will decline other partners’ cooperation requests or require a relatively
high utility.

(4) Partnership degree Λi represents a set of partnership degrees between agent
i and its partners. Specifically, the partnership degree between agents i and
j is denoted by λij . If two partners cooperate well, their partnership degree
will become strong. Furthermore, a strong partnership between two partners
will facilitate their future cooperation. In our model, the service that has been
accomplished between two partners with a high partnership degree will cost less.
And the partnership degree will decrease if the agent refuses the cooperation
request.

3.2. Service representation

Service Sm is defined in Eq. 3. The service also consists of two parts: Contents
and Constraints. Contents denotes the tasks in the service, while Constraints is the
constraints on the tasks.

Sm = [Contentsm, Constraintsm]

Contentsm = [t′m1, . . . , t
′
mk, . . . , t′mN ′

mt
]

Constraintsm = [r′m1, . . . , r
′
ml, . . . , r

′
mN ′

mr
]

(3)

where t′mk is the kth task in service m. N ′
mt and N ′

mr are the number of tasks
in the service content and the number of corresponding constraints, respectively.
r′ml is the lth constraint in service Sm. In a service-based agent network, service
constraints should include the reward and the requirement of a service. In our
following illustrative example, we will define r′ml as the price Pm of the service and
the quality q′mk of the tasks.

3.3. A service transaction

The interactions among social agents can be modeled as service-transaction pro-
cesses. The agents can only interact with their direct partners based on their local
information and profiles. Figure 1 provides an example of a service transaction.36

As illustrated in the figure, a service request, S, is first invoked. Next, the service
will be delivered to an agent of the network, which is referred to as a scheduler
(i.e. A1 in Fig. 1). The agents will communicate to evaluate the service [Fig. 1(b)]
and get a solution [i.e. agents A1, A3, A6, and A7 are involved in Fig. 1(c)]. The
agents will accomplish or decline to provide the service, and the agent network will
then evolve [Fig. 1(d)].
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Produce service S

A1

A2 A3

A7
A4 A6

A5

Evaluate service S

A1

A2 A3

A7
A4 A6

A5

Select a scheduler

s

A1

A2 A3

A7
A4 A6

A5

Get a solution

A1

A2 A3

A7
A4 A6

A5

Evolve

Fig. 1. A service-transaction process.

What follows provides the formulation of service-transaction processes.

(1) Service matching. A service can be invoked from an agent inside or outside of
the network. After a service is invoked, it will be delivered to an agent called as
a scheduler. The scheduler will begin a service transaction. If a service request
or a cooperation request from agent j arrives at agent i, agent i will match
the service with its ability model. SAi denotes the service that is delivered to
agent i. Agent i will calculate the tasks in SAi that it can finish under the con-
straints, which constitute SAi . S′

Ai
denotes the remaining service that cannot

be accomplished by agent i under the constraints. The matching process will
be different according to various constraints in different applications. Equa-
tion (4) defines the relationship of SAi , SAi , and S′

Ai
, in which ⊕ denotes a

service composition operation:

SAi = SAi ⊕ S′
Ai

∀r′l is satisfied. (4)

(2) Service evaluation. After the service matching, agent i will evaluate the service
part that it can accomplish and decide whether to accept the service request:

Ei = fi(SAi , Bi, ηi, βi) (5)

where Ei is the evaluation of SAi . If Ei is enough to satisfy the agent’s demand,
the agent will accept the service. Otherwise, the agent will decline the service
request. The demand of the agent is calculated based on the profile of the agent.
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If agent i declines the service request, the partnership degree λij between agents
i and j will decrease according to Eq. (6):

λij(t + 1) = λij(t) · ξ (6)

where ξ is a penalty coefficient in [0, 1].
(3) Service propagation. After agent i decides to accept the service request, it may

select a partner to cooperatively finish the remaining service S′
Ai

if it cannot
finish all the service by itself. Intuitively, an agent inclines to select a coop-
erative partner with a high cooperative degree and a high partnership degree
between them, since the notion of cooperative degree indicates the willingness
to cooperate, and that of partnership degree implies the evaluation of the past
cooperation:

Select h, where βh · λih is max in agent Ni (7)

where Ni denotes all the partners of agent i, except agents that have been
searched in the service propagation. If agent h declines the request, agent i

will deliver the service to another partner g with a high βg · λig . If all partners
of agent i decline the cooperation request, agent i will return service S′

Ai
to

agent j, the upper-level cooperative partner. Agent j will then select a new
cooperative partner in its partners to accomplish the service.

As to be discussed below, agents can also choose their cooperative partners
based on other information.

In this paper, we call the strategy that is used by an agent to select its
cooperative partner a local interaction strategy or a selection strategy. As will
be shown later, selection strategies can affect the dynamics of network topology
as well as network performance.

(4) Agent profile update. After the whole service is accomplished, the agents that
have participated in the service transaction will get rewards according to the
previous evaluation. The agents that are involved in the service accomplishment
will establish (if none) or strengthen their partnership for future cooperation.
In doing so, the agents with a high cumulative utility will consume some util-
ity in establishing a new partnership. That is, agent i will add a cooperative
partner, h, to its partner group, and agent i will convert part of its utility to
the partnership degree with its new partner, which is defined by the following
equation:

λih = ηi · φ
ηi(t + 1) = ηi(t) − λih

(8)

where φ is a constant in [0, 1]. Note that during the evolution of agent partner-
ships, all updates depend on service-based interactions among agents. There is
no direct influence of any global information or remote partners. That is, all
interactions are local and autonomy-oriented.

The partnership degree evolves over time. However, some partnerships will
become extremely weak, refusing cooperative service requests among agents. If
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a partnership is too weak, it will break. Hence, in our model, if partnership
degree λij is lower than a threshold κ, the partnership between agents i and j

will break.

4. An Illustrative Example

In this section, we will describe an illustrative example to show how to conduct
an experiment with the AOC-based model. Here, the constraints in agent ability
is defined as Quality and Cost. Quality denotes the quality in which an agent
accomplishes a certain task, and Cost denotes the cost in accomplishing the task.
Thus, Contentsi of agent i can be represented as: Contentsi = [ti1, ti2, . . . , tiNci ],
and Constraints can be represented as:

Qualityi = [qi1, qi2, . . . , qiNi ]

Costi = [ci1, ci2, . . . , ciNi ]
(9)

where Contentsm describes the tasks that are included in service Sm. Contentsm =
[ts′m1, ts

′
m2, . . . , tsmN ′

m
], and Constraints describes quality Qsmk for various tasks

and reward pm for the service from the requesting agent, respectively.

QSm = [qsm1, qsm2, . . . , qsiNm ] (10)

where quality qsmk means that the agent has to finish task tmk with a quality
higher than qsmk.

4.1. Rules in service matching and evaluation

In the service matching and service evaluation processes, an agent will first calculate
the part of service that it can accomplish under certain constraints, then estimate
the utility it may earn if accomplishing the service tasks. The agent will consider
whether or not to accept the service according to the evaluation result.

In this section, we will define detailed rules in service matching and evaluation.
Here, we assume that agent i is dealing with service m, and the service is delivered
from agent n, there will be Sm = SAi .

• Rule 1: Agent calculating cost for completing partial service.

(1) Get the list of the tasks that agent i can finish.

For j=1:N ′
m

IF tsmj is in Contentsi

IF qij |Bi > qsmj |Sm

Add tsmj into the contents of SAi

Endif
Endif

Endfor
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(2) Estimate cost Cim if agent i finishes the contents of service SAi , according to
the ability of agent i:

Cim = Σtij∈SAi
(qsmj/qij) · cij . (11)

• Rule 2: Agent calculating service utility. Agent i will calculate the expected
utility Ptm if it accomplishes the service SAi , according to Eq. (12):

Ptm = (Cim · ln(e + ηi/βi)) · δ (12)

where δ is a constant in [0, 1], which describes the greedy degree of the agents in
the network. If the current cumulative utility ηi is very high, agent i will have
a high expectation for rewards in dealing with the service. However, if agent i’s
cooperative degree βi is very low, agent i will also be very greedy and ask for
more rewards. The price of the remaining service S′

Ai
, p′im, will be determined as

follows:

p′im = pim − Cm − Ptm. (13)

• Rule 3: Agent deciding whether or not to accept the service. In a service trans-
action, there will be an extra cost of cooperation among agents. The cost will be
low when the partnership degree between an agent and its cooperative partner
is high. Inversely, the cost will be high, when the partnership degree is low. The
cost of the cooperation is defined as follows:

CAin = (ε − λin(t))./(ε · 10) (14)

where CAin denotes the cost of the cooperation between agents i and n. ε denotes
a cost factor within [2, 3].

Although the price of a service may be higher than the sum of the cost for
accomplishing the service and the rewards that agent i has expected, agent i may
still not accept the service. On the other hand, if agent i accepts the service, it
has to find a cooperative partner to accomplish the remaining service S′

Ai
. If the

remaining price for service S′
Ai

is too low, the partners will decline the agent’s
cooperation request. Otherwise, service propagation will hurt its partnerships.
Therefore, a rational agent decides whether or not to accept the service request
based on its estimate on the quality and the price of the remaining service S′

Ai
:

Pa = Σj∈S′
Ai

(qs′j/qsj) · pm − Cm − Ptm − CAin. (15)

If Pa > 0, agent i will accept the service request and propagate S′
Ai

to its
partners. Otherwise, it will decline the service cooperation.

The above-mentioned rules will be incorporated into the agent service-
transaction processes as described in the preceding section and summarized
below:

Initialization
For i=1:step
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1: Receive a service request and select a scheduler
2: Service matching and evaluation
3: If accept service Then propagate service; Else go to 7
4: Increase partnership degree
5: If accomplish the whole service Then go to 8
6: If find a next partner Then go to 2
7: Decline the service request
8: Update the profiles of agents

Endfor

5. Local Interaction Strategies

In the early discussion, we have mentioned that the way in which an agent selects its
cooperative partners will affect the evolution of network topology as well as network
performance. Recall that agent i selects a cooperative partner according to Eq. (7);
that is, the agent selects a cooperative partner based on the multiplication of its
cooperative degree and the partnership degree. However, it can readily note that
the agent may select a cooperative partner based on other criteria or strategies.

In this section, we will introduce some of the local interaction strategies.

• Strategy S1: agent i selects a cooperative partner, maximizing the multiplica-
tion of its cooperative degree and partnership degree:

Select h in Ni, where βh · λih is max. (16)

• Strategy S2: agent i selects a cooperative partner, maximizing the multiplica-
tion of its cumulative utility and partnership degree:

Select h in Ni, where ηh · λih is max. (17)

• Strategy S3: agent i selects a cooperative partner with the highest partnership
degree:

Select h in Ni, where λih is max. (18)

• Strategy S4: agent i selects a cooperative partner that has the highest cooper-
ative degree:

Select h in Ni, where βh is max. (19)

• Strategy S5: agent i selects a cooperative partner that has the highest cumu-
lative utility:

Select h in Ni, where ηh is max. (20)

• Strategy S6: agent i selects a cooperative partner, maximizing the multiplica-
tion of its cumulative utility and cooperative degree:

Select h in Ni, where βh · ηh is max. (21)
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• Strategy S7: agent i selects a cooperative partner that has the highest degree
of connectivity (meaning that the selected partner has the maximum number of
partners):

Select h in Ni, where Nh is max. (22)

With the above definitions of local selection/interaction strategies, we can now
further study the dynamics of the agent-based social network, in its topological
structure and performance.

6. Measurements

As noted earlier, once a network of autonomous social agents has processed a certain
number of service requests, the relationships and behaviors of the network will start
to evolve. In our present work, we are interested in dynamic changes in both the
topological structure and the performance of a network. In what follows, we will
first introduce some of the measurements that we will use.

6.1. Network topology

Network topology refers to the macroscopic characteristic of a social network, which
can be studied through several measurements, such as the number of partners,
clustering coefficient, the distribution of agent connection degree, and the so-called
“diameter of the network”.

The number of partners may reflect the performance of the network because
all partners are developed for the purpose of cooperation in accomplishing service
tasks. If the number of partners is high, the probability that the agents find good
cooperative partners will also be high.

Clustering coefficient, γ, is another important factor that characterizes the clus-
tering degree of the network. Clustering coefficient can be defined as follows:

γ = (Σiγi)/N

γi = NPi/NPMi

(23)

where N is the total number of agents in the network. γi denotes the clustering
degree of agent i. NPi and NPMi denote the actual number and the maximum pos-
sible number of partner pairs among agent group Ni, respectively. Here Ni denotes
the agent group that is composed of the partners of agent i. A high clustering
coefficient is the typical characteristic of a small-world network, which reflects that
some service agents cluster together and their cooperation cost will be relatively
low. A random network has a very low clustering coefficient.

The distribution of connection degree is another important measurement. It
has been shown that the distribution of connection degree in most social networks
follows a power law or has a heavy tail, which reflects the scale emerging from the
evolution of the networks.
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The degree of network stability reflects the dynamics of the internal structure of
a network, which is computed based on the proportion of the changed partnerships
of the network agents. Specifically, the degree of network stability, τ , is defined as
follows:

τ = Σi∈N (Nia/(Nia + Nic)) · Nip (24)

where Nic denotes the number of changed partners within a certain interval, which
is the sum of the number of removed partners and the number of added partners.
Nia denotes the number of partners that have not changed after the given interval.
Nip denotes the difference in the number of partners within the interval.

6.2. Network performance

The performance of a social network is defined as the proportion of the accomplished
services after a period of evolution, which is defined as follows:

PF = Na/Ns, for timeNt (25)

where PF denotes the performance of an agent network, Na denotes the number
of services that are accomplished, Ns denotes the number of all service requests
received, and Nt denotes a period of time. A high network performance means that
the network has evolved to be able to handle various service requests. Furthermore,
different local interaction strategies can lead to different network performances.

7. The Dynamics of an Agent-Based Social Network

In this section, we will first describe Experiment A, which is concerned with a ran-
dom agent network. In this network, the agents are initialized with several uniform
distributions. The partnerships among the agents are established arbitrarily. Ser-
vice requests are generated from the outside of the agent network. At each step, one
service request arrives at a randomly selected agent in the network, i.e. a scheduler.
In Experiment A, we do not consider the workload of the agents. The agent network
evolves and forms along with service transactions. The parameters as used in the
experiment are listed in Table 1.

Table 1. The parameters as used in Experiment A.

Number of steps 50,000 N 800
Number of tasks 20 φ 0.1
Selection strategy S1 ε 0.7
ξ 2 κ 0.2
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7.1. The dynamics of network topology

Figure 2(a) presents the dynamics of network structure in Experiment A, which
includes the dynamics of clustering coefficient, the number of partners, and the nor-
malized degree of network stability.36 From the figure, we can observe an over-shoot
phenomenon in the dynamics of clustering coefficient. Clustering coefficient, γ,
increases very fast at the first 3000 steps. The reason is that the initial network is
randomly created and the clustering degree is very low. Agents will quickly cluster
as a result of service-based interactions. However, at the same time, the partner-
ships among the agents that seldom cooperate will break, and accordingly, clustering
coefficient, γ, will decrease after 3000 steps. In this process, network performance
increases because the agents can find suitable cooperative partners to finish services.
There is no over-shoot phenomenon in the dynamics of network performance nor
in the number of partners. Eventually, clustering coefficient, γ, becomes stabilized
around 0.17.

For the purpose of comparison, we have also implemented a random network
in which all the partners among the agents are built arbitrarily. We can obtain
the dynamics of clustering coefficient in the random network that has the same
number of partners as that of the agent network at a certain step. The dynamics
of clustering coefficient in the random network is shown in Fig. 2(a). In the figure,
we can observe that clustering coefficient of the random network increases slowly
along with the number of partners. However, it is much lower than that of the agent
network involving service-based interactions.

In other words, we note that the evolved agent network has a higher clustering
coefficient, which is in fact consistent with that of a real social network.

The dynamics of network stability, which is defined in Sec. 6.1, is also examined
in our work. Figure 2(b) presents the normalized degree of stability with respect to
Experiment A.

It can be observed that the normalized degree of stability in the network
increases along with the number of partners [Fig. 2(a)] at the beginning, then
it becomes stabilized after step 20,000. The result indicates that the microscopic
topology of the social network becomes relatively stable after step 20,000.

7.2. The dynamics of network performance

Figure 3 displays the dynamics of network performance, the average number of
partners and network efficiency in Experiment A.

In Fig. 3(a), the horizontal axis corresponds to the running step, whereas the
vertical axis corresponds to network performance, i.e. the proportion of accom-
plished services for every 1000 steps and the average number of partners for each
agent, respectively. In the first 20,000 steps, network performance increases quickly.
After step 20,000, network performance fluctuates around 0.37.

From the above result, it can be concluded that the agent network can accom-
plish more services within a certain interval. This reflects the evolution of network
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Fig. 2. The dynamics of network structure in Experiment A.

structure as well as the effects of the agent local interaction strategy: agents can
readily select more suitable partners. The increase in accomplished services indi-
cates that the agent network can self-organize to accomplish more services, which
is an emergent property of the network resulting from the local interactions of the
agents.

Also, it can be noted that the number of partners still increases after step 30,000,
and network performance fluctuates. This phenomenon indicates that network per-
formance cannot benefit from the increase in the number of partners after step
30,000.

Figure 3(b) displays the dynamics of network performance and network effi-
ciency, respectively. Network efficiency is defined as the proportion of accomplished
services in accepted services. From the figure, we note that the dynamics of network
performance follows the dynamics of network efficiency. From Experiment A, we
observe that the proportion of accepted services is always stabilized around 0.45
during the evolution. It can be concluded that the improvement of network perfor-
mance is due to the increase in network efficiency. The network cannot accomplish
most of the accepted services at the beginning. However, the network can accom-
plish almost 90 percent of the accepted services after 20,000 steps of evolution. That
is, the network becomes more and more efficient.

7.3. The dynamics of agent profiles

Figure 4 presents the dynamics of agent profiles in Experiment A. Figure 4(a)
displays the dynamics of the average cumulative utility and maximum cumulative
utility. From the figure, we can see that the average cumulative utility of agents
decreases rapidly in the initial 10,000 steps, then it becomes stabilized and increases
slightly. The maximum cumulative utility keeps on increasing during the evolution,
arriving at 12 after step 50,000.

The reason why the average cumulative utility of agents decreases at the initial
stage is that the utility earned from the accomplished services is not sufficient
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Fig. 3. The dynamics of network performance in Experiment A.

for consumption on the partnership degree in establishing new partnerships. After
10,000 steps, the speed of increase in the number of partners slows down, and
the improvement of network performance yields enough utility. Thus, the average
cumulative utility of agents becomes stabilized.

Figure 4(b) shows the dynamics of average partnership degree and maximum
partnership degree, respectively. The average partnership degree decreases drasti-
cally similar to that of the average cumulative utility. The maximum partnership
degree increases first and then fluctuates around 1.7.

7.4. The dynamics of service searching depth

Here service searching depth is defined as the number of partners that have been
searched before a service is finally accomplished, whereas service working depth is
defined as the number of partners that are involved in accomplishing a service.

Figure 5 shows the average service working depth and average service searching
depth of accomplished services for every 5000 steps.

As shown in Fig. 5(a), along with the evolution, the average service working
depth increases slightly from 3.9 to 4.05, which means the network improves the
degree of cooperation to increase network performance. However, service working
depth decreases after step 30,000, which means the agents are not willing to consume
more utility on cooperation. From Fig. 5(b), service searching depth increases from
10 to 16 during the evolution. The network is able to find more suitable agents to
finish services. It is also the reason why network performance is improved.

7.5. A snapshot

In this section, we will take a look at a snapshot at step 50,000 in Experiment
A. Figure 6 shows the distribution of the number of partners at step 0 and step
50,000, respectively in Experiment A. It can be observed that the structure of the
agent network has a heavy-tail distribution after many service-based interactions
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Fig. 6. The distribution of the number of partners for each agent in Experiment A.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

07
.2

1:
61

1-
63

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
07

/1
2/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 16, 2007 8:0 WSPC/115-IJPRAI SPI-J068 00558

Autonomy-Oriented Social Networks 631

10
−2

10
−1

10
0

10
1

10
−1.9

10
−1.8

10
−1.7

10
−1.6

10
−1.5

Cumulative utilities

T
he

 d
is

tr
ib

ut
io

n 
of

 c
um

ul
at

iv
e 

ut
ili

tie
s Step: 0

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
−0

Cumulative utilities

T
he

 d
is

tr
ib

ut
io

n 
of

 c
um

ul
at

iv
e 

ut
ili

tie
s Step: 50000

(a) The distribution of cumulative utility
at step 0.

(b) The distribution of cumulative utility
at step 50,000.

Fig. 7. The distribution of cumulative utility in Experiment A.
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Fig. 8. The distribution of partnership degree in Experiment A.

(step 50,000), which is completely different from the distribution in the initial stage
(step 0).

Figure 7 provides the distribution of cumulative utility at step 0 and step 50,000,
respectively. The result indicates that the distribution of the agent cumulative util-
ity follows a power law after a long period of evolution. Figure 8 gives the distribu-
tion of partnership degree at step 0 and step 50,000, respectively. The result also
indicates that the distribution of partnership degree follows a power law from a ran-
dom state after a long period of evolution. The result shows the emergences from
the service-based interactions, the cumulative utility of the network congregates on
a few agents, so does the partnership degree, which is also consistent with that of
real social networks.

8. Global Network Dynamics with Respect to Local
Interaction Strategies

In a social network, the local interaction strategy that an agent adopts is impor-
tant, as it can directly affect the network formation as well as network performance.
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Fig. 9. The dynamics of network topology with respect to local interaction strategies.

In Experiment A, an agent selects cooperative partners according to selection strat-
egy S1. In order to observe the effects of local interaction strategies, we have imple-
mented Experiment B that applies selection strategies from S1 to S7. In Experiment
B, the parameters are all the same as those in Experiment A, except for the local
interaction strategies (selection strategies). Experiments on each selection strategy
are conducted five times.

8.1. Network topology

Figure 9(a) presents the dynamics of the total number of partners in the net-
works with respect to selection strategies. The horizontal axis corresponds to
selection strategies, whereas the vertical axis corresponds to the average value
and the standard deviation of the number of partners under different selection
strategies.

From the figure, it is clear that the dynamics of the number of partners falls
into three categories. The first is that of the agent networks with selection strategies
S2, S5, and S6, which have more partners during the evolution. The second is that
of the agent networks with selection strategies S1, S3, and S4, which have fewer
partners. The last is that of the network with selection strategy S7, which has the
fewest partners. However, the network with selection strategy S7 still has a high
performance. This indicates that selecting partners according to the number of
partners is an efficient strategy because the network can accomplish more services
with a relatively small number of partners. The result also indicates the effects of
the local interaction strategies on the network topology.

Figure 9(b) displays the dynamics of clustering coefficient, γ, with respect to
selection strategies. The horizontal axis corresponds to selection strategies, whereas
the vertical axis corresponds to the clustering coefficient, γ, of the agent networks.

From the figure, there are over-shoot phenomena in the dynamics of γ from
S1 to S6. However, the dynamics of γ in S7 is just like the dynamics of network
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Fig. 10. The dynamics of network performance and network efficiency with respect to local
interaction strategies.

performance. The final clustering coefficients in networks with S3 and S7 are close,
while the other five networks have lower clustering coefficients. That is, selecting
cooperative partners according to the partnership degree or connection degree leads
to a higher clustering network. The result clearly indicates the dynamic relation-
ships between the topology of an agent network and the underlying local interaction
strategies.

8.2. Network performance

Now let us compare network performance according to selection strategies. Fig-
ure 10(a) displays the average value and the standard deviation of network perfor-
mance for five times with respect to different selection strategies. The vertical axis
corresponds to network performance, whereas the horizontal axis corresponds to
selection strategies that are defined in Sec. 5. In the figure, network performance is
calculated from step 30,000 to step 50,000, so that the influence of the initial stage
can be eliminated (note that network performance becomes relatively stable after
steps 30,000). From the figure, we can see that the agent networks with selection
strategies S2, S5, and S6 have better performances, while the networks with selec-
tion strategies S1, S3, and S4 have a lower performance. From Sec. 5, we note that
selecting cooperative partners according to the cumulative utility of the partners
is most reliable to achieve a better performance. However, selecting cooperative
partners according to the partnership degree is not reliable. It can also be observed
that selecting cooperative partners according to the number of partners can achieve
a relatively high performance (selection strategy S7). This discovery has practical
meanings: when an individual selects cooperative partners, it should select the part-
ners that have a high utility earned in the past activities, while the partners that
cooperate well in the past activities may not provide a satisfying cooperation.
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Fig. 11. Agent profile with respect to local interaction strategies.

Figure 10(b) provides the normalized network efficiency in Experiment B. The
horizontal axis corresponds to selection strategies, whereas the vertical axis corre-
sponds to the normalized network efficiency, which is defined as network efficiency
divided by the number of partners from step 20,000 to step 50,000. From the figure,
we can see that the network selection strategy 7 has the highest normalized effi-
ciency, which means that the network can accomplish more accepted services with
fewer partners. The network with selection strategies S2, S5, and S6 have a lower
normalized efficiency, which is also different from the result of network performance.

8.3. Agent profile update

Figure 11(a) presents the dynamics of the average cumulative utility in Experiment
B. From the figure, it is concluded that in all experiments, the average cumulative
utility of the agents decreases rapidly in the initial stage, then it becomes stabilized
at a low level. However, the curves are classified into three groups, according to
the stable average cumulative utilities. The stable average cumulative utilities of
networks with selection strategies S1, S3, and S4 are about 0.8, while those of
networks with selection strategies S2, S5, and S6 are about 0.3. This result is
consistent with the dynamics of the clustering coefficients under different selection
strategies. It can also be concluded that an agent in the network with a higher
performance is prone to get a lower cumulative utility.

Figure 11(b) gives the dynamics of average partnership degree in Experiment B.
The result clearly indicates that the network with selection strategy S3, i.e. selecting
a partner with the highest partnership degree, has the lowest average partnership
degree. However, the network with selection strategy S7 has the highest average
partnership degree and cumulative utility, which also reflects that selection strategy
S7 is the best strategy that can benefit agent profile, network performance, as well
as network efficiency, simultaneously.
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9. Concluding Remarks

In the paper, we have presented an AOC-based model of social networks and con-
ducted some in-depth studies on an illustrative example.

In the AOC-based model, agents are autonomous. They aim to accomplish ser-
vices, which are either requested by their partners or generated from outside of an
agent network, and find other partners to cooperatively accomplish the services.
The service-based interactions among the agents lead to the dynamics of network
formation and network performance. In the model, agent abilities and services are
represented using sets of tasks and constraints, which are environment and applica-
tion dependent. Other parameters are also defined to characterize various intrinsic
or dynamic characteristics of the agents. With the model, we can observe and ana-
lyze the dynamics of network topology, network performance, and agents profiles.

We have demonstrated an example, in which agent abilities are defined in terms
of the quality and cost in accomplishing a service. The agents determine their behav-
iors also according to the quality and cost of requested services. After a long period
of interactions, the network forms a topological structure with a high clustering
coefficient and a scale-free connectivity, and network performance is dynamically
changing over time and with respect to local interaction strategies used. The rela-
tionships among network performance, network topology, agent profiles, and local
interaction strategies have been experimentally examined. The result indicates that
selecting cooperative partners with a high cumulative utility is efficient in an AOC-
based service network. The overshoot phenomena in the dynamics of clustering
coefficient are explained. We have also observed other interesting emergent behav-
iors in the networks.

The AOC-based model can be utilized to study various dynamics in different
applications. The only thing that one needs to do is to formulate or acquire the con-
straints of services and agent abilities, and thereafter, the relationships among net-
work topology and network performance can be discovered. With such a model, the
activities happening in dynamic social networks can also be studied and analyzed.
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