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Development of a Multimodal
Colposcopy for Characterization
of Cervical Intraepithelial
Neoplasia
To develop and evaluate the clinical application of a multimodal colposcopy combining
multispectral reflectance, autofluorescence, and red, green, blue (RGB) imaging for non-
invasive characterization of cervical intraepithelial neoplasia (CIN). We developed a
multimodal colposcopy system that combined multispectral reflectance, autofluorescence,
and RGB imaging for noninvasive characterization of CIN. We studied the optical prop-
erties of cervical tissue first; then the imaging system was designed and tested in a clini-
cal trial where comprehensive datasets were acquired and analyzed to differentiate
between squamous normal and high grade types of cervical tissue. The custom-designed
multimodal colposcopy is capable of acquiring multispectral reflectance images, auto-
fluorescence images, and RGB images of cervical tissue consecutively. The classification
algorithm was employed on both normal and abnormal cases for image segmentation.
The performance characteristics of this system were comparable to the gold standard his-
topathologic measurements with statistical significance. Our pilot study demonstrated the
clinical potential of this multimodal colposcopic system for noninvasive characterization
of CIN. The proposed system was simple, noninvasive, cost-effective, and portable, mak-
ing it a suitable device for deployment in developing countries or rural regions of limited
resources. [DOI: 10.1115/1.4036335]

Keywords: medical device, multispectral, autofluorescence, colposcopy, cervical intrae-
pithelial neoplasia

1 Introduction

Cervical cancer has been the second most common type of can-
cer in women worldwide [1]. It is estimated that nearly 380,000
new cases are diagnosed each year, with more than 80% occur-
rence in the developing countries [2]. Early detection and treatment
of precancerous lesions will prevent most cases of cervical cancer.
Clinical approaches for screening CIN begin with an examination
of Papanicolaou (Pap) smear. For patients with positive Pap smear

results, a second visit must be scheduled 1–2 weeks later for colpo-
scopy and directed biopsy in order to confirm a diagnosis of pre-
cancer. Biopsy results are typically unavailable until after 1–2
weeks. If high-grade precancer is identified by biopsy, treatment
will be scheduled at a third visit [1]. The above paradigm has
reduced the incidence of cervical cancer in many developed coun-
tries. However, many developing countries still lack the necessary
infrastructure and resources for rapid, extensive, and low cost
screening of the disease.

In the past few decades, technical advances in optical imaging
have opened a new avenue for rapid, wide-field, and noninvasive
assessment of cervical precancer, which have the potential to
address the needs for CIN early screening in a rapid, cost-effective,
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and noninvasive fashion [3–5]. Based on the changes in optical
properties of neoplastic tissue, a number of imaging technologies
have been investigated to enhance the contrast between normal and
abnormal tissues. Among them, multispectral reflectance imaging
acquires a series of images with global spectral information at mul-
tiple wavelengths and provides insight into multiple tissue charac-
teristics such as tissue scattering and absorbing chromophore
concentrations, particularly hemoglobin concentration and oxygen-
ation levels [6]. Features of multispectral imaging have been fur-
ther investigated in order to enhance the imaging contrast for tissue
differentiation. For instance, reflectance imaging with green light
illumination gives a better contrast because of hemoglobin absorp-
tion [7]. Illuminating tissue with polarized light will reduce specu-
lar reflection and improve visualization of subepithelial vessels [8].
Furthermore, based on diffuse reflectance spectroscopy or hyper-
spectral data cube, it is possible to extract a small number of spe-
cific wavelengths by dimensionality reduction to distinguish
abnormal area at a lower computational cost. In the past few years,
optical models based on Monte Carlo (MC) simulation and experi-
mental measurements have been studied to reveal the disparities
between normal and abnormal tissue reflectance characteristics [9].
Particularly, Zheng et al. proposed a wide gap second derivate
method that used only three wavelengths between 600 and 800 nm
for successful classification of the cervix tissue into three categories
of normal, inflammation, and high-grade lesion [10].

Similar to spectral imaging, cervical autofluorescence can also
be imaged in a wide-field mode for in vivo differentiation between
normal and abnormal tissue types. Fluorophores contributing to
tissue autofluorescence include nicotinamide adenine dinucleotide
(NADH), flavin adenine dinucleotide, keratin, tryptophan, elastin,
and collagen and their concentrations change with various dis-
eases [11]. Generally speaking, normal cervical tissue yields
greater fluorescence in stroma than that of cancerous tissue in the
excitation wavelength range for ultraviolet (UV) (�330 to
370 nm) and green lights (�510 to 550 nm), inducing a negative
contrast for the detection of precancerous lesions [12,13]. Zheng
et al. used excitation–emission matrices to optimize the excitation
light wavelengths for differentiation between normal and abnor-
mal bladder tissues [14]. Schomacker et al. distinguished normal
squamous tissue from CIN 2 and CIN 3 tissues based on their fluo-
rescence spectra [15]. Thus, it is necessary to optimize the excita-
tion and the emission bands for autofluorescence detection of
cervical malignancy.

Combining different imaging modalities, multimodal imaging
can provide a comprehensive assessment of multiple tissue param-
eters [16,17]. In the field of identifying cervical intraepithelial
neoplasia, Chang et al. compared the performance characteristics
of reflectance spectroscopy, fluorescence spectroscopy, and com-
binatory methods. They found that fluorescence spectra alone
yielded more accurate diagnosis than those based on reflectance
spectra alone, and that combination of fluorescence and reflec-
tance information led to modest improvement in diagnostic accu-
racy [18]. However, this study was based on single point detection
of tissue spectra and did not involve global imaging information
of the tissue. Gustafsson et al. acquired the hyperspectral reflec-
tance and fluorescence data cube of the entire cervical tissue sepa-
rately, and demonstrated the spectral difference between different
lesion types [19]. However, such a multimodal imaging system
was expensive and the image coregistration was time consuming,
inappropriate for deployment in developing countries and rural
regions of limited resources.

We propose a portable multimodal imaging device that com-
bines multispectral reflectance imaging, autofluorescence imaging,
and RGB color imaging for real-time and noninvasive assessment
of cervical tissue anomalies at low cost. In this multimodal imag-
ing device, RGB imaging functions as a conventional colposcopy;
multispectral reflectance imaging detects the functional character-
istics of cervical tissue; and fluorescence imaging reveals the
molecular signature of the lesion. In order to reduce the cost and
the complexity of the system, we use only a single camera for all

the imaging tasks without the need for coregistration. In this
paper, we first established a mathematical model for light
transportation in cervical tissue and optimized the working wave-
lengths for reflectance and autofluorescence spectral characteris-
tics. Then, illumination characteristics of this system were
validated. In clinical test, we determined the clinical protocol, the
image processing algorithm, and the statistical analysis strategy
for effective differentiation between squamous normal (SN) and
high grade (HG) types of cervical tissue. After RGB, autofluores-
cence, and multispectral images were acquired by our multimodal
colposcopic device, a second derivative method was applied to the
multispectral data cube for feature extraction and a minimum dis-
tance method was used for image classification with training data-
set according to the gold standard biopsy results. Statistically, the
performance of the multimodal classification algorithm was eval-
uated by calculating the resultant sensitivity and specificity with
respect to the gold standard. The effectiveness of autofluorescence
imaging for the diagnosis of CIN was also compared. Our pilot
study demonstrated the clinical potential of using this multimodal
colposcopic system for in vivo characterization of CIN.

2 Materials and Methods

2.1 Model-Based Analysis and Working Wavelength
Selection. In order to determine the working wavelengths for
multispectral reflectance imaging and to optimize the combination
of excitation and emission bands for autofluorescence imaging,
the optical properties of SN and HG lesion tissue were studied
based on proper optical models. Cervical tissue is composed of an
epithelial layer on the top and a stroma layer at the bottom. The
development of cervical precancer leads to changes in the struc-
tural and optical properties of both layers [1]. The geometry of the
SN and HG tissue in our optical model was established as shown
in Fig. 1(a), with anisotropy g¼ 0.95 for the first layer and
g¼ 0.88 for the second layer, refractive index n¼ 1.4 for both
layers, 300 lm thickness for the normal epithelium and 500 lm
thickness for the abnormal epithelium. The absorption coefficient
(la) and the scattering coefficient (ls) of SN and HG tissues
between 500 nm and 600 nm were available in the literature and
were reproduced in Figs. 1(b) and 1(c) with an assumption of 85%
hemoglobin oxygen saturation [20]. All these parameters were
used as inputs for MC simulation of cervical tissue reflectance
spectrum and the simulation results were compared with those of
an analytical model. Fluorescence characteristics of normal and
abnormal tissue were further investigated in order to optimize the
selection of excitation and emission wavelengths.

2.1.1 Monte Carlo Simulation and Analytical Model for Cer-
vical Diffuse Reflectance. As a flexible approach to study photon
propagation, a modified two-layered Monte Carlo code based on
Ref. [21] was developed for tissue diffuse reflectance simulation
between 500 nm and 600 nm in 2 nm increments. In comparison,
an analytical expression based on diffuse theory was implemented
to calculate the reflectance spectrum of cervical tissue model in a
simple manner. The approximation expression is shown as below:

R ¼ Rs þ
1� Rsð Þ 1� sð Þ 1� b1sð Þ

1þ b2s
(1)

where Rs ¼ ððn� 1Þ2=ðnþ 1Þ2Þ, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðla=la þ l0sÞ

p
, n is the

refractive index, la is the absorption coefficient, l0s ¼ ð1� gÞls is
the reduced scattering coefficient, b1 and b2 are two constants
associated with anisotropy factor g. More details can be seen in
Ref. [22]. All the necessary parameters shown in Fig. 1 were fed
into the program and expression. For MC simulation, each simula-
tion has been performed using 20K input photons.

To minimize the number of wavelengths used for reflectance
imaging, a wide gap second derivative method was deployed to
analyze the simulated reflectance above. This method was capable
of removing both baseline offsets depending upon whether the
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spectrometer device is calibrated, whether detection gain remains
fixed, and linear slope due to the wavelength-dependent scattering
[23]. Meanwhile, the measurement error resulted from nonuni-
form illumination can also be corrected. With a fixed wavelength
gap interval Dk, the second derivative value of wavelength k, i.e.,
R(k)00, was calculated by the reflectance intensity R of three wave-
lengths as follows:

RðkÞ00 ¼ R kþ Dkð Þ þ R k� Dkð Þ � 2R kð Þ
2Dk

(2)

Then, proper wavelengths set and gap interval Dk were derived
based on the wide gap second derivative spectrum to extract the
difference of reflectance between normal and abnormal cervical
tissues. A screening filter as described in Ref. [10] was employed
to acquire the best spectral configuration with superior capability
of tissue classification.

Figure 2(a) compares the relative reflectance intensity of MC
simulation and the analytical model from 500 nm to 600 nm. The

latter results were normalized with respect to the MC results at the
wavelength of 500 nm. According to the figure, the analytical
results agree well with the numerical results, indicating the reli-
ability of the established analytical model. The second derivative
reflectance spectra are plotted in Fig. 2(b). Based on the screening
filter described in Ref. [10], a wavelength combination of 545 nm,
560 nm, and 575 nm will differentiate between normal and abnor-
mal cervical tissues significantly. To reach these three central
wavelengths, five wavelengths ranging from 530 nm to 590 nm at
an interval of 15 nm were selected for wide-gap second derivative
reflectance imaging.

2.1.2 Autofluorescence Characteristics of the Cervical Tissue.
A number of optical models and experimental trials have been
investigated to optimize the excitation and emission wavelengths
for cervical autofluorescence diagnosis. Theoretically, a two-layer
analytical model and a Monte Carlo simulation model were com-
pared in Ref. [24] to describe fluorescence spectra of normal and
preneoplastic epithelial tissues. Besides, based on the clinical

Fig. 1 (a) Geometry of the cervical tissue model. The cervical tissue is composed of
two layers: epithelium and stroma. The thickness of abnormal epithelium layer is a lit-
tle larger than that of normal epithelium and the stroma is thought as semi-infinite. (b)
Absorption coefficients of SN and HG tissues. (c) Scattering coefficients of SN and HG
tissues.

Fig. 2 (a) Monte Carlo simulation and analytical model results of cervical tissue reflectance
spectrum. (b) Second derivative reflectance spectrum based on MC simulated results. Three
significant disparate points at 545 nm, 560 nm, and 575 nm are indicated for discrimination
between normal and abnormal tissues.
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measurements, cervical autofluorescence data can be represented
as an excitation–emission matrix (EEM), where the emission
spectra at the various excitation wavelengths are concatenated
into a 2D matrix so that the calibrated fluorescence intensity can
be expressed as a function of excitation and emission wave-
lengths. To determine the specific excitation wavelength and col-
lection wavelength range for our colposcopy design, we referred
to the work reported by Parker in 2002, where an excitation wave-
length at 365 nm and an effective emission range from 445 to
475 nm were used for tissue anomaly differentiation [25].

Figure 3 compares the fluorescence spectra of normal and
abnormal tissues at an excitation wavelength of 365 nm. The
shaded area demonstrates the disparity of fluorescence intensities
between different tissues. Quantitatively, the enveloping area of
the fluorescence spectrum for normal tissue is 61.17% greater
than that of abnormal tissue, corresponding to a greater fluores-
cence emission in the acquired autofluorescence images. Based on
the above analysis and the consideration of commercial availabil-
ity for the specific optical components, we finally determined the
excitation wavelength of 365 nm and the fluorescence detection
band from 420 nm to 480 nm for our multimodal colposcopic
device.

2.2 Instrumentation Design. A multimodal colposcopy sys-
tem as depicted in Fig. 4 has been developed for comprehensive
assessment of cervical tissue lesions. The system is composed of
three modules: (1) a colposcopy consists of a multispectral narrow
band LED light source, a band pass fluorescence filter with rotata-
ble holder, and a monochromatic CCD camera with a prime lens;
(2) a multichannel light source controller used for power supply
and channel selection; and (3) a laptop used for system control
and data acquisition.

The multispectral light source contained eight groups of specific
narrow band ultrabright LEDs (Xilan Photoelectricity Group,
China) including 365 nm, 475 nm, 530 nm, 545 nm, 560 nm,
575 nm, 590 nm, and 635 nm wavelengths. Each group consisted
of eight same LEDs equally distributed along a ring-shaped alumi-
num substrate as shown in Fig 2(b). Among them, the 365 nm
LEDs were used for autofluorescence excitation; the 475 nm,
545 nm, and 635 nm LEDs were used for RGB image illumination;
and the rest LEDs were used for multispectral illumination. A
piece of ground glass was covered on the light source for uniform
illumination. The band pass filter (420–480 nm band pass, Rayan
Technology Co., Ltd., Changchun, China) with a rotatable mount
was used for cervical tissue autofluorescence collection. When the
excitation light (365 nm) was on, the filter would be rotated and the
optical path would be blocked, otherwise the filter would be off due
to the optical path. The monochromatic CCD camera (Microvision
Digital Imaging Technology Co., Ltd., Xian, China) with a 50 mm
focal prime lens was used for imaging with a maximum resolution of
1392� 1040 pixels. The quantum efficiency of the CCD chip was
greater than 50% at a wavelength range from 400 nm to 650 nm,
which was suitable for multispectral and fluorescence images collec-
tion. The light source controller (OPT Tech Co., Ltd., Shenzhen,
China) was connected to the laptop via RS232 serial port for inten-
sity adjustment and channel selection, which was capable of provid-
ing 24 V power supplies for eight channels separately.

For the sake of exposure control and image transmission, the
camera was connected to an image grabber through a 1394 A port.
The operation of the whole system was controlled using a
LABVIEW-based program (National Instruments, TX) running on
the laptop. Figure 4(c) shows the photography of the multimodal
colposcopy system.

To validate the system, especially the performance of multi-
spectral light source, we measured the relative spectral power dis-
tribution of the LEDs at every wavelength using a USB4000
spectrometer (Ocean Optics, FL). Then, the illumination effect
was simulated in TRACEPRO software (Lambda, MA) by geometry

Fig. 3 Cervical autofluorescence spectra at 365 nm excitation.
The figure is modified based on Ref. 25. The shaded area shows
the fluorescence intensity disparity between normal and abnor-
mal tissues.

Fig. 4 System diagram of the multimodal colposcopy: (a) diagram of the multimodal colpo-
scopy system, (b) front view of the multispectral LED light source, and (c) photography of the
multimodal colposcopy system
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modeling, properties defining, and raytrace. Furthermore, the sim-
ulative result was compared with experimental result to validate
uniform illumination intensity in the field of view.

2.3 Clinical Protocol. The clinical protocol was reviewed and
approved by the Institutional Review Board (IRB) of the Second
Affiliated Hospital of Chongqing Medical University (IRB No:
2013KLS002). Eligible patients recruited in this study were non-
pregnant women over the age of 18 who were referred to the colpo-
scopy clinic due to an abnormal result of liquid-based cytology.
Most of these abnormal cases were identified as CIN 2/3 and a few
of them were identified as CIN 1 or cervicitis that required further
operation of loop electrosurgical excision procedure (LEEP). All
the patients participating in the study signed an informed consent
form and underwent a LEEP after the session of multimodal image
acquisition. Before formal acquisition, a 4 mm� 4 mm white Tef-
lon board with black cross marker at the center was placed on the
cleaned cervical surface to help focusing and spectrum correction.
The spectral characteristics of Teflon board were calibrated in
advance by a NIST traceable white diffuser (NIST, Gaithersburg,
MD). After the refined focusing and pre-exposure procedure, the
Teflon board was removed and the clinical data were collected fol-
lowing the consecutive steps as described below:

(1) Acquiring the background images with the environmental
lights on and the colposcopy light off.

(2) Acquiring multispectral reflectance images, autofluores-
cence images, RGB images, and green channel enhanced
images sequentially. Each imaging session was triplicated
in order to reduce the measurement error.

(3) Applying acetic acid (5%) on the cervix for 50 s and captur-
ing RGB images at 60 s, 120 s, 150 s, and 180 s, respectively.
The one with most observable whitening phenomenon would
be used for clinician’s reference.

(4) Recording the RGB images as Lugol’s iodine was applied.

After the above multimodal imaging collection session, the
LEEP procedure removed a portion of the cervix starting from the
9 o’clock clockwise. Immediately after the procedure, the sample
was stained and a stitch was placed at each clock position. The
sample was fixed in formalin and sectioned radially into 12 speci-
mens for histopathologic examination of lesion distribution in
every section. In this way, our image segmentation results were
correlated with the pathological results in every clock direction.
The diagnostic categories included normal (normal epithelium,
inflammation, and CIN 1) and HG (high grade, including CIN 2
and CIN 3) tissue types.

2.4 Image Processing

2.4.1 Image Preprocessing. Our device used only a single
imaging module to avoid coregistration difficulties. During the
process of clinical data collection, the patients were required to
keep still to allow for acquisition of one complete set of multimo-
dal images. Consequently, some acquired images have poor imag-
ing quality due to unexpected motion artifacts, which should be
excluded out of this study. For minor motion artifacts between
multispectral, fluorescence, and RGB imaging modalities, we
used the coregistration function of IMAGEJ software to correct the
minor motion artifacts and guarantee the image quality.

For the multispectral reflectance images, the first step of
image preprocessing was to remove noise interference by image
averaging and background subtraction as Eq. (3), where RrawðkÞ
denotes the reflectance intensity of raw images collected by our
system, RbgðkÞ denotes the background images acquired with con-
stant room lights. �RðkÞ was averaged from three continuous
acquired images for denoising

�R kð Þ ¼
X3

n¼1

Rraw kð Þ � Rbg kð Þ
3

(3)

Then, the multispectral reflectance images were corrected using
a Teflon board to remove the influence of inconsistent reflectivity
at different wavelengths. The corrected reflectance RðkÞ is
expressed as Eq. (4), where Rboard is the mean intensity of a region
of interest (ROI) selected on the surface of the Teflon board

R kð Þ ¼
�R kð Þ

Rboard

(4)

For autofluorescence images, background subtraction and
image averaging were also performed for denoising. Then, the his-
togram was equalized for better contrast.

For RGB images, one color image was generated by recoding
three eight-bit monochrome images acquired at red, green, and
blue illumination into a 24-bit true color image, which realized
the visualization of color and morphological characteristics of cer-
vical surface.

2.4.2 Classification Algorithms. In order to identify the
abnormal areas on cervix, each pixel of a cervical image was clas-
sified to be either SN or HG according to a classification algo-
rithm. Our approach for image segmentation consists of two
major steps. First, a supervised classification algorithm was per-
formed utilizing the second derivative multispectral reflectance
images. Second, a simple correcting process was performed using
the autofluorescence images.

In the first classification step, the classifier was trained using
leave-one-patient-out cross-validation. The training sets includ-
ing background (BG), SN, and HG were selected on a patient
with local CIN 2/3 lesion and then applied to the held-out
patient. Then three second derivative images were deduced from
the raw reflectance images at five specific wavelengths according
to Eq. (2). The absolute values of three derived intensities were
summed and a minimum Euclidean distance (MD) segmentation
algorithm was adopted for classification. The distance can be
calculated as

DEx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1
ðRsi � Rx

tiÞ
2

q
(5)

Cx ¼ minðDExÞ (6)

where RSi is the summed second derivative value of each pixel on
the image and Rx

ti is the training data of three tissue types, here
x¼ (1, 2, 3) indicates the index of the three different tissue catego-
ries. DEx is the Euclidean distance and Cx indicates which cate-
gory Rsi is classified to by evaluating the minimum value DEx.
The classifier designed with training set data was then used to
classify entire images into corresponding categories. While in the
second step, the autofluorescence images were binarization proc-
essed to create a mask for first-step results correction, where the
threshold was determined by the disparity of tissue’s fluorescent
intensity between normal and abnormal tissues. As a comparison,
we showed the segmentation results with and without autofluores-
cence correction in the results.

2.5 Statistical Analysis. To assess the diagnostic perform-
ance of the classification algorithms described above, a patient-
based approach for calculating sensitivity and specificity was used
according to Eqs. (7) and (8). In this approach, if a result image
contains an area of abnormal greater than 20% pixel number of
the whole picture, the patient was classified as a HG patient [26].
Additionally, to determine the most desirable sensitivity and spec-
ificity values, and to compare the diagnostic performance with
and without autofluorescence assistant judgment, the receiver
operating characteristic (ROC) curves were plotted

Sensitivity¼number of patients correctly identified as HG

number of HG patients according to biospy

(7)
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Specificity¼number of patients correctly identified as SN

number of SN patients according to biospy

(8)

3 Results and Discussion

3.1 Instrument Validation. The most important characteris-
tic of this custom-designed multimodal colposcopy is its multi-
spectral illumination. Figure 5 shows the relative spectral power
distribution of the multispectral LED light source at every wave-
length. Among them, the shifts between realistic and ideal central
wavelength are less than 5 nm, and the full width at half maximum
(FWHM) are less than 35 nm. Therefore, the wavelength property
of this multispectral light source is reliable.

One the other hand, the light source illumination uniformity
was also verified by software simulation and experiment test,
respectively. Figure 6(a) illustrates the geometry model and ray
trace in TRACEPRO, and the corresponding illuminance distribution
map on a circular observe plane is rendered in Fig. 6(b). Then, we
plotted the intensity profile on its central line and compared it
with experimental test result with the same conditions. The plots
are shown in Fig. 6(c) and it is witnessed that the intensity profiles
are even enough and agree well, indicating the illumination uni-
formity of our light source.

3.2 Patients Characteristics. A total of 48 patients were
evaluated at Second Affiliated Hospital of Chongqing Medical
University. All of them are Asian people and their age range from
26 to 49. However, 11 patients were excluded from the study
because of the lack of biopsy results or the poor imaging quality
due to irretrievable motion artifacts. The other 37 data sets consist
of a series of multimodal images dataset that were deemed
adequate for both reflectance and fluorescence images analysis by
independent reviewers. Based on the inspection of the LEEP
specimens, patients with acute/chronic inflammation, metaplasia,
or CIN 1 were included in the normal category (five patients,
13.5%). Meanwhile, patients with any CIN 2 and CIN 3 diagnos-
tic were included in the corresponding abnormal category (32
patients, 86.5%).

3.3 Imaging Results

3.3.1 Multimodal Images Dataset. A typical raw multimodal
image dataset is shown in Fig. 7. The figure is arranged by the
acquisition steps from top to bottom. The top row displays the cer-
vical images without applying any agent, including monochro-
matic background image without light illumination, RGB image
of cervix, green channel enhanced color image, multispectral
reflectance images, and autofluorescence image. The lower right

box indicates the preliminary process results of multispectral
images, showing eight sites belonging to normal/abnormal types
depending on the biopsy results in different colors. Corresponding
reflectance curves are plotted on the right side. The second and
third rows illustrate the postacetic acid and post-Lugol’s iodine
RGB images of cervix, respectively, which can be used for clini-
cal auxiliary diagnosis as general digital colposcopy.

One advantage of acquiring images in multiple modalities using
an integrated imaging system is the elimination of the time-
consuming image coregistration process. Besides, since all the
images were acquired by a single imaging module at preset oper-
ating parameters, the potential mismatch between different imag-
ing modalities can be eliminated and the testing time for each
patient can be further reduced.

3.3.2 Image Segmentation Results. Based on the multispectral
reflectance data, the image classification algorithm as described in
Sec. 2.4.2 was applied for image segmentation and distinction
between normal and abnormal cervical tissue types. In addition,
autofluorescence images were also analyzed for supplementary
correction of the segmentation results. Furthermore, the image
classification results of each patient were compared with their gold
standard histopathology. In our study, the training sample was
from a patient with local CIN2/3 lesion on 5 and 8 o’clock. For
each classification category, three 20� 20 pixel windows were on
corresponding areas selected as training data set. After image clas-
sification, we correlated the pathological results with our image
segmentation results in every clock direction. The accuracy of our
image segmentation results can be evaluated intuitively.

Figure 8 shows the images and analyzed results of a patient
with a CIN lesion at 7 o’clock and 8 o’clock according to the his-
topathologic result. The upper row images are RGB images of cer-
vix without applying any agent, with green channel enhanced,
with acetic acid, and with Lugol’s iodine, respectively. The
lesions can be visualized empirically in Figs. 8(c) and 6(d), where
a whitening area postacetic acid and a lightly dyed area post-
Lugol’s iodine were revealed. Figure 8(e) shows the second deriv-
ative image of the multispectral dataset. Based on this data, the
segmentation results of the classification algorithm when classify-
ing SN, HG tissue, and BG can be seen in Fig. 8(f). The largest
areas correspond to SN, the smallest areas correspond to HG and
the other areas to BG. According to Fig. 8(f), one can see tolerable
correlation between the classification results and the pathology
results despite some false positive areas at 5, 6, 11, and 12
o’clock. Furthermore, Fig. 8(g) shows the autofluorescence image
at 365 nm excitation. When we take the diagnostic effect of auto-
fluorescence into account, the segmentation results are modified
as shown in Fig. 8(h), which reveals a better segmentation image
corresponding to the pathology results.

Similarly, Fig. 9 shows the images of a patient without CIN
lesion but only chronic cervicitis according to the LEEP specimen

Fig. 5 The relative spectral power distribution of the multispectral LED light source. Among
them, the 365 nm light is used for autofluorescence excitation; the 475 nm, 545 nm, and 635 nm
light are used for RGB image illumination; and the rest are used for multispectral illumination.
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inspection. Intuitively, the acquired RGB images in the upper row
show no distinct suspicious regions with the use of green illumina-
tion filter and basic agent. According to the image segmentation
result processed from multispectral reflectance data, Fig. 9(g)
shows that the entire cervical tissues except several sites at 1
o’clock and 7 o’clock are diagnosed to be normal. To minimize
the analysis error, the autofluorescence image was utilized to cre-
ate a mask for optimal segmentation results. Figure 9(h) shows
that the segmented images after autofluorescence correction corre-
late well with the pathology results.

According to the above analysis, information provided by RGB
imaging, multispectral imaging, and autofluorescence imaging is
complementary. RGB imaging is an empirical procedure that
reveals some but not all information about tissue physiopathologic
condition. Particularly, the unrealistic color pattern of the RGB

images as shown in Figs. 8 and 9 is caused by the unbalanced illu-
mination and detection at different wavelengths and can be further
fixed by optimizing the LED and the detector designs in the
future. Multispectral imaging reveals tissue functional properties,
while autofluorescence imaging reveals tissue molecular charac-
teristics. In Fig. 8(f), multimodal imaging yields a region of tissue
anomaly greater than that of pathology, indicating that classifica-
tion strategy is overtrained that may lead to lower specificity but
higher sensitivity. By enhancing the autofluorescence image in
Fig. 8(g), one is able to obtain appropriate classification of the
lesion location coincident with pathology, as shown in Fig. 8(h).
In addition to classification, we have also explored several other
image processing approaches for effective interpretation of multi-
modal colposcopic images [18,26–29]. As a comparison, the clas-
sification algorithm implemented in this system shows its

Fig. 6 Validation of light source illumination uniformity: (a) illumination simulation model in TRACEPRO software, (b) the simula-
tive illuminance distribution map on an observe plane, and (c) comparison of the central line intensity profile between simula-
tion and experimental measurement

Fig. 7 A typical raw multimodal images dataset. The top row displays the cervical images
without applying any contrast agent, the second and third rows illustrate postacetic acid and
post-Lugol’s iodine RGB images of cervix, respectively. The lower right box indicates the pre-
liminary process results of multispectral data.
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diagnostic potential by combining cervical reflectance and auto
fluorescence characteristics together. However, the quantitative
discrimination algorithm especially based on the autofluorescence
characteristic should be studied in future.

3.4 Statistical Analysis. The performance of the proposed
classifier algorithm with and without fluorescence correction was
evaluated and the resulting ROC curves were plotted. As shown in
Fig. 10, the ROC curve achieved using only multispectral reflec-
tance data yields decent performance by the segmentation algo-
rithm. The area under curve (AUC) is calculated to be 0.714. The
cutoff point, i.e., maximum of the sum of sensitivity and specific-
ity, of this method corresponds to a sensitivity of 75% and a speci-
ficity of 60%. In contrast, the performance of comprehensive
method combined with autofluorescence judgment is better, i.e.,
an AUC of 0.792, a sensitivity of 74%, and a specificity of 80%.

However, the sensitivity of our device is relatively low. This is
possibly associated with the type of the transformation zone for
the patients. It is known that the sensitivity of colposcopy is

relatively high on patients with type I and type II transformation
zones. For patients with type III transformation zone, the sensitiv-
ity of colposcopy may decline since the lesions are located in the
cervical canals instead. Due to the limited number of patients
involved in our study, the statistical analysis did not include the
type difference of the cervical transformation zone, leading to
possibly low sensitivity of our device. In the future work, we will
increase the number of patients and consider different transforma-
tion zone types in order to achieve better statistical analysis.

The results obtained from this pilot study are statistically signif-
icant despite the fact that a small number of patients were
recruited for the study. In our pilot study, we evaluated the per-
formance of this device using a “number of patients” metric.
Compared with pixel-based analysis methods, this is a simplified
but still valid method for evaluating the accuracy of our device. In
our future work, we would like to calculate the sensitivity and
specificity based on image analysis for individual patients. In
comparison with the conventional diagnostic method in a clinic
setting, the classification algorithm based on second derivative
multispectral images provides acceptable diagnostic effectiveness
for the discrimination of SN and HG tissues in spite of a relative

Fig. 8 Images of a CIN patient case: (a) RGB image, (b) green
channel enhanced RGB image, (c) RGB image postacetic acid,
(d) RGB image post-Lugol’s iodine, (e) multispectral image after
second derivative process, (f) segmentation image based on
reflectance images, (g) enhanced auto fluorescent image, and
(h) corrected segmentation result based on fluorescence. The
pathology section codes on lower row are used to correlate the
pathology diagnosis to the images. The segmentation images
have three parts: background area, normal tissue (largest
areas) and abnormal tissue (smallest areas), respectively.

Fig. 9 Images of a normal patient case: (a) RGB image, (b) green channel enhanced RGB
image, (c) RGB image postacetic acid, (d) RGB image post-Lugol’s iodine, (e) multispectral
image after second derivative process, (f) segmentation image based on reflectance images,
(g) enhanced auto fluorescent image, and (h) corrected segmentation result based on fluores-
cence. The pathology section codes on lower row are used to correlate the pathology diagno-
sis to the images. The segmentation images have three parts: background area, normal tissue
(largest areas) and abnormal tissue (smallest areas), respectively.

Fig. 10 ROC curves for classifier discrimination of HG versus
SN sample for different assessment methods. The solid line
plots the results calculated from multispectral images only. The
dotted line plots the results calculated by combining multispec-
tral and fluorescence images together.
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low achievable specificity. The further image correction process
based on autofluorescence images is able to improve the diagnos-
tic effectiveness as shown by the ROC curves in Fig. 10, where a
larger AUC (0.792 versus 0.714) and better specificity (80% ver-
sus 60%) at cutoff point were shown. We can see that the use of
fluorescence imaging does not improve the performance of colpo-
scopy significantly. For over 20 years, researchers have been using
the autofluorescence property of cervical tissue for CIN detection
and a number of review papers have summarized the feasible
excitation–emission pairs as well as discrimination methods
between normal and abnormal cervical tissue. However, few pro-
gress has been made in technology commercialization and clinical
dissemination of this technique for CIN diagnosis. The low diag-
nostic sensitivity for fluorescence imaging is possibly caused by
the fact that autofluorescence property represents a negative dis-
ease marker that reveals “cold” spots in fluorescence imaging. In
addition, the high individual disparity between patients and the
lack of traceable standards for performance evaluation and cali-
bration of the imaging system also contribute to the low sensitivity
for fluorescence imaging. Despite its low sensitivity, autofluores-
cence imaging is still a very useful modality in our application
because we do not expect to replace the current diagnostic tools
for cervical cancer but to provide a rapid and cost-effective
method to guide the clinician’s decision in whether and where the
cervical tissue will be taken for biopsy and further examination.

4 Conclusions

In this paper, we presented a multimodal colposcopy system for
in vivo characterization of CIN. The device was capable of con-
secutive multispectral reflectance imaging, autofluorescence
imaging, and RGB imaging of cervical tissue. Cervical reflectance
and autofluorescence spectra were simulated by two optical mod-
els based on a two-layered Monte Carlo simulation and an analyti-
cal approximation. A second derivative method was applied on
the spectrum for multispectral wavelengths optimization. An
approved clinical protocol was performed and a classification
algorithm was developed for the segmentation of cervical tissue
images. In the results, a typical data collection including RGB
images, autofluorescence image, and multispectral segmentation
image was used to identify cervical tissue as SN and HG type.
The results are preliminary but promising. Statistically, the sensi-
tivity and specificity performance of this system related to gold
standard of histopathology were 74% and 80%, respectively, with
fluorescence images correction. The pilot study demonstrated the
potential of this multimodal colposcopy system in cervical cancer
detection. The low-cost portable characteristics, the simple operat-
ing process, and the simple image segmentation algorithm of the
developed multimodal colposcopy leave the system possibility to
address the needs for CIN noninvasive characterization in a rapid,
cost-effective, and noninvasive fashion in the developing coun-
tries. The future work include testing large quantity of patients for
statistical analysis, enhancing the accuracy of classification algo-
rithm, and exploring more imaging modalities, such as polarized
imaging (sensitive to the distribution of cervical collagen fibers)
and laser speckle imaging (sensitive to tissue blood perfusion) in
order to improve the sensitivity for the assessment of cervical
tissue.
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