

Geometric Modeling Based on Triangle Meshes

Mario Botsch, Mark Pauly ETH Zurich

Christian Rössl INRIA Sophia Antipolis

Stephan Bischoff, Leif Kobbelt RWTH Aachen

Application Areas

- Computer games
- Movie production
- Engineering
- Medical applications
- Architecture
- etc.

Overview

- Present the geometry processing pipeline based on triangle meshes
 - Fundamental concepts & recent developments
 - Show interesting connection between topics
 - Find more details in the course notes
- Provide source code for several examples
 - <u>http://graphics.ethz.ch/~mbotsch</u>
 - Linux, Mac, Windows

Main Questions

- Why are triangle meshes a suitable representation for geometry processing?
- What are the central processing algorithms?
- How can they be implemented efficiently?

Surface Representations (9:10-9:50) Mark Pauly

Removal of topological and geometrical errors

Mesh Repair (9:50-10:30) Stephan Bischoff

Mark Pauly

Surface smoothing for noise removal

Mesh Smoothing (11:30-12:00) Christian Rössl

Mesh Parametrization (12:00-12:30) Christian Rössl

Mario Botsch, ETH Zurich

Mesh Decimation (14:00-14:40) Leif Kobbelt

Remeshing (14:40-15:30) Leif Kobbelt

Mario Botsch

Numerics (16:45-17:15) Mario Botsch

Surface Representations

ETH

APPLIED

GROUP

Mark Pauly

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Outline

- (mathematical) geometry representations
 parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Mathematical Representations

- parametric
 - range of a function
 - surface patch

$$\mathbf{f}: R^2 \to R^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

- implicit
 - kernel of a function
 - level set

$$F: \mathbb{R}^3 \to \mathbb{R}, \quad \mathcal{S}_c = \{\mathbf{p}: F(\mathbf{p}) = c\}$$

2D-Example: Circle

parametric

$$\mathbf{f}: t \mapsto \left(\begin{array}{c} r\cos(t) \\ r\sin(t) \end{array}\right), \quad \mathcal{S} = \mathbf{f}([0, 2\pi])$$

implicit

$$F(x, y) = x^{2} + y^{2} - r^{2}$$
$$S = \{(x, y) : F(x, y) = 0\}$$

2D-Example: Island

parametric

$$\mathbf{f}: t \mapsto \begin{pmatrix} ??? \\ ??? \end{pmatrix}, \quad \mathcal{S} = \mathbf{f}([0, 2\pi])$$

implicit

$$F(x, y) = ???$$

 $S = \{(x, y) : F(x, y) = 0\}$

Approximation Quality

Approximation Quality

piecewise parametric

$$\mathbf{f}: t \mapsto \begin{pmatrix} ??? \\ ??? \end{pmatrix}, \quad \mathcal{S} = \mathbf{f}([0, 2\pi])$$

- piecewise implicit
 - F(x, y) = ???

$$\mathcal{S} = \{(x, y) : F(x, y) = 0\}$$

Requirements / Properties

- continuity
 - interpolation / approximation $\mathbf{f}(u_i, v_i) \approx \mathbf{p}_i$
- topological consistency
 - manifold-ness
- smoothness
 - $C^{0}, C^{1}, C^{2}, ..., C^{k}$
- fairness
 - curvature distribution

Topological Consistency

- parametric
 - disk-shaped neighborhoods

$$-\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)]$$

- implicit
 - surface of a "physical" solid
 - $-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$

- parametric
 - disk-shaped neighborhoods

$$-\mathbf{f}(D_{\varepsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)]$$

- implicit
 - surface of a "physical" solid
 - $-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$

- surface of a "physical" solid
- $-F(x, y, z) = c, \quad \|\nabla F(x, y, z)\| \neq 0$

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Smoothness

- position continuity : C⁰
- tangent continuity : C¹
- curvature continuity : C²

Fairness

- minimum surface area
- minimum curvature
- minimum curvature variation

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

Taylor expansion

$$\mathbf{f}(h) = \sum_{i=0}^{p} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$
$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

Taylor expansion

$$\mathbf{f}(h) = \sum_{i=0}^{p} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$
$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomials

computable functions

$$\mathbf{p}(t) = \sum_{i=0}^{p} \mathbf{c}_{i} t^{i} = \sum_{i=0}^{p} \mathbf{c}'_{i} \Phi_{i}(t)$$

Taylor expansion

$$\mathbf{f}(h) = \sum_{i=0}^{p} \frac{1}{i!} \mathbf{f}^{(i)}(0) h^{i} + O(h^{p+1})$$

interpolation error (mean value theorem)

$$\mathbf{p}(t_i) = \mathbf{f}(t_i), \quad t_i \in [0, h]$$
$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \frac{1}{(p+1)!} \mathbf{f}^{(p+1)}(t^*) \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$
Implicit Polynomials

interpolation error of the function values

$$||F(x, y, z) - P(x, y, z)|| = O(h^{(p+1)})$$

approximation error of the contour

$$\Delta \mathbf{p} = \lambda \nabla F(\mathbf{p}) \qquad \frac{F(\mathbf{p} + \Delta \mathbf{p}) - F(\mathbf{p})}{\|\Delta \mathbf{p}\|} \approx \|\nabla F(\mathbf{p})\|$$

Implicit Polynomials

interpolation error of the function values

$$||F(x, y, z) - P(x, y, z)|| = O(h^{(p+1)})$$

approximation error of the contour

$$\Delta \mathbf{p} = \lambda \nabla F(\mathbf{p}) \qquad \|\Delta \mathbf{p}\| \approx \frac{F(\mathbf{p} + \Delta \mathbf{p}) - F(\mathbf{p})}{\|\nabla F(\mathbf{p})\|}$$

(gradient bounded from below)

Implicit Polynomials

Polynomial Approximation

- approximation error is O(hp+1)
- improve approximation quality by
 - increasing \mathbf{p} ... higher order polynomials
 - decreasing h ... smaller / more segments
- issues
 - smoothness of the target data (max_t $f^{(p+1)}(t)$)
 - smoothness conditions between segments

- parametric
 - patches vs. polygons
 - Euler formula: V E + F = 2(1-g)
 - quad meshes
 - $F \approx V$
 - $E \approx 2V$
 - average valence = 4
 - quasi-regular
 - semi-regular

- parametric
 - patches vs. polygons
 - Euler formula: V E + F = 2(1-g)
 - triangle meshes
 - $F \approx 2V$
 - $E \approx 3V$
 - average valence = 6
 - quasi-regular
 - semi-regular

• quasi regular

• semi regular

• semi regular \longrightarrow

- implicit
 - regular voxel grids O(h-3)
 - three color octrees
 - surface-adaptive refinement O(h⁻²)
 - feature-adaptive refinement O(h⁻¹)
 - irregular hierarchies
 - binary space partition O(h⁻¹) (BSP)

3-Color Octree

1048576 cells

12040 cells

Adaptively Sampled Distance Fields

12040 cells

895 cells

Binary Space Partitions

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement
 - efficient rendering

- polygonal meshes are a good compromise
 - approximation $o(h^2)$... error * #faces = const.
 - arbitrary topology
 - flexibility for piecewise smooth surfaces
 - flexibility for adaptive refinement
 - efficient rendering

 implicit representation can support efficient access to vertices, faces,

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Distance Queries

- parametric
 - find orthogonal base point

$$[\mathbf{p} - \mathbf{f}(u, v)] \times \mathbf{n}(u, v) = \mathbf{0}$$

- for triangle meshes
 - use kd-tree or BSP to find closest triangle
 - find base point by Newton iteration (use Phong normal field)

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)

$$(\alpha, \beta) \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + (1 - \alpha - \beta) \mathbf{P}_3$$

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)

$$(\alpha, \beta, \gamma) \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + \gamma \mathbf{P}_3$$
$$\alpha + \beta + \gamma = 0$$

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)

$$\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} \mapsto \alpha \mathbf{P}_1 + \beta \mathbf{P}_2 + \gamma \mathbf{P}_3$$
$$\alpha + \beta + \gamma = 0$$

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)

$$\mathbf{N} = (\mathbf{P}_2 - \mathbf{P}_1) \times (\mathbf{P}_3 - \mathbf{P}_1)$$

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)

 $\alpha \, \mathbf{u} + \beta \, \mathbf{v} + \gamma \, \mathbf{w} \, \mapsto \, \alpha \, \mathbf{N}_1 + \beta \, \mathbf{N}_2 + \gamma \, \mathbf{N}_3$

- parametric
 - positions $\mathbf{f}(u, v)$
 - -normals $\mathbf{n}(u,v) = \mathbf{f}_u(u,v) \times \mathbf{f}_v(u,v)$
 - -curvatures $\mathbf{c}(u,v) = C(\mathbf{f}_{uu}(u,v),\mathbf{f}_{uv}(u,v),\mathbf{f}_{vv}(u,v))$
- generalization to triangle meshes
 - positions (barycentric coordinates)
 - normals (per face, Phong)
 - curvatures ... later

- parameteric
 - control vertices

$$\mathbf{f}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{ij} N_i^n(u) N_j^m(v)$$

- free-form deformation
- boundary constraint modeling

- parameteric
 - control vertices

$$\mathbf{f}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{ij} N_i^n(u) N_j^m(v)$$

- free-form deformation
- boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

- parameteric
 - control vertices
 - free-form deformation
 - boundary constraint modeling

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Mesh Data Structures

- how to store geometry & <u>connectivity</u>?
- compact storage
 - file formats
- efficient algorithms on meshes
 - identify time-critical operations
 - all vertices/edges of a face
 - all incident vertices/edges/faces of a vertex

Face Set (STL)

- face:
 - 3 positions

Triangles		
$x_{11} y_{11} z_{11}$	x_{12} y_{12} z_{12}	x_{13} y_{13} z_{13}
$x_{21} y_{21} z_{21}$	x_{22} y_{22} z_{22}	x_{23} y_{23} z_{23}
• • •	• • •	• • •
\mathbf{x}_{F1} \mathbf{y}_{F1} \mathbf{z}_{F1}	\mathbf{x}_{F2} \mathbf{y}_{F2} \mathbf{z}_{F2}	\mathbf{x}_{F3} \mathbf{y}_{F3} \mathbf{z}_{F3}

36 B/f = 72 B/v no connectivity!
Shared Vertex (OBJ, OFF)

- vertex:
 - position
- face:
 - vertex indices

Vertices	Triangles
$\mathbf{x}_1 \ \mathbf{y}_1 \ \mathbf{z}_1$	V ₁₁ V ₁₂ V ₁₃
• • •	• • •
$\mathbf{x}_{v} \mathbf{y}_{v} \mathbf{z}_{v}$	• • •
	• • •
	• • •
	\mathbf{V}_{F1} \mathbf{V}_{F2} \mathbf{V}_{F3}

12 B/v + 12 B/f = 36 B/v no neighborhood info

Face-Based Connectivity

- vertex:
 - position
 - 1 face
- face:
 - 3 vertices
 - 3 face neighbors

64 B/v no edges!

Edge-Based Connectivity

- vertex
 - position
 - 1 edge
- edge
 - 2 vertices
 - 2 faces
 - 4 edges
- face
 - 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

- vertex
 - position
 - 1 halfedge
- halfedge
 - 1 vertex
 - 1 face
 - 1, 2, or 3 halfedges
- face
 - 1 halfedge

96 to 144 B/v no case distinctions during traversal

1. Start at vertex

- 1. Start at vertex
- 2. Outgoing halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

Halfedge-Based Libraries

- CGAL
 - -www.cgal.org
 - Computational geometry
 - Free for non-commercial use
- OpenMesh
 - -www.openmesh.org
 - Mesh processing
 - Free, LGPL licence

Literature

- Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998
- Campagna et al, Directed Edges A Scalable Representation for Triangle Meshes, Journal of Graphics Tools 4(3), 1998
- Botsch et al, OpenMesh A generic and efficient polygon mesh data structure, OpenSG Symp. 2002

Outline

- (mathematical) geometry representations
 - parametric vs. implicit
- approximation properties
- types of operations
 - distance queries
 - evaluation
 - modification / deformation
- data structures

Stephan Bischoff RWTH Aachen University

- Model repair is the removal of artifacts from a geometric model such that it becomes suitable for further processing.
- Typically: Produce a nice, manifold triangle mesh
 - with boundary or
 - without boundary (watertight)

• Impact e.g. in CAD/CAM:

- Types of input
- Surface-oriented algorithms
 - Filling holes in meshes [Liepa 2003]
- Volumetric algorithms
 - Simplification and repair of polygonal models using volumetric techniques [Nooruddin and Turk 2003]
 - Automatic restoration of polygon models [Bischoff, Pavic, Kobbelt 2005]
- Conclusion & outlook

Registered Range Images

 Registered range images are a set of patches that describe different parts of an object.

Registered Range Images

- Large areas of overlap are ...
 - ... good for registration but
 - ... bad for repair
- How to merge the patches into a single mesh?
 - Inconsistent geometry
 - Incompatible connectivities

large scale overlaps

Fused Range Images

 Fused range images are manifold meshes with holes and isles (i.e. boundaries)

Stephan Bischoff, RWTH Aachen

Fused Range Images

- Holes and isles due to obstructions in the line of sight of the scanner
- Identify corresponding holes and isles
- Fill holes
 - Smoothly
 - Geometry transfer/synthesis
- Avoid intersections

holes and isles

Contoured Meshes

 Contoured meshes have been extracted from a volumetric representation (Marching Cubes)

Contoured Meshes

- Contoured meshes are usually manifold, but contain topological noise
 - Handles
 - (Cavities)
 - (Disconnected components)

Triangulated NURBS

 Set of patches that contain small scale gaps and overlaps

Triangulated NURBS

- Gaps and overlaps are due to triangulating a common patch boundary differently from both sides
- Issues
 - Orientation
 - Structure preservation

Triangle Soups

 A triangle soup is a set of triangles without connectivity information

Triangle Soups

- Ok for visualization but bad for downstream applications that require manifold meshes
- In addition to the artifacts we already covered, ...

Not Covered ...

Geometrical noise
Smoothing (Christian)

Badly meshed manifolds
→ Remeshing (Leif)

Types of input

Surface-oriented algorithms

- Filling holes in meshes [Liepa 2003]

Volumetric algorithms

- Simplification and repair of polygonal models using volumetric techniques [Nooruddin and Turk 2003]
- Automatic restoration of polygon models [Bischoff, Pavic, Kobbelt 2005]
- Conclusion & outlook

Surface-oriented Algorithms

- Surface oriented approaches explicitly identify and resolve artifacts
- Methods
 - Snapping
 - Splitting
 - Stitching

Surface-oriented Algorithms

- Advantages
 - Fast
 - Memory friendly
 - Structure preserving, minimal modification of the input
 - Conceptually easier than volumetric algorithms

Surface-oriented Algorithms

- Problems
 - Not robust
 - Numerical issues → use infinite precision arithmetic
 - Inherent non-robustness

- No quality guarantees on the output

Example Algorithm

Algorithm for filling holes

Peter Liepa Filling Holes in Meshes In Proc. Symposium on Geometry Processing 2003

Three stages

- 1. Compute a coarse triangulation T to fill the hole
- 2. Refine the triangulation, $T \rightarrow T'$, to match the vertex densities of the surrounding area
- 3. Smooth the triangulation T' to match the geometry of the surrounding

Filling Holes in Meshes - 1

Compute a coarse triangulation T

Filling Holes in Meshes - 1

Compute a triangulation T of minimal weight w(T)

Filling Holes in Meshes - 1

Weight w(T) is a mixture of

$$-\operatorname{area}(\mathsf{T}) = \sum_{\Delta \in \mathsf{T}} \operatorname{area}(\Delta)$$

maximum dihedral angle in T

 Thus, we favour triangulations of low area and low normal variation

 Let w[a,c] be the minimal weight that can be achieved in triangulating the polygon a,a+1,...,c

5

8

 Let w[a,c] be the minimal weight that can be achieved in triangulating the polygon a,a+1,...,c

5

8

 Let w[a,c] be the minimal weight that can be achieved in triangulating the polygon a,a+1,...,c

- Let w[a,c] be the minimal weight that can be achieved in triangulating the polygon a,a+1,...,c
- Recursion formula

 $w[a,c] = \min_{a < b < c} w[a,b] + w(\Delta(a,b,c)) + w[b,c]$

 $w[a-1,a+1] = w(\Delta(a-1,a,a+1))$

• Dynamic programming leads to a O(n³) algorithm

- Refine the triangulation such that its vertex density matches that of the surrounding area
- Leif's talk about remeshing
- Smooth the filling such that its geometry matches that of the surrounding area
- Christian's talk about mesh smoothing

Refinement and smoothing

Stephan Bischoff, RWTH Aachen

- What problems do we encounter?
 - Isles are not incorporated
 - Self-intersections cannot be excluded
 - Ugly fillings if boundary is too distorted
 - Boundary has to be topologically smooth

Model Repair

- Types of input
- Surface-oriented algorithms
 - Filling holes in meshes [Liepa 2003]

- Simplification and repair of polygonal models using volumetric techniques [Nooruddin and Turk 2003]
- Automatic restoration of polygon models [Bischoff, Pavic, Kobbelt 2005]
- Conclusion & outlook

 Convert the input model into an intermediate volumetric representation → loss of information

- Convert the input model into an intermediate volumetric representation → loss of information
- 2.Discrete volumetric representation → robust processing
 - Morphological operators (dilation, erosion)
 - Smoothing
 - Flood-fill to determine interior/exterior

- Convert the input model into an intermediate volumetric representation → loss of information
- 2.Discrete volumetric representation → robust processing
 - Morphological operators (dilation, erosion)
 - Smoothing
 - Flood-fill to determine interior/exterior
- 3.Extract a surface from the volume → The surface of a solid object is manifold and watertight!

- Advantages
 - Fully automatic
 - Few user parameters
 - Robust
 - Guaranteed manifold output

- Issues
 - Slow and memory intensive

 adaptive data
 structures
 - Aliasing and loss of features → feature sensitive reconstruction (EMC, DC, Varadhan et al.)
 - Loss of structure → bad luck
 - Large output

 mesh decimation (Mark's talk)

Example 1

• Example algorithm

F. S. Nooruddin and G. Turk Simplification and Repair of Polygonal Models Using Volumetric Techniques IEEE Transactions on Visualization and Computer Graphics 2003

Issues

- Classification of sample points x as being inside or outside of the object
- Sampling the volume
- Extracting the mesh

Point classification: Layered depth images (LDI)

- Point classification: Layered depth images (LDI)
 - 1.Record n layered depth images
 - 2. Project the query point x into each depth image
 - 3. If any of the images classifies x as exterior, then x is globally classified as exterior else as interior

- Supersampling
- Filtering
 - Gaussian
 - Morphological filters (dilation, erosion)
 - model simplification
 - reduction of topological noise
- Marching Cubes

_																
Γ	0	0	0	0	•	0	•	0	•	•	٩	0	0	0	•	0
Ŀ	0	0	0	0	0	0	•	0	•	•	• `	•	0	0	•	0
Γ	0	0	0	0	0	0	•	é	•	0	•	0	0	0	0	0
4	0	0	0	0	•	0	•	8	•	4	•	0	•	0	•	0
Γ	0	0	0	0	0	0	0	0	كر	•)	þ	0	0	0	0
Ŀ	0	0	0	0	0	0	•	0	•	þ	•	•	•	6	•	0
	0	0	0	0	0	0	•	0	•	þ	•	•	•	•	•	0
Ŀ	0	0	0	0	0	٩	0	•	\mathbf{b}	•	•	•	•	•	\bullet	0
	0	0	0	9	•	•	•	•	•	0	•	•	•	•	Ø	0
Ŀ	0	0	•	•	•	•	•	•	•	0	•	Ý	0	0	•	0
	0	0	þ	•	•	•	•	•	•	0	•	•	0	0	•	0
Ŀ	0	0	þ	•	•	•	•	•	•	0	•	þ	•	0	•	0
	0	م	•	0	•	•	•	•	•	0	•	þ	0	0	0	0
L	0	þ	•	0	•	•	•	0	•	0	•	b	0	0	•	0
	0	م	•	0	•	0	•	0	•	0	•	•	•	0	0	0
Ŀ	0	0	6	0	0	0	0	0	0	0	•	0	•	0	•	0

- Supersampling
- Filtering
 - Gaussian
 - Morphological filters (dilation, erosion)
 - model simplification
 - reduction of topological noise
- Marching Cubes

- Supersampling
- Filtering
 - Gaussian
 - Morphological filters (dilation, erosion)
 - model simplification
 - reduction of topological noise
- Marching Cubes

Stephan Bischoff, RWTH Aachen

Example 2

• Example algorithm 2

S. Bischoff, D. Pavic, L. Kobbelt Automatic Restoration of Polygon Models Transactions on Graphics 2005

Overview

Conversion

 Adaptive octree: Subdivide a cell, if it contains multiple planes or a boundary

Closing Gaps

Close gaps by dilating the boundary voxels

Determine Exterior

Determine the exterior by flood filling & dilation

Extract the Surface

 Extract the surface by a variant of Dual Contouring

Results

original 1124 triangles reconstruction 279892 triangles (at 1000³) decimated 7018 triangles

Model Repair

- Types of input
- Surface-oriented algorithms
 - Filling holes in meshes [Liepa 2003]
- Volumetric algorithms
 - Simplification and repair of polygonal models using volumetric techniques [Nooruddin and Turk 2003]
 - Automatic restoration of polygon models [Bischoff, Pavic, Kobbelt 2005]
- Conclusion & outlook

Conclusion

 Mesh repair to remove artifacts that arise in various types of input models

Conclusion

- Surface-oriented algorithms ...
 - fast, structure preserving
 - often not robust, need user interaction and cannot give quality guarantees on the output
- Volumetric algorithms ...
 - use an intermediate volumetric representation and thus produce guaranteed watertight meshes
 - suffer from sampling problems (aliasing)

Outlook

Surface-orientedVolumetric

 Bøhn, Wozny: Automatic CAD Model Repair: Shell-Closure. 	1992
 Mäkelä, Dolenc: Some Efficient Procedures for Correcting Triangulated Models. 	1993
 Turk, Levoy: Zippered Polygon Meshes from Range Images. 	1994
 Barequet, Sharir: Filling Gaps in the Boundary of a Polyhedron. 	1995
 Curless, Levoy: A Volumetric Method for Building Complex Models from Range Images. 	1996
 Barequet, Kumar: Repairing CAD Models. 	1997
 Murali, Funkhouser. Consistent Solid and Boundary Representations. 	1997
 Guéziec, Taubin, Lazarus, Horn: Cutting and Stitching: [] 	2001
- Guskov, Wood: Topological Noise Removal.	2001
 Borodin, Novotni, Klein: Progressive Gap Closing for Mesh Repairing. 	2002
– Davis, Marschner, Garr, Levoy: Filling Holes in Complex Surfaces Using Volumetric Diffusion.	2002
 Liepa: Filling Holes in Meshes. 	2003
 Greß, Klein: Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-Trees. 	2003
 Nooruddin, Turk: Simplification and Repair of Polygonal Models Using Volumetric Techniques. 	2003
 Borodin, Zachmann Klein: Consistent Normal Orientation for Polygonal Meshes. 	2004
 Ju: Robust Repair of Polygonal Models. 	2004
 Bischoff, Pavic, Kobbelt: Automatic Restoration of Polygon Models. 	2005
 Podolak, Rusinkiewicz: Atomic Volumes for Mesh Completion. 	2005
 Shen, O'Brien, Shewchuk: Interpolating and Approximating Implicit Surfaces from Polygon Soup. 	2005

Outlook

- My own (biased!) opinion: Hybrid algorithms that are ...
 - ... robust and
 - structure preserving

• Bischoff, Kobbelt: Structure Preserving CAD Model Repair. 2005

Mark Pauly

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mesh Optimization

- Smoothness
 - Mesh smoothing
- Adaptive tessellation
 - Mesh decimation
- Triangle shape
 - Repair, remeshing

Outline

- Differential Geometry
 - Curvature
 - Fundamental Forms
- Laplace-Beltrami Operator
 - Discretizations
- Mesh Quality Criteria
 - Visual inspection

Continuous surface

$$\mathbf{x}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}, \ (u,v) \in \mathbb{R}^2$$

Normal vector

$$\mathbf{n} = (\mathbf{x}_u \times \mathbf{x}_v) / \|\mathbf{x}_u \times \mathbf{x}_v\|$$

- assuming regular parameterization, i.e.

$$\mathbf{x}_u imes \mathbf{x}_v
eq \mathbf{0}$$

Normal Curvature

- Principal Curvatures
 - maximum curvature $\kappa_1 = \max_{\phi} \kappa_n(\phi)$
 - minimum curvature $\kappa_2 = \min_{\phi} \kappa_n(\phi)$
- Euler Theorem: $\kappa_n(\bar{\mathbf{t}}) = \kappa_n(\phi) = \kappa_1 \cos^2 \phi + \kappa_2 \sin^2 \phi$
- Mean Curvature $H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_0^{2\pi} \kappa_n(\phi) d\phi$
- Gaussian Curvature $K = \kappa_1 \cdot \kappa_2$

Curvatures

- Normal curvature is defined as curvature of the normal curve $c \in x(u, v)$ at a point $p \in c$
- Can be expressed in terms of fundamental forms as $\bar{\mathbf{t}}^T \mathbf{II} \, \bar{\mathbf{t}} = ea^2 + 2fab + ab^2$

$$\kappa_n(\bar{\mathbf{t}}) = \frac{\mathbf{t}^{-\mathbf{I}\mathbf{I}\mathbf{t}}}{\bar{\mathbf{t}}^T\mathbf{I}\,\bar{\mathbf{t}}} = \frac{ea^{-}+2Jab+gb^{-}}{Ea^2+2Fab+Gb^2}$$

First fundamental form

$$\mathbf{I} = \begin{bmatrix} E & F \\ F & G \end{bmatrix} := \begin{bmatrix} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}_u^T \mathbf{x}_v & \mathbf{x}_v^T \mathbf{x}_v \end{bmatrix}$$

Second fundamental form

$$\mathbf{II} = \begin{bmatrix} e & f \\ f & g \end{bmatrix} := \begin{bmatrix} \mathbf{x}_{uu}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \\ \mathbf{x}_{uv}^T \mathbf{n} & \mathbf{x}_{vv}^T \mathbf{n} \end{bmatrix}$$

- I and II allow to measure
 - length, angles, area, curvature
 - arc element

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2$$

area element

$$dA = \sqrt{EG - F^2} du dv$$

- Intrinsic geometry: Properties of the surface that only depend on the first fundamental form
 - length
 - angles
 - Gaussian curvature (Theorema Egregium)

$$K = \lim_{r \to 0} \frac{6\pi r - 3C(r)}{\pi r^3}$$

- A point x on the surface is called
 - *elliptic*, if *K* > 0
 - parabolic, if K = 0
 - hyperbolic, if K < 0
 - *umbilical*, if $\kappa_1 = \kappa_2$

• Developable surface $\Leftrightarrow K = 0$

Laplace Operator

Laplace-Beltrami Operator

Extension of Laplace to functions on manifolds

Laplace-Beltrami Operator

Extension of Laplace to functions on manifolds

Discrete Differential Operators

- Assumption: Meshes are piecewise linear approximations of smooth surfaces
- Approach: Approximate differential properties at point *x* as spatial average over local mesh neighborhood *N*(*x*), where typically
 - -x = mesh vertex

-N(x) = n-ring neighborhood or local geodesic ball

Discrete Normal Curvature

Normal curvature along tangent direction

$$\kappa_{ij} = 2 \frac{(\mathbf{p}_j - \mathbf{p}_i)\mathbf{n}_i}{\|\mathbf{p}_j - \mathbf{p}_i\|^2}$$

Discrete Laplace-Beltrami

Uniform discretization

$$\Delta_{uni} f(v) := \frac{1}{|\mathcal{N}_1(v)|} \sum_{v_i \in \mathcal{N}_1(v)} (f(v_i) - f(v))$$

- depends only on connectivity → simple and efficient
- bad approximation for irregular triangulations

Discrete Laplace-Beltrami

Cotangent formula

$$\Delta_{\mathcal{S}} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} \left(\cot \alpha_i + \cot \beta_i \right) \left(f(v_i) - f(v) \right)$$

Discrete Laplace-Beltrami

Cotangent formula

$$\Delta_{\mathcal{S}} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} \left(\cot \alpha_i + \cot \beta_i \right) \left(f(v_i) - f(v) \right)$$

- Problems
 - negative weights
 - depends on triangulation

Discrete Curvatures

Mean curvature

 $H = \|\Delta_{\mathcal{S}} \mathbf{x}\|$

Gaussian curvature

$$G = (2\pi - \sum_{j} \theta_{j})/A$$

Principal curvatures

$$\kappa_1 = H + \sqrt{H^2 - G}$$

$$\kappa_2 = H - \sqrt{H^2 - G}$$

Links & Literature

- P. Alliez: Estimating Curvature Tensors on Triangle Meshes (source code)
 - http://www-sop.inria.fr/
 geometrica/team/Pierre.Alliez/
 demos/curvature/

principal directions

Links & Literature

• Grinspun et al.: Computing discrete shape operators on general meshes, Eurographics 2006

- Smoothness
 - continuous differentiability of a surface (C^k)
- Fairness
 - aesthetic measure of "well-shapedness"
 - principle of simplest shape
 - fairness measures from physical models

$$\int_{\mathcal{S}} \kappa_1^2 + \kappa_2^2 \, dA$$

$$\int_{\mathcal{S}} \left(\frac{\partial \kappa_1}{\partial \mathbf{t}_1} \right)^2 + \left(\frac{\partial \kappa_2}{\partial \mathbf{t}_2} \right)^2 dA$$

strain energy

variation of curvature

- Visual inspection of "sensitive" attributes
 - Specular shading

- Visual inspection of "sensitive" attributes
 - Specular shading

- Visual inspection of "sensitive" attributes
 - Specular shading
 - Reflection lines

- Visual inspection of "sensitive" attributes
 - Specular shading
 - Reflection lines
 - differentiability one order lower than surface
 - can be efficiently computed using graphics hardware

- Visual inspection of "sensitive" attributes
 - Specular shading
 - Reflection lines
 - Curvature
 - Mean curvature

- Visual inspection of "sensitive" attributes
 - Specular shading
 - Reflection lines
 - Curvature
 - Mean curvature
 - Gauss curvature

- Smoothness
 - Low geometric noise

- Smoothness
 - Low geometric noise
- Adaptive tessellation
 Low complexity

- Smoothness
 - Low geometric noise
- Adaptive tessellation
 Low complexity
- Triangle shape
 - Numerical robustness

Triangle Shape Analysis

Circum radius / shortest edge

Needles and caps

 e_1

 \mathbf{r}_1

- Smoothness
 - Low geometric noise
- Adaptive tessellation
 Low complexity
- Triangle shape
 - Numerical robustness
- Feature preservation
 - Low normal noise

Normal Noise Analysis

Mesh Optimization

- Smoothness
 - Mesh smoothing
- Adaptive tessellation
 - Mesh decimation
- Triangle shape
 - Repair, remeshing

Surface Smoothing

Christian Rössl INRIA Sophia-Antipolis

Outline

- Motivation
- Smoothing as Diffusion
- Smoothing as Energy Minimization
- Alternative Approaches

Motivation

Filter out high frequency components for noise removal

Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99

Christian Rössl, INRIA

Motivation

Advanced Filtering / Signal Processing

Pauly, Kobbelt, Gross: Point-Based Multi-Scale Surface Representation, ACM TOG 2006

Guskow, Sweldens, Schroeder: Multiresolution Signal Processing for Meshes, SIGGRAPH 99

Motivation

• Fair Surface Design

Outline

- Motivation
- Smoothing as Diffusion
 - Spectral Analysis
 - Laplacian Smoothing
 - Curvature Flow
 - Implementation
- Smoothing as Energy Minimization
- Alternative Approaches

Filter Design

- Assume *high frequency* components = *NOISE*
- Low-pass filter

Filter Design

- Assume *high frequency* components = *NOISE*
- Low-pass filter

reconstruction = filtered signal

Filter Design

- Assume *high frequency* components = *NOISE*
- Low-pass filter
 - Damps high frequencies (ideal: cut off)
 - e.g., by convolution with Gaussian (spatial domain)
 multiply with Gaussian (frequency domain)
- Fourier Transform

Spectral Analysis and Filter Design

• Univariate: Fourier Analysis

$$F(\varphi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\varphi t} dt$$
frequency domain spatial domain

- Example: Low-pass filter
 - Damp (ideally cut off high frequencies)
 - Multiply F with Gaussian (= convolve f with Gaussian)
- Are there "geometric frequencies"?

Spectral Analysis and Filter Design

• Univariate: Fourier Analysis

$$F(\varphi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\varphi t} dt$$

Generalization

$$\Delta e^{i\varphi t} = \frac{\partial^2}{\partial t^2} e^{i\varphi t} = -\varphi^2 e^{i\varphi t}$$

- $e^{i\varphi t}$ are *Eigenfunctions* of the Laplacian
- Use them as basis functions for geometry

Spectral Analysis

- Eigenvalues of Laplacian ≅ *frequencies*
- Low-pass filter ≅

reconstruction from eigenvectors associated with *low* frequencies

- Decomposition in frequency bands is used for *mesh deformation.*
- Too expensive for *direct* use in practice! Cannot compute eigenvalues efficiently
- For smoothing apply *diffusion*... (similar to convolution vs. multiplication)

Outline

- Motivation
- Smoothing as Diffusion
 - Spectral Analysis
 - Laplacian Smoothing
 - Curvature Flow
 - Implementation
- Smoothing as Energy Minimization
- Alternative Approaches

Diffusion

• Diffusion equation

$$\frac{\partial}{\partial t} x = \operatorname{div} \mu \nabla x$$

constant scalar

 $\frac{\partial}{\partial t}x = \mu \,\Delta x$

Laplacian Smoothing

Discretization of diffusion equation

$$\frac{\partial}{\partial t} p_i = \mu \, \Delta p_i$$

- Leads to simple update rule
 - Iterate

$$p_i \neg p_i + \mu dt \Delta p_i$$

explicit Euler integration

- until convergence

Laplacian Smoothing

0 Iterations

5 Iterations

20 Iterations

Outline

- Motivation
- Smoothing as Diffusion
 - Spectral Analysis
 - Laplacian Smoothing
 - Curvature Flow
 - Implementation
- Smoothing as Energy Minimization
- Alternative Approaches
 - Anisotropic Smoothing

Curvature Flow

- Curvature is independent of parameterization
- Flow equation

 $\frac{\partial}{\partial t}x = -\mu H n$ mean curvature H

• We have

$$\Delta_{s} x = -2 H n$$

Laplace-Beltrami operator
Curvature Flow

- Mean curvature Flow $\frac{\partial}{\partial t}x = \mu \Delta_S x$
 - Use discrete Laplace-Beltrami operator (cot weights)
 - Higher order flows
- Compare to uniform discretization of Laplacian

Comparison

Outline

- Motivation
- Smoothing as Diffusion
 - Spectral Analysis
 - Laplacian Smoothing
 - Curvature Flow
 - Implementation
- Smoothing as Energy Minimization
- Alternative Approaches

Integration

- Find numerical solution of diffusion equation
- *Explicit* integration $p' = (I + \mu dt L) p$

same as before in matrix form

matrix formulation of update rule

$$p' = p + \mu \, dt \, \Delta p$$

Integration

- Find numerical solution of diffusion equation
- *Explicit* integration $p' = (I + \mu dt L) p$

same as before in matrix form

- Jacobi / Gauss-Seidel iterations
- Requires timestep $0 < \mu dt < 1$ for stability
- *Implicit* integration $(I \mu dt L) p' = p$
 - Requires solution of (sparse) linear system
 - Chose μdt arbitrarily (~ # explicit integration steps)

Outline

- Motivation
- Smoothing as Diffusion
- Smoothing as Energy Minimization
 - Membrane energy
 - Thin-plate energy
- Alternative Approaches

- Penalize "unaesthetic behavior"
- Measure fairness
 - Principle of the simplest shape
 - Independent of parameterization (tessellation)
 - Often physical interpretation
- Minimize energy functional
 - Examples: membrane / thin plate energy

• Membrane Energy

$$f: \Omega \to \mathbb{R}^3$$

$$\int_{\Omega} f_u^2 + f_v^2 du dv \to \min$$

parameterization

+ boundary conditions

- Euler-Lagrange PDE

$$\Delta f = f_{uu} + f_{vv} = 0$$

• Thin Plate Energy

$$E(S) = \int_S \kappa_1^2 + \kappa_2^2 dS$$

- No parameter dependence
- Non-linear functional

- Find linear approximation...

 $E(S) = \int_{S} \kappa_1^2 + \kappa_2^2 dS$ • Thin Plate Energy $f: \Omega \to \mathbb{R}^3$ curvatures ~ 2nd order partials $\int_{\Omega} f_{uu}^2 + 2f_{uv}^2 + f_{vv}^2 du dv$ Euler-Lagrange PDE

$$\Delta^2 f = f_{uuuu} + 2f_{uuvv} + f_{vvvv} = 0$$

Comparison

Outline

- Motivation
- Smoothing as Diffusion
- Smoothing as Energy Minimization
- Alternative Approaches

Alternative Approaches

- Anisotropic Diffusion
 - Data-dependent
 - Non-linear
- Normal filtering

- Smooth normal field and reconstruct (mesh editing)
- Non-linear PDE (e.g., $\Delta_S H = 0$)
 - Avoid parameter dependence for fair surface design
- Bilateral Filtering

Example of Bilateral Filtering

Jones, Durand, Desbrun: Non-iterative feature preserving mesh smoothing, SIGGRAPH 2003

• Hole-filling

• Fair surface design

Noise removal

Noise removal

Literature

- Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996
- Desbrun, Meyer, Schroeder, Barr: *Implicit Fairing of Irregular* Meshes using Diffusion and Curvature Flow, SIGGRAPH 99
- Botsch, Kobbelt: An Intuitive Framework for Real-Time Freeform Modeling, SIGGRAPH 2004
- Fleishman, Drori, Cohen-Or: Bilateral mesh denoising, SIGGRAPH 2003
- Jones, Durand, Desbrun: Non-iterative feature preserving mesh smoothing, SIGGRAPH 2003

Christian Rössl INRIA Sophia-Antipolis

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
- Reducing Area Distortion
- Alternative Domains

Mercator-Projektion

Mollweide-Projektion

Mollweide-Projektion

Peters-Projektion

Senkrechte Umgebungsperspektive

Gnomonische Projektion

Mercator-Projektion

Längentreue Azimuthalprojektion

Robinson-Projektion

Flächentreue Kegelprojektion

Zylinderprojektion nach Miller

Stereographische Projektion

Hotine Oblique Mercator-Projektion

Transverse Mercator-Projektion

Hammer-Aitoff-Projektion

Behrmann-Projektion

Sinusoidale Projektion

Cassini-Soldner-Projektion

Motivation

• Texture mapping

Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002

Motivation

• Many operations are simpler on planar domain

Lévy: Dual Domain Exrapolation, SIGGRAPH 2003

Motivation

• Exploit regular structure in domain

Outline

- Motivation
- Objectives and Discrete Mappings
 - Characterization of mappings
 - Discrete mappings
- Angle Preservation
- Reducing Area Distortion
- Alternative Domains

Characterization of Mappings

- By first fundamental form I
 - Eigenvalues $\lambda_{1,2}$ of I
 - Singular values $\sigma_{1,2}$ of $J(\sigma_i^2 = \lambda_i)$
- Isometric
 - $I = Id, \qquad \lambda_1 = \lambda_2 = 1 \qquad \checkmark$
- Conformal
 - $I = \mu Id, \qquad \lambda_1 / \lambda_2 = 1 \qquad \checkmark$
- Equiareal

angle preserving

Piecewise Linear Maps

• Mapping = 2D mesh with same connectivity

Objectives

- Isometric maps are rare
- Minimize distortion w.r.t. a certain measure
 - Validity (bijective map)
 - Boundary
 - Domain

triangle flip

fixed / free?

e.g., spherical

- Numerical solution

linear / non-linear?

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
 - Discrete Harmonic Maps
 - Discrete Conformal Maps
- Reducing Area Distortion
- Alternative Domains
Discrete Harmonic Maps

•
$$f$$
 is harmonic if $\Delta f = 0$

Solve Laplace equation

$$\begin{cases} \Delta u = 0 & u \text{ and } v \text{ are harmonic} \\ \Delta v = 0 & \\ (u, v)_{|\partial\Omega} = (u_0, v_0) & & \text{Dirichlet boundary conditions} \end{cases}$$

• In 3D: "fix planar boundary and smooth"

Discrete Harmonic Maps

•
$$f$$
 is harmonic if $\Delta f = 0$

- Solve Laplace equation
- Yields linear system (again)

$$L(p_i) = \sum_{j \in N_i} w_{ij}(p_j - p_i) = 0 \quad \text{vertices } 1 \le i \le n$$

- Convex combination maps
 - Normalization
 - Positivity

Convex Combination Maps

 Every (interior) planar vertex is a convex combination of its neighbors

- Guarantees validity if boundary is mapped to a convex polygon (e.g., rectangle, circle)
- Weights
 - Uniform (barycentric mapping)
 - Shape preserving [Floater 1997]

Reproduction of planar meshes

- Mean Value Coordinates [Floater 2003]
 - Use mean value property of harmonic functions

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
 - Discrete Harmonic Maps
 - Discrete Conformal Maps
- Reducing Area Distortion
- Alternative Domains

Conformal Maps

• Planar conformal mappings $f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}^{\frac{1}{2}}$ satisfy the Cauchy-Riemann conditions

$$\frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y}$$
 and $\frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x}$

Conformal Maps

• Planar conformal mappings $f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$ satisfy the Cauchy-Riemann conditions

$$u_x = v_y$$
 and $u_y = -v_x$

• Differentiating once more by x and y yields

$$u_{xx} = v_{xy}$$
 and $u_{yy} = -v_{xy} \implies u_{xx} + u_{yy} = \Delta u = 0$
and similar $\Delta v = 0$

• conformal \Rightarrow harmonic

• Planar conformal mappings $f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$ satisfy the Cauchy-Riemann conditions

$$u_x = v_y$$
 and $u_y = -v_x$

 In general, there are no conformal mappings for piecewise linear functions!

• Planar conformal mappings $f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}^{\frac{1}{2}}$ satisfy the Cauchy-Riemann conditions

$$u_x = v_y$$
 and $u_y = -v_x$

• Conformal energy (per triangle T)

$$E_{T} = (u_{x} - v_{y})^{2} + (u_{y} + v_{x})^{2}$$

• Minimize

$$\sum_{T \in \Gamma} E_T A_T \to \min$$

• Least-squares conformal maps [Lévy et al. 2002]

$$\sum_{T \in \Gamma} E_T A_T \rightarrow \min \quad \text{where} \quad E_T = (u_x - v_y)^2 + (u_y + v_x)^2$$

- Satisfy Cauchy-Riemann conditions in least-squares sense
- Leads to solution of linear system

• Alternative formulation leads to same solution...

Same solution is obtained for

$$\begin{split} \Delta_{S} u &= 0 \\ \Delta_{S} v &= 0 \\ n \times \nabla u \mid_{\partial \Omega} &= c \\ n \times \nabla v \mid_{\partial \Omega} &= c \\ (u, v)_{|\partial \Omega_{0}} &= (u_{0}, v_{0}) \\ \end{split}$$
Neumann boundary conditions
$$h \times \nabla v \mid_{\partial \Omega} &= c \\ (u, v)_{|\partial \Omega_{0}} &= (u_{0}, v_{0}) \\ \leftarrow fixed vertices \\ \end{aligned}$$
Discrete Conformal Maps [Desbrun et al. 2002]

 Free boundary depends on choice of *fixed* vertices (>1)

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
- Reducing Area Distortion
 - Non-linear optimization
 - Additional cuts
- Alternative Domains

And how about area distortion?

Reducing Area Distortion

- Energy minimization based on
 - MIPS [Hormann & Greiner 2000]

modification [Degener et al. 2003]

- "Stretch" [Sander et al. 2001]

$$\|J\|_F = \sqrt{\sigma_1 + \sigma_2} \quad \text{or} \quad \|J\| \infty = \sigma_1$$

modification [Sorkine et al. 2002]

$$||J||_{F} ||J^{-1}||_{F} = \frac{\sigma_{1}}{\sigma_{2}} + \frac{\sigma_{2}}{\sigma_{1}}$$

$$\det J + \frac{1}{\det J} = \sigma_1 \sigma_2 + \frac{1}{\sigma_1 \sigma_2}$$

$$\max\{\sigma_1,\frac{1}{\sigma_2}\}$$

Examples

"angles and area are competing"

 $\sqrt{\sigma_1 + \sigma_2} \rightarrow \min$

Stretch metric minimization Using [Yoshizawa et. al 2004]

[Zayer et. al 2005]

Reducing Area Distortion

- Introduce cuts ⇒ area distortion vs. continuity
- Cuts are often unavoidable (e.g., open sphere)

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
 - Discrete Harmonic Maps
 - Discrete Conformal Maps
- Reducing Area Distortion
- Alternative Domains

Summary

- Isometric mappings are rare
 - Angle preservation vs. area preservation
 - There is no perfect solution.
- Validity
- Boundary
- Linear / non-linear methods
- Domain

Literature

- Floater & Hormann: *Surface parameterization: a tutorial and survey,* Springer, 2005
- Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002
- Desbrun, Meyer, and Alliez: *Intrinsic parameterizations* of surface meshes, Eurographics 2002
- Sheffer & de Sturler: Parameterization of faceted surfaces for meshing using angle based flattening, Engineering with Computers, 2000.

Outline

- Motivation
- Objectives and Discrete Mappings
- Angle Preservation
- Reducing Area Distortion
- Alternative Domains

Mesh Decimation

Oversampled 3D scan data

Overtessellation: E.g. iso-surface extraction

- Multi-resolution hierarchies for
 - efficient geometry processing
 - level-of-detail (LOD) rendering

Adaptation to hardware capabilities

Size-Quality Tradeoff

Outline

- applications
- problem statement
- mesh decimation schemes
 - vertex clustering
 - incremental decimation
 - out-of-core

Problem Statement

• Given:
$$\mathcal{M} = (\mathcal{V}, \mathcal{F})$$

- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} \mathcal{M}'||$ is minimal, or
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ and $|\mathcal{V}'|$ is minimal

Problem Statement

• Given:
$$\mathcal{M} = (\mathcal{V}, \mathcal{F})$$

- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that

1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} - \mathcal{M}'||$ is minimal, or

2.
$$\|\mathcal{M} - \mathcal{M}'\| < \epsilon$$
 and $|\mathcal{V}'|$ is minimal

combinatorial optimization is NP-hard!

→ find approximate-optimal solution

Problem Statement

• Given:
$$\mathcal{M} = (\mathcal{V}, \mathcal{F})$$

- Find: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ such that

1. $|\mathcal{V}'| = n < |\mathcal{V}|$ and $||\mathcal{M} - \mathcal{M}'||$ is minimal, or

2.
$$\|\mathcal{M} - \mathcal{M}'\| < \epsilon$$
 and $|\mathcal{V}'|$ is minimal

 Take additional fairness criteria into account – normal deviation, triangle shape, color etc.

Outline

- applications
- problem statement
- mesh decimation schemes

vertex clustering

- incremental decimation
- out-of-core

- cluster generation
- computing a representative
- mesh generation
- topology changes

- cluster generation
 - uniform 3D grid
 - map vertices to cluster cells
- computing a representative
- mesh generation
- topology changes

- cluster generation
 - hierarchical approach
 - top-down or bottom-up
- computing a representative
- mesh generation
- topology changes

- cluster generation
- computing a representative
 - average/median vertex position
 - error quadrics
- mesh generation
- topology changes
Computing a Representative

average vertex position \rightarrow low-pass filter

Computing a Representative

median vertex position \rightarrow sub-sampling

Computing a Representative

error quadrics

squared distance to plane

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$dist(q,p)^2 = (q^T p)^2 = p^T q q^T p = p^T Q_q p$$

$$Q_q = \begin{bmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & b^2 & cd \\ ad & bd & cd & d^2 \end{bmatrix}$$

sum of squared distances to triangle planes qi

$$\sum_{i} dist(q_i, p)^2 = p^T \left(\sum_{i} Q_{q_i} \right) p$$

$$\begin{bmatrix} \vdots & \vdots \\ a_i & b_i & c_i \\ \vdots & \vdots \end{bmatrix} p * \approx \begin{bmatrix} \vdots \\ -d_i \\ \vdots \end{bmatrix}$$

sum of squared distances to triangle planes qi

$$\sum_{i} dist(q_i, p)^2 = p^T \left(\sum_{i} Q_{q_i} \right) p$$

$$\begin{bmatrix} \vdots \\ n_i^T \\ \vdots \end{bmatrix} p \ast \approx \begin{bmatrix} \vdots \\ -d_i \\ \vdots \end{bmatrix}$$

sum of squared distances to triangle planes qi

$$\sum_{i} dist(q_i, p)^2 = p^T \left(\sum_{i} Q_{q_i} \right) p$$

$$\left(\sum_{i} n_{i} n_{i}^{T}\right) p \ast = -\sum_{i} n_{i} d_{i}$$

sum of squared distances to triangle planes qi

$$\sum_{i} dist(q_i, p)^2 = p^T \left(\sum_{i} Q_{q_i} \right) p$$

$$Q = \begin{pmatrix} A & b \\ b^T & c \end{pmatrix} \qquad A p^* = -b$$

Comparison

Vertex Clustering

- cluster generation
- computing a representative
- mesh generation
 - clusters $p \Leftrightarrow \{p_0,...,p_n\}, q \Leftrightarrow \{q_0,...,q_m\}$
 - connect (p,q) if there was an edge (p_i,q_j)
- topology changes

Vertex Clustering

- cluster generation
- computing a representative
- mesh generation
- topology changes
 - different sheets may pass through one cell
 - not manifold

Outline

- applications
- problem statement
- mesh decimation schemes
 - vertex clustering
 - incremental decimation
 - out-of-core

Incremental Decimation

- general setup
- decimation operators
- error metrics
- fairness criteria
- topology changes

General Setup

Repeat: pick mesh region apply decimation operator Until no further reduction possible

Greedy Optimization

```
For each region
 evaluate quality after decimation
 enque(quality, region)
Repeat:
 pick best mesh region
 apply decimation operator
 update queue
Until no further reduction possible
```

Global Error Control

```
For each region
 evaluate quality after decimation
 enque(quality, region)
Repeat:
 pick best mesh region
 if error < \epsilon
    apply decimation operator
    update queue
Until no further reduction possible
```

Incremental Decimation

- general setup
- decimation operators
- error metrics
- fairness criteria
- topology changes

- what is a "region" ?
- what are the DOF for re-triangulation?
- classification
 - topology-changing vs. topology-preserving
 - subsampling vs. filtering
 - inverse operation \rightarrow progressive meshes

Remove the n selected triangles, creating the hole

- remove vertex
- re-triangulate hole
 - combinatorial DOFs
 - sub-sampling

- merge two adjacent triangles
- define new vertex position
 - continuous DOF
 - filtering

- collapse edge into one of its end points
 - special case of vertex removal
 - special case of edge collapse
- no DOFs
 - one operator per half-edge
 - sub-sampling!

Incremental Decimation

- general setup
- decimation operators
- error metrics
- fairness criteria
- topology changes
Local Error Metrics

- local distance to mesh [Schroeder et al. 92]
 - compute average plane
 - no comparison to original geometry

- simplification envelopes [Cohen et al. 96]
 - compute (non-intersecting) offset surfaces
 - simplification guarantees to stay within bounds

- (two-sided) Hausdorff distance: maximum geometric deviation between two shapes
 - in general $d(A,B) \neq d(B,A)$
 - computationally involved

laser scan data:
one-sided Hausdorff distance is sufficient
– > from original vertices to current surface

- error quadrics [Garland, Heckbert 97]
 - squared distance to triangle planes at vertices
 - no guaranteed bound on true error

Complexity

- n = number of vertices
- priority queue for half-edges
 - 6n * log (6n) vs. n * log(n)
- global error control
 - per vertex O(1+log(n)) ⇒ overall O(n log(n)) (decimate to x % triangles)
 - per vertex O(n+log(n)) ⇒ overall O(n²) (decimate to x triangles)

Priority Queue Updating

Incremental Decimation

- general setup
- decimation operators
- error metrics
- fairness criteria
- topology changes

Greedy Control

- prescribed approximation tolerance ϵ
- so far: minimally increase error
- now: use error as binary criterion
- other criteria determine decimation order

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences

. . .

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences

. . .

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences
 - ...

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences
 - —

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valence balance
 - color differences

. . .

- rate quality after decimation
 - triangle shape
 - dihedral angles
 - valance balance
 - color differences

Incremental Decimation

- general setup
- decimation operators
- error metrics
- fairness criteria
- topology changes

Topology Changes ?

- merge vertices across non-edges
 - changes mesh topology
 - need spatial neighborhood information
 - generates non-manifold meshes

Topology Changes ?

- merge vertices across non-edges
 - changes mesh topology
 - need spatial neighborhood information
 - generates non-manifold meshes

Comparison

- vertex clustering
 - fast, but difficult to control target complexity
 - topology changes, non-manifold meshes
 - global error bound, but often far from optimal
- incremental decimation with quadric error metrics
 - good trade-off between mesh quality and speed
 - explicit control over mesh topology
 - restricting normal deviation improves mesh quality

Outline

- applications
- problem statement
- mesh decimation schemes
 - vertex clustering
 - incremental decimation
 - out-of-core

Out-of-core Decimation

- handle extremely large data sets that do not fit into main memory
- key idea: avoid random access to the mesh data structure during simplification
- examples
 - Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002
 - Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

Multiphase Simplification

- 1. phase: out-of-core clustering
 - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid
- 2. phase: in-core incremental simplification
 - lookup initial quadrics in voxel grid
 - iteratively contract edge of smallest cost

Multiphase Simplification

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002

Multiphase Simplification

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002

Out-of-core Decimation

- streaming approach based on edge collapse operations using QEM
- pre-sorted input stream allows fixed-sized active working set

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

Out-of-core Decimation

- randomized multiple choice optimization avoids global heap data structure
- memory requirements independent from input AND output complexity

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003

Remeshing

Leif Kobbelt RWTH Aachen

Remeshing Cookbook

- problem definition
 - input, output
- basic ingredients
 - general requirements
 - types of operations
- a selection of recipes
 - various representative examples of known remeshing schemes

Remeshing Cookbook

- problem definition
 - input, output
- basic ingredients
 - general requirements
 - types of operations
- a selection of recipes
 - various representative examples of known remeshing schemes

Problem Definition

- input M
 - polygon (triangle) mesh
 - properly defined surface
 - 2-manifold
 - with / without boundary
 - homeomorphic to a disk (?) (pre-segmented)
 - generate new samples
 - access to geodesic neighborhood

Problem Definition

- output **R**
 - approximation to the input data \boldsymbol{M}
 - prescribed (Hausdorff) error tolerance $\boldsymbol{\epsilon}$
 - target complexity / target edge length $\boldsymbol{\delta}$
 - better vertex distribution
 - uniform vs. adaptive
 - shape of individual faces
 - local and global alignment

Problem Definition

- output **R**
 - approximation to the input data \boldsymbol{M}
 - prescribed (Hausdorff) error tolerance ϵ
 - target complexity / target edge length δ
 - better vertex distribution
 - uniform vs. adaptive
 - shape of individual faces
 - local and global alignment

Two Fundamental Approaches

- surface oriented
 - operate directly of the surface
 - treat surface as a set of points / polygons in space
 - efficient for high resolution remeshing (locally flat surface)
- parametrization based
 - map to 2D domain / 2D problem
 - computationally more expensive (?)
 - works even for coarse resolution remeshing (features might be lost)

Surface Oriented

Surface Oriented

Surface Oriented

Surface Oriented

Remeshing Cookbook

- problem definition
 - input, output
- basic ingredients
 - general requirements
 - types of operations
- a selection of recipes
 - various representative examples of known remeshing schemes

Basic Ingredients

- parametrization
 - global vs. local
- vertex density control
 - uniform vs. adaptive
 - isotropic vs. anisotropic
- local alignment
 - optimal shape approximation
- global alignment
 - feature sensitivity

Basic Ingredients

- parametrization
 - global vs. local
- vertex density control
 - uniform vs. adaptive
 - isotropic vs. anisotropic
- local alignment
 - optimal shape approximation
- global alignment
 - feature sensitivity

- global parametrization
 - homeomorphic to a disk
 - harmonic maps with fixed boundary conditions
 - least squares conformal maps with free boundaries
 - computationally expensive for large meshes

- global parametrization
 - homeomorphic to a disk
 - harmonic maps with fixed boundary conditions
 - least squares conformal maps with free boundaries
 - computationally expensive for large meshes

- global parametrization
- piecewise parametrization
 - pre-segmentation into disjoint patches
 - compatibility conditions at patch boundaries

- global parametrization
- piecewise parametrization
- local neighborhood parametrization
 - unfolding a geodesic disk around a vertex / face
 - neighboring regions may overlap
 - efficiency by caching

Vertex Density Control

- uniform vs. adaptive
 - curvature-dependent or general sizing map
- isotropic vs. anisotropic
 - 2nd fundamental form (error quadrics, shape operator)
- (area weighted) random scatter
- local relaxation
 - particle systems
 - centroidal Voronoi diagrams

Uniform vs. Adaptive

Anisotropy

- differential geometry
 - 2nd fundamental form defines a local **orthogonal** frame (min- / max-curvature directions and the normal)

Anisotropy

- differential geometry
 - 2nd fundamental form defines a local orthogonal frame (min- / max-curvature directions and the normal)

- discretization
 - eigenbasis of a symmetric matrix
 - shape operator
 (weighted sum of edge projections)

Shape Operator

- projection to edge: $ee^T ||e|| = 1$ (minimum curvature direction)
- weighted sum of edge-projection operators

$$\mathcal{S}(\mathbf{p}) = \sum_{\mathbf{e}\in B(\mathbf{p})} \|\mathbf{e}\cap B(\mathbf{p})\| \mathbf{e} \mathbf{e}^T$$

Shape Operator

- projection to edge: $ee^T ||e|| = 1$ (minimum curvature direction)
- weighted sum of edge-projection operators

$$\mathcal{S}(\mathbf{p}) = \sum_{\mathbf{e}\in B(\mathbf{p})} \beta(\mathbf{e}) \|\mathbf{e}\cap B(\mathbf{p})\| \mathbf{e} \mathbf{e}^T$$

Shape Operator

- projection to edge: $e e^T$ (minimum curvature direction)
- weighted sum of edge-projection operators

$$\mathcal{S}(\mathbf{p}) = \sum_{\mathbf{e}\in B(\mathbf{p})} \beta(\mathbf{e}) \|\mathbf{e}\cap B(\mathbf{p})\| \mathbf{e} \mathbf{e}^T$$

• eigenvector to largest eigenvalue:

min-curvature direction

• max-curvature direction: $D_{\max} = D_{\min} \times \mathbf{n}$

Random Scatter

- generate random samples for each triangle
 - n ~ area * density
 total number
 prob = area * density * total area * density
- compensate area distortion when sampling in the parameter domain
 - distortion = 3D area / 2D area
- no anisotropy

Local Relaxation

- particle systems
 - maximum distance (repelling force)
 - curvature dependent
 - anisotropic forces
- tangential Laplace
 - minimum distance (attracting force)
- centroidal Voronoi diagrams

Tangential Laplace

- local "spring" relaxation
 - uniform Laplacian smoothing
 - barycenter of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

Tangential Laplace

- local "spring" relaxation
 - uniform Laplacian smoothing
 - barycenter of one-ring neighbors

$$\mathbf{c}_{i} = \frac{1}{\text{valence}(v_{i})} \sum_{j \in N(v_{i})} \mathbf{p}_{j}$$

- keep vertex on the surface
 - restrict movement to tangent plane

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda \left(I - \mathbf{n}_i \mathbf{n}_i^T \right) \left(\mathbf{c}_i - \mathbf{p}_i \right)$$

Local Alignment

- compute curvature directions fields
 - smoothing filters
 - preserve orthogonality
- trace curvature lines
 - in the parameter domain
 - directly on the polygonal surface
 - face aspect ratio, line density
- vector field integration
 - extract iso-contours

Curvature Directions

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane

Curvature Directions

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane
 - propagate reliable direction information

$$(\mathcal{C}, \rho) = \sum_{j \in N(i)} \omega_{ij} \left(\mathcal{P}_j, \rho_j \right)$$

$$\mathcal{P}_i \leftarrow \frac{\rho_i \,\mathcal{P}_i + \rho \,\mathcal{C}}{\rho_i + \rho}$$

- shape operator
 - tensor averaging preserves orthogonality
 - smoothing within the tangent plane
 - propagate reliable direction information

- curvature lines are traced independently (only line density is controlled, no synchronization)
- curves don't match
- T-vertices are generated

 iso-contours of scalar fields are always closed ...

- given curvature direction fields K_{min} and K_{max}
- compute (inverse) parameter functions u and v such that locally

$$- \nabla u = \lambda K_{min} \text{ and } \nabla v = \lambda K_{max} \text{ (or vice versa)}$$

- then the iso-contours of u are aligned to K_{max} and the iso-contours of v to K_{min} (or vice versa)
- in general no globally continuous solution possible
 - translational and rotational discontinuities

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$
- translations: $m\pi$

- "periodic coordinates" [Ray et al.]
 - $\tilde{\mathbf{u}} = (\cos u, \sin u)$ $\tilde{\mathbf{v}} = (\cos v, \sin v)$
- translations: $m\pi$
- rotations: $n\pi/2$

Literature

- P. Alliez et al., "Isotropic Surface Remeshing", SMI 2003
- P. Alliez et al., "Anisotropic polygonal remeshing", SIGGRAPH 2003
- M. Botsch, L. Kobbelt, *"A remeshing approach to multiresolution modeling"*, SGP 2004
- V. Surazhsky et al., "Isotropic Remeshing of Surfaces: A Local Parameterization Approach"
- Nicolas Ray et al., "Periodic Global Parametrization", ACM ToG 2006

Global Alignment

- feature detection
 - thresholding, morphological operations
 - surface snakes
- segmentation
 - region growing
 - clustering
- boundary refinement / optimization
 - graph-cut computation

Feature Detection

- adapt techniques from image processing
- classify edges by dihedral angle
- topology preserving thinning (preserve connected components)
- branch cutting

 snakes on surfaces (move polygon towards curvature extrema)

Segmentation

- variational shape approximation
 - select random seeds
 - compute geometry proxies (planes)
 - grow regions / clusters by assigning faces
 to best matching proxies (L² or L^{2,1})

- iterate:

- re-compute proxies
- re-cluster

L² vs. L^{2,1}

[Cohen-Steiner et al. "Variational Shape Approximation"]

Extension to Non-Planar Proxies

Boundary Refinement

- clustering may oscillate at the segment boundaries
- compute globally optimal boundary polygons by energy minimization
- re-formulation as max-flow / min-cut problem on the dual graph

Boundary Refinement

S. Katz, A. Tal, *"Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts"*

Boundary Refinement

S. Katz, A. Tal, *"Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts"*

Literature

- S. Katz, A. Tal, "Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts", SIGGRAPH 2003
- D. Cohen-Steiner et al., "Variational Shape Approximation", SIGGRAPH 2004

Remeshing Cookbook

- problem definition
 - input, output
- basic ingredients
 - general requirements
 - types of operations
- a selection of recipes
 - various representative examples of known remeshing schemes

A Selection of Recipes

- realtime remeshing (global parametrization)
- iterative mesh optimization (local or no parametrization)
- quad-dominant meshing (anisotropic, with and without parametrization)
- globally harmonic meshing (anisotropic, global parametrization)

- Alliez et al. "Interactive Geometry Remeshing" SIGGRAPH 2003
- compute global parametrization over a rectangle
- define vertex density map in the parameter domain
- generate samples by half-toning / dithering (error diffusion)
- compute 2D Delaunay triangulation

- global parametrization approach
- vertex density by half-toning
- no local alignment (isotropic)
- global alignment possible by constrained Delaunay triangulation

Iterative Mesh Optimization

- (area weighted) random scatter or simply start with the given mesh
- improve vertex distribution by
 - particle systems (Turk)
 - area-weighted Laplace smoothing (Surazhsky 1)
 - centroidal Voronoi diagram (Surazhsky 2)
- update mesh connectivity

Iterative Mesh Optimization

- isotropic remeshing prefers ...
 - equal edge length
 - remove too short edges
 - remove too long edges
 - regular valences
 - valence balance
 - uniform vertex distribution
 - tangential smoothing
 Lapla

edge collapses

2-4 edge split

edge flip

Laplace operator

Local Remeshing Operators

Isotropic Remeshing

Specify target edge length L

Iterate:

- 1. Split edges longer than L_{max}
- 2. Collapse edges shorter than L_{min}
- **3.** Flip edges to get closer to valence 6
- 4. Vertex shift by tangential relaxation
- 5. Project vertices onto reference mesh

Thresholds Lmin and Lmax

Edge Collapse / Split

$$|L_{\max} - L| = \left|\frac{1}{2}L_{\max} - L\right|$$
$$\Rightarrow L_{\max} = \frac{4}{3}L$$

$$|L_{\min} - L| = \left|\frac{3}{2}L_{\max} - L\right|$$
$$\Rightarrow L_{\min} = \frac{4}{5}L$$

Area Weighted Tangential Smoothing

- tangential smoothing with area equalization (leads to symmetric Laplace matrix)
- area-weighted centroid

$$\mathbf{g}_i = \frac{1}{\sum_{\mathbf{q}_i} A(\mathbf{q}_i)} \sum_{\mathbf{q}_i} A(\mathbf{q}_i) \mathbf{q}_i$$

tangential update

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \lambda \left(I - \mathbf{n}_i \mathbf{n}_i^T\right) \left(\mathbf{g}_i - \mathbf{p}_i\right)$$

Remeshing Results

Leif Kobbelt, RWTH Aachen
Feature Preservation

Feature Preservation

- define features
 - sharp edges
 - material boundaries
- adjust local operators
 - don't flip
 - collapse only along features
 - univariate smoothing
 - project to feature curves

Adaptive Remeshing

- precompute max. curvature on reference mesh
- target edge length locally determined by curvature
- adjust split / collapse criteria

Isotropic Remeshing

- high quality triangulations
 - equilateral triangles
 - valence 6
- extensions
 - feature preservation
 - curvature adaptation
- local operators & projection
 - easy to implement
 - computationally efficient
 - 100K vertices in < 5 sec

Iterative Mesh Optimization

- no parametrization necessary
- adaptive vertex distribution by tangential Laplace and topologcal updates
- no local orientation (isotropic meshing)
- global feature alignment by restriction of mesh operations

Literature

- Vorsatz et al, "Dynamic remeshing and applications", Solid Modeling 2003
- Surazhsky et al. "Isotropic Remeshing of Surfaces: a local parametrization approach"
- Botsch & Kobbelt, "A remeshing approach to multiresolution modeling", Symp. on Geometry Processing 2004
- Alliez et al, "Recent advances in remeshing of surfaces", AIM@Shape state of the art report, 2006

- anisotropic remeshing prefers ...
 - quad faces
 - curvature dependent size and aspect ratio (approximation measure)
 - local orientation
 - (curvature directions, shape operator)
 - global alignment
 (feature detection and handling)

- line density depends on approximation measure
 - L² vs L^{2,1}
 - L² measures geometric deviation
 - $L^{2,1}$ leads to K_{min} / K_{max} aspect ratios
- local orientation by the shape operator
 - K_{min} and K_{max} direction fields
 - direction propagation

Global Alignment

- marching techniques cannot capture the global structure of the model
- two-step procedure:
 - segmentation (global structure)
 - quad meshing per segment
 (local shape and alignment)

Global Alignment

Per-Segment Optimization

Per-Segment Optimization

- combinatorial optimization
- energy functional
 - orthogonality at intersections
 - parallelism within faces

Quad-Meshing Results

Quad-Meshing Results

Quad-Meshing Results

- with or without parametrization
- anisotropic vertex distribution by controlling the density of curvature lines
- local alignment by intersecting curvature lines
- global alignment by segmentation

Globally Harmonic Meshing

- generate patch layout
 - quad-dominant
 - quad-only
- compute a harmonic map per patch
 - discontinuities across patch boundaries
- globally smooth parameterization
 - "hide" discontiunities by transfer functions between patches

Patch Layout Generation

- manually ...
- segmentation based
- using the Laplace eigenmodes
 [S. Dong et al. "Spectral Surface Quadrangulation"]

Harmonic Parametrization

- find a 2D parameter \boldsymbol{u}_i for each 3D vertex \boldsymbol{p}_i
- let

$$U(\mathbf{p}_i) = \mu_i \sum_j \omega_{i,j} \left(\mathbf{p}_j - \mathbf{p}_i \right)$$

- be the Laplace-Beltrami operator defined on the surface.
- harmonic condition:

$$U(\mathbf{u}_i) = \mu_i \sum_j \omega_{i,j} \left(\mathbf{u}_j - \mathbf{u}_i \right) = 0$$

Transition Functions

- inverse parametrization: Φ_{α} : $\mathbb{R}^3 \rightarrow \mathbb{R}^2$
- transition function: $\Phi_{\alpha\beta}: \mathbb{R}^2 \to \mathbb{R}^2$

Globally Smooth Parametrization

harmonic condition

$$U(\mathbf{u}_{i}^{\alpha}) = \mu_{i} \sum_{j} \omega_{i,j} \left(\phi_{\beta\alpha}(\mathbf{u}_{j}^{\beta}) - \mathbf{u}_{i}^{\alpha} \right) = 0$$

- parameter values for the patch corners are fixed to (0,0), (0,1), (1,0), or (1,1)
- solve sparse linear 2n x 2n system
- iterative update of the patch layout (local parameter values have to lie in the unit square)

Results

[S. Dong et al. "Spectral Surface Quadrangulation"]

Results

[S. Dong et al. "Spectral Surface Quadrangulation"]

Globally Harmonic Meshing

- global parametrization
- vertex distribution by intersection u- and v-isolines
- no local alignment

(some alignment induced by the patch layout)

no global alignment

(some alignment induced by the patch layout)

Remeshing Cookbook

- problem definition
 - input, output
- basic ingredients
 - general requirements
 - types of operations
- a selection of recipies
 - various representative examples of known remeshing schemes

Mesh Editing

Mario Botsch ETH Zurich

Mesh Editing

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- Comparison

Spline Surfaces

Basis functions are smooth bumps

Spline Surfaces

- Basis functions are smooth bumps
 - Fixed support
 - Regular grid

Modeling Metaphor

- Support region (blue)
- Fixed vertices (gray)
- Handle regions (green)

Distance-Based Propagation

1. Construct smooth scalar field $s : S \rightarrow [0, 1]$

- s(p)=1: Full deformation at handle
- s(**p**)=0: No deformation for fixed part
- s(p)∈(0,1): Smooth blending inbetween
- 2. Damp handle transformation with s(**p**)

Distance-Based Propagation

Boundary Constraint Modeling

1. Control: Prescribe *arbitrary* constraints:

$$\mathbf{d}\left(\mathbf{p}_{i}\right) = \mathbf{d}_{i}, \ \forall \mathbf{p}_{i} \in \mathcal{C}$$

2. Fitting: Smoothly interpolate constraints by a displacement function:

$$\mathbf{d}: \mathcal{S} \to \mathbb{R}^3$$
 with $\mathbf{d}(\mathbf{p}_i) = \mathbf{d}_i$

3. Evaluation: Displace all points:

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \mathbf{d} (\mathbf{p}_i) \quad \forall \mathbf{p}_i \in S$$

How to interpolate?

Constrained bending energy minimization

$$\int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^{2} + 2 \|\mathbf{d}_{uv}\|^{2} + \|\mathbf{d}_{vv}\|^{2} d\mathcal{S}$$

• Variational calculus, Euler-Lagrange PDE

$$\Delta_{\mathcal{S}}^2 \mathbf{d} \equiv 0 \quad \text{with} \quad \mathbf{d}(\mathbf{p}_i) = \mathbf{d}_i, \ \forall \mathbf{p}_i \in \mathcal{C}$$

"Best" deformation which satisfies constraints

Physical Interpretation

Non-linear stretching & bending energies

$$\int_{\Omega} k_s \left\| \mathbf{I} - \mathbf{I}' \right\|^2 + k_b \left\| \mathbf{I} - \mathbf{I}' \right\|^2 \, du dv$$

• Linearize energies

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) dudv$$

• Euler-Lagrange PDE

$$k_s \,\Delta \mathbf{d} + k_b \,\Delta^2 \mathbf{d} \equiv 0$$

Deformation Energies

Discretization

• Euler-Lagrange PDE

$$\Delta_{\mathcal{S}}^{k} \mathbf{d} \equiv \mathbf{0} \quad \text{with} \quad \mathbf{d}(\mathbf{p}_{i}) = \mathbf{d}_{i}, \quad \forall \mathbf{p}_{i} \in \mathcal{C}$$

Finite difference Laplace discretization

$$\Delta_{\mathcal{S}}^{k} \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}(i)} \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(\Delta_{\mathcal{S}}^{k-1} \mathbf{d}_{j} - \Delta_{\mathcal{S}}^{k-1} \mathbf{d}_{i} \right)$$

 $\Delta_{\mathcal{S}}^{0}\mathbf{d}_{i}=\mathbf{d}_{i}$

Discretization

• Euler-Lagrange PDE

$$\Delta_{\mathcal{S}}^{k} \mathbf{d} \equiv \mathbf{0} \quad \text{with} \quad \mathbf{d}(\mathbf{p}_{i}) = \mathbf{d}_{i}, \quad \forall \mathbf{p}_{i} \in \mathcal{C}$$

Finite difference Laplace discretization

$$\Delta_{\mathcal{S}}^{k} \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}(i)} \left(\cot \alpha_{ij} + \cot \beta_{ij} \right) \left(\Delta_{\mathcal{S}}^{k-1} \mathbf{d}_{j} - \Delta_{\mathcal{S}}^{k-1} \mathbf{d}_{i} \right)$$

• Sparse linear system $\begin{pmatrix} \Delta^{k} \\ \mathbf{0} \ \mathbf{I} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{h}'_{i} - \mathbf{h}_{i} \end{pmatrix}$

Efficient Solution

- Solve linear system each frame
 - sparse, symmetric, pos. definite

$$\Delta^{k} \left(\begin{array}{c} \vdots \\ \mathbf{d}_{i} \\ \vdots \end{array} \right) = \left(\begin{array}{c} \vdots \\ \mathbf{b}_{i} \\ \vdots \end{array} \right)$$

- Only right-hand side changes
 - Use sparse Cholesky factorization (later...)
 - Only back-substitution each frame!

More Efficient Solution

- Handle is transformed <u>affinely</u> only
- Represent handle points wrt. 4 points

$$(\ldots,\mathbf{h}_i,\ldots) = \mathbf{Q} (\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d})^T$$

Same for handle displacement

$$(\ldots, \delta \mathbf{h}_i, \ldots) = \mathbf{Q} \left(\delta \mathbf{a}, \delta \mathbf{b}, \delta \mathbf{c}, \delta \mathbf{d} \right)^T$$

More Efficient Solution

Precompute basis function matrix B

$$\begin{pmatrix} \Delta^{k} \\ \mathbf{0} \quad \mathbf{I} \quad \mathbf{0} \\ \mathbf{0} \quad \mathbf{0} \quad \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \delta \mathbf{h}_{i} \end{pmatrix}$$
$$=:\mathbf{M}$$
$$\begin{pmatrix} \vdots \\ \mathbf{d}_{i} \\ \vdots \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \delta \mathbf{h}_{i} \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ Q \end{pmatrix} (\delta \mathbf{a}, \delta \mathbf{b}, \delta \mathbf{c}, \delta \mathbf{d},)^{T}$$

• **B** has 4 columns \Rightarrow Solve 4 systems

Front Deformation

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- Comparison

Surface-Based Deformation

- Problems with
 - Highly complex models
 - Topological inconsistencies
 - Geometric degeneracies

Surface-Based Deformation

1. Control: Prescribe *arbitrary* constraints:

$$\mathbf{d}\left(\mathbf{p}_{i}
ight)=\mathbf{d}_{i}\,,\ \forall\mathbf{p}_{i}\in\mathcal{C}$$

2. Fitting: Smoothly interpolate constraints by a displacement function:

$$\mathbf{d}: \mathcal{S} \to \mathbb{R}^3$$
 with $\mathbf{d}(\mathbf{p}_i) = \mathbf{d}_i$

3. Evaluation: Displace all points:

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \mathbf{d} (\mathbf{p}_i) \quad \forall \mathbf{p}_i \in S$$

Space Deformation

1. Control: Prescribe *arbitrary* constraints:

 $\mathbf{d}\left(\mathbf{p}_{i}
ight)=\mathbf{d}_{i}\,,\ \forall\mathbf{p}_{i}\in\mathcal{C}$

2. Fitting: Smoothly interpolate constraints by a trivariate space deformation function:

 $\mathbf{d}: \mathbb{R}^3 \to \mathbb{R}^3 \quad \text{with} \quad \mathbf{d}(\mathbf{p}_i) = \mathbf{d}_i$

3. Evaluation: Displace all points:

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \mathbf{d} (\mathbf{p}_i) \quad \forall \mathbf{p}_i \in S$$

- Deform object's bounding box
 - Implicitly deforms embedded objects

- Deform object's bounding box
 - Implicitly deforms embedded objects
- Tri-variate tensor-product spline

$$\mathbf{d}(u, v, w) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{c}_{ijk} N_i^l(u) N_j^m(v) N_k^n(w)$$

- Deform object's bounding box
 - Implicitly deforms embedded objects
- Tri-variate tensor-product spline

- Deform object's bounding box
 Implicitly deforms embedded objects
- Tri-variate tensor-product spline
 Aliasing artifacts

Interpolate deformation constraints?
 Only in least squares sense

Radial Basis Functions

Represent deformation by RBFs

$$\mathbf{d}\left(\mathbf{x}\right) = \sum_{j} \mathbf{w}_{j} \cdot \varphi\left(\|\mathbf{c}_{j} - \mathbf{x}\|\right) + \mathbf{p}\left(\mathbf{x}\right)$$

- Well suited for scattered data interpolation
 - Smooth interpolation
 - Irregularly placed constraints

Which basis function?

- Triharmonic RBF $\varphi(r) = r^3$
 - High fairness, minimizes

$$\int_{\mathbb{R}^{3}} \|\mathbf{d}_{uuu}\|^{2} + \|\mathbf{d}_{vuu}\|^{2} + \ldots + \|\mathbf{d}_{www}\|^{2} \, du \, dv \, dw$$

- C² boundary constraints
- Global support

RBF Deformation [Botsch05]

- Fitting
 - Place centers c_i on constraint points p_i
 - Leads to dense linear system in \mathbf{w}_i
 - Incremental least squares solver
- Evaluation
 - Function deforms points
 - Jacobian deforms normals
 - Basis function matrices

$$\mathbf{p}_i \mapsto \mathbf{p}_i + \mathbf{d} \left(\mathbf{p}_i
ight)$$

 $\mathbf{n}_i \mapsto \left(\mathbf{I} +
abla \mathbf{d}
ight)^{-T} \mathbf{n}_i$
 $\mathbf{B}, \mathbf{B}_x, \mathbf{B}_y, \mathbf{B}_z$

Evalute deformation on graphics card (30M v/s)

Statue: 1M vertices

"Bad Meshes"

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- Comparison

Multiresolution Editing

Multiresolution Modeling

- Even pure translations induce local rotations!
 - Inherently non-linear coupling
- Or: linear model + multi-scale decomposition...

Multiresolution Editing

Multiresolution Editing

Normal Displacements

Detail Representations

- Displacement vectors
 - very efficient
 - local self-intersections
- Displacement volumes
 - avoid self-intersections
 - non-linear method
- Deformation transfer
 - [Botsch et al, VMV 06]
 - inbetween...

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- Comparison

Differential Coordinates

- Avoid multiresolution hierarchy because
 - It is difficult for geom. / topol. complex models
 - Might require multiple hierarchy levels
- Change <u>differential</u> instead of <u>spatial</u> coordinates
 - Gradients, Laplacians
 - Find mesh w/ desired differential coordinates

Gradient-Based Editing

- Gradient of coordinate function p
 - Constant per triangle $\nabla \mathbf{p}|_{f_i} =: \mathbf{G}_j \in \mathbb{R}^{3 \times 3}$

- Manipulate per-face gradients $\mathbf{G}_j \mapsto \mathbf{G}_j'$
 - Gradient of handle deformation
 - Rotation and scale/shear components
 - Distance-based propagation

- Reconstruct mesh from gradients
 - Overdetermined problem $\mathbf{G} \in \mathbb{R}^{3F \times V}$
 - Weighted least squares system
 - Linear Poisson system

$$\begin{array}{c} \mathbf{G}^{T}\mathbf{D}\mathbf{G} \\ \vdots \\ \operatorname{div}\nabla = \Delta \end{array} \begin{pmatrix} \mathbf{p}_{1}^{\prime T} \\ \vdots \\ \mathbf{p}_{V}^{\prime T} \end{pmatrix} = \begin{array}{c} \mathbf{G}^{T}\mathbf{D} \\ \operatorname{div} \\ \operatorname{div} \end{pmatrix} \begin{pmatrix} \mathbf{G}_{1}^{\prime} \\ \vdots \\ \mathbf{G}_{F}^{\prime} \end{pmatrix}$$

Limitations

- Differential coordinates work well for rotations
 - Represented by deformation gradient
- Translations don't change deformation gradient
 - Translations don't change surface gradient
 - "Translation insensitivity"

Overview

- Surface-Based Deformation
- Space Deformation
- Multiresolution Deformation
- Differential Coordinates
- Comparison

Comparison

Non-Linear Deformation

VarMin

PriMo

Botsch et al, *"PriMo: Coupled Prisms for Intuitive Surface Modeling"*, SGP 06

Conclusion

- Boundary constraint modeling
 - Smoothness, flexibility, efficiency
 - Need multiresolution framework
- Differential coordinates
 - No multiresolution hierarchy
 - Work well for rotations, problems with translations
- Linear vs. non-linear techniques

Efficient Solvers for (sparse symm. pos. def.) Linear Systems

Mario Botsch ETH Zurich

Problems in Geometry Processing

- Generic formulation as a PDE
 - Based on partial derivatives
- Discretization for triangle meshes
 - Finite elements / differences
 - Leads to linear systems (typically 10⁴ to 10⁶ DoFs)
- Partial derivatives are local operators
 - Sparse linear systems

Problems in Geometry Processing

- Most often the PDE can be considered as the Euler-Lagrange equation of an energy minimization problem
- or A^TAx = A^Tb emerges as the normal equation for a least squares problem
- Systems are usually symmetric and pos. definite

Problems in Geometry Processing

- Linear problems:
 - Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Non-linear problems:

– Solve sequence of linear systems $A_k x_k = b_k$

Matrix A typically is

large

sparse
symmetric positive definite

Non-spd systems: See course notes

Overview

Application scenarios

- Linear system solvers
- Benchmarks

Implicit Fairing

Variational Energy Minimization

Mario Botsch, ETH Zurich

Explicit Hole Filling

Conformal Parameterization

Mario Botsch, ETH Zurich

Variational Mesh Editing

$$\Delta_{\mathcal{S}}^k \mathbf{d} = 0$$

Mario Botsch, ETH Zurich

Laplace-Beltrami Discretization

$$\Delta_{\mathcal{S}} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} \left(\cot \alpha_i + \cot \beta_i \right) \left(f(v_i) - f(v) \right)$$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

$$\mathbf{M}_{ij} = \begin{cases} \cot \alpha_{ij} + \cot \beta_{ij}, & i \neq j, \ j \in \mathcal{N}_1(v_i) \\ 0 & i \neq j, \ j \notin \mathcal{N}_1(v_i) \\ -\sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) & i = j \end{cases}$$

$$\mathbf{D} = \operatorname{diag}\left(\dots, \frac{2}{A(v_i)}, \dots\right)$$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- Degree of sparsity: $1 + 3 (k^2 + k)$
 - k=1 ... 7
 - k=2 ... 19
 - k=3 ... 37

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- (DM)^k is not symmetric, but M(DM)^{k-1} is
- ➡ Instead of $(DM)^k x = b$ solve $M(DM)^{k-1} x = D^{-1}b$

$$\begin{pmatrix} \vdots \\ \Delta_{\mathcal{S}}^{k} f_{i} \\ \vdots \end{pmatrix} = (\mathbf{DM})^{k} \begin{pmatrix} \vdots \\ f_{i} \\ \vdots \end{pmatrix}$$

- Positive definiteness
 - Can be derived by variational calculus
 - Energy minimization subject to constraints

Least Squares Conformal Maps

Non-Linear Problems

Non-linear minimization (Newton) $\mathbf{H}(\mathbf{x}) \mathbf{h} = -\nabla \mathbf{f}(\mathbf{x})$

Non-linear least squares (Gauss-Newton)

$$\mathbf{J}(\mathbf{x})^T \, \mathbf{J}(\mathbf{x}) \, \mathbf{h} = -\mathbf{J}(\mathbf{x})^T \, \mathbf{f}(\mathbf{x})$$

Overview

- Application scenarios
- Linear system solvers
- Benchmarks

Dense Direct Solvers

- Symmetric positive definite (spd)
 - Cholesky factorization $(\mathbf{A}=\mathbf{L}\mathbf{L}^{\mathsf{T}})$
 - Solve systems by back-substitution
 - Numerically stable
- Complexity
 - Factorization O(n³)
 - Back-substitution O(n²)

Iterative Solvers

- Symmetric, positive definite, <u>sparse</u>
 - Conjugate gradients
 - Robust, monotone convergence
 - Exact solution after n iterations
- Complexity
 - Each iteration is O(n) (<u>sparse</u>!)
 - Total complexity O(n²)

Iterative Solvers

- Numerical convergence rate
 - Depends on matrix condition
 - Preconditioning is mandatory $(\mathbf{A}^{T} = \mathbf{P}\mathbf{A}\mathbf{P}^{T})$
 - Problematic for large systems ...
- Iterative solvers are "smoothers"
 - Rapid elimination of high frequency errors
 - Impractically slow convergence for low frequencies

Multigrid Solvers

- Build a hierarchy of meshes
 - Mesh decimation
 - O(log n) levels

Multigrid Solvers

- Apply some pre-smoothing steps on finest level
 - Removes highest error frequencies
- Remaining low frequency error (r=b-Ax)
 - Corresponds to high frequencies on coarser levels
 - Iterate / solve residual system (Ae=r) on coarse level
- Propagate solution to finer level
 - Followed by post-smoothing steps
- Total O(n) complexity!

Multigrid Solvers

- MG can be quite tricky:
 - How to build an irregular hierarchy ?
 - How many levels ?
 - Special MG pre-conditioners
 - Restriction of system
 - Prolongation of coarse solution
- [Aksoylu et al. 2003], [Shi et al. 2006]

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense

A=LL[⊤]

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense
- Band-limitation can be exploited
 - Bandwidth of factors is that of A
 - More precisely: envelope is preserved

Direct Sparse Solvers

- Dense solvers do not exploit sparsity
 - Matrix factors are dense
- Band-limitation can be exploited
 - Bandwidth of factors is that of A
 - More precisely: envelope is preserved
- Complexity
 - Factorization O(nb²)
 - Back-substitution O(nb)
Natural

LLT

36k NZ

- Find symmetric permutation $\mathbf{A}' = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:
 - Cuthill-McKee algorithm

Mario Botsch, ETH Zurich

- Find symmetric permutation $\mathbf{A}^{\prime} = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:

Cuthill-McKee algorithm

- ... which minimizes the envelope fill-in of L:
 - Minimum Degree algorithm

- Find symmetric permutation $\mathbf{A}^{\prime} = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P}$
- ... which minimizes the band-width:

Cuthill-McKee algorithm

- ... which minimizes the envelope fill-in of L:
 - Minimum Degree algorithm
- ... based on recursive graph partitioning:
 - ➡ METIS algorithm

Sparse Cholesky Factorization

- Non-zero structure of L can be predicted from the non-zero structure of A
 - Build a static data structure in advance
 - Symbolic factorization
- Compute numerical entries of L based on this data structure
 - Better memory coherence
 - Numerical factorization

Sparse Cholesky Solver

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Sparse Cholesky Solver

Only right hand side changes

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Sparse Cholesky Solver

Matrix values change

- 1. Matrix re-ordering $\tilde{\mathbf{A}} = \mathbf{P}^T \mathbf{A} \mathbf{P}$
- 2. Symbolic factorization L
- 3. Numerical factorization $\tilde{\mathbf{A}} = \mathbf{L}\mathbf{L}^T$
- 4. Solve system $\mathbf{y} = \mathbf{L}^{-1} \mathbf{P}^T \mathbf{b}, \quad \mathbf{x} = \mathbf{P} \mathbf{L}^{-T} \mathbf{y}$

Overview

- Application scenarios
- Linear system solvers
- Benchmarks

Small Laplace Systems

Small Laplace Systems

Large Laplace Systems

Setup + Precomp. + 3 Solutions

Large Laplace Systems

Small Bi-Laplace Systems

Setup + Precomp. + 3 Solutions

Small Bi-Laplace Systems

Large Bi-Laplace Systems

Setup + Precomp. + 3 Solutions

Large Bi-Laplace Systems

Shi et al., Fast MG Algo

Setup + Precomp. + 3 Solutions

Shi et al., Fast MG Algo

Conclusion

- Typical geometry processing problems are
 - large but sparse
 - symmetric positive definite
- Multigrid solvers
 - Require careful implementation
 - Use it if mesh / matrix changes frequently
- Direct sparse solvers
 - Easy to use (black-box)
 - Well suited for multiple rhs, or if only matrix values change