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Application Areas

• Computer games

• Movie production
• Engineering

• Medical applications

• Architecture

• etc.
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Overview

• Present the geometry processing pipeline 
based on triangle meshes
– Fundamental concepts & recent developments
– Show interesting connection between topics
– Find more details in the course notes

• Provide source code for several examples
– http://graphics.ethz.ch/~mbotsch
– Linux, Mac, Windows
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Main Questions

• Why are triangle meshes a suitable 
representation for geometry processing?

• What are the central processing algorithms?

• How can they be implemented efficiently?
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Processing Pipeline
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Surface Representations  (9:10-9:50)
Mark Pauly
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Processing Pipeline
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Mesh Repair  (9:50-10:30)
Stephan Bischoff
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Processing Pipeline
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Mesh Quality  (11:00-11:30)
Mark Pauly
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Processing Pipeline
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Mesh Smoothing  (11:30-12:00)
Christian Rössl
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Processing Pipeline
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Mesh Parametrization  (12:00-12:30)
Christian Rössl
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Processing Pipeline
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Mesh Decimation  (14:00-14:40)
Leif Kobbelt
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Processing Pipeline
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Remeshing  (14:40-15:30)
Leif Kobbelt
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Processing Pipeline
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Mesh Editing  (16:00-16:45)
Mario Botsch
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Processing Pipeline
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Numerics (16:45-17:15)
Mario Botsch

Linear system solvers
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Processing Pipeline

14

Q & A (17:15-17:30)
All speakers

?

Discussion

...



Surface Representations
Mark Pauly
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Outline

• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures
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• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures

Outline

17



Mark Pauly - ETH Zurich

Mathematical Representations

• parametric
– range of a function
– surface patch

• implicit
– kernel of a function
– level set
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f : R2
→ R3, SΩ = f(Ω)

F : R3 → R, Sc = {p : F (p) = c}
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2D-Example: Circle

• parametric

• implicit

19

f : t !→

(

r cos(t)
r sin(t)

)

, S = f([0, 2π])

F (x, y) = x2 + y2
− r2

S = {(x, y) : F (x, y) = 0}
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• parametric

• implicit

2D-Example: Island
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f : t !→

(

r cos(t)
r sin(t)

)

, S = f([0, 2π])

F (x, y) = x2 + y2
− r2

S = {(x, y) : F (x, y) = 0}

???
???

???
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• piecewise parametric

• piecewise implicit

Approximation Quality
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f : t !→

(

r cos(t)
r sin(t)
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• piecewise parametric

• piecewise implicit

Approximation Quality
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f : t !→

(

r cos(t)
r sin(t)

)

, S = f([0, 2π])

F (x, y) = x2 + y2
− r2

S = {(x, y) : F (x, y) = 0}

???
???
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Requirements / Properties

• continuity
– interpolation / approximation

• topological consistency
– manifold-ness

• smoothness
– C0, C1, C2, ... Ck

• fairness
– curvature distribution

23

f(ui, vi) ≈ pi
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Topological Consistency

24

Mesh Repair ...
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Closed 2-Manifolds

• parametric
– disk-shaped neighborhoods
–  

• implicit
– surface of a “physical” solid
–  

25

f(Dε[u, v]) = Dδ[f(u, v)]

F (x, y, z) = c, ‖∇F (x, y, z)‖ #= 0
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Closed 2-Manifolds

• parametric
– disk-shaped neighborhoods
–  

• implicit
– surface of a “physical” solid
–  
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f(Dε[u, v]) = Dδ[f(u, v)]

F (x, y, z) = c, ‖∇F (x, y, z)‖ #= 0
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Smoothness

•    position continuity : C0

•    tangent continuity : C1

• curvature continuity : C2
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Smoothness
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Smoothness

•    position continuity : C0

•    tangent continuity : C1

• curvature continuity : C2
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Fairness

• minimum surface area

• minimum curvature
• minimum curvature variation
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• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures

Outline
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Polynomials
• computable functions

• Taylor expansion

• interpolation error (mean value theorem)

34

p(t) =
p∑

i=0

ci t
i =

p∑

i=0

c
′

i Φi(t)

p(ti) = f(ti), ti ∈ [0, h]

f(h) =
p∑

i=0

1

i!
f
(i)(0)h

i + O(hp+1)

‖f(t) − p(t)‖ =
1

(p + 1)!
f (p+1)(t∗)

p∏

i=0

(t − ti) = O(h(p+1))
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• computable functions

• Taylor expansion

• interpolation error (mean value theorem)

Polynomials
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Polynomials
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• Taylor expansion

• interpolation error (mean value theorem)
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Implicit Polynomials

• interpolation error of the function values

• approximation error of the contour

37

F (p + !p) − F (p)

‖!p‖
≈ ‖∇F (p)‖!p = λ∇F (p)

‖F (x, y, z) − P (x, y, z)‖ = O(h(p+1))
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Implicit Polynomials

• interpolation error of the function values

• approximation error of the contour

38

‖"p‖ ≈
F (p + "p) − F (p)

‖∇F (p)‖
!p = λ∇F (p)

(gradient bounded from below)

‖F (x, y, z) − P (x, y, z)‖ = O(h(p+1))
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Implicit Polynomials

39

large
gradient

small
gradient

F(x,y,z) F(x,y,z)

x,y,z x,y,z
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Polynomial Approximation

• approximation error is O(hp+1)

• improve approximation quality by
– increasing p ... higher order polynomials
– decreasing h ... smaller / more segments

• issues
– smoothness of the target data ( maxt f(p+1)(t) )
– smoothness conditions between segments
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Regularity

• parametric
– patches vs. polygons
– Euler formula:  V - E + F = 2 (1-g)
– quad meshes

• F ≈ V
• E ≈ 2V
• average valence = 4

– quasi-regular
– semi-regular

41
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Regularity

• parametric
– patches vs. polygons
– Euler formula:  V - E + F = 2 (1-g)
– triangle meshes

• F ≈ 2V
• E ≈ 3V
• average valence = 6

– quasi-regular
– semi-regular
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Regularity

• quasi regular

43

Computer Graphics Group
Mario Botsch

Remeshing Results

Original
(

1

2
, 2
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Regularity

• semi regular

44
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Regularity

• semi regular

45



Mark Pauly - ETH Zurich

Regularity

• implicit
– regular voxel grids  O(h-3)
– three color octrees

• surface-adaptive refinement  O(h-2)
• feature-adaptive refinement  O(h-1)

– irregular hierarchies
• binary space partition  O(h-1)

(BSP)
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3-Color Octree

47

12040 cells1048576 cells
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Adaptively Sampled Distance Fields

48

12040 cells 895 cells
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Binary Space Partitions

49

254 cells895 cells
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Message of the Day ...
• polygonal meshes are a good compromise

– approximation o(h2) ... error * #faces = const.
– arbitrary topology
– flexibility for piecewise smooth surfaces
– flexibility for adaptive refinement
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Message of the Day ...
• polygonal meshes are a good compromise

– approximation o(h2) ... error * #faces = const.
– arbitrary topology
– flexibility for piecewise smooth surfaces
– flexibility for adaptive refinement
– efficient rendering
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Message of the Day ...
• polygonal meshes are a good compromise

– approximation o(h2) ... error * #faces = const.
– arbitrary topology
– flexibility for piecewise smooth surfaces
– flexibility for adaptive refinement
– efficient rendering

• implicit representation can support efficient 
access to vertices, faces, ....

55
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• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures

Outline
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Distance Queries

• parametric
– find orthogonal base point

– for triangle meshes
• use kd-tree or BSP to find closest triangle
• find base point by Newton iteration

(use Phong normal field)

57

[p − f(u, v)] × n(u, v) = 0
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Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)

58

(α, β) !→ αP1 + β P2 + (1−α−β)P3

f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)
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Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)
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(α, β, γ) !→ αP1 + β P2 + γ P3

f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)

α + β + γ = 0
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Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)
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αu + β v + γ w !→ αP1 + β P2 + γ P3

f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)

α + β + γ = 0
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Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)
– normals (per face, Phong)
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f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)

N = (P2 − P1) × (P3 − P1)
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Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)
– normals (per face, Phong)
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f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)

αu + β v + γ w !→ αN1 + β N2 + γ N3



Mark Pauly - ETH Zurich

Evaluation

• parametric
– positions
– normals
– curvatures

• generalization to triangle meshes
– positions (barycentric coordinates)
– normals (per face, Phong)
– curvatures ... later

63

f(u, v)

n(u, v) = fu(u, v) × fv(u, v)

c(u, v) = C
(

fuu(u, v), fuv(u, v), fvv(u, v)
)
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Modifications

• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling

64

f (u, v) =
n∑

i=0

m∑

j=0

cijN
n
i (u) Nm

j (v)
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Modifications

• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling
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f (u, v) =
n∑

i=0

m∑

j=0

cijN
n
i (u) Nm

j (v)
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• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling

Modifications

66



Mark Pauly - ETH Zurich

• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling

Modifications

67



Mark Pauly - ETH Zurich

• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling

Modifications

68



Mark Pauly - ETH Zurich

• parameteric
– control vertices
– free-form deformation
– boundary constraint modeling

Modifications
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• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures

Outline
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Mesh Data Structures

• how to store geometry & connectivity?

• compact storage
– file formats

• efficient algorithms on meshes
– identify time-critical operations
– all vertices/edges of a face
– all incident vertices/edges/faces of a vertex

71
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Face Set (STL)

• face:
– 3 positions

72

Triangles

x11 y11 z11 x12 y12 z12 x13 y13 z13

x21 y21 z21 x22 y22 z22 x23 y23 z23

... ... ...

xF1 yF1 zF1 xF2 yF2 zF2 xF3 yF3 zF3

36 B/f = 72 B/v
no connectivity!
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Shared Vertex (OBJ, OFF)

• vertex:
– position

• face:
– vertex indices

73

Vertices

x1 y1 z1

...

xV yV zV

Triangles

v11 v12 v13

...

...

...

...

vF1 vF2 vF3

12 B/v + 12 B/f = 36 B/v
no neighborhood info
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Face-Based Connectivity

• vertex:
– position
– 1 face

• face:
– 3 vertices
– 3 face neighbors

74

64 B/v
no edges!
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Edge-Based Connectivity

• vertex
– position
– 1 edge

• edge
– 2 vertices
– 2 faces
– 4 edges

• face
– 1 edge

75

120 B/v
edge orientation?
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Halfedge-Based Connectivity

• vertex
– position
– 1 halfedge

• halfedge
– 1 vertex
– 1 face
– 1, 2, or 3 halfedges

• face
– 1 halfedge

76

96 to 144 B/v
no case distinctions

during traversal
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One-Ring Traversal
1. Start at vertex
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One-Ring Traversal
1. Start at vertex
2. Outgoing halfedge
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One-Ring Traversal
1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
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One-Ring Traversal
1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
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One-Ring Traversal
1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
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One-Ring Traversal
1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
6. Next
7. ...
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Halfedge-Based Libraries

• CGAL
– www.cgal.org

– Computational geometry
– Free for non-commercial use

• OpenMesh 

– www.openmesh.org

– Mesh processing
– Free, LGPL licence

83

http://www.openmesh.org
http://www.openmesh.org
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Outline

• (mathematical) geometry representations
– parametric vs. implicit

• approximation properties
• types of operations

– distance queries
– evaluation
– modification / deformation

• data structures
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Model Repair

• Model repair is the removal of 
artifacts from a geometric model such 
that it becomes suitable for further 
processing.

• Typically: Produce a nice, manifold 
triangle mesh
– with boundary or
– without boundary (watertight)

87
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Model Repair

• Impact e.g. in CAD/CAM:

88

Editing Repair Simulation

manual often:manu
al(!) automatic

NURBS

triangle 
mesh
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Model Repair

• Types of input
• Surface-oriented algorithms

– Filling holes in meshes [Liepa 2003]

• Volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models [Bischoff, Pavic, 

Kobbelt 2005]

• Conclusion & outlook

89
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Registered Range Images

90

• Registered range images are a set of patches 
that describe different parts of an object. 

Registration



Stephan Bischoff, RWTH Aachen

Registered Range Images

91

• Large areas of overlap are ...
– ... good for registration but
– ... bad for repair

• How to merge the patches into a 
single mesh?
– Inconsistent geometry
– Incompatible connectivities

large scale
overlaps
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Fused Range Images

92

• Fused range images are manifold 
meshes with holes and isles (i.e. 
boundaries)
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Fused Range Images

93

• Holes and isles due to obstructions in the line of 
sight of the scanner

• Identify corresponding holes and 
isles

• Fill holes
– Smoothly
– Geometry transfer/synthesis

• Avoid intersections holes and
isles
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Contoured Meshes

• Contoured meshes have been 
extracted from a volumetric 
representation (Marching Cubes)
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Contoured Meshes

• Contoured meshes are usually manifold, 
but contain topological noise
– Handles
– (Cavities)
– (Disconnected components)
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Triangulated NURBS

• Set of patches that contain small scale gaps and 
overlaps

96
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Triangulated NURBS

• Gaps and overlaps are due to triangulating a 
common patch boundary differently from both 
sides

• Issues
– Orientation
– Structure preservation

97

small scale
gaps and overlaps
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Triangle Soups

• A triangle soup is a set of triangles without 
connectivity information
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Triangle Soups

• Ok for visualization but bad for downstream 
applications that require manifold meshes

• In addition to the artifacts we already covered, ...

99

intersections

singular
vertex

complex edges

incompatible
orientations
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Not Covered ...

• Geometrical noise
➙ Smoothing (Christian)

• Badly meshed manifolds
➙ Remeshing (Leif)

100



Stephan Bischoff, RWTH Aachen

Model Repair

• Types of input

• Surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• Volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models [Bischoff, Pavic, 

Kobbelt 2005]

• Conclusion & outlook
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Surface-oriented Algorithms

• Surface oriented approaches 
explicitly identify and resolve 
artifacts

• Methods
– Snapping
– Splitting
– Stitching
– ...

102
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Surface-oriented Algorithms

• Advantages
– Fast
– Memory friendly
– Structure preserving, minimal modification of the 

input
– Conceptually easier than volumetric algorithms
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Surface-oriented Algorithms

• Problems
– Not robust

• Numerical issues ➙ use infinite precision arithmetic
• Inherent non-robustness

– No quality guarantees on the output
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Example Algorithm

• Algorithm for filling holes
    Peter Liepa
    Filling Holes in Meshes
    In Proc. Symposium on Geometry Processing 2003

• Three stages
1.Compute a coarse triangulation T to fill the hole
2.Refine the triangulation, T → T’, to match the vertex 

densities of the surrounding area
3.Smooth the triangulation T’ to match the geometry 

of the surrounding

105
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Filling Holes in Meshes - 1

• Compute a coarse triangulation T

106
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Filling Holes in Meshes - 1

• Compute a triangulation T of minimal weight w(T)

107

n vertices,
n−2 triangles

1

0

2

11
10

9

8

76

5
4

3
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Filling Holes in Meshes - 1

• Weight w(T) is a mixture of
– area(T) =     area(∆ )

– maximum dihedral angle in T

• Thus, we favour triangulations of low area and 
low normal variation

108

∆ ∈ T
∑
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c

109

1

0

2

11
10

9

8

76

5
4

3

w[2,9] = ?
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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  w[2,6] + w(∆(2,6,9)) + w[6,9],
  w[2,7] + w(∆(2,7,9)) + w[7,9],
  w[2,8] + w(∆(2,8,9))
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c
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Filling Holes in Meshes - 1

• Let w[a,c] be the minimal weight that can be 
achieved in triangulating the polygon a,a+1,...,c

• Recursion formula

• Dynamic programming leads to a O(n3) algorithm

116

w[a,c] = min w[a,b] + w(∆(a,b,c)) + w[b,c]
a<b<c

w[a−1,a+1] = w(∆(a−1,a,a+1))
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Filling Holes in Meshes - 2+3

• Refine the triangulation such that its vertex 
density matches that of the surrounding area

➡ Leif’s talk about remeshing

• Smooth the filling such that its geometry matches 
that of the surrounding area

➡ Christian’s talk about mesh smoothing
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Filling Holes in Meshes - 2+3

• Refinement and smoothing

118
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Input model Minimal triangulation Refined triangulation

Output model Output model



Stephan Bischoff, RWTH Aachen

Filling Holes in Meshes

• What problems do we encounter?
– Isles are not incorporated
– Self-intersections cannot be excluded
– Ugly fillings if boundary is too distorted
– Boundary has to be topologically smooth

120
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Model Repair

• Types of input

• Surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• Volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models [Bischoff, Pavic, 

Kobbelt 2005]

• Conclusion & outlook

121
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Volumetric Algorithms

1.Convert the input model into an intermediate 
volumetric representation ➙ loss of information

122

Signed distance field Octree BSP tree
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Volumetric Algorithms

1.Convert the input model into an intermediate 
volumetric representation ➙ loss of information

2.Discrete volumetric representation ➙ robust 
processing
– Morphological operators (dilation, erosion)
– Smoothing
– Flood-fill to determine interior/exterior
– ...
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Volumetric Algorithms

1.Convert the input model into an intermediate 
volumetric representation ➙ loss of information

2.Discrete volumetric representation ➙ robust 
processing
– Morphological operators (dilation, erosion)
– Smoothing
– Flood-fill to determine interior/exterior

3.Extract a surface from the volume ➙ The surface 
of a solid object is manifold and watertight!
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Volumetric Algorithms

• Advantages
– Fully automatic
– Few user parameters
– Robust
– Guaranteed manifold output
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Volumetric Algorithms

• Issues
– Slow and memory intensive ➙ adaptive data 

structures
– Aliasing and loss of features ➙ feature sensitive 

reconstruction (EMC, DC, Varadhan et al.)
– Loss of structure ➙ bad luck
– Large output ➙ mesh decimation (Mark’s talk)

126



Stephan Bischoff, RWTH Aachen

Example 1

• Example algorithm

 F. S. Nooruddin and G. Turk

 Simplification and Repair of Polygonal Models Using Volumetric Techniques

 IEEE Transactions on Visualization and Computer Graphics 2003

• Issues
– Classification of sample points x as being inside or 

outside of the object
– Sampling the volume
– Extracting the mesh

127
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Nooruddin and Turk’s Method

• Point classification: Layered depth images (LDI)
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Nooruddin and Turk’s Method

• Point classification: Layered depth images (LDI)
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Nooruddin and Turk’s Method

• Point classification: Layered depth images (LDI)
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Nooruddin and Turk’s Method

• Point classification: Layered depth images (LDI)
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• Point classification: Layered depth images (LDI)
1.Record n layered depth images
2.Project the query point x into each depth image
3.If any of the images classifies x as exterior, then x 

is globally classified as exterior else as interior

Nooruddin and Turk’s Method
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• Supersampling

• Filtering
– Gaussian
– Morphological filters 

(dilation, erosion)
• model simplification
• reduction of topological 

noise

• Marching Cubes

Nooruddin and Turk’s Method
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• Supersampling

• Filtering
– Gaussian
– Morphological filters 

(dilation, erosion)
• model simplification
• reduction of topological 

noise

• Marching Cubes

Nooruddin and Turk’s Method
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• Supersampling

• Filtering
– Gaussian
– Morphological filters 

(dilation, erosion)
• model simplification
• reduction of topological 

noise

• Marching Cubes

Nooruddin and Turk’s Method
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100×100×100

Input model Input model

200×200×200 300×300×300

50×50×50
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Supersampling

Raw Smoothing

Supersampling + smoothing Extended Marching Cubes

Marching Cubes
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Example 2

• Example algorithm 2

 S. Bischoff, D. Pavic, L. Kobbelt 

 Automatic Restoration of Polygon Models

 Transactions on Graphics 2005
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Overview

139

volumetric
representation

volumetric
representation

manifold
mesh

extraction

gap filling,
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interior geometryconversion
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Conversion

140

• Adaptive octree: Subdivide a cell, if it contains 
multiple planes or a boundary
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Closing Gaps

141

• Close gaps by dilating the boundary voxels
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Determine Exterior

142

• Determine the exterior by flood filling & dilation
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Extract the Surface

143

• Extract the surface by a variant of Dual 
Contouring
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Results

144
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Results
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Results
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original
1124 triangles

reconstruction
279892 triangles

(at 1000³)

decimated
7018 triangles
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Results
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without
gap filling

with
gap filling
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Results

148
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Model Repair

• Types of input

• Surface-oriented algorithms
– Filling holes in meshes [Liepa 2003]

• Volumetric algorithms
– Simplification and repair of polygonal models using 

volumetric techniques [Nooruddin and Turk 2003]
– Automatic restoration of polygon models [Bischoff, Pavic, 

Kobbelt 2005]

• Conclusion & outlook

149



Stephan Bischoff, RWTH Aachen

Conclusion

• Mesh repair to remove artifacts that arise in 
various types of input models

150
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Conclusion

• Surface-oriented algorithms ...
– fast, structure preserving
– often not robust, need user interaction and cannot 

give quality guarantees on the output

• Volumetric algorithms ...
– use an intermediate volumetric representation and 

thus produce guaranteed watertight meshes
– suffer from sampling problems (aliasing)
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Outlook
– Bøhn, Wozny: Automatic CAD Model Repair: Shell-Closure. 

 
 
 1992

– Mäkelä, Dolenc: Some Efficient Procedures for Correcting Triangulated Models. 
 
 1993

– Turk, Levoy: Zippered Polygon Meshes from Range Images. 
 
 
 1994

– Barequet, Sharir: Filling Gaps in the Boundary of a Polyhedron. 
 
 
 1995

– Curless, Levoy: A Volumetric Method for Building Complex Models from Range Images.
 
 1996 

– Barequet, Kumar: Repairing CAD Models. 
 
 
 
 
 1997

– Murali, Funkhouser. Consistent Solid and Boundary Representations.
 
 
 1997

– Guéziec, Taubin, Lazarus, Horn: Cutting and Stitching: [...] 
 
 
 
 2001

– Guskov, Wood: Topological Noise Removal.
 
 
 
 
 2001
– Borodin, Novotni, Klein: Progressive Gap Closing for Mesh Repairing.
 
 
 2002

– Davis, Marschner, Garr, Levoy: Filling Holes in Complex Surfaces Using Volumetric Diffusion.
 2002

– Liepa: Filling Holes in Meshes.
 
 
 
 
 
 2003

– Greß, Klein: Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-Trees.
 2003

– Nooruddin, Turk: Simplification and Repair of Polygonal Models Using Volumetric Techniques.
 2003

– Borodin, Zachmann Klein: Consistent Normal Orientation for Polygonal Meshes.
 
 2004

– Ju: Robust Repair of Polygonal Models.
 
 
 
 
 2004

– Bischoff, Pavic, Kobbelt: Automatic Restoration of Polygon Models.
 
 
 2005

– Podolak, Rusinkiewicz: Atomic Volumes for Mesh Completion.
 
 
 2005

– Shen, O'Brien, Shewchuk: Interpolating and Approximating Implicit Surfaces from Polygon Soup.
 2005
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• Volumetric
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Outlook

• My own (biased!) opinion: Hybrid algorithms that 
are ...
– ... robust and
– ... structure preserving

• Bischoff, Kobbelt: Structure Preserving CAD Model Repair. 2005
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Mark Pauly - ETH Zurich

Mesh Optimization

• Smoothness
➡ Mesh smoothing

• Adaptive tessellation
➡ Mesh decimation

• Triangle shape
➡ Repair, remeshing
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Outline

• Differential Geometry
– Curvature
– Fundamental Forms

• Laplace-Beltrami Operator
– Discretizations

• Mesh Quality Criteria
– Visual inspection
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Differential Geometry

• Continuous surface

• Normal vector

– assuming regular parameterization, i.e.

157

x(u, v) =





x(u, v)
y(u, v)
z(u, v)



 , (u, v) ∈ IR2

n = (xu × xv)/‖xu × xv‖

xu × xv "= 0
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• Normal Curvature

Differential Geometry

158

n

p

n =

xu × xv

‖xu × xv‖

t

xu xv

t = cos φ
xu

‖xu‖
+ sinφ

xv

‖xv‖
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• Normal Curvature

Differential Geometry

159

t

n

p
c

n =

xu × xv

‖xu × xv‖

t = cos φ
xu

‖xu‖
+ sinφ

xv

‖xv‖
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Differential Geometry

• Principal Curvatures
– maximum curvature                                                       

– minimum curvature

• Euler Theorem: 

• Mean Curvature

• Gaussian Curvature

160

K = κ1 · κ2

κn(t̄) = κn(φ) = κ1 cos2 φ + κ2 sin2 φ

H =
κ1 + κ2

2
=

1

2π

∫ 2π

0

κn(φ)dφ

κ1 = max
φ

κn(φ)

κ2 = min
φ

κn(φ)
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κ2 = min
φ

κn(φ)κ1 = max
φ

κn(φ)

Differential Geometry

• Curvatures

161

H =
1

2
(κ1 + κ2) K = κ1 · κ2
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Differential Geometry

• Normal curvature is defined as curvature of the 
normal curve                  at a point 

• Can be expressed in terms of fundamental forms 
as

162

t

n

p
c

p ∈ cc ∈ x(u, v)

κn(t̄) =
t̄T II t̄

t̄T I t̄
=

ea2 + 2fab + gb2

Ea2 + 2Fab + Gb2

t = axu + bxv
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Differential Geometry

• First fundamental form

• Second fundamental form

163

I =

[

E F

F G

]

:=

[

xT
u xu xT

u xv

xT
u xv xT

v xv

]

II =

[

e f
f g

]

:=

[

xT
uun xT

uvn

xT
uvn xT

vvn

]
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Differential Geometry

• I and II allow to measure
– length, angles, area, curvature
– arc element

– area element

164

ds
2

= Edu
2

+ 2Fdudv + Gdv
2

dA =

√

EG − F 2dudv
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Differential Geometry

• Intrinsic geometry: Properties of the surface that 
only depend on the first fundamental form
– length
– angles
– Gaussian curvature (Theorema Egregium)

165

K = lim
r→0

6πr − 3C(r)

πr3
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• A point x on the surface is called
– elliptic, if K > 0
– parabolic, if K = 0
– hyperbolic, if K < 0
– umbilical, if 

• Developable surface ⇔ K = 0

Differential Geometry

166

κ1 = κ2
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Laplace Operator

167

∆f = div∇f =
∑

i

∂2f

∂x2
i

Cartesian
coordinates

divergence
operator

gradient
operator

Laplace
operator

function in 
Euclidean space

2nd partial
derivatives
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Laplace-Beltrami Operator

• Extension of Laplace to functions on manifolds

168

divergence
operator

gradient
operator

Laplace-
Beltrami

function on
manifold 

∆Sf = divS ∇Sf

S
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Laplace-Beltrami Operator

• Extension of Laplace to functions on manifolds

169

surface
normal

mean
curvature

divergence
operator

gradient
operator

Laplace-
Beltrami

coordinate
function 

∆Sx = divS ∇Sx = −2Hn
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Discrete Differential Operators

• Assumption: Meshes are piecewise linear 
approximations of smooth surfaces

• Approach: Approximate differential properties at 
point x as spatial average over local mesh 
neighborhood N(x), where typically
– x = mesh vertex
– N(x) = n-ring neighborhood or local geodesic ball

170
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Discrete Normal Curvature

• Normal curvature along tangent direction

171

ni

pi

pj

pi

pj

κij = 2
(pj − pi)ni

‖pj − pi‖2



Mark Pauly - ETH Zurich

Discrete Laplace-Beltrami

• Uniform discretization

– depends only on connectivity → simple and 
efficient

– bad approximation for irregular triangulations

172

∆unif (v) :=
1

|N1 (v)|

∑

vi∈N1(v)

(f (vi) − f (v))
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Discrete Laplace-Beltrami

• Cotangent formula

173

∆Sf(v) :=
2

A(v)

∑

vi∈N1(v)

(cot αi + cot βi) (f(vi) − f(v))

v

vi vi

v A(v) v

vi

αi

βi
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Discrete Laplace-Beltrami

• Cotangent formula

• Problems
– negative weights
– depends on triangulation

174

∆Sf(v) :=
2

A(v)

∑

vi∈N1(v)

(cot αi + cot βi) (f(vi) − f(v))
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Discrete Curvatures

• Mean curvature

• Gaussian curvature

• Principal curvatures

175

G = (2π −

∑

j

θj)/A

A

θj

κ1 = H +

√

H2
− G κ2 = H −

√

H2
− G

H = ‖∆Sx‖
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Links & Literature

• P. Alliez: Estimating Curvature 
Tensors on Triangle Meshes 
(source code)
– http://www-sop.inria.fr/

geometrica/team/Pierre.Alliez/
demos/curvature/

176

principal directions

http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/demos/curvature/
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Links & Literature

• Grinspun et al.: Computing discrete shape 
operators on general meshes, Eurographics 2006

177
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Mesh Quality

• Smoothness
– continuous differentiability of a surface (Ck)

• Fairness
– aesthetic measure of “well-shapedness”
– principle of simplest shape
– fairness measures from physical models

178

∫
S

κ
2

1 + κ
2

2 dA

∫

S

(

∂κ1

∂t1

)2

+

(

∂κ2

∂t2

)2

dA

strain energy variation of curvature
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading

179

Flat
 Shading

Gouraud
 Shading

Phong
 Shading
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading

180
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading
– Reflection lines
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading
– Reflection lines

• differentiability one order lower than surface
• can be efficiently computed using graphics hardware

182

C
0

C
1
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading
– Reflection lines
– Curvature

• Mean curvature

183
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Mesh Quality

• Visual inspection of “sensitive” attributes
– Specular shading
– Reflection lines
– Curvature

• Mean curvature
• Gauss curvature

184
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• Smoothness
– Low geometric noise

Mesh Quality Criteria

185
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Mesh Quality Criteria

• Smoothness
– Low geometric noise

• Adaptive tessellation
– Low complexity

186
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Mesh Quality Criteria

• Smoothness
– Low geometric noise

• Adaptive tessellation
– Low complexity

• Triangle shape
– Numerical robustness

187
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• Circum radius / shortest edge

• Needles and caps

Triangle Shape Analysis

188

Needle Cap

r1

e1
r2

e2
r1

e1

<
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Mesh Quality Criteria

• Smoothness
– Low geometric noise

• Adaptive tessellation
– Low complexity

• Triangle shape
– Numerical robustness

• Feature preservation
– Low normal noise

189
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Normal Noise Analysis

190
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Mesh Optimization

• Smoothness
➡ Mesh smoothing

• Adaptive tessellation
➡ Mesh decimation

• Triangle shape
➡ Repair, remeshing

191



Surface Smoothing

Christian Rössl
INRIA Sophia-Antipolis
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Outline

•Motivation

• Smoothing as Diffusion

• Smoothing as Energy Minimization

• Alternative Approaches
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Motivation

• Filter out high frequency components for noise 
removal

Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and 
Curvature Flow, SIGGRAPH 99
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Motivation

• Advanced Filtering / Signal Processing

Guskow, Sweldens, Schroeder: Multiresolution Signal Processing for Meshes, SIGGRAPH 99

Pauly, Kobbelt, Gross: Point-Based Multi-Scale Surface Representation, ACM TOG 2006
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Motivation

• Fair Surface Design
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Outline

•Motivation

• Smoothing as Diffusion
• Spectral Analysis
• Laplacian Smoothing
• Curvature Flow
• Implementation

• Smoothing as Energy Minimization

• Alternative Approaches
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Filter Design

• Assume high frequency components = NOISE

• Low-pass filter

spatial domain frequency domain

LOW PASS
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Filter Design

• Assume high frequency components = NOISE

• Low-pass filter

reconstruction = filtered signal
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Filter Design

• Assume high frequency components = NOISE

• Low-pass filter
– Damps high frequencies (ideal: cut off)
–  e.g., by
convolution with Gaussian (spatial domain)

       =
 multiply with Gaussian (frequency domain)

• Fourier Transform
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Spectral Analysis and Filter Design

•Univariate: Fourier Analysis

•Example: Low-pass filter

–Damp (ideally cut off high frequencies)
–Multiply F with Gaussian (= convolve f with Gaussian)

•Are there "geometric frequencies"?

spatial domainfrequency domain
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Spectral Analysis and Filter Design

•Univariate: Fourier Analysis

•Generalization

–          are Eigenfunctions of the Laplacian
–  Use them as basis functions for geometry
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Spectral Analysis

• Eigenvalues of Laplacian  ≅  frequencies

• Low-pass filter ≅  

 reconstruction from eigenvectors associated

 with low frequencies

• Decomposition in frequency bands is used for 
mesh deformation.

• Too expensive for direct use in practice!

 Cannot compute eigenvalues efficiently

• For smoothing apply diffusion…

 (similar to convolution vs. multiplication)
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Outline

•Motivation

• Smoothing as Diffusion
• Spectral Analysis
• Laplacian Smoothing
• Curvature Flow
• Implementation

• Smoothing as Energy Minimization

• Alternative Approaches
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Diffusion

• Diffusion equation

constant scalar

-41 1

1

1
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Laplacian Smoothing

• Discretization of diffusion equation

• Leads to simple update rule
– Iterate

– until convergence
explicit Euler integration
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example
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A Simple Example

Flow of vertex positions
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Laplacian Smoothing

0 Iterations 5 Iterations 20 Iterations
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Outline

• Motivation

• Smoothing as Diffusion

• Spectral Analysis
• Laplacian Smoothing
• Curvature Flow
• Implementation

• Smoothing as Energy Minimization

• Alternative Approaches
• Anisotropic Smoothing
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Curvature Flow

• Curvature is independent of parameterization

• Flow equation

•We have

mean curvature H

surface normal n

Laplace-Beltrami operator
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Curvature Flow

•Mean curvature Flow

– Use discrete Laplace-Beltrami operator (cot weights)

– Higher order flows

• Compare to uniform discretization of Laplacian

Umbrella

Laplace-Beltrami

tangential drift

vertices move only
along normal
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Comparison

Original Umbrella Laplace-Beltrami
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Outline

•Motivation

• Smoothing as Diffusion
• Spectral Analysis
• Laplacian Smoothing
• Curvature Flow
• Implementation

• Smoothing as Energy Minimization

• Alternative Approaches
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Integration

• Find numerical solution of diffusion equation

• Explicit integration same as before
in matrix form

matrix formulation of update rule
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Integration

• Find numerical solution of diffusion equation

• Explicit integration

– Jacobi / Gauss-Seidel iterations
– Requires timestep 
 
 
 for stability

• Implicit integration

– Requires solution of (sparse) linear system
– Chose 
      arbitrarily (~ # explicit integration steps)

same as before
in matrix form
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Outline

•Motivation

• Smoothing as Diffusion

• Smoothing as Energy Minimization

• Membrane energy

• Thin-plate energy

• Alternative Approaches
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Energy Minimization

• Penalize "unaesthetic behavior"

•Measure fairness
– Principle of the simplest shape

– Independent of parameterization (tessellation)
– Often physical interpretation

•Minimize energy functional
– Examples: membrane / thin plate energy
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Energy Minimization

•Membrane Energy

– Euler-Lagrange PDE

parameterization

+ boundary conditions
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Energy Minimization

• Thin Plate Energy

– No parameter dependence
– Non-linear functional

– Find linear approximation…
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Energy Minimization

• Thin Plate Energy

– Euler-Lagrange PDE

curvatures ~ 2nd order partials
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Comparison

Membrane
Thin Plate
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Outline

•Motivation

• Smoothing as Diffusion

• Smoothing as Energy Minimization

• Alternative Approaches
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Alternative Approaches

• Anisotropic Diffusion
– Data-dependent
– Non-linear

• Normal filtering
– Smooth normal field and reconstruct (mesh editing)

• Non-linear PDE (e.g.,
 
 
   )
– Avoid parameter dependence for fair surface design 

• Bilateral Filtering

diffusion tensor
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Example of Bilateral Filtering

Jones, Durand, Desbrun:  Non-iterative feature preserving mesh smoothing, SIGGRAPH 2003
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Applications

• Hole-filling
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Applications

• Fair surface design
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Applications

• Noise removal
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Applications

• Noise removal
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Literature
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Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation

• Reducing Area Distortion

• Alternative Domains
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Surface Parameterization
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Surface Parameterization
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Surface Parameterization
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Motivation

•Texture mapping

Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic 
texture atlas generation, SIGGRAPH 2002
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Motivation

•Many operations are simpler on planar domain

Lévy: Dual Domain Exrapolation, SIGGRAPH 2003
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Motivation

• Exploit regular structure in domain 

Gu, Gortler, Hoppe: Geometry Images, SIGGRAPH 2002
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Outline

•Motivation

• Objectives and Discrete Mappings
• Characterization of mappings
• Discrete mappings

• Angle Preservation

• Reducing Area Distortion

• Alternative Domains
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Surface Parameterization
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Surface Parameterization

f

X U

Jacobian
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Surface Parameterization

f

X U

dX = J dU
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Surface Parameterization

f

X U

dX = J dU

||dX ||2 = dU JTJ dU{ First Fundamental Form
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• By first fundamental form I
– Eigenvalues λ1,2 of I 

– Singular values σ1,2 of J (σi
2= λi)

• Isometric

– I = Id,   λ1= λ2=1

• Conformal

– I = µ Id ,  λ1 / λ2=1

• Equiareal

– det I = 1,  λ1 λ2=1

Characterization of Mappings

angle preserving

area preserving
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Piecewise Linear Maps

•Mapping = 2D mesh with same connectivity

f

X U
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Objectives

• Isometric maps are rare

•Minimize distortion w.r.t. a certain measure
– Validity (bijective map)

– Boundary

– Domain

– Numerical solution

triangle flip

e.g.,spherical

linear / non-linear?

fixed / free?
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Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation
• Discrete Harmonic Maps
• Discrete Conformal Maps

• Reducing Area Distortion

• Alternative Domains
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Discrete Harmonic Maps

• f is harmonic if 

• Solve Laplace equation

• In 3D: "fix planar boundary and smooth"

u and v are  harmonic

Dirichlet boundary conditions
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Discrete Harmonic Maps

• f is harmonic if 

• Solve Laplace equation
• Yields linear system

• Convex combination maps

– Normalization

– Positivity

(again)
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Convex Combination Maps

• Every (interior) planar vertex is a 
convex combination of its neighbors

• Guarantees validity if boundary is mapped to a
convex polygon (e.g., rectangle, circle)

•Weights
– Uniform (barycentric mapping)

– Shape preserving [Floater 1997]
– Mean Value Coordinates [Floater 2003]

• Use mean value property of harmonic functions

Reproduction of 
planar meshes



Christian Rössl, INRIA 256

Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation
• Discrete Harmonic Maps
• Discrete Conformal Maps

• Reducing Area Distortion

• Alternative Domains
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Conformal Maps

• Planar conformal mappings
 

satisfy the Cauchy-Riemann conditions

and
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Conformal Maps

• Planar conformal mappings
 

satisfy the Cauchy-Riemann conditions

• Differentiating once more by x and y yields

•  

and

and ⇒

and similar

conformal ⇒ harmonic
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Discrete Conformal Maps

• Planar conformal mappings
 

satisfy the Cauchy-Riemann conditions

• In general, there are no conformal mappings for 
piecewise linear functions!

and
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Discrete Conformal Maps

• Planar conformal mappings
 

satisfy the Cauchy-Riemann conditions

• Conformal energy (per triangle T)

•Minimize

and

→
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Discrete Conformal Maps

• Least-squares conformal maps [Lévy et al. 2002]

• Satisfy Cauchy-Riemann conditions in 
least-squares sense

• Leads to solution of linear system

• Alternative formulation leads to same solution…

where→
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Discrete Conformal Maps

• Same solution is obtained for

cotangent weights

Neumann boundary conditions

[Desbrun et al. 2002]Discrete Conformal Maps

+ fixed vertices
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Discrete Conformal Maps
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Discrete Conformal Maps

• Free boundary depends on choice of fixed 
vertices (>1)

Non-linear ABF
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Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation

• Reducing Area Distortion
• Non-linear optimization
• Additional cuts

• Alternative Domains
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And how about area distortion?
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Reducing Area Distortion 

• Energy minimization based on
– MIPS [Hormann & Greiner 2000]

–   modification [Degener et al. 2003]

– "Stretch" [Sander et al. 2001]

–   modification [Sorkine et al. 2002]

or
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Examples

Stretch metric minimization

Using [Yoshizawa et. al 2004]

"angles and area are competing"

[Zayer et. al 2005]

→
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Reducing Area Distortion

• Introduce cuts  area distortion vs. continuity

• Cuts are often unavoidable (e.g., open sphere)
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Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation
• Discrete Harmonic Maps
• Discrete Conformal Maps

• Reducing Area Distortion

• Alternative Domains



Christian Rössl, INRIA 271

Summary

• Isometric mappings are rare
– Angle preservation vs. area preservation
– There is no perfect solution.

• Validity

• Boundary

• Linear / non-linear methods

• Domain
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Outline

•Motivation

• Objectives and Discrete Mappings
• Angle Preservation

• Reducing Area Distortion

• Alternative Domains



Mesh Decimation



Applications

• Oversampled 3D scan data

275

~150k triangles ~80k triangles



Applications

• Overtessellation: E.g. iso-surface extraction

276



Applications

• Multi-resolution hierarchies for 
– efficient geometry processing
– level-of-detail (LOD) rendering

277
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Applications

• Adaptation to hardware capabilities



Size-Quality Tradeoff

279

error

size



Outline

• applications

• problem statement
• mesh decimation schemes

– vertex clustering
– incremental decimation
– out-of-core

280
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Problem Statement

• Given:  

• Find:                      such that

1.                          and                    is minimal, or

2.                            and         is minimal

M = (V,F)

M
′ = (V ′

,F
′)

|V ′| = n < |V|

|V ′|

‖M−M′‖

‖M−M′‖ < ε

M M
′
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Problem Statement

• Given:  

• Find:                      such that

1.                          and                    is minimal, or

2.                            and         is minimal

M = (V,F)

M
′ = (V ′

,F
′)

|V ′| = n < |V|

|V ′|

‖M−M′‖

‖M−M′‖ < ε

combinatorial optimization is NP-hard!

→ find approximate-optimal solution
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Problem Statement

• Given:  

• Find:                      such that

1.                          and                    is minimal, or

2.                            and         is minimal

• Take additional fairness criteria into account
– normal deviation, triangle shape, color etc.

M = (V,F)

M
′ = (V ′

,F
′)

|V ′| = n < |V|

|V ′|

‖M−M′‖

‖M−M′‖ < ε



Outline

• applications

• problem statement
• mesh decimation schemes

– vertex clustering
– incremental decimation
– out-of-core

284



285

Vertex Clustering

• cluster generation

• computing a representative
• mesh generation

• topology changes
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Vertex Clustering

• cluster generation
– uniform 3D grid
– map vertices to cluster cells

• computing a representative

• mesh generation

• topology changes
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Vertex Clustering

• cluster generation
– hierarchical approach
– top-down or bottom-up

• computing a representative

• mesh generation

• topology changes



288

Vertex Clustering

• cluster generation

• computing a representative
– average/median vertex position
– error quadrics

• mesh generation

• topology changes
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Computing a Representative

average vertex position → low-pass filter
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Computing a Representative

median vertex position → sub-sampling
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Computing a Representative

error quadrics



Error Quadrics

• squared distance to plane

292

p = (x, y, z, 1)T , q = (a, b, c, d)T

Qq =









a2 ab ac ad
ab b2 bc bd
ac bc b2 cd
ad bd cd d2









dist(q, p)2 = (qT p)2 = pT q qT p = pT Qq p



• sum of squared distances to triangle planes qi

• point that minimizes the squared error

Error Quadrics
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∑

i

dist(qi, p)2 = pT
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∑
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• sum of squared distances to triangle planes qi

• point that minimizes the squared error

Error Quadrics
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∑

i

dist(qi, p)2 = pT

(

∑

i

Qqi

)

p
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• sum of squared distances to triangle planes qi

• point that minimizes the squared error

Error Quadrics
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∑

i

dist(qi, p)2 = pT

(

∑

i

Qqi

)

p

(

∑

i

ni nT

i

)

p∗ = −

∑

i

ni di



• sum of squared distances to triangle planes qi

• point that minimizes the squared error

Error Quadrics
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∑

i

dist(qi, p)2 = pT

(

∑

i

Qqi

)

p

Q =

(

A b
bT c

)

A p∗ = −b



error quadricaverage median

Comparison
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Vertex Clustering

• cluster generation

• computing a representative
• mesh generation

– clusters  p ⇔ {p0,...,pn},  q ⇔ {q0,...,qm} 
– connect (p,q) if there was an edge (pi,qj)

• topology changes
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Vertex Clustering

• cluster generation

• computing a representative
• mesh generation

• topology changes
– different sheets may

pass through one cell
– not manifold



Outline

• applications

• problem statement
• mesh decimation schemes

– vertex clustering
– incremental decimation
– out-of-core

300



Incremental Decimation

• general setup

• decimation operators
• error metrics

• fairness criteria

• topology changes

301
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General Setup

Repeat:

 pick mesh region

 apply decimation operator

Until no further reduction possible
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Greedy Optimization
For each region
 evaluate quality after decimation
 enqeue(quality, region)

Repeat:
 pick best mesh region 
 apply decimation operator
 update queue
Until no further reduction possible
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Global Error Control
For each region
 evaluate quality after decimation
 enqeue(quality, region)

Repeat:
 pick best mesh region
 if error < ε 
  apply decimation operator
  update queue
Until no further reduction possible



Incremental Decimation

• general setup

• decimation operators
• error metrics

• fairness criteria

• topology changes

305
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Decimation Operators

• what is a "region" ?

• what are the DOF for re-triangulation?
• classification

– topology-changing vs. topology-preserving
– subsampling vs. filtering
– inverse operation → progressive meshes
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Vertex Removal

Select a vertex to 
be eliminated
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Vertex Removal

Select all triangles 
adjacent to this vertex
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Vertex Removal

Remove the n 
selected triangles, 
creating the hole
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Vertex Removal

Fill the hole with 
(n-2) triangles



311

Decimation Operators

• remove vertex

• re-triangulate hole
– combinatorial DOFs
– sub-sampling

Vertex Removal

Vertex Insertion
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Decimation Operators

• merge two adjacent triangles

• define new vertex position
– continuous DOF
– filtering

Vertex Split

Edge Collapse
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Decimation Operators

• collapse edge into one of its end points
– special case of vertex removal
– special case of edge collapse

• no DOFs
– one operator per half-edge
– sub-sampling!

Restricted Vertex Split

Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse 
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Half-Edge Collapse



317

Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse
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Half-Edge Collapse



Incremental Decimation

• general setup

• decimation operators
• error metrics

• fairness criteria

• topology changes

324



• local distance to mesh [Schroeder et al. 92]
– compute average plane
– no comparison to original geometry

325

Local Error Metrics



• simplification envelopes    [Cohen et al. 96]
– compute (non-intersecting) offset surfaces
– simplification guarantees to stay within bounds

326

Global Error Metrics



• (two-sided) Hausdorff distance:
maximum geometric deviation between two shapes
– in general d(A,B) ≠ d(B,A)
– computationally involved

327

Global Error Metrics

A

B

d(A,B)

d(B,A)
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Global Error Metrics

• laser scan data:
one-sided Hausdorff distance is sufficient
– >  from original vertices to current surface
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Global Error Metrics

• error quadrics [Garland, Heckbert 97]
– squared distance to triangle planes at vertices
– no guaranteed bound on true error

p1 p2

solve v3
TQ3v3 = min

Q3 = Q1+Q2

Q2

Q1

pi
TQipi = 0,  i={1,2}

< ε ? → ok

v3
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Complexity

• n = number of vertices

• priority queue for half-edges
– 6n * log ( 6n )   vs.   n * log(n)

• global error control
– per vertex O(1+log(n))  ⇒ overall O(n log(n))

(decimate to x % triangles)
– per vertex O(n+log(n)) ⇒ overall O(n2)

(decimate to x triangles)



Priority Queue Updating
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Incremental Decimation

• general setup

• decimation operators
• error metrics

• fairness criteria

• topology changes

332



Greedy Control

• prescribed approximation tolerance ε

• so far: minimally increase error

• now: use error as binary criterion

• other criteria determine decimation order

333



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...

334

Fairness Criteria

r1

e1

r2

r1

e1

<
r2

e2

e2



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...
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Fairness Criteria



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...
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Fairness Criteria



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...
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Fairness Criteria



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...
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Fairness Criteria



• rate quality after decimation
– triangle shape
– dihedral angles
– valence balance
– color differences
– ...
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Fairness Criteria
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Fairness Criteria

• rate quality after decimation
– triangle shape
– dihedral angles
– valance balance
– color differences
– ...



Incremental Decimation

• general setup

• decimation operators
• error metrics

• fairness criteria

• topology changes

341



• merge vertices across non-edges
– changes mesh topology
– need spatial neighborhood information
– generates non-manifold meshes

342

Topology Changes ?

Vertex Contraction

Vertex Separation



• merge vertices across non-edges
– changes mesh topology
– need spatial neighborhood information
– generates non-manifold meshes

343

Topology Changes ?

manifold non-manifold 



Comparison

• vertex clustering
– fast, but difficult to control target complexity
– topology changes, non-manifold meshes
– global error bound, but often far from optimal

• incremental decimation with quadric error metrics 
– good trade-off between mesh quality and speed
– explicit control over mesh topology
– restricting normal deviation improves mesh quality

344



Outline

• applications

• problem statement
• mesh decimation schemes

– vertex clustering
– incremental decimation
– out-of-core

345



Out-of-core Decimation

• handle extremely large data sets that
do not fit into main memory

• key idea: avoid random access to the
mesh data structure during simplification

• examples
– Garland, Shaffer: A Multiphase Approach to Efficient 

Surface Simplification, IEEE Visualization 2002
– Wu, Kobbelt: A Stream Algorithm for the Decimation 

of Massive Meshes, Graphics Interface 2003
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Multiphase Simplification

1. phase: out-of-core clustering
- compute accumulated error quadrics and vertex 

representative for each cell of uniform voxel grid

2. phase: in-core incremental simplification
- lookup initial quadrics in voxel grid
- iteratively contract edge of smallest cost

347



Multiphase Simplification

348

Original
(8 million triangles)

Uniform clustering
(1157 triangles)

Multiphase
(1000 triangles)

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002



Multiphase Simplification

349

Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002



Out-of-core Decimation

• streaming approach based on edge collapse 
operations using QEM

• pre-sorted input stream allows fixed-sized
active working set

350

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003



Out-of-core Decimation

• randomized multiple choice optimization
avoids global heap data structure

• memory requirements independent from
input AND output complexity

351

Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003



Remeshing

Leif Kobbelt
RWTH Aachen



Leif Kobbelt, RWTH Aachen

Remeshing Cookbook

• problem definition
– input, output

• basic ingredients
– general requirements
– types of operations

• a selection of recipes
– various representative examples

of known remeshing schemes

353



Leif Kobbelt, RWTH Aachen

• problem definition
– input, output

• basic ingredients
– general requirements
– types of operations

• a selection of recipes
– various representative examples

of known remeshing schemes

Remeshing Cookbook

354



Leif Kobbelt, RWTH Aachen

Problem Definition

• input M
– polygon (triangle) mesh
– properly defined surface

• 2-manifold
• with / without boundary
• homeomorphic to a disk (?)

(pre-segmented)
– generate new samples
– access to geodesic

neighborhood
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Leif Kobbelt, RWTH Aachen

Problem Definition

• output R
– approximation to the input data M

• prescribed (Hausdorff) error tolerance ε
• target complexity / target edge length δ

– better vertex distribution
• uniform vs. adaptive

– shape of individual faces
– local and global alignment
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Leif Kobbelt, RWTH Aachen

Problem Definition

• output R
– approximation to the input data M

• prescribed (Hausdorff) error tolerance ε
• target complexity / target edge length δ

– better vertex distribution
• uniform vs. adaptive

– shape of individual faces
– local and global alignment
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Leif Kobbelt, RWTH Aachen

Two Fundamental Approaches
• surface oriented

– operate directly of the surface
– treat surface as a set of points / polygons in space
– efficient for high resolution remeshing

(locally flat surface)

• parametrization based
– map to 2D domain / 2D problem
– computationally more expensive (?)
– works even for coarse resolution remeshing

(features might be lost)
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Surface Oriented
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Surface Oriented
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Surface Oriented
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Parametrization Based
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Parametrization Based
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Parametrization Based

366



Leif Kobbelt, RWTH Aachen

Parametrization Based
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• problem definition
– input, output

• basic ingredients
– general requirements
– types of operations

• a selection of recipes
– various representative examples

of known remeshing schemes

Remeshing Cookbook
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Basic Ingredients
• parametrization

– global vs. local

• vertex density control
– uniform vs. adaptive
– isotropic vs. anisotropic

• local alignment
– optimal shape approximation

• global alignment
– feature sensitivity
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Alignment and Approximation
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Alignment and Approximation
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Alignment and Approximation
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Alignment and Approximation
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Basic Ingredients
• parametrization

– global vs. local

• vertex density control
– uniform vs. adaptive
– isotropic vs. anisotropic

• local alignment
– optimal shape approximation

• global alignment
– feature sensitivity
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Mesh Parametrization

• global parametrization
– homeomorphic to a disk
– harmonic maps with fixed boundary conditions
– least squares conformal maps with free boundaries
– computationally expensive for large meshes
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Mesh Parametrization

• global parametrization
– homeomorphic to a disk
– harmonic maps with fixed boundary conditions
– least squares conformal maps with free boundaries
– computationally expensive for large meshes
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Mesh Parametrization

• global parametrization

• piecewise parametrization
– pre-segmentation into disjoint patches
– compatibility conditions at patch boundaries
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Mesh Parametrization

• global parametrization

• piecewise parametrization
• local neighborhood parametrization

– unfolding a geodesic disk around a vertex / face
– neighboring regions may overlap
– efficiency by caching
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Vertex Density Control
• uniform vs. adaptive

– curvature-dependent or general sizing map

• isotropic vs. anisotropic
– 2nd fundamental form

(error quadrics, shape operator)

• (area weighted) random scatter

• local relaxation
– particle systems
– centroidal Voronoi diagrams
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Uniform vs. Adaptive
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Anisotropy

• differential geometry
– 2nd fundamental form defines a local orthogonal frame

(min- / max-curvature directions and the normal)
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Anisotropy

• differential geometry
– 2nd fundamental form defines a local orthogonal frame

(min- / max-curvature directions and the normal)

• discretization
– eigenbasis of a symmetric matrix
– shape operator

(weighted sum of edge projections)
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Shape Operator

• projection to edge:
(minimum curvature direction) 

• weighted sum of edge-projection operators

383
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Shape Operator

• projection to edge:
(minimum curvature direction) 

• weighted sum of edge-projection operators
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Shape Operator

• projection to edge:
(minimum curvature direction) 

• weighted sum of edge-projection operators

• eigenvector to largest eigenvalue:
                                          min-curvature direction

• max-curvature direction: 
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Random Scatter

• generate random samples for each triangle
– n ~ area * density

– prob = area * density * 

• compensate area distortion when sampling
in the parameter domain
– distortion = 3D area / 2D area

• no anisotropy
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Local Relaxation

• particle systems
– maximum distance (repelling force)
– curvature dependent
– anisotropic forces

• tangential Laplace
– minimum distance (attracting force)

• centroidal Voronoi diagrams
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Tangential Laplace

• local “spring” relaxation
– uniform Laplacian smoothing
– barycenter of one-ring neighbors

388
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Tangential Laplace

• local “spring” relaxation
– uniform Laplacian smoothing
– barycenter of one-ring neighbors

• keep vertex on the surface
– restrict movement to tangent plane
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Centroidal Voronoi Diagrams
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18PierreAlliez,GiulianaUcelli,CraigGotsman,andMarcoAttene

thengenerateadistributionofenergywhichgloballymatchesthelocalsizewhile

achievingisotropicsampling.

Fig.13.Lloydrelaxation:Asetofgenerators(blackdots)arerandomlygenerated(thecentroid

ofeachVoronoicellisdepictedasaredcircle).EachiterationoftheLloydalgorithmmoves

eachgeneratortoitsassociatedcentroid,andupdatestheVoronoidiagram.

Alliezetal.[AdVDI03],andSurazhskyetal.[SAG03]proposedtworemesh-

ingtechniquesbasedonLloydrelaxation.Thefirstusesaglobalconformalplanar

parameterizationandthenappliesrelaxationintheparameterspaceusingadensity

functiondesignedtocompensatefortheareadistortionduetoflattening(Fig.14).To

alleviatethenumericalissuesforhighisoperimetricdistortion,aswellastheartifi-

cialcutsrequiredforclosedorgenusmodels,thesecondapproachappliestheLloyd

relaxationprocedureonasetoflocaloverlappingparameterizations(Fig.15).More

recently,theLloyd-basedisotropicremeshingapproachhasbeenextendedintwodi-

rections:oneusesthegeodesicdistanceontrianglemeshestogenerateacentroidal

geodesic-basedVoronoidiagram[PC04],whiletheotherisanefficientdiscreteana-

logoftheLloydrelaxationappliedontheinputmeshtriangles[VC04].

Discussion

Asexpected,relaxation-basedsampleplacementmethodsachievebetterresultsthan

greedymethods,atthepriceoflengthiercomputations.Nevertheless,theonlymeth-

odsthatprovidecertifiedboundsontheshapeofelementsarethegreedyapproaches

basedonDelaunayrefinement.TheLloyd-basedisotropicsamplingmethodcom-

binedwithlocaloverlappingparameterizationhasbeensuccessfulatisotropically

distributingapointsetinaccordancewithadensityfunction[SAG03].Twore-

mainingchallengesrelatedtotheLloydrelaxationmethodaretoproveortogive

sufficientconditionsforachievingconvergencetoaglobaloptimum,andtoaccel-

erateconvergence.Anotherpromisingdirectionforefficientisotropicsamplingis

thehierarchicalPenrose-basedimportancesamplingtechniquedevelopedbyOstro-

moukhov[ODJ04],whichisdeterministicandseveralordersofmagnitudefaster

thanrelaxationmethods.

[Alliez et al. “Recent Advances in Remeshing of Surfaces”]
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Centroidal Voronoi Diagrams
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Local Alignment

• compute curvature directions fields
– smoothing filters
– preserve orthogonality

• trace curvature lines
– in the parameter domain
– directly on the polygonal surface
– face aspect ratio, line density

• vector field integration
– extract iso-contours
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Curvature Directions

• shape operator
– tensor averaging preserves orthogonality
– smoothing within the tangent plane
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line density
control

Curvature Directions

• shape operator
– tensor averaging preserves orthogonality
– smoothing within the tangent plane
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Curvature Directions

• shape operator
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Curvature Directions

• shape operator
– tensor averaging preserves orthogonality
– smoothing within the tangent plane
– propagate reliable direction information

399

(C, ρ) =
∑

j∈N(i)

ωij (Pj , ρj)

Pi ←
ρi Pi + ρ C

ρi + ρ



Leif Kobbelt, RWTH Aachen

Curvature Directions

• shape operator
– tensor averaging preserves orthogonality
– smoothing within the tangent plane
– propagate reliable direction information
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Vector Field Integration

• curvature lines are traced independently
(only line density is controlled, no synchronization)

• curves don’t match

• T-vertices are generated

• iso-contours of scalar fields
are always closed ...

401Leif Kobbelt, RWTH Aachen
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Vector Field Integration

• given curvature direction fields Kmin and Kmax

• compute (inverse) parameter functions u and v 
such that locally
–  ∇u = λ Kmin   and   ∇v = λ Kmax   (or vice versa)

• then the iso-contours of u are aligned to Kmax and 
the iso-contours of v to Kmin (or vice versa)

• in general no globally continuous solution possible
– translational and rotational discontinuities

402



Leif Kobbelt, RWTH Aachen

Vector Field Integration
• “periodic coordinates” [Ray et al.]
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Vector Field Integration
• “periodic coordinates” [Ray et al.]
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Vector Field Integration
• “periodic coordinates” [Ray et al.]
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ṽ = (cos v, sin v)



Leif Kobbelt, RWTH Aachen

Vector Field Integration
• “periodic coordinates” [Ray et al.]
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Vector Field Integration
• “periodic coordinates” [Ray et al.]

• translations:  m π
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Vector Field Integration
• “periodic coordinates” [Ray et al.]

• translations:  m π

• rotations: n π/2
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Global Alignment

• feature detection
– thresholding, morphological operations
– surface snakes

• segmentation
– region growing
– clustering

• boundary refinement / optimization
– graph-cut computation
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Feature Detection

• adapt techniques from image processing

• classify edges by dihedral angle
• topology preserving thinning

(preserve connected components)

• branch cutting

• snakes on surfaces
(move polygon towards curvature extrema)
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Segmentation

• variational shape approximation
– select random seeds
– compute geometry proxies (planes)
– grow regions / clusters by assigning faces

to best matching proxies (L2 or L2,1)
– iterate:

• re-compute proxies
• re-cluster
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L2  vs.  L2,1

413

[Cohen-Steiner et al. “Variational Shape Approximation” ]
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Extension to Non-Planar Proxies

414

J. Wu & L. Kobbelt / Structure Recovery Approximation

Figure 10: A CAD model (110K faces, top); its hybrid vari-
ational partitioning with 50 proxies (middle right); approx-
imation via vertex projection (middle left) and remeshed to
500 triangles (bottom). Almost all geometric information is
preserved with only 50 hybrid proxies.

Figure 11: From left to right, top to bottom are respectively
the original input model (58K faces), its hybrid variational
partitioning with 29 proxies, the approximation via vertex
projection and the remeshed model with 400 triangles.

Figure 12: A torso model (80K faces, left), its hybrid par-
titioning with only 22 proxies (middle) and the recovered
structures with approximation via vertex projection (right).

Figure 13: The hybrid partitioning of the bunny model (70K
faces) with 31 proxies (left) and the recovered structures with
approximation via vertex projection (right).

also tested our algorithm with more organic mesh models
as shown in Fig. 12 and Fig. 13. It is interesting to see that
equally good structure recovery capability can be observed.

Due to the increased number of surface primitive types
and their more involved surface fitting algorithms with pro-
gressive partitioning, our hybrid method needs about 3–5
times more running time than the original scheme. However
all datasets shown in the paper have been processed in less
than 3 minutes. This seems worthwhile because the higher
computational costs are traded for better surface structure
recovery and higher approximation quality.

5. Conclusions

Dedicated to faithfully and reliably recovering surface struc-
tures, we have extended the powerful optimization tech-
nique of variational shape approximation by allowing dif-
ferent types of surface primitives to represent the local ge-
ometry of clustered regions. In addition to planes, we also
include spheres, cylinders, and more complex rolling-ball

c© The Eurographics Association and Blackwell Publishing 2005.
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Boundary Refinement

• clustering may oscillate at the
segment boundaries

• compute globally optimal boundary
polygons by energy minimization

• re-formulation as max-flow / min-cut
problem on the dual graph
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Boundary Refinement

416

S. Katz, A. Tal, “Hierarchical Mesh Decom-
position using Fuzzy Clustering and Cuts”
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Boundary Refinement
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S. Katz, A. Tal, “Hierarchical Mesh Decom-
position using Fuzzy Clustering and Cuts”
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Remeshing Cookbook

• problem definition
– input, output

• basic ingredients
– general requirements
– types of operations

• a selection of recipes
– various representative examples

of known remeshing schemes
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A Selection of Recipes

• realtime remeshing
(global parametrization)

• iterative mesh optimization
(local or no parametrization)

• quad-dominant meshing
(anisotropic, with and without parametrization)

• globally harmonic meshing
(anisotropic, global parametrization)
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Realtime Remeshing

• Alliez et al. “Interactive Geometry Remeshing”
SIGGRAPH 2003

• compute global parametrization over a rectangle

• define vertex density map in the parameter domain

• generate samples by half-toning / dithering
(error diffusion)

• compute 2D Delaunay triangulation
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Realtime Remeshing
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Realtime Remeshing

• global parametrization approach

• vertex density by half-toning

• no local alignment (isotropic)

• global alignment possible by
constrained Delaunay triangulation
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Realtime Remeshing
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Iterative Mesh Optimization

• (area weighted) random scatter
or simply start with the given mesh

• improve vertex distribution by
– particle systems (Turk)
– area-weighted Laplace smoothing (Surazhsky 1)
– centroidal Voronoi diagram (Surazhsky 2)

• update mesh connectivity
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Iterative Mesh Optimization

426

• isotropic remeshing prefers ...

– equal edge length
• remove too short edges
• remove too long edges

– regular valences
• valence balance

– uniform vertex distribution
• tangential smoothing

edge collapses
2-4 edge split

edge flip

Laplace operator
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Local Remeshing Operators

427

Edge
Split

Vertex
Shift

Edge
Collapse

Edge
Flip
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Isotropic Remeshing

Specify target edge length L

Iterate:
1. Split edges longer than Lmax

2. Collapse edges shorter than Lmin

3. Flip edges to get closer to valence 6
4. Vertex shift by tangential relaxation
5. Project vertices onto reference mesh
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Thresholds Lmin and Lmax
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Edge Collapse / Split
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• tangential smoothing with area equalization
(leads to symmetric Laplace matrix)

• area-weighted centroid

• tangential update

Area Weighted Tangential Smoothing
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Remeshing Results
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Feature Preservation
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Feature Preservation

434

• define features
– sharp edges
– material boundaries

• adjust local operators
– don’t flip
– collapse only along features
– univariate smoothing
– project to feature curves
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Adaptive Remeshing

• precompute max. curvature 
on reference mesh

• target edge length locally 
determined by curvature

• adjust split / collapse criteria
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Isotropic Remeshing
• high quality triangulations

– equilateral triangles
– valence 6

• extensions
– feature preservation
– curvature adaptation

• local operators & projection
– easy to implement
– computationally efficient
– 100K vertices in < 5 sec
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Iterative Mesh Optimization

• no parametrization necessary

• adaptive vertex distribution by tangential 
Laplace and topologcal updates

• no local orientation (isotropic meshing)

• global feature alignment by restriction
of mesh operations
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Quad Dominant Meshing

• anisotropic remeshing prefers ...

– quad faces
– curvature dependent size and aspect ratio

(approximation measure)
– local orientation

(curvature directions, shape operator)
– global alignment

(feature detection and handling)
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Quad Dominant Meshing

• line density depends on approximation measure
– L2 vs L2,1

– L2 measures geometric deviation
– L2,1 leads to Kmin / Kmax aspect ratios

• local orientation by the shape operator
– Kmin and Kmax direction fields
– direction propagation
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Quad Dominant Meshing
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Quad Dominant Meshing
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Quad Dominant Meshing
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Quad Dominant Meshing
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Quad Dominant Meshing
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Quad Dominant Meshing
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Global Alignment

• marching techniques cannot capture
the global structure of the model

• two-step procedure:
– segmentation (global structure)
– quad meshing per segment

(local shape and alignment)
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Global Alignment
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Per-Segment Optimization
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Per-Segment Optimization
• combinatorial optimization
• energy functional

– orthogonality at intersections
– parallelism within faces

M. Marinov & L. Kobbelt / A Robust Two-Step Procedure for Quad-Dominant Remeshing

L iff by this the energy E(L) decreases. At each iteration we
evaluate all possible steps, compute the energy change for
each candidate and choose the one that yields the largest de-
crease of E(L). This phase concludes when no “downhill”
moves are possible anymore, i.e., we have converged to a
local minimum.

Figure 6: Swapping curves: the pair of curves (bk, j,bi,l)⊂ L
(left) can be replaced by the pair (bi, j,bk,l) (middle) or the
pair (b j,l ,bi,k) (right).

Phase III: The third and final phase attempts to escape from
the current local minimum by first removing all curves from
L which have an intersection point incident with a small an-
gle (< π/4). After all such “bad” curves are removed, we
iteratively saturate the unconnected boundary vertices by
adding at each iteration the curve which yields the small-
est energy value. After each addition, phase II is again exe-
cuted in order to optimize the new set of curves, potentially
leading to a better configuration. This process is terminated
as in phase I — whenever all boundary points are saturated
or all available curves are processed. Since adding a curve
can actually lead to an increment of E(L) (even after opti-
mization), a backup of the best configuration found up to the
moment is kept at all times and is restored at the end the
procedure if needed. This might lead to several unconnected
points, which potentially generates T-joints or obtuse angles
in the final mesh.

Figure 7: Reconnecting curve: The curve bi, j ∈ L (left) is
replaced by the bi,k (right), connecting c̃i to the currently
unlinked vertex c̃k.

7. Post-processing

Since samples in the interior of a given region R are gener-
ated only at the intersections of the selected cubic curves bi, j,
their location might be suboptimal. Therefore once the selec-
tion process is complete, we relax the mesh structure in the
parameter domain by Laplacian smoothing. In some cases,
this simple procedure improves the distribution of the mesh
samples quite significantly. Once the smoothing is complete,
we evaluate the parameterization of the intersection points
and find the corresponding 3D positions.

Note that due to the method we used in Section 4 to map
the boundary curves and points to the parameter space, they
(usually) do not lie entirely inside Ω. Hence it is possible
(although highly unlikely) that an intersection point cannot
be located in Ω, i.e., in the parameterization of a face be-
longing to R. There are several possible ways to resolve this
issue. We simply represent such points using barycentric co-
ordinates with respect to the closest face of R in Ω and then
evaluate the coordinates in 3D. This linear extrapolation is
sufficient, since in practice the boundary curves lie close to
the parameter domain of R and therefore the extrapolation
error is small.

Figure 9: Top row: The Alpha model and its segmentation.
Middle and bottom row: Output meshes at two resolutions.

8. Results

We tested our algorithm on several models, mostly mechan-
ical objects and parts, which are difficult to process by pre-
vious techniques. Our two-step remeshing method has two

c© The Eurographics Association and Blackwell Publishing 2006.
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Quad-Meshing Results
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Quad-Meshing Results
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Quad-Meshing Results

M. Marinov & L. Kobbelt / A Robust Two-Step Procedure for Quad-Dominant Remeshing

L iff by this the energy E(L) decreases. At each iteration we
evaluate all possible steps, compute the energy change for
each candidate and choose the one that yields the largest de-
crease of E(L). This phase concludes when no “downhill”
moves are possible anymore, i.e., we have converged to a
local minimum.

Figure 6: Swapping curves: the pair of curves (bk, j,bi,l)⊂ L
(left) can be replaced by the pair (bi, j,bk,l) (middle) or the
pair (b j,l ,bi,k) (right).

Phase III: The third and final phase attempts to escape from
the current local minimum by first removing all curves from
L which have an intersection point incident with a small an-
gle (< π/4). After all such “bad” curves are removed, we
iteratively saturate the unconnected boundary vertices by
adding at each iteration the curve which yields the small-
est energy value. After each addition, phase II is again exe-
cuted in order to optimize the new set of curves, potentially
leading to a better configuration. This process is terminated
as in phase I — whenever all boundary points are saturated
or all available curves are processed. Since adding a curve
can actually lead to an increment of E(L) (even after opti-
mization), a backup of the best configuration found up to the
moment is kept at all times and is restored at the end the
procedure if needed. This might lead to several unconnected
points, which potentially generates T-joints or obtuse angles
in the final mesh.

Figure 7: Reconnecting curve: The curve bi, j ∈ L (left) is
replaced by the bi,k (right), connecting c̃i to the currently
unlinked vertex c̃k.

7. Post-processing

Since samples in the interior of a given region R are gener-
ated only at the intersections of the selected cubic curves bi, j,
their location might be suboptimal. Therefore once the selec-
tion process is complete, we relax the mesh structure in the
parameter domain by Laplacian smoothing. In some cases,
this simple procedure improves the distribution of the mesh
samples quite significantly. Once the smoothing is complete,
we evaluate the parameterization of the intersection points
and find the corresponding 3D positions.

Note that due to the method we used in Section 4 to map
the boundary curves and points to the parameter space, they
(usually) do not lie entirely inside Ω. Hence it is possible
(although highly unlikely) that an intersection point cannot
be located in Ω, i.e., in the parameterization of a face be-
longing to R. There are several possible ways to resolve this
issue. We simply represent such points using barycentric co-
ordinates with respect to the closest face of R in Ω and then
evaluate the coordinates in 3D. This linear extrapolation is
sufficient, since in practice the boundary curves lie close to
the parameter domain of R and therefore the extrapolation
error is small.

Figure 9: Top row: The Alpha model and its segmentation.
Middle and bottom row: Output meshes at two resolutions.

8. Results

We tested our algorithm on several models, mostly mechan-
ical objects and parts, which are difficult to process by pre-
vious techniques. Our two-step remeshing method has two

c© The Eurographics Association and Blackwell Publishing 2006.
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Quad Dominant Meshing

• with or without parametrization
• anisotropic vertex distribution by controlling

the density of curvature lines

• local alignment by intersecting curvature lines

• global alignment by segmentation
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Globally Harmonic Meshing

• generate patch layout
– quad-dominant
– quad-only

• compute a harmonic map per patch
– discontinuities across patch boundaries

• globally smooth parameterization
– “hide” discontiunities by transfer functions

between patches
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Patch Layout Generation

• manually ...
• segmentation based
• using the Laplace eigenmodes

[S. Dong et al. “Spectral Surface Quadrangulation” ]
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Spectral Surface Quadrangulation

Shen Dong∗ Peer-Timo Bremer∗ Michael Garland∗ Valerio Pascucci† John C. Hart∗

∗University of Illinois at Urbana-Champaign †Lawrence Livermore National Laboratory

(a) Laplacian eigenfunction (b) Morse-Smale complex (c) Optimized complex (d) Semi-regular remeshing

Figure 1: We quadrangulate a given triangle mesh by extracting the Morse-Smale complex of a selected eigenvector of the mesh Laplacian
matrix. After optimizing the geometry of the base complex, we remesh the surface with a semi-regular grid of quadrilaterals.

Abstract

Resampling raw surface meshes is one of the most fundamental
operations used by nearly all digital geometry processing systems.
The vast majority of this work has focused on triangular remeshing,
yet quadrilateral meshes are preferred for many surface PDE prob-
lems, especially fluid dynamics, and are best suited for defining
Catmull-Clark subdivision surfaces. We describe a fundamentally
new approach to the quadrangulation of manifold polygon meshes
using Laplacian eigenfunctions, the natural harmonics of the sur-
face. These surface functions distribute their extrema evenly across
a mesh, which connect via gradient flow into a quadrangular base
mesh. An iterative relaxation algorithm simultaneously refines this
initial complex to produce a globally smooth parameterization of
the surface. From this, we can construct a well-shaped quadrilat-
eral mesh with very few extraordinary vertices. The quality of this
mesh relies on the initial choice of eigenfunction, for which we de-
scribe algorithms and hueristics to efficiently and effectively select
the harmonic most appropriate for the intended application.

Keywords: quadrangular remeshing, spectral mesh decomposi-
tion, Laplacian eigenvectors, Morse theory, Morse-Smale complex

1 Introduction

Meshes generated from laser scanning, isosurface extraction and
other methods often suffer from irregular element and sampling ar-

∗{shendong,ptbremer,garland,jch}@uiuc.edu †pascucci@llnl.gov

tifacts of the process. Because these problems arise so easily and
can hinder the accuracy and efficiency of subsequent operations, the
ability to remesh surfaces with well-shaped well-spaced elements is
an important tool for mesh processing.

Much of the remeshing work in the graphics literature focuses on
triangle meshes, though many graphics and scientific applications
benefit from good quadrilateral meshes. Such meshes should have
as few extraordinary vertices as possible and their elements should
have internal angles near 90◦. Quadrilaterals are the preferred prim-
itive in several simulation domains, including computational fluid
dynamics, where extraordinary points can lead to numerical in-
stability [Stam 2003]. Catmull-Clark subdivision of a poor mesh
can yield wrinkles [Halstead et al. 1993], and the tensor-product
NURBS patches still used in CAD/CAM production software work
best on a mesh composed exclusively of quadrilaterals. Further-
more, decomposing a surface into well-shaped quadrangles simpli-
fies the construction of a texture atlas.

We have developed a new approach for building a quadrangular
base complex over a triangulated manifold of arbitrary genus. This
approach is based on the Morse theorem that for almost all real
functions, the Morse-Smale complex (reviewed in §4), consisting
of the ridge lines that extend from its saddles to its extrema, forms
quadrangular regions. To space these regions evenly over the sur-
face, we choose as our real function a shape harmonic of the appro-
priate frequency, computed in §3 as an eigenvector of the Laplacian
matrix of the input mesh. A new iterative relaxation algorithm de-
scribed in §5 simultaneously improves this base mesh layout while
computing a globally smooth parameterization used to generate the
final semi-regular grid of well-shaped quadrilaterals.

The complete spectrum of the mesh defines two families of com-
plexes: the primal Morse-Smale and their quasi-dual complexes, a
construction we propose in §4.3. The quality of the final mesh is in-
timately tied to the choice of complex, a choice we make based on
parametric distortion. Section 3 provides a detailed analysis of the
Laplacian spectrum, using spectral shifts to efficiently limit com-
putation only to the eigenvectors around a desired frequency.

The resulting method produces fully conforming semi-regular
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Harmonic Parametrization

• find a 2D parameter ui for each 3D vertex pi

• let

be the Laplace-Beltrami operator
defined on the surface.

• harmonic condition:
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U(pi) = µi

∑

j

ωi,j (pj − pi)

U(ui) = µi

∑

j

ωi,j (uj − ui) = 0
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Transition Functions

• inverse parametrization:  Φα  : R3 → R2 

• transition function:           Φαβ : R2 → R2

458
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Globally Smooth Parametrization

• harmonic condition

• parameter values for the patch corners are
fixed to (0,0), (0,1), (1,0), or (1,1)

• solve sparse linear 2n x 2n system

• iterative update of the patch layout
(local parameter values have to lie in the unit square)
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Results
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(a) Original (b) PGP

(c) PQD (d) SSQ

Figure 18: Comparison of meshes generated by PQD [Boier-Martin
et al. 2004], PGP [Ray et al. 2005], and our SSQ algorithm.
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Figure 19: Edge and angle distributions for meshes in Figure 18.

Examining these results, it is clear that our method produces a mesh
with far fewer extraordinary points. As we would expect, this is
particularly true with respect to the PGP method, which produces
quad-dominant rather than quadrilateral meshes. In fact, the num-
ber of extraordinary points generated by these other two methods on
the genus-0 bunny is no less than the number of extraordinary points
our method generates on the genus-22 heptoroid (Fig. 15). All three
methods generate a large number of well-shaped elements, with
mean internal angles very near the ideal 90◦. However, our method
was able to produce a rather more narrow angle distribution with a
standard deviation of only 6.87◦. Our meshes also exhibit a greater
uniformity in edge length. In order to quantify geometric fidelity
for these meshes with variable numbers of vertices, we use a mea-
sure of error efficiency, which we define to be − logE/ logm where
E is the error—either L2 (geometric) or L2,1 (normal)—and m is the
number of output vertices. The mesh produced by our method has
a noticeably higher efficiency than the PQD mesh, which appears
to include a number of elements that do not significantly reduce the
error. On the other hand, our result is comparable to that from PGP,
being somewhat lower in geometric (L2) efficiency but somewhat
higher in normal (L2,1) efficiency. In summary, our experiments
demonstrate that our method produces well-shaped meshes with far
fewer critical points and greater uniformity than other state-of-the-
art methods, while generating surfaces of comparable, and in some
cases superior, geometric fidelity.

7 Conclusions

In this paper, we have outlined a new theoretical framework for
quadrangulating polygonal manifolds. By using Morse theory to
analyze the structure of the Laplacian eigenfunctions of the sur-
face, we are able to produce appealing quadrangulations that arise
directly from the intrinsic shape of the manifold. Our use of the
Morse-Smale complex is topologically robust and guarantees that
the base complex is always quadrangular. We have proposed a new
globally smooth parameterization method for quadrangular com-
plexes that can successfully optimize the shape of even highly
degenerate complexes. Finally, we have also demonstrated that
our method produces semi-regular pure quadrilateral meshes that
have far fewer extraordinary points than comparable methods while
maintaining high geometric fidelity.

The results we have presented in this paper open a new line of
research aimed at describing and understanding shapes and ge-
ometry. We have chosen semi-regular quadrangular remeshing as
an example which demonstrates that the Morse-Smale structure of
Laplacian eigenfunctions encodes fundamental information about
the shape of a piecewise linear manifold. But more broadly, these
results are based on several intriguing properties of the Laplace ma-
trix and its eigenfunctions that we have only begun to explore.

There is much that could be learned from a more thorough the-
oretical understanding of the structure of the Laplacian spectrum.
The majority of results in spectral graph theory tie the Laplacian
eigenvalues to various properties of the graph. The structure of
the eigenvectors is relatively unexplored. A clearer understanding
of the spectral structure should enable us to prove stronger results
about the quality of the final quadrangulation.

We have outlined a basic technique for producing “feature-
sensitive” eigenfunctions. This is clearly an avenue in which sig-
nificant new contributions could be made, as there are certainly ap-
plications where some measure of user control over the flow of the
mesh is quite desirable.
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and Bruno Lévy generously provided the sample results analyzed
in Fig. 18. This work was funded in part by the National Science
Foundation (grants SGER #0432257 and ITR #0121288), and was
performed in part under the auspices of the U.S. Department of En-
ergy by the University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
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Examining these results, it is clear that our method produces a mesh
with far fewer extraordinary points. As we would expect, this is
particularly true with respect to the PGP method, which produces
quad-dominant rather than quadrilateral meshes. In fact, the num-
ber of extraordinary points generated by these other two methods on
the genus-0 bunny is no less than the number of extraordinary points
our method generates on the genus-22 heptoroid (Fig. 15). All three
methods generate a large number of well-shaped elements, with
mean internal angles very near the ideal 90◦. However, our method
was able to produce a rather more narrow angle distribution with a
standard deviation of only 6.87◦. Our meshes also exhibit a greater
uniformity in edge length. In order to quantify geometric fidelity
for these meshes with variable numbers of vertices, we use a mea-
sure of error efficiency, which we define to be − logE/ logm where
E is the error—either L2 (geometric) or L2,1 (normal)—and m is the
number of output vertices. The mesh produced by our method has
a noticeably higher efficiency than the PQD mesh, which appears
to include a number of elements that do not significantly reduce the
error. On the other hand, our result is comparable to that from PGP,
being somewhat lower in geometric (L2) efficiency but somewhat
higher in normal (L2,1) efficiency. In summary, our experiments
demonstrate that our method produces well-shaped meshes with far
fewer critical points and greater uniformity than other state-of-the-
art methods, while generating surfaces of comparable, and in some
cases superior, geometric fidelity.

7 Conclusions

In this paper, we have outlined a new theoretical framework for
quadrangulating polygonal manifolds. By using Morse theory to
analyze the structure of the Laplacian eigenfunctions of the sur-
face, we are able to produce appealing quadrangulations that arise
directly from the intrinsic shape of the manifold. Our use of the
Morse-Smale complex is topologically robust and guarantees that
the base complex is always quadrangular. We have proposed a new
globally smooth parameterization method for quadrangular com-
plexes that can successfully optimize the shape of even highly
degenerate complexes. Finally, we have also demonstrated that
our method produces semi-regular pure quadrilateral meshes that
have far fewer extraordinary points than comparable methods while
maintaining high geometric fidelity.

The results we have presented in this paper open a new line of
research aimed at describing and understanding shapes and ge-
ometry. We have chosen semi-regular quadrangular remeshing as
an example which demonstrates that the Morse-Smale structure of
Laplacian eigenfunctions encodes fundamental information about
the shape of a piecewise linear manifold. But more broadly, these
results are based on several intriguing properties of the Laplace ma-
trix and its eigenfunctions that we have only begun to explore.

There is much that could be learned from a more thorough the-
oretical understanding of the structure of the Laplacian spectrum.
The majority of results in spectral graph theory tie the Laplacian
eigenvalues to various properties of the graph. The structure of
the eigenvectors is relatively unexplored. A clearer understanding
of the spectral structure should enable us to prove stronger results
about the quality of the final quadrangulation.

We have outlined a basic technique for producing “feature-
sensitive” eigenfunctions. This is clearly an avenue in which sig-
nificant new contributions could be made, as there are certainly ap-
plications where some measure of user control over the flow of the
mesh is quite desirable.
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Figure 12: Remeshing the torus with progressively higher harmon-
ics, with both primal (above) and quasi-dual (below) complexes.

construct a regular d×d grid of quadrilaterals in this parametric do-
main and map their corners back onto the surface, thus producing
our output mesh. By sampling at a fixed rate, we can trivially guar-
antee that the final mesh is fully conforming. We can also guarantee
that extraordinary points can only occur at nodes of the complex. In
fact, we expect extraordinary points only at extrema of the eigen-
function, as Morse saddles will have valence four.

5.4 Selecting a Base Complex

This process of parameterization, relaxation, and remeshing can be
applied to any of the primal or quasi-dual complexes defined over
the spectrum of the surface. However, we are interested in picking
the eigenvector that will produce the best result. We have already
discussed in Section 3 how we select a small frequency band ac-
cording to a target number of critical points in the complex. Within
this band, we normally select the complex with the lowest paramet-
ric distortion. Low distortion leads to well-shaped elements and
we find that it is generally well correlated with final RMS error.
This is most accurately done after iterative relaxation is complete;
however, using the distortion after a single relaxation step produces
substantially the same ordering of complexes at a fairly low cost.

In certain cases, we may specifically desire a complex whose edges
are aligned with a predominant direction, as in Figure 13, or with
ridge lines, as in Figure 17. It is a straightforward process to se-
lect the eigenfunction whose gradient field most closely follows any
such user-specified orientation.

6 Results

We begin our analysis of the performance of our method with the
torus, shown in Figure 12. This is a simple surface whose eigen-
functions, as we have mentioned earlier, are discretizations of con-
tinuous toroidal harmonics. The spectrum of the torus is in fact
highly structured, and the eigenfunctions and complexes we extract
exhibit near-perfect symmetry (see Figure 8). This regularity and
symmetry are apparent in the remeshing output as well. We gener-
ated meshes using, from left to right, the 8th, 16th, and 32nd eigen-
functions. Each quadrangular patch was resampled with an 8×8
grid of quadrilaterals. Each of these meshes consists exclusively
of valence-4 vertices. Higher harmonics lead to more patches in
the base complex and more quadrilaterals in the final mesh. We
can also clearly see that the quasi-dual complexes capture different

Figure 13: A Moai statue is remeshed and then rendered as a
Catmull-Clark surface.

symmetries of the surface, and in this case provide a nearly ideal
mesh of the torus.

Figure 13 shows a quadrangulation of a scanned Moai statue. The
raw surface data (on which the raw complex is superimposed) is
fairly noisy and the mesh is moderately irregular. Nevertheless, our
quadrangulation algorithm is quite stable. The final mesh is highly
regular, containing only 12 extraordinary vertices and no vertices
with valence higher than 5. The individual elements are also gener-
ally very well-shaped, with an average internal angle of 89.73◦.

(a) Surface (b) Raw complex(c) Final complex (d) Remeshed

Figure 14: Remeshing a genus-1 statue of a dancer.

Further remeshing results can be seen on the kitten in Figure 1 and
the dancer in Figure 14. These surfaces each exhibit fairly complex
geometry, which our quadrangulation is able to capture and pre-

7

[S. Dong et al. “Spectral Surface Quadrangulation” ]



Leif Kobbelt, RWTH Aachen

Globally Harmonic Meshing

• global parametrization
• vertex distribution by intersection

u- and v-isolines

• no local alignment
(some alignment induced by the patch layout)

• no global alignment
(some alignment induced by the patch layout)
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Remeshing Cookbook

• problem definition
– input, output

• basic ingredients
– general requirements
– types of operations

• a selection of recipies
– various representative examples

of known remeshing schemes
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• Mesh deformation by displacement function d
– Interpolate prescribed constraints
– Smooth, intuitive deformation

Mesh Editing

465

S S ′ = {p + d (p) |p ∈ S}

d : S → IR
3

d (pi) = di
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Overview

• Surface-Based Deformation
• Space Deformation
• Multiresolution Deformation

• Differential Coordinates

• Comparison
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Spline Surfaces

• Basis functions are smooth bumps
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Spline Surfaces

• Basis functions are smooth bumps
– Fixed support
– Regular grid
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• Support region (blue)

• Fixed vertices (gray)
• Handle regions (green)

Modeling Metaphor

469
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Distance-Based Propagation

1. Construct smooth scalar field
• s(p)=1: 
 Full deformation at handle
• s(p)=0: 
 No deformation for fixed part
• s(p)∈(0,1):
 Smooth blending inbetween

2. Damp handle transformation with s(p)

470

s : S → [0, 1]
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Distance-Based Propagation

Distance-based
propagation

?

Smooth
interpolation

471
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Boundary Constraint Modeling

1. Control: Prescribe arbitrary constraints:

2. Fitting: Smoothly interpolate constraints by a 
displacement function:

3. Evaluation: Displace all points:

472

d (pi) = di , ∀pi ∈ C

d : S → IR3 with d (pi) = di

pi !→ pi + d (pi) ∀pi ∈ S
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How to interpolate?

• Constrained bending energy minimization

• Variational calculus, Euler-Lagrange PDE

• “Best” deformation which satisfies constraints

473

∆2

Sd ≡ 0 with d (pi) = di, ∀pi ∈ C

∫
S

‖duu‖
2

+ 2 ‖duv‖
2

+ ‖dvv‖
2
dS
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Physical Interpretation

• Non-linear stretching & bending energies

• Linearize energies

• Euler-Lagrange PDE

474

∫

Ω

ks ‖I − I
′‖

2
+ kb

∥

∥II − II
′
∥

∥

2
dudv

∫

Ω

ks

(

‖du‖
2

+ ‖dv‖
2
)

+ kb

(

‖duu‖
2

+ 2 ‖duv‖
2

+ ‖dvv‖
2
)

dudv

ks ∆d + kb ∆2
d ≡ 0
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Deformation Energies

475

∆x ≡ 0

∆
2
x ≡ 0

∆
3
x ≡ 0

(Membrane)

(Thin plate)
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Discretization

• Euler-Lagrange PDE

• Finite difference Laplace discretization

476

∆k
Sdi =

1

2Ai

∑

j∈N (i)

(cot αij + cot βij)
(

∆k−1
S dj − ∆k−1

S di

)

∆
0

Sdi = di

∆k
Sd ≡ 0 with d (pi) = di, ∀pi ∈ C

xj

xi

Ai
αij

βij
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Discretization

• Euler-Lagrange PDE

• Finite difference Laplace discretization

• Sparse linear system

477

∆k
Sdi =

1

2Ai

∑

j∈N (i)

(cot αij + cot βij)
(

∆k−1
S dj − ∆k−1

S di

)







∆k

0 I 0

0 0 I















.

.

.

di

.

.

.









=





0

0

h′

i − hi





∆k
Sd ≡ 0 with d (pi) = di, ∀pi ∈ C
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Efficient Solution

• Solve linear system each frame
– sparse, symmetric, pos. definite

• Only right-hand side changes
– Use sparse Cholesky factorization  (later...)
– Only back-substitution each frame!

478

∆
k









.

.

.

di

.

.

.









=









.

.

.

bi

.

.

.








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• Handle is transformed affinely only

• Represent handle points wrt. 4 points

• Same for handle displacement

More Efficient Solution

479

(. . . , δhi, . . .) = Q (δa, δb, δc, δd)T

(. . . ,hi, . . .) = Q (a,b, c,d)T
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More Efficient Solution

• Precompute basis function matrix B

• B has 4 columns  ⇒  Solve 4 systems

480






∆k

0 I 0

0 0 I






︸ ︷︷ ︸

=:M







.

.

.

di

.

.

.







=





0

0

δhi











...
di

...







= M
−1





0

0

δhi



 = M
−1





0

0

Q





︸ ︷︷ ︸

=:B

(δa, δb, δc, δd, )T
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Front Deformation

481
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Overview

• Surface-Based Deformation

• Space Deformation
• Multiresolution Deformation

• Differential Coordinates

• Comparison
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Surface-Based Deformation
• Problems with

– Highly complex models
– Topological inconsistencies
– Geometric degeneracies

483
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Surface-Based Deformation

1. Control: Prescribe arbitrary constraints:

2. Fitting: Smoothly interpolate constraints by a 
displacement function:

3. Evaluation: Displace all points:

484

d (pi) = di , ∀pi ∈ C

d : S → IR3 with d (pi) = di

pi !→ pi + d (pi) ∀pi ∈ S
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Space Deformation

1. Control: Prescribe arbitrary constraints:

2. Fitting: Smoothly interpolate constraints by a 
trivariate space deformation function:

3. Evaluation: Displace all points:

485

d (pi) = di , ∀pi ∈ C

pi !→ pi + d (pi) ∀pi ∈ S

d : IR3
→ IR3 with d (pi) = di
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Freeform Deformation

• Deform object’s bounding box
– Implicitly deforms embedded objects
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Freeform Deformation

• Deform object’s bounding box
– Implicitly deforms embedded objects

• Tri-variate tensor-product spline

487

d (u, v, w) =
l∑

i=0

m∑

j=0

n∑

k=0

cijkN l
i (u) Nm

j (v) Nn
k (w)
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Freeform Deformation

• Deform object’s bounding box
– Implicitly deforms embedded objects

• Tri-variate tensor-product spline
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Freeform Deformation

• Deform object’s bounding box
– Implicitly deforms embedded objects

• Tri-variate tensor-product spline
– Aliasing artifacts

• Interpolate deformation constraints?
– Only in least squares sense
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Radial Basis Functions

• Represent deformation by RBFs

• Well suited for scattered data interpolation
– Smooth interpolation
– Irregularly placed constraints

490

d (x) =
∑

j

wj · ϕ (‖cj − x‖) + p (x)
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Which basis function?

• Triharmonic RBF
– High fairness, minimizes

– C2 boundary constraints
– Global support

491

ϕ (r) = r
3

∫
IR

3

‖duuu‖
2

+ ‖dvuu‖
2

+ . . . + ‖dwww‖
2

dudvdw
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RBF Deformation      [Botsch05]

• Fitting
– Place centers ci on constraint points pi

– Leads to dense linear system in wi

– Incremental least squares solver

• Evaluation
– Function deforms points
– Jacobian deforms normals
– Basis function matrices 
– Evalute deformation on graphics card (30M v/s)

492

ni !→ (I + ∇d)−T
ni

pi !→ pi + d (pi)

B, Bx, By, Bz
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Statue: 1M vertices

493



Mario Botsch, ETH Zurich

“Bad Meshes”

• 3M triangles
• 10k components
• Not oriented
• Not manifold
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Overview

• Surface-Based Deformation

• Space Deformation
• Multiresolution Deformation
• Differential Coordinates

• Comparison
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Multiresolution Editing

Shape deformation
with intuitive

detail preservation
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• Even pure translations induce local rotations!
– Inherently non-linear coupling

• Or: linear model + multi-scale decomposition...

Multiresolution Modeling

497

Original Linear deform. Non-linear deform.
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Multiresolution Editing

Frequency
decomposition

Change low
frequencies

Local frame
details
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Multiresolution Editing

Freeform

Modeling

Multiresolution

Modeling

499

ReconstructionDe
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Normal Displacements
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• Displacement vectors
– very efficient
– local self-intersections

• Displacement volumes
– avoid self-intersections
– non-linear method

• Deformation transfer
– [Botsch et al, VMV 06]
– inbetween...

Detail Representations
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Overview

• Surface-Based Deformation

• Space Deformation
• Multiresolution Deformation

• Differential Coordinates
• Comparison
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Differential Coordinates

• Avoid multiresolution hierarchy because
– It is difficult for geom. / topol. complex models
– Might require multiple hierarchy levels

• Change differential instead of spatial coordinates
– Gradients, Laplacians
– Find mesh w/ desired differential coordinates
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Gradient-Based Editing

• Gradient of coordinate function p
– Constant per triangle

504

∇p|fj
=: Gj ∈ IR

3×3






G1

.

.

.

GF




 = G
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∈IR
3F×V

·






pT
1

.

.

.

pT
V




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Gradient-Based Editing

• Manipulate per-face gradients
– Gradient of handle deformation
– Rotation and scale/shear components
– Distance-based propagation

505

Gj !→ G
′

j
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• Reconstruct mesh from gradients
– Overdetermined problem
– Weighted least squares system
– Linear Poisson system

divdiv∇ = ∆

Gradient-Based Editing

506

GT DG ·







p′

1

T

.

.

.

p′

V

T






= GT D ·







G′

1

.

.

.

G′

F







G ∈ IR
3F×V
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Gradient-Based Editing

507

Original Rotated  Gradients Reconstructed Mesh
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Limitations

• Differential coordinates work well for rotations
– Represented by deformation gradient

• Translations don’t change deformation gradient
– Translations don’t change surface gradient
– “Translation insensitivity”
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Overview

• Surface-Based Deformation

• Space Deformation
• Multiresolution Deformation

• Differential Coordinates

• Comparison
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Comparison

510

Original Var. Min. Gradient PriMo
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GradVarMin

Non-Linear Deformation

511

PriMo
Botsch et al, “PriMo: Coupled Prisms for 

Intuitive Surface Modeling”, SGP 06
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Conclusion

• Boundary constraint modeling
– Smoothness, flexibility, efficiency
– Need multiresolution framework

• Differential coordinates
– No multiresolution hierarchy
– Work well for rotations, problems with translations

• Linear vs. non-linear techniques
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Efficient Solvers for

Linear Systems

Efficient Solvers for
(sparse symm. pos. def.)

Linear Systems
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Problems in Geometry Processing

• Generic formulation as a PDE
– Based on partial derivatives

• Discretization for triangle meshes
– Finite elements / differences
– Leads to linear systems   (typically 104 to 106 DoFs)

• Partial derivatives are local operators
– Sparse linear systems
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Problems in Geometry Processing

• Most often the PDE can be considered
as the Euler-Lagrange equation of an
energy minimization problem

• or  ATAx = ATb emerges as the normal
equation for a least squares problem

➡ Systems are usually symmetric and pos. definite
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Problems in Geometry Processing

• Linear problems:  
– Solve Ax = b

• Non-linear problems:
– Solve sequence of linear systems Ak xk = bk

• Matrix A typically is
– large
– sparse
– symmetric positive definite  (spd)

516

Non-spd systems:
See course notes
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Overview

• Application scenarios

• Linear system solvers

• Benchmarks
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Implicit Fairing

518

(

I ± ∆
k
S

)

xk+1 = xk
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Variational Energy Minimization

519

∆x ≡ 0

∆
2
x ≡ 0

∆
3
x ≡ 0
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Explicit Hole Filling

520

∆
2
x = 0
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Conformal Parameterization

521

∆Su = 0
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Variational Mesh Editing

522

∆
k
Sd = 0
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Gradient-Based Editing

523

∆Sp = div (g)
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Laplace-Beltrami Discretization

524

Ai
αij

βij

∆Sf (v) :=
2

A (v)

∑

vi∈N1(v)

(cotαi + cotβi) (f (vi) − f (v))

vi

vj
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Laplace Matrix

525

D = diag

(

. . . ,
2

A (vi)
, . . .

)

Mij =







cotαij + cotβij , i != j , j ∈ N1 (vi)
0 i != j , j !∈ N1 (vi)

−
∑

vj∈N1(vi)
(cotαij + cotβij) i = j
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
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

...
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Laplace Matrix

526









...
∆k

S
fi

...









= (DM)k
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





...
fi

...









• Degree of sparsity:  1 + 3 (k2 + k)
– k=1  ...
 7
– k=2  ...
19
– k=3  ...
37



Mario Botsch, ETH Zurich

Laplace Matrix

527






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S
fi
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
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= (DM)k






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...
fi
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







• (DM)k is not symmetric, but M(DM)k-1 is

➡  Instead of  (DM)k x = b
  solve   M(DM)k-1 x = D-1b
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Laplace Matrix

528









...
∆k

S
fi

...









= (DM)k






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...
fi
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



• Positive definiteness 
– Can be derived by variational calculus 
– Energy minimization subject to constraints
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Least Squares Conformal Maps

529

A
T
Ax = A

T
b
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Non-Linear Problems

530

Non-linear minimization (Newton)

Non-linear least squares (Gauss-Newton)

J(x)T
J(x)h = −J(x)T

f(x)

H(x)h = −∇f(x)
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Overview

• Application scenarios

• Linear system solvers

• Benchmarks
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Dense Direct Solvers

• Symmetric positive definite  (spd)
– Cholesky factorization  (A=LLT)
– Solve systems by back-substitution
– Numerically stable

• Complexity
– Factorization O(n3)
– Back-substitution O(n2)

532



Mario Botsch, ETH Zurich

Iterative Solvers

• Symmetric, positive definite, sparse

– Conjugate gradients
– Robust, monotone convergence
– Exact solution after n iterations

• Complexity
– Each iteration is O(n)    (sparse!)
– Total complexity O(n2)
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Iterative Solvers

• Numerical convergence rate
– Depends on matrix condition
– Preconditioning is mandatory  (A’ = PAPT)
– Problematic for large systems ...

• Iterative solvers are “smoothers”
– Rapid elimination of high frequency errors
– Impractically slow convergence for low frequencies
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Multigrid Solvers

• Build a hierarchy of meshes
– Mesh decimation
– O(log n) levels
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Multigrid Solvers
• Apply some pre-smoothing steps on finest level

– Removes highest error frequencies

• Remaining low frequency error  (r=b-Ax)
– Corresponds to high frequencies on coarser levels
– Iterate / solve residual system (Ae=r) on coarse level

• Propagate solution to finer level
– Followed by post-smoothing steps

• Total O(n) complexity!
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Multigrid Solvers

• MG can be quite tricky:
– How to build an irregular hierarchy ?
– How many levels ?
– Special MG pre-conditioners
– Restriction of system
– Prolongation of coarse solution

• [Aksoylu et al. 2003], [Shi et al. 2006]
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Direct Sparse Solvers

• Dense solvers do not exploit sparsity
– Matrix factors are dense
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Direct Sparse Solvers

• Dense solvers do not exploit sparsity
– Matrix factors are dense

• Band-limitation can be exploited
– Bandwidth of factors is that of A
– More precisely: envelope is preserved
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Direct Sparse Solvers

• Dense solvers do not exploit sparsity
– Matrix factors are dense

• Band-limitation can be exploited
– Bandwidth of factors is that of A
– More precisely: envelope is preserved

• Complexity
– Factorization O(nb2)
– Back-substitution O(nb)
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Matrix Re-Ordering

LLT

L
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Matrix Re-Ordering

• Find symmetric permutation   A’ = PTAP

• ... which minimizes the band-width: 
➡ Cuthill-McKee algorithm

542



Mario Botsch, ETH Zurich

Matrix Re-Ordering

LLT

L
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Matrix Re-Ordering

• Find symmetric permutation   A’ = PTAP

• ... which minimizes the band-width: 
➡ Cuthill-McKee algorithm

• ... which minimizes the envelope fill-in of L: 
➡ Minimum Degree algorithm
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Matrix Re-Ordering

LLT

L
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Matrix Re-Ordering

• Find symmetric permutation   A’ = PTAP

• ... which minimizes the band-width: 
➡ Cuthill-McKee algorithm

• ... which minimizes the envelope fill-in of L: 
➡ Minimum Degree algorithm

• ... based on recursive graph partitioning: 
➡ METIS algorithm
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Matrix Re-Ordering

LLT

L
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Sparse Cholesky Factorization

• Non-zero structure of L can be predicted from 
the non-zero structure of A
– Build a static data structure in advance
– Symbolic factorization

• Compute numerical entries of L based on this 
data structure
– Better memory coherence
– Numerical factorization
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Sparse Cholesky Solver

1. Matrix re-ordering

2. Symbolic factorization

3. Numerical factorization

4. Solve system
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Sparse Cholesky Solver

1. Matrix re-ordering

2. Symbolic factorization

3. Numerical factorization

4. Solve system
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Ã = P
T
AP

L

Ã = LL
T

y = L−1PT b, x = PL−T y

Only right hand side changes
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Sparse Cholesky Solver

1. Matrix re-ordering

2. Symbolic factorization

3. Numerical factorization

4. Solve system

551

Ã = P
T
AP

L

Ã = LL
T

y = L−1PT b, x = PL−T y

Matrix values change
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Overview

• Application scenarios

• Linear system solvers

• Benchmarks
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Small Laplace Systems
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Small Laplace Systems
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Large Laplace Systems

0

37.5

75.0

112.5

150.0

100k 200k 300k 400k 500k

Iterative Multigrid Sparse Cholesky

Setup + Precomp. + 3 Solutions

555



Mario Botsch, ETH Zurich

Large Laplace Systems
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Small Bi-Laplace Systems
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Small Bi-Laplace Systems
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Large Bi-Laplace Systems
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Large Bi-Laplace Systems
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Shi et al., Fast MG Algo
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Conclusion

563

• Typical geometry processing problems are
– large but sparse
– symmetric positive definite

• Multigrid solvers
– Require careful implementation
– Use it if mesh / matrix changes frequently

• Direct sparse solvers
– Easy to use (black-box)
– Well suited for multiple rhs, or if only matrix values change
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