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1.1 Introduction
This chapter deals with mathematical fundamentals of curves and

surfaces, and more generally manifolds and varieties.
By defining mappings between manifolds such as Euclidean spaces,

we are able to uncover the local properties of their subspaces. In geo-
metric modelling, we are particularly interested in properties such as,
for example, local smoothness, i.e. to know whether the neighbour-
hood of a point in a submanifold is (visually) smooth, or the point is a
singularity.

In other words, we intend to study the relationship between smooth-
ness of mappings and smoothness of manifolds. The idea is to show
that a mathematical theory exists to describe manifolds and varieties
(e.g. curves and surfaces), regardless of whether they are defined ex-
plicitly, implicitly, or parametrically.
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1.2 Functions and Mappings
In more formal terms, a function is a particular type of binary

relation between two sets, say X and Y . The set X of input values is
said to be the domain of f , while the set Y of output values is known
as the codomain of f . The range of f is the set {f (x) : x ∈ X}, i.e.
the subset of Y which contains all output values of f .

There are three major types of functions, namely, injections, sur-
jections and bijections. An injection (or one-to-one function) has
the property that if f (a) = f (b), then a and b must be identical. A
surjection (or onto function) has the property that for every y in the
codomain there is an x in the domain such that f (x) = y. Finally, a
bijection is both one-to-one and onto.

Functions can be even further extended in order to have several out-
puts. In this case, we have a component function for each output.

Functions with several outputs or component functions are here
called mappings.

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 6�� 66�

� £

�¶w«

' 4

ò Ñ

It is also useful to review how functions are classified in respect to
the properties of their derivatives. Let f : X 7→ Y be a mapping of X
into Y , where X, Y are open subsets of Rm, Rn respectively. If n = 1,
we say that the function f is Cr (orCr differentiable or differentiable of
class Cr, or Cr smooth or smooth of class Cr) on X , for r ∈ N , if the
partial derivatives of f exist and are continuous on X , that is, at each
point x ∈ X .

If n > 1, the mapping f is Cr if each of the component functions
fi(1 6 i 6 n) of f is Cr. We say that f is C∞ (or just differentiable or
smooth) if it is Cr for all r > 0.

Moreover, f is called a Crdiffeomorphism if: (i) f is a homeo-
morphism and (ii) both f and f−1 are Cr differentiable, r > 1 (when
r =∞ we simply say diffeomorphism).
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1.3 Differential of a Smooth Mapping
Let U, V be open sets in Rm, Rn, respectively. Let f : U → V be a

mapping with component functions f1, . . . , fn.

a mapping f : U → V is smooth (or differentiable) if f has contin-
uous partial derivatives of all orders. And we call f a diffeomorphism
of U onto V when it is a bijection, and both f, f−1 are smooth.

Let f : U → V be a smooth (or differentiable or C∞) and let
p ∈ U . The linear mapping Df (p) : Rm → Rn whose matrix is the
Jacobian is called the derivative or differential of f at p; the Jacobian
Jf (p) is also denoted by [Df (p)].

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 8�� 66�

� £

�¶w«

' 4

ò Ñ

Theorem 1.1. Let U, V be open sets in Rm, Rn respectively. If
f : U → V is a diffeomorphism, at each point p ∈ U the differential
Df (p) is invertible, so that necessarily m = n.

The justification for m = n is that it is not possible to have a dif-
feomorphism between open subspaces of Euclidean spaces of different
dimensions

In fact, a famous theorem of algebraic topology (Brouwer’s invari-
ance of dimension) asserts that even a homeomorphism between open
subsets of Rm andRn ,m 6= n, is impossible.
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1.4 Invertibility and Smoothness
The smoothness of a submanifold that is the image of a mapping

depends not only on smoothness but also the invertibility of its associ-
ated mapping.

Before proceeding, let us then brie y review the invertibility of
mappings in the linear case.

Definition 1.2. Let X , Y be Euclidean spaces, and f : X → Y a
continuous linear mapping. One says that f is invertible if there exists
a continuous linear mapping g : Y → X such that g ◦ f = idX and
f ◦ g = idy where idX and idY denote the identity mappings of X and
Y , respectively. Thus, by definition, we have:

g(f (x)) = x and f (g(y)) = y

for every x ∈ X and y ∈ Y . We write f−1 for the inverse of f .
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But, unless we have an algorithm to evaluate whether or not a map-
ping is invertible, smoothness analysis of a point set is useless from the
geometric modelling point of view. Fortunately, linear algebra can help
us at this point.

Consider the particular case f : Rn → Rn. The linear mapping f is
represented by a matrix A = (aij). It is known that f is invertible iff A
is invertible.
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Definition 1.3. Let U be an open subset of X and f : U → Y be a C1

mapping, where X , Y are Euclidean spaces. We say that f is C1-invertible
on U if the image of f is an open set V in Y , and if there is a C1 mapping
g : V → U such that f and g are inverse to each other, i.e.

g(f(x)) = x and f(g(y)) = y

for every x ∈ U and y ∈ V . We write f−1 for the inverse of f .

From the theorem that states that a Cr mapping that is a C1 diffeomorphism
is also a Cr diffeomorphism (see Hirsch [190]), it turns out that if f is a C1

-invertible, and if f happens to be Cr , then its inverse mapping is also Cr . This
is the reason why we emphasise C1 at this point.
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Let us now see the behaviour of invertibility under composition. Let
f : U → V and g : V → W be invertible Cr mappings, where V is the image
of f and W is the image of g. It follows that g ◦ f and (g ◦ f)−1 = f−1 ◦ g−1are
Cr-invertible, because we know that a composite of Cr mappings is also Cr.

Definition 1.5. Let f : X → Y be a Cr mapping, and let p ∈ X . One
says that f is locally Cr-invertible at p if there exists an open subset U of X
containing f is Cr-invertible on U .
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Theorem 1.6. (Inverse Mapping Theorem) Let U be an open
subset of Rm, let p ∈ U , and let f : U → Rn be a C1 mapping. If the derivative
Df is invertible, f is locally C1-invertible at p. If f−1 is its local inverse, and
y = f(x), then Jf−1(y) = [Jf(x)]−1.

This is equivalent to saying that there exists open neighbourhoods U , V of
p, f(p), respectively, such that f maps U diffeomorphically onto V . Note that,
by Theorem 1.1, Rm has the same dimension as the Euclidean space Rn, that is,
m = n.

Corollary 1.8. Let U be an open subset of Rn and f : U → Rn. A neces-
sary and sufficient condition for the Cr mapping f to be a Cr diffeomorphism
from U to f(U) is that it be one-to-one and Jf be nonsingular at every point of
U .

Thus, diffeomorphisms have nonsingular Jacobians.
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1.5 Level Set, Image, and Graph of a Mapping

1.5.1 Mapping as a Parametrisation of Its Image

Definition 1.9. (Baxandall and Liebeck [35, p. 26]) Let U be
open in Rm. The image of a mapping f : U ⊂ Rm→ Rn is the subset
of Rn given by

Imagef = {y ∈ Rn|y = f (x),∀x ∈ X}
being f a parametrisation of its image with parameters (x1, . . . , xm).

This definition suggests that practically any mapping is a parametrisa-
tion” of something [197, p. 263].
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Example 1.10. The mapping f : R → R2 defined by f(t) =
(cost, sint), t ∈ R, has an image that is the unit circle x2 + y2 = 1 in R2

(Figure 1.1(a)). A distinct function with the same image as f is the mapping
g(t) = (cos2t, sin2t).

Example 1.10 suggests that two or more distinct mappings can have the same
image. In fact, it can be proven that there is an infinity of different parametrisa-
tions of any nonempty subset of Rn [35, p. 29].
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1.5.2 Level Set of a Mapping

Definition 1.13.(Dineen [112, p. 6]) Let U be open in Rm. Let
f : U ⊂ Rm → Rn and c = (c1, . . . , cn) a point in Rn. A level set of
f , denoted by f−1(c), is defined by the formula

f−1(c) = {x ∈ U |f (x) = c}
In terms of coordinate functions f1, . . . , fn of f , we write

f (x) = c⇔ fi(x) = ci for i = 1, . . . , n

and thus

f−1(c) =
⋂n
i=1{x ∈ U |fi(x) = ci} =

⋂n
i=1 f

−1
i (ci)
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Theorem 1.14. (Implicit Function Theorem, Baxandall [35,
p. 145]) A set X ∈ Rm is a smooth variety if it is a level set of a C1 function
f : Rm → R such that Jf(x) 6= 0 for all x ∈ X .

Example 1.15.The circle x2 + y2 = 4 is a variety in R2 that is a level set
corresponding to the value 4 (i.e. point 4 in R) of a function f : R2 ! R given by
f(x, y) = x2 + y2. Its Jacobian is given by Jf(x, y) = [2x, 2y] which is null
at (0, 0). However, the point (0, 0) is not on the circle x2 + y2 = 4; hence the
circle is a smooth curve.
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1.5.3 Graph of a Mapping

Definition 1.22. (Dineen [112, p. 6]) Let U be open in Rm. The
graph of a mapping f : U ⊂ Rm → Rn is the subset of the product space
Rm+n = Rm ×Rn defined by

graphf = {(x, y)|x ∈ U and y = f(x)}

or

graphf = {(x, f(x))|x ∈ U}

Example 1.23.Let us consider both mappings f(t) = (cost, sint) and
g(t) = (cos2t, sin2t) of Example 1.10. They have the same image in R2, say a
unit circle. However, their graphs are distinct point sets in R3. The graph of f is
a circular helix (t, cost, sint) in R3, Figure 1.1(b). But, although the graph of g
is a circular helix with windings being around the same circular cylinder, those
windings have half the pitch.
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This suggests that there is a one-to-one correspondence between a mapping
and its graph, that different mappings have distinct graphs. This leads us to
think of a possible relationship between the smoothness of a mapping and
the smoothness of its graph. In other words, the smoothness of a mapping
determines the smoothness of its graph. This is corroborated by the following
theorem.

Theorem 1.24. (Baxandall [35, p. 147]) The graph of a C1 mapping
f : U ⊂ Rm → Rn is a smooth variety in Rm ×Rn.
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The graph of the function f(x) = x1/3, depicted in Figure 1.6(c), is a
smooth curve. Note that the curve is smooth despite the function being not
differentiable at x = 0. This happens because the curve is the graph of the
function x = f(y) = y3 that is differentiable.
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The relationship between graphs and level sets plays an important role in
the study of varieties.
� It is easy to see that every graph is a level set.

Let us consider a mapping f : U ⊂ Rm → Rn. We define F : U × Rm → Rn

by F (x, y) = f(x)− y. If 0 is the origin in Rn, we have

(x, y) ∈ F−1(0)⇔ F (x, y) = 0

⇔ f(x)− y = 0

(x, y) ∈ grahpf.

Thus, F−1(0) = graphf and every graph is a level set.

� From the implicit mapping theorem,every smooth level set is locally a
graph.
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Level sets correspond to implicit representations, say functions, on some
Euclidean space, while graphs correspond to explicit representations.

Definition 1.27. (Baxandall and Liebeck [35, p. 226]) Let
f : X ⊂ Rm → R be a function, where m > 2. If there exists a function
g : Y ⊂ Rm−1 → R such that for all (x1, . . . , x

m−1) ∈ Y

f(x1, . . . , xm−1, g(x1, . . . , xm−1)) = 0,

then the function g is said to be defined implicitly on Y by the equation

f(x1, . . . , xm) = 0.

Likewise, the graph of g : Y ⊂ Rm−1 → R is the subset of Rm given by

{(x1, . . . , xm−1, xm) ∈ Rm | xm = g(x1, . . . , xm−1)}.

The expression xm = g(X) is called the equation of the graph [35, p.100].
Hence, g is said to be explicitly defined on Y by the equation xm =
g(x1, . . . , xm−1).
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Example 1.28. The graph of the function f(x, y) = −x2− y2 has equation
−z = x2 + y2. This graph is a 2-manifold in R3 called a paraboloid (Figure
1.7). The equation−z = x2 + y2 explicitly defines the paraboloid in R3.

For c < 0 the plane z = c intersects the graph in a circle lying below the
level set x2 + y2 = −c in the (x, y)-plane. The equation x2 + y2 = −c of a
circle (i.e. a 1-manifold) in R2 is said to define y implicitly in terms of x. This
circle is said to be an implicit 1-manifold.
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1.6 Rank-based Smoothness
Now, we are in position to show that the rank of a mapping gives us a

general approach to check the Cr invertibility or Cr smoothness of a mapping,
and whether or not a variety is smooth.

This smoothness test is carried out independently of how a variety is
defined, implicitly, explicitly or parametrically, i.e. no matter whether a variety
is considered a level set, a graph, or an image of a mapping, respectively.

Definition 1.29. (Olver [313, p. 11]) The rank of a mapping
f : Rm → Rn at a point p ∈ Rm is defined to be the rank of the n×m Jacobian
matrix Jf of any local coordinate expression for f at the point p. The mapping
f is called regular if its rank is constant.
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It is proved in differential geometry that the set of points where the rank of
f is maximal is an open submanifold of the manifold Rm (which is dense if f is
analytic), and the restriction of f to this subset is regular.

The subsets where the rank of a mapping decreases are singularities [313, p.
11].

From linear algebra we have

rankJf = k ⇔ krowsofJfarelinearlyindependent

⇔ kcolumnsofJfarelinearlyindependent

⇔ Jfhasak × ksubmatrixthathasnonzerodeterminant.

Rank Theorem tells us that a mapping of constant rank k behaves locally as a
projection of Rm = Rk ×Rm−k to Rk
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1.6.1 Rank-based Smoothness for Parametrisations

Theorem 1.31. (Rank Theorem for Parametrisations) Let U be
an open set in Rm and f : U → Rn. A necessary and sufficient condition for the
C1 mapping f to be a diffeomorphism from U to f(U) is that it be one-to-one
and the Jacobian Jf have rank m at every point of U .

Three points should be noticed for this thereom.
� f should be smooth enough,i.e. f passes the differentiability test

Example 1.32. We know that the bent curve in R2 defined by the
parametrisation f(t) = (t, |t|) is not differentiable at t = 0, even though its
rank is 1 everywhere.
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� Jf have rank m at every point of U . (rank test)
Example 1.33. A parametrised curve that passes the differentiability test,
but not the rank test, is the cuspidal cubic in R2 given by f(t) = (t3, t2) (Figure
1.2(a)). The component functions are polynomials and therefore differentiable.
However, the rank Jf(t) = [3t2, 2t] is not 1 (i.e. its maximal value) at t = 0; in
fact it is zero. This means that the parametrised cuspidal cubic is not smooth at
t = 0, that is, it possesses a singularity at t = 0.

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 28�� 66�

� £

�¶w«

' 4

ò Ñ

� f should be one-to-one
Example 1.35. The curve parametrised by the differentiable mapping
f(t) = (t3−3t−2, t2−t−2) is not smooth at (00),despite the differentiability of
f and its maximal rank. In fact, we get the same point (0, 0) on the curve for two
distinct points t = −1 and t = 2 of the domain, that is, f(1) = f(2) = (0, 0),
and thus f is not one-to-one. These singularities are known as self-intersections
in geometry or topological singularities in topology.
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1.6.2 Rank-based Smoothness for Implicitations

The implicit function theorem is particularly useful for geometric modelling
because it provides us with a computational tool to test whether an implicit
manifold, and more generally a variety, is smooth in the neighbourhood of a
point. Specifically, it gives us a local parametrisation for which it is possible to
check the local Cr-invertibility by means of its Jacobian.

Theorem 1.38. (Rank Theorem for Implicitations) Let U be
open in Rm and let f : U → R be a Cr function on U . Let (p, q) =
(p1, . . . , pm−1, q) ∈ U and assume that f(p, q) = 0 but ∂f

∂xm
(p, q) 6= 0 Then

the mapping

F : U → Rm−1 ×R = Rm

given by

(X, y) −→ (X, f(X, y))

is locally Cr-invertible at (p, q).

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 30�� 66�

� £

�¶w«

' 4

ò Ñ

Theorem 1.39. (Multivariate Implicit Function Theorem) Let
U be open in Rm and let f : U → R be a Cr function on U . Let (p, q) =
(p1, . . . , pm−1, q) ∈ U and assume that f(p, q) = 0 but ∂f

∂xm
(p, q) 6= 0. Then

there exists an open ball V in Rm−1 centred at p and a Cr function

g : V → R

such that g(p) = q and

f(X, g(X)) = 0

for all x ∈ V .

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 31�� 66�

� £

�¶w«

' 4

ò Ñ

1.7 Submanifolds

Definition 1.41. Let f : M → N be a smooth mapping with constant rank.
Then, for all p ∈M , f is called:

animmersion if rankf = dimM,

asubmersion if rankf = dimN :

Definition 1.43. A smooth (analytic) m-dimensional immersed submani-
fold of a manifold N is a subset M ′ ⊂ N parametrised by a smooth (analytic),
one-to-one mapping f : M → M ′ ⊂ N , whose domain M , the parameter
space, is a smooth (analytic) m-dimensional manifold, and such that f is
everywhere regular, of maximal rank m.

Thus, an m-dimensional immersed submanifold M0 is the image of an
immersion f : M → M ′ = f(M). To verify that f is an immersion it is
necessary to check that the Jacobian has rank m at every point.

Observe that an immersed submanifold is defined by a parametrisation.
Thus, an immersed submanifold is nothing more than a parametrically defined
submanifold, or simply a parametric submanifold.
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Despite its smoothness, an immersed or parametric submanifold may
include self-intersections.

Parametric submanifolds without self-intersections, are called parametric
embedded submanifolds.

Definition 1.44. An embedding is a one-to-one immersion f : M → N
such that the mapping f : M → f(M) is a homeomorphism (where the topol-
ogy on f(M) is the subspace topology inherited from N ). The image of an
embedding is called an embedded submanifold.
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Definition 1.49. An m-dimensional smooth submanifold M ⊂ N is
regular if, in addition to the regularity of the parametrising mapping, there is
a cov- ering {Ui} of M by open sets of N such that, for each i, Ui

⋂
M is a

single open connected subset of M.

Let us see a counterexample of regular submanifolds.
Example 1.50. Let f : [1,∞]→ R2 be a mapping given by

f(t) = (1tcos(2πt),
1
tsin(2πt)).

Its image (Figure 1.10(a)) in R2 is an embedded curve because the image of
every point t ∈ [1,∞] is a point in R2; hence, f is a homeomorphism. Note that
even near t = ∞, f is still a homeomorphism because its image is a point, the
origin (0, 0).
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However, the image of [1,∞] is not a regular curve because it spirals to
(0, 0) as t→∞ and tends to (1, 0) as t→ 1, Figure 1.10(a).

near (in a neighbourhood of) t = ∞ the relative neighbourhood in the
image curve has several (possibly an infinite number of) components.
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1.7.2 Implicit Submanifolds and Varieties

An alternative to the parametric approach for submanifolds is to define them
implicitly as a common or intersecting level set of a collection of functions
Theorem 1.53. (Olver [313, p. 14]) A n-dimensional submanifold
N ⊂ Rm is regular if and only if for each point p ∈ N there exist local
coordinates x = (x1, . . . , xm) defined on a neighbourhood U of p such that
U
⋂
N = {X : x1 = . . . = xm−n = 0}.

Therefore, every regular n-dimensional submanifold of an m-dimensional
manifold locally looks like a n-dimensional subspace of Rm.
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Definition 1.54. Let F be a family of smooth real-valued functions
fi : M → R, with M,R smooth manifolds. The rank of F at a point p ∈ M is
the dimension of the space spanned by their differentials. The family is regular
if its rank is constant on M .

Definition 1.58. A variety (or system of equations) VF is regular if it is not
empty and the rank of F is constant.

Theorem 1.59. Let F be a family of functions defined on an m-dimensional
manifold M . If the associated variety V F ⊂ M is regular, it defines a regular
submanifold of dimension m− r.
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Definition 1.62. Let f : U ⊂ Rm → Rr be a smooth mapping. A
point p ∈ Rm is a regular point of f , and f is called a submersion at p, if the
differential Df(p) is surjective. This is the same as saying that the Jacobian
matrix of f at p has rank r (which is only possible if r 6 m). A point q ∈ Rr is
a regular value of f if every point of f−1(q) is regular.

Definition 1.63. Let f : U ⊂ Rm → Rr be a smooth mapping. A point
p ∈ Rm is a singular point of f if the rank of its Jacobian matrix falls below its
largest possible value min(m, r). Likewise, a singular value is any f(p) ∈ Rr

where p is a singular point.
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Chapter Six Continuation Methods
Continuation methods are based on piecewise linear approximation of a va-

riety (e.g. curve or surface) by means of numerical solution of an initial value
problem [7]. In other words, they compute solution varieties of nonlinear sys-
tems usually expressed in terms of an equation

f(p) = 0

with f : Rn+d → Rn a real function. The solution of this equation is called zero
set (i.e. a particular level set).

As studied in Chapter 1, a zero set is a variety that consists of regular pieces
called manifolds, which are joined at singular solutions (which are also solution
manifolds, but of a system with lower d). The regular pieces are manifold curves
when d = 1, manifold surfaces when d = 2, and d-manifolds in general.
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6.1 Introduction

The essential idea behind a continuation method is very simple: first,
compute a piece of the solution manifold near one solution, then select another
solution from this set and repeat the process. As long as the new piece covers
some new part of the solution manifold the computation progresses. So the
basic issues are:
1. How to compute the solution manifold near some point pi at which f(pi) = 0.
2. How to select a new point.
3. How to avoid recomputing the same part of the manifold.

There are two ways to perform the first task, which lead us to two types of
continuation methods: simplicial continuation methods and predictor- corrector
methods.
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6.2 Piecewise Linear Continuation
Piecewise linear continuation (or PL continuation), also called simplicial

continuation, operates on a triangulation (simplicial complex) of a given do-
main Ω ⊂ Rn+d to approximate and to sample a a manifold (e.g. a curve or a
surface).

This is illustrated in Figure 6.1 for a curve that lies in Ω ⊂ R2. The tri-
angulation (a) splits Ω into equilateral triangles, where the red ones are those
triangles which the curve passes through. The triangulation (b) partitions into
isosceles triangles, where the green ones are those which better approximate the
curve.
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6.2.1 Preliminary Concepts
For any positive integer N , and for any set {p0, . . . , pN} of points

in some linear space which are affinely independent (or, equivalently,
{p1 − p0, . . . , pN − p0} are linearly independent), the convex hull [p0, . . . , pN ]
is called the N-simplex with vertices p0, . . . , pN .

As known, the possible N -simplices in R3 are: vertices (N = 0), edges
(N = 1), triangles (N = 2), and tetrahedra (N = 3). Also, for each subset of
K + 1 vertices {q0, . . . , qk} ⊂ {p0, . . . , pN}, the K-simplex [q0, . . . , qK] is
called a K-face of [p0, . . . , pN ]. In particular, 0-faces are vertices, 1-faces are
edges, 2-faces are triangles, and (K − 1)-faces are facets. Simplices are the
building bricks” that allow us to construct different sorts of triangulations inRN .
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Definition 6.1. Let T be a non-empty collection of N -simplices in RN . We
call T a triangulation of RN if the following properties are satisfied:
(1)
⋃
σ∈T = RN ;

(2) the intersection σ1
⋂
σ2 of two simplices σ1, σ2 ∈ T is empty or a common

facet of both simplices;
(3) the collection T is locally finite, i.e. any compact subset of Rd meets only a
finite number of simplices of σ ∈ T .

This definition applies not only to triangulations of RN but also to its
subspaces, as needed in computer graphics.
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6.2.2 Types of Triangulations

We would like to have triangulations with the following properties:
(1) It should be easy to find the simplex that shares a facet with a given simplex.
(2) It should be possible to label the vertices of all the simplexes at the same time
with indexes 0, . . . , N , such that each of the N +1 vertices of an N -simplex has
a different label.
(3) It should be desirable for all the simplexes to have almost the same size.
(4) It should be desirable for all the simplexes to have roughly the same dimen-
sions in all directions.
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6.2.3 Construction of Triangulations

(1)Freudenthal’s Triangulation

The fact that Coxeter’s triangulations are monohedral means that a simplex
must have dihedral angles that are each a submultiple of 2π. That is, for each
pair of facets of the simplex, there is an integer i > 1 such that the dihedral
angle between the two facets is 2π

i .

Let us now formalise the Freudenthal rule. Let σ = [p0, . . . , pN ] be an N-
simplex.For each k ∈ {0, . . . , N} let us define k− 1 and k + 1 as the ”left” and
”right” neighbours of k in the cyclic ordering of (0, 1, . . . , N). Analogously,
for vertices, pk−1 (k 6= 0) and pk+1 (k 6= N) are defined to be the ”left” and
”right” neighbours of the vertex pk.It is clear that pN is the left neighbour of p0
and, conversely, p0 is the right neighbour of pN .
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Definition: The vertex obtained as follows

p̂k = pk−1 − pk + pk+1

is called the ”reflection” of pk across the centre of the ”neighbouring edge”
[pk−1, pk+1].

Freudenthal’s triangulations are got by the pivot operation
Φk([p0, . . . , pk, . . . , pN ]) = [p0, . . . , p̂k, . . . , pN ], where p̂k = pk−1 − pk +
pk+1, p−1 = pN , pN+1 = p0.

This is illustrated in Figure 6.4:
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6.2.3 Construction of Triangulations

(2)Todd’s Triangulation J1

The J1 triangulations are got by the pivot operation
Θk([p0, . . . , pk, . . . , pN ]) = [p0, . . . , p̂k, . . . , pN ], where

p̂k = pk−1 − pk + pk+1, if 0 < k < N , p̂k = 2pk+1 − pk, if k = 0,
p̂k = 2pk−1 − pk, if k = N ,
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6.3 Integer-Labelling PL Algorithms

In addition to pivoting rules to generate triangulations, PL algorithms use
labellings with the following purposes:
� To keep track the PL approximation of a manifold. That is, by labelling the
simplexes that intersect a manifold, also called transverse simplexes, we are
able to follow such a manifold.
� To prevent the cycling phenomenon.

A simplicial algorithm provides a piecewise linear zero set of f via an aux-
iliary map Lf called labelling induced by f . The values of Lf at vertices are
then used in determining whether a given n-simplex is ”completely labelled” or
not.
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Definition 6.2. For p ∈ Rn+d, the labelling of p is defined by Lf(p) = j,
where j ∈ {0, . . . , n} is the number of leading nonnegative components of
f(p) ∈ Rn.

Definition 6.3. An (n + d)-simplex [p0, . . . , p
n+d] is said to be completely

labelled if Lf{p0, . . . , pn+d} = {0, . . . , n}.

Definition A 1-simplex is called ”completely labelled” when the labels of
the vertices are different.

Definition6.6 An (n + m)-simplex (m = 0, . . . , d) is said to be transverse
if it contains a completely labelled n-face.

In our case, f has only one component function (n = 1), which means that
there are only two possible labels for any vertex v of the triangulation: either 0
when f(v) < 0 or 1 when f(v) > 0.
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Example 6.4. Let Ω = [−2, 2]×[−2, 2] ∈ R2,f(x, y) = y−x2+ 1
2. Looking

again at Figure 6.6, we note that the vertices p0 = (0, 0), p1 = (1, 0), p2 = (1, 1)
define a 2-simplex or triangle in Ω. The labels of these three vertices are:
• Lf(0, 0) = 1 because f(0, 0) = 1

2 > 0;
• Lf(1, 0) = 0 because f(1, 0) = −1

2 < 0;
• Lf(1, 1) = 1 because f(1, 1) = 1

2 > 0;

Thus, the 1-simplices or edges [p0, p1] and [p1, p2] are completely labelled,
but not the edge [p0, p2].
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6.4 Vector Labelling-based PL Algorithms

In comparison to integer labelling,vector labelling provides a finer PL
zero set of f than integer labelling.Here,we still consider the Freudenthal’s
triangulation of Ω ⊂ R2 used before.

Now, we are able to compute the PL zero set on each transverse simplex
using linear interpolation. This computation can be done using one of the
following two alternatives:
• Computing the convex hull of the zero points on the edges of the simplex.
• Computing the equation of the hyperplane that contains the convex hull.
(1) Using the first alternative, we can determine the contour that passes through
a triangle by computing the points where the line intersects the edges of such
triangle. In this case, any transverse edge with vertices p0 and p1 can be written
as

p = p0 + t(p1 − p0) (6.5)

with t ∈ [0, 1], and the linear interpolant over such an edge is given by

F (p) = f(p0) + t[f(p1)− f(p0)] (6.6)

Setting F (p) = 0, we get t = − f(p0)
f(p1)−f(p0) from Equation (6.6). Substituting the

value of t in Equation (6.5), we obtain the zero point on the transverse edge.

http://192.9.200.1


�¯Ì�

I K �

JJ II

J I

1 54�� 66�

� £

�¶w«

' 4

ò Ñ

(2) Uses the interpolant over the triangle as a whole, not over its edges.
Analogously, the values of f at the corners of a triangle [p0, p1, p2] define a
unique piecewise linear interpolant F (p) to f(p) over each triangle, which can
be written in terms of the equations

p = p0 + s(p1 − p0) + t(p2 − p0) (6.7)

and

F (p) = f(p0) + s[f(p1)− f(p0)] + t[f(p2)− f(p0)] (6.8)

where s > 0, t > 0, and s+ t = 1.
The interpolant F is piecewise linear because its contour (or PL zero set) across
an individual triangle is a line segment, whose line equation can be easily deter-
mined by solving the system of Equations (6.7) and (6.8), after setting F (p) = 0.
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Using linear interpolation amounts to use barycentric coordinates. In fact,
Equation (6.7) can be written as

p = α0p0 + α1p1 + α2p2 (6.9)

and

F (p) = α0f(p0) + α1f(p1) + α2f(p2) (6.10)

where α0 = 1− (s+ t), α1 = s, α2 = t, α0 + α1 + α2 = 1 and 0 6 s, t 6 1.
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In general, every point p ∈ Rn+d of an (n+d)-simplex σ = [p0, . . . , pn+d] ⊂
Rn+d can be expressed in barycentric coordinates

p = α0p0 + · · ·+ αn+dpn+d (6.11)

with αi > 0 (i = 0, . . . , n+ d) and α0+, . . . ,+alphan+d = 1.
Similarly, we have

F (p) = α0f(p0)+, . . . ,+αn+df(pn+d) (6.12)

or, equivalently,

Lf(σ) · α =

(
1

F (p)

)
(6.13)

where α = (α0, . . . , αn+d)
Tare the barycentric coordinates of a point p ∈ Rn+d

and

Lf(σ) =

(
1 . . . 1

f(p0) . . . f(pn+d)

)
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The matrix Lf(σ) is known as labelling matrix of a (n + d)-simplex σ =
[p0, . . . , pn+d] ⊂ Rn+d. It consists of n + d + 1 labelling column vectors, each
vector storing the value of f , which works as a label, at each vertex. In general,
the standard vector labelling induced by f : Rn+d → Rn is then

lf(p) =

(
1

f(p)

)
where p ∈ Rn+d.
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Intuitively, this means that f changes sign at vertices of τ , consequently, any
(n+ d)-simplex σ having τ as a n-face is said to be transverse to the zero set of
f .

From Equation (6.13), the PL zero set across the simplex σ is the set of
points whose barycentric coordinates satisfy

Lf(σ) · α =


1
0
...
0

 (6.16)

with αi > 0 (i = 0, . . . , n+ d), that is

α = Lf(σ)−1 · e1 (6.17)
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This gives us the barycentric coordinates of at least a point b0 in the d-
dimensional hyperplane that approximates the zero set inside a given (n+d)-
simplex σ. The parametric equation in barycentric coordinates corresponding to
the general Equation (6.16) of such hyperplane can be written as follows

b(t1, . . . , td) = b0 +
∑d

i=0 tibi 6.18

where ti ∈ R is the real parameter on the line defined by the vector bi − b0,
and {bi}(i = 1, . . . , d) is a linearly independent set of points. This linear inde-
pendence implies that the barycentric coordinates of a nonzero (n+ d)- tuple bi
have sum zero. Thus, computing bi in the zero set hyperplane inside σ reduces
to determine a nontrivial solution of the homogeneous equation

Lf(σ) · bi =


0
0
...
0

 (6.16)
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The hyperplane passes through the facets of σ, the completely labelled
facets, opposite to vertices for which ti = −b0

b1
is negative.The remaining facet

is the exit or pivoting facet.
Found the index i of the vertex pi opposite to the exit facet, pi is pivoted into

a new vertex p̂i, and the labelling matrix Lf(σ̂) is obtained by replacing the ith

label or column of the Lf(σ) by

lf(p̂i) =

(
1

f(p̂i)

)
(6.20)
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Example 6.9. Let f : Ω ⊂ R2 → R a real function in two real variables
defined by f(x, y) = −2x+y+1/4 (see Figure 6.9). In this case, the zero set of
f is the straight line−2x+y+1/4 = 0 inR2, so it coincides with its PL zero set.
Let us also consider that the domain Ω ⊂ R2 is to be triangulated according to
Freudenthal’s pivoting rule, where the coordinates of the vertices are all integer.
For brevity, we let us consider the 2-simplex or triangle σ = [p0, p1, p2] ⊂ R2,
with p0 = (0, 0), p1 = (1, 0) and p2 = (1, 1). The labelling matrix is then

Lf(σ) =

(
1 1 1
1
4 −

7
4 −

3
4

)
(6.22)

Lf(σ)−1 =
1

6

 68
16 3
−1

4 −3
2 0

 (6.23)
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b0 = Lf(σ)−1 · e1 =

 17
24
− 1

24
1
3

 (6.24)

b1 =

 −1
2
−1

2
1

 (6.25)

So,we have

0 =

 17
24
− 1

24
1
3

+ t

 −1
2
−1

2
1

 (6.26)

or

t =

 t = 17
12

t = − 1
12

t = −1
3

(6.27)
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For t = − 1
12:

α =

 α0 = 3
4

α1 = 0
α2 = 1

4

(6.28)

So,we get

p =
3

4

(
0
0

)
+ 0

(
1
0

)
+

1

4

(
1
1

)
=

(
1
4
1
4

)
(6.29)

Analogously,for t = −1
3,we have: So,we get

p =

(
1
8
0

)
(6.30)
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