
�¯Ì�

I K �

JJ II

J I

1 1�� 95�

� £

�¶w«

' 4

ò Ñ

Chapter 4 Foundations And Representations

�w<µ4

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 2�� 95�

� £

�¶w«

' 4

ò Ñ

Introduction

• point-based surface representations

• mathematical and algorithmic fundamentals

Contents

• 4.1 an overview of methods

• 4.2 moving least squares surface representations (MLS)

• 4.3 sampling and resampling of point-cloud

• 4.4 efficient spatial data structures

• 4.5 real-time refinement

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 3�� 95�

� £

�¶w«

' 4

ò Ñ

4.1 Surface Reconstruction

• 4.1.1 Overview

• 4.1.2 Normal Estimation

• 4.1.3 Implicit surface methods

• 4.1.4 Voronoi methods

• 4.1.5 surface evolution methods

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 4�� 95�

� £

�¶w«

' 4

ò Ñ

4.1 Overview

Object→ point-cloud→ surfaces

triangle mesh
pathes
zero-set
· · ·

for Point-cloud dense enough : many different approaches

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 5�� 95�

� £

�¶w«

' 4

ò Ñ

Choice : depends partly on input and output

noisy input point cloud with many outliers

• filter the outliers

• extract as much information as possible from the noisy data

point cloud produced by a series of modeling operations

• noise free

• methods that interpolates the input points could be used

Point clouds captured using commercial laser range scanners : fall some-
where in between

• few outliers

• some noise : scanner artifacts at sharp edges and alignment error

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 6�� 95�

� £

�¶w«

' 4

ò Ñ

Choice : output

watertight surface : a surface bounding a closed solid

• necessary for finite element analysis, rapid prototyping, parameterization,
· · ·

• watertight constraint often makes for easier, or more robust, algorithms

surfaces with boundaries

• a scan of a human face · · ·

Compared by theoretical analysis

The framework :

• assume that the input is densely enough

• prove the result recovers the correct topology and approximate geometry

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 7�� 95�

� £

�¶w«

' 4

ò Ñ

4.1.2 Normal Estimation

• reconstruction is easier with reliable normal directions

Methods

Hoppe et al

1 find the k-nearest neighbors of point p : Nk(p)

2 fine the total least squares best-fitting plane H to Nk(p)

3 take the normal of H as the normal of p

drawback

need uniform distribution, lead to trouble when points are in slices

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 8�� 95�

� £

�¶w«

' 4

ò Ñ

An alternative : use all points within distance r of p, but lead to the same
difficulty.

Mitra et al.
Choosing r adaptively at different points of P , since no single best choice of

r for a given input P
• areas of high curvature, r ↗, error↗

• areas of high noise , r ↗, error↘

Thus, r is chosen according to the local curvature and noise level.

Using the Voronoi diagram

The Voronoi cells of a point p on the exterior of P are elongated in the direc-
tion perpendicular to the surface, the vector from p to its pole is a good estimate
of the normal.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 9�� 95�

� £

�¶w«

' 4

ò Ñ

4.1.3 Implicit surface methods

produce a function f :

f() :

{
> 0, outside the object
< 0, inside the object

=⇒

S is the zero level-set of f() : {f = 0}.

• output : always the watertight boundary of a solid

• should be computed on a domain large enough to surround the input point
set P and S

An alternative : take the domain to be a thin shell surrounding P , result in a
surface with boundary.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 10�� 95�

� £

�¶w«

' 4

ò Ñ

Voxel-based Methods

the implicit surface method was implemented on a voxel grid

Hoppe et al.

1 estimate the normal at each p by fitting Nk(p)

2 orient the normal by traverse a spanning tree of P

3 f(x) = dist(x, tagent plane of p nearest to x)

4 extract piecewise-linear surfaces from f=0

drawback : output may suffer from holes

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 11�� 95�

� £

�¶w«

' 4

ò Ñ

Curless and Levoy

laser range data input : a grid of points in x− y plane with a depth value z.

1 per patch : connecting points adjacent in the x− y plane

2 each patch : associate with a with a directional distance function

3 form f() : blending the distance functions, with normalized Gaussian
weights

Efficiency : limiting the domain to a thin shell, return surfaces with boundary.

Noise processing : confidence assigned to points, lower value in sharp fea-
tures.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 12�� 95�

� £

�¶w«

' 4

ò Ñ

Basis Functions

Implicit surfaces→ a weighted sum of basis functions, commonly radical basis :

f̂(x) =
∑
i

ciθ(‖ x− pi ‖)

ci : solve to interpolate or approximate the constraints

Advantage : output surface is smooth and attractive

Notice :

The function f ≡ 0 always satisfy the constraint, thus constraints inside or
outside the surface are necessary.

If normals available, we can place additional off-surface points offset from it in
both normal directions.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 13�� 95�

� £

�¶w«

' 4

ò Ñ

Indicator Function

Another choice for f:

f(x) =

{
1 x is inside the object
0 x is outside the object

Thus, gradient of f :

∇f =

{
0 x /∈ S
~n x ∈ S

the problem becomes a Poisson problem : compute f from its gradient field.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 14�� 95�

� £

�¶w«

' 4

ò Ñ

MLS and MPU with Local Functions

Idea :

• construct many ”little” functions fi locally

• then blending the to form f

weight function ωi : dist(pi, x)↗, ωi ↘

f(x) =

∑
i ωi(‖ x− pi ‖)fi(x)∑

i ωi(‖ x− pi ‖)
This function minimize∑

i

ωi(‖ x− pi ‖)∑
i ωi(‖ x− pi ‖)

(f(x)− fi(x))2

which is just the notion of moving least square approximation.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 15�� 95�

� £

�¶w«

' 4

ò Ñ

Notice :if ωi = 0 when far from x, f can be compute efficiently.

In application, ωi is often chosen to be Gaussian, and fi sufficiently far from
x is discarded.

MPU(multilevel partition of unity) : one implementation of this idea

• octree is used to partition the space

• low-degree polynomials approximations is constructed on each leaf

functions associated with interior nodes is used for lower-resolution approxima-
tion of the space.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 16�� 95�

� £

�¶w«

' 4

ò Ñ

4.1.4 Voronoi methods

a particular strength : provide proofs of correctness

Definition 1 (ε-sample) A set of sample points on the surface is an ε-sample if,
for every point x on the surface, there is a sample within distance εf(x) of x.

The Voronoi cells of an ε-sample : long, thin, and perpendicular to the surface.

two poles : the two ”ends” of these long thin cells, lie near the medial axis

Observation :

• vector ”p to pole” is close to normal

thus used to approximate the surface normals

Power Curst Method : uses the weighted Voronoi diagram of the poles

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 17�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 18�� 95�

� £

�¶w«

' 4

ò Ñ

Advantages

• do not require normals : poles provide a good approximation

• find normals with consistent orientation

disadvantages

• computation is expensive in time and space

• most of the triangulation is thrown away

compute only the necessary part ?

ball pivoting algorithm

rolls a ball of fixed radius around the outside of the point cloud

when the ball rest on three input samples, connect them with a triangle

• not so robust as the entire triangulation

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 19�� 95�

� £

�¶w«

' 4

ò Ñ

4.1.5 Surface evolution methods

Idea :

gradually deform a simple input surface

using rules to maintain its structure

attract it to the input data

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 20�� 95�

� £

�¶w«

' 4

ò Ñ

Chen and Medioni : an early straightforward implementation

(need a explicit representation, say, a triangle mesh)

1 initialize : a small ball inside the point cloud

2 expand with ”balloon forces” until it reaches the input points

3 when a sample ”reaches” the surface, anchor it

the forces:

• inflation force in the normal direction

• spring forces between neighboring vertices

limitation : object should be homeomorphic to a sphere

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 21�� 95�

� £

�¶w«

' 4

ò Ñ

Level-set method (Osher and Sethian)

• evolving surface is represented by a level-set in an implicit 3D function

• describe the evolution by a PDE

• solve the evolution numerically

For example, the evolving surface Γ is obtained in minimizing the surface qual-
ity functional :

E(Γ) =

[∫
x∈Γ

dm(x, P) ds

]1/m

Notice that the functional is reduced by bringing the surface closer to the sample
set P .

Level-set method can usually handle the topological changes, but may get
stuck in local minima in some situation. (the following figure). A good initial
estimate generate better results.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 22�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 23�� 95�

� £

�¶w«

' 4

ò Ñ

4.1.6 Conclusion

• different methods applies to different requirements

• taking more time to do a better job is appropriate trade off : the noisy input

• memory efficiency is probably more important for really large inputs

• an improved understanding of the point distribution will be helpful

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 24�� 95�

� £

�¶w«

' 4

ò Ñ

4.2 Moving Least Squares-Based Surface Representations

• 4.2.1 Overview

• 4.2.2 Notation and terms

• 4.2.3 Interpolation and approximation of functional data

• 4.2.4 Normals

• 4.2.5 Implicit surfaces from points and offset points

• 4.2.6 Implicit surface from points and tangent frames

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 25�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.1 Overview

Global structures
√

lead to very good reconstruction results

× always consider all of the data, even for local operations : inefficient in time
and space

Only local algorithms have the premise to be efficient when used to perform
certain local operations on very large point sets.

Here we consider the so-called moving least squares(MLS) approach.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 26�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.2 Notation and terms

The points
P = {pi ∈ R3}, i ∈ {1, · · · , N}

are sample from
the unknown surface S

the normal information may provided is represented as

N = {ni ∈ R3, ‖ ni ‖= 1}

We want to define a surface Ŝ from the points P (and possibly N)
We call the reconstructed surface to be interpolating if

P ∈ Ŝ

otherwise it’s a approximating.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 27�� 95�

� £

�¶w«

' 4

ò Ñ

Only approximation is considered here:

• assume the surface is not too wiggly and contain some noise

• the result allows smoothing the noise and provide reasonably behaved sur-
face

Notation :
pi = (qi, fi)

where qi is in parameter space(R2 here), and fi = f(qi).

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 28�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 29�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.3 Interpolation and approximation of functional data
Goal : determine a f interpolate or approximates pi:

f̂ ≈ fi

A simple approach :

1 given x, find the closed pi

2 set f̂(x) = fi

• interpolation, but not continuous

An obvious improvement :

combine the values of several close points:

f̂(x) =
∑
i

ωi(x)fi

where ωi(x) are weight functions on x.

Different choice of ωi(x) generates different methods.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 30�� 95�

� £

�¶w«

' 4

ò Ñ

Radical Basis Functions

A general approach :

ωi(x) =
ci
fi
θ(‖ x− qi ‖) ⇐⇒ ωi(x)fi = ciθ(‖ x− qi ‖)

where θ describe the influence of distance .

the ci here is defined by interpolation :

f̂(qj) =
∑
i

ciθ(‖ qj − qi ‖) = fj

which is in fact :
θ(‖ q0 − q0 ‖) θ(‖ q0 − q1 ‖) θ(‖ q0 − q2 ‖) · · ·
θ(‖ q1 − q0 ‖) θ(‖ q1 − q1 ‖) θ(‖ q1 − q2 ‖) · · ·
θ(‖ q2 − q0 ‖) θ(‖ q2 − q1 ‖) θ(‖ q2 − q2 ‖) · · ·

...

c0

c1

c2
...

 =

f0

f1

f2
...

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 31�� 95�

� £

�¶w«

' 4

ò Ñ

Standard choices are
θ(δ) = δ−u, u ∈ N

or the Gaussian
θ(δ) = exp(δ2/h2)

Notation : these functions are impractical since

• each point influences every other point

• a global dense linear system in any point

Change

• use locally supported radical functions, with far distance terms vanishes

• lead to sparse linear systems

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 32�� 95�

� £

�¶w«

' 4

ò Ñ

Least Squares Fitting

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 33�� 95�

� £

�¶w«

' 4

ò Ñ

we represent f̂ :
f̂(x) =

∑
i

ωi(x)fi

and We ask that f̂ has a certain precision :

• f̂ is exact for each function g in a precision set G

g(x) =
∑
i

ωi(x)g(qi), ∀g ∈ G

For example, the set quadratic polynomials g(x) = a + bTx + xTCx, we then
have:

1 =
∑
i

ωi(x) · 1

x0 =
∑
i

ωi(x) · qi0

...
x2

0 =
∑
i

ωi(x) · q2
i0

...

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 34�� 95�

� £

�¶w«

' 4

ò Ñ

Then the requirement of the precision set becomes :

a+ bTx+ xTCx =
∑
i

ωi(x)(a+ bTqi + qTi Cqi)

or
QW (x) = Z

Since we have more points than dimensions of the precision set, the weights
have to be further restricted.
We take :

min
{ωi(x)}

∑
(wi(x))2 = min

W (x)
W (x)TW (x)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 35�� 95�

� £

�¶w«

' 4

ò Ñ

How to find this minimum ?

assume we know the solution W (x)

we can find a coefficient vector (a, b0, · · ·), minimizing

W (x)TW (x)− (a, b0, · · ·)QW (x)

use the first order necessary condition, we have:

W (x)T = QT (a, b0, · · ·)T

substitute in to QW (x) = Z, we have

QQT (a, b0, · · ·)T = Z

solving the linear system and we obtain W(x)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 36�� 95�

� £

�¶w«

' 4

ò Ñ

Moving Least Squares

the only modification is that, we localize wights:

min
wi(x)

∑
i

w2
i (x)η(‖ qi − x ‖) = min

W (x)
W (x)TE(x)W (x)

where η(‖ qi − x ‖) penalizes the influence of points far away from x.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 37�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.4 Normals

Problems with NO suitable parameter domain

approach : approximating tangent planes or normals .

If normals are not part of input, they are estimated:

• find Nk(q)

• search a plane H(x) : nTq = nTpi, which minimize

(nT (q − pi))2

• take the normal of H(x)

or using a locally supported weight function θ, and minimize :

min
‖n‖=1

∑
i

(nT (pi − q))2θ(‖ pi − q ‖)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 38�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 39�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.5 Implicit surfaces from points and offset points
Implicit form :

S = {x|f̂(pi) = 0}
is a set of constraints :

f̂(pi) = 0

• additional nonzero constraints should be added, or the solution is f̂ ≡ 0

A standard trick : moving a small step along the normal(say δ) and set

f̂(pi + δni) = δ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 40�� 95�

� £

�¶w«

' 4

ò Ñ

4.2.6 Implicit surface from points and tangent frames

Idea :

• estimate local tangent frames

• use a standard technique in this local tangent frame

MLS Surfaces

• compute a locally tangent reference domain H

• a local bivariate polynomial is fitted over H

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 41�� 95�

� £

�¶w«

' 4

ò Ñ

The local reference domain H = {x| < n, x > −D = 0} is determined by
minimizing:

N∑
i=1

(〈n, pi − r − tn〉)2θ(‖ pi − r − tn ‖)

among all normal n and offset t.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 42�� 95�

� £

�¶w«

' 4

ò Ñ

let qi be the projection of pi onto H , and fi the height of pi over H ,thus

fi = n · (pi − q)

then obtain the approximation g by minimizing the least square error:

N∑
i

(g(xi, yi)− fi)2θ(‖ pi − r − tn ‖)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 43�� 95�

� £

�¶w«

' 4

ò Ñ

Thus, the projection of r is

MLS(r) = r + (t+ g(0, 0))n

Formally, the surface SP is the set of points that projects to itself :

f̂(x) =‖ (t+ g(0, 0))n(x) ‖

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 44�� 95�

� £

�¶w«

' 4

ò Ñ

Surfaces from Normals and Weighted Averages

Inspired by MLS surfaces, and simplify the nonlinear optimization

1 compute a tangent frame in x

2 approximate the data with a locally weighted least squares polynomial

3 intersection of the normal and polynomial is x′

4 repeat

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 45�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 46�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 47�� 95�

� £

�¶w«

' 4

ò Ñ

4.3 Sampling of Point Models

• 4.3.1 Overview

• 4.3.2 Decimation and resampling techniques

• 4.3.3 Analysis and comparison

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 48�� 95�

� £

�¶w«

' 4

ò Ñ

4.3.1 Overview

point-based surface representation :

discrete point space −→ continuous surface

Question : what density is needed to capture the relevant geometric details ?

Since the point models are usually obtained from laser scanning, which leads to
rather dense point clouds, much more attention is attached to Downsampling
methods than Upsampling methods.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 49�� 95�

� £

�¶w«

' 4

ò Ñ

point-based presentations :

• error ×1
2 ⇐= point samples ×4

In order to fill in the gap, splat-based representations are often used.

splat-based representations

• surface approximated by little disk or ellipse

• provide 1st approximation to the surface

• error ×1
2 ⇐= splat number ×2

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 50�� 95�

� £

�¶w«

' 4

ò Ñ

4.3.2 Decimation and resampling techniques

Point-simplification Methods

• Clustering

• Iterative

• Particle simulation

Clustering Methods

Idea : group the input into patches that do not exceed a given upper bound for
size (diameter) or variation (normal or through covariance analysis).

• incremental approach : down-top, starting from random seeds, and grow by
adding neighbors

• hierarchical approach : top-down, splitting the point cloud, through a covari-
ance analysis

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 51�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 52�� 95�

� £

�¶w«

' 4

ò Ñ

Iterative methods : reduce the points using a sequence of decimation opera-
tors.

• operators arranged by the error it caused

• smallest error, first applied

• k-nearest neighbor relation needed

• tangent plane Ei is estimated for error estimation for each p

Particle simulation methods

• desired number of particles randomly spread across the surface

• equalize their position using point repulsion algorithm

• add samples in lower density region while ensure uniformity

• point movement restricted on the surface

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 53�� 95�

� £

�¶w«

' 4

ò Ñ

the three methods above:

• cannot take an a priori approximation error tolerance into account

• pure greedy simplification produces produces nonuniform sampling density

Splat-Decimation Methods

considering the whole splat geometry, the resulting sampling quality can be
largely improved

Procedure:

• initial splats created by hierarchical method

• a sequence of splat-merge operator are arranged by error it caused

• apply operator, and update operator priority in the queue

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 54�� 95�

� £

�¶w«

' 4

ò Ñ

Figure 4.21: The original point model (left and middle, 352,000 points) is deci-
mated to 30,000 circular surface splats (right).

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 55�� 95�

� £

�¶w«

' 4

ò Ñ

splat si :

• 3D ellipse

• center ci

• unit normal ni

• two additional nonuniform vectors ui and vi, the major and minor axes

initial si of pi :

• Nk(pi) is needed⇒ tangent plane H ⇒ ni

• ci = pi

• ui and vi : any orthogonal vectors parallel to H with length ri

ri = max
j
‖ (pj − ci)− nTi (pj − ci)ni ‖

for all pj ∈ Nk(pi)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 56�� 95�

� £

�¶w«

' 4

ò Ñ

to utilize the full geometry, two different error metrics are also generalized
the L2 error metric
the error of merging sl and sr to sm is

εΨ =‖ e ‖ ·
∑

f∈{fm}

|dist(pf , sm)|2, {fm} = {fl} ∪ {fr}

where {fi} are indices of points in {si}.

Apply principle component analysis to Pm = {pf}, f ∈ {fm}

get first 3 eigenvectors e1, e2, e3 of the first 3 eigenvalue λ1 > λ2 > λ3

um = e1, vm = e2, nm = e3

cm = p̄, the average

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 57�� 95�

� £

�¶w«

' 4

ò Ñ

the L2,1 error metric

• the area of two splats to be merged are needed : |sl|, |sr|

εΦ =‖ e ‖ ·(|sl|+ |sr|)· ‖ nl − nr ‖2

and
cm =

|sl| · cl + |sr| · cr
|sl|+ |sr|

nm =
|sl| · nl + |sr| · nr
|sl|+ |sr|

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 58�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 59�� 95�

� £

�¶w«

' 4

ò Ñ

the techniques of Wu and Kobbelt(OSS)

in this algorithm, splat subsampling problem is formulated into a minimum
dominating set problem

a global optimization is applied to compute the minimal number of splats
for a sample pi,

- compute its distance to the ”splat set” T

- obtain a coverage relation Cε ⊂ P × T

- the patch Qj = Cε(∗, sj) correspond to sj

- the problem then formulated as a minimum dominating set problem

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 60�� 95�

� £

�¶w«

' 4

ò Ñ

4.3.3 Analysis and comparison

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 61�� 95�

� £

�¶w«

' 4

ò Ñ

Figure 4.28: Bunny model (see also Figure 4.30) decimated to similar number of
splats by single-resolution OSS (left, 2,577) and progressive PSP (right, 2,591)
algorithms. Although PSP and OSS have quite close errors (0.103% to 0.092%),
being able to concentrate more splats on regions of high curvatures, OSS gives
better splat shapes and distribution than PSP.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 62�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 63�� 95�

� £

�¶w«

' 4

ò Ñ

• LOD merely adopts the octree space-partitioning scheme

• IPS only considers splat centers

without whole splats geometry, they could not produce as promising results as
PSP.

• OSS produces best quality due to its global optimization

• PSP method comes quite close to the best OSS solution

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 64�� 95�

� £

�¶w«

' 4

ò Ñ

Conclusions

– point models are usually highly oversampled

– for processing efficiency, subsampling or decimation are important

• methods decimation using points only approximate geometry weakly

• splat-based representation are a powerful extension

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 65�� 95�

� £

�¶w«

' 4

ò Ñ

4.4 Efficient data structures

content

• 4.4.1 Overview

• 4.4.2 Spatial data organization

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 66�� 95�

� £

�¶w«

' 4

ò Ñ

When very large data volumes must be managed and processed, efficient data
organization and access methods has to be considered carefully:

1 What classes of query requests to retrieve points must be supported ?

2 What type of storage constraints are imposed to represent point splats ?

3 What are the requirements for dynamic point insertions and deletions ?

we ignore question 3 as the point data to be visualized is static

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 67�� 95�

� £

�¶w«

' 4

ò Ñ

4.4.2 Spatial data organization

the goal :

• index the space : decompose it into cells, provide a mapping between these
and the space occupied by an object

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 68�� 95�

� £

�¶w«

' 4

ò Ñ

a straight method is partition the data into buckets :

Bj = {p1j , · · · , pnj}, P =
m⋃
j=1

Bj

and the bounding attributes of Bj can be represent by mass center

p̂j = 1/nj
∑

pij

and bounding radius
r̂j = max |p̂j − pij |+ rij

Figure : Illustration of a bounding sphere

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 69�� 95�

� £

�¶w«

' 4

ò Ñ

However, for large point set P , a bucketization

P =
m⋃
j=1

Bj

may result in large m , which may in turn have to be organized.

Most spatial data structures is constructed as follows:

• employ some sort of subdivision of space

• leaf nodes becomes the actual data buckets

Notice : it’s important to avoid excessive recursive subdivision to a single data
element, but strive to a bucket of k points.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 70�� 95�

� £

�¶w«

' 4

ò Ñ

Octrees : one of the most common choices

Procedure:

1 start with a bounding box cell

2 each cell is recursively subdivided into eight nonempty octants

3 terminate as a leaf when a cell have less than k points

There are also two main strategies:

• binary subdivision of all dimension − region octree : simpler structure

• subdivision at a point inside the cell − point octree : more adaptive to
distribution

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 71�� 95�

� £

�¶w«

' 4

ò Ñ

Algorithm :

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 72�� 95�

� £

�¶w«

' 4

ò Ñ

Figure 4.34: Examples of regular region octree subdivision, binary in each di-
mension (upper row), versus adaptive point octree subdivision at arbitrary split
positions (lower row).

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 73�� 95�

� £

�¶w«

' 4

ò Ñ

octrees : a simple hierarchical

but in general, points in 3D

• can not evenly be subdivided into eight octants

• lead to unbalanced and suboptimal structure

The K-d-trees

• split along one direction : the dimension with largest spatial extent

• 2 subregions have equal number of elements

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 74�� 95�

� £

�¶w«

' 4

ò Ñ

Algorithm

need three indices arrays X, Y, Z : sorted indices of respective dimension

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 75�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 76�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 77�� 95�

� £

�¶w«

' 4

ò Ñ

4.5 Real-time refinement

content

• 4.5.1 Overview

• 4.5.2 One-ring neighborhood selection

• 4.5.3 Refinement algorithm

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 78�� 95�

� £

�¶w«

' 4

ò Ñ

4.5.1 Overview

• necessary for high-quality rendering, multiresolution processing, etc.

• unstable, for tedious selection of neighborhood, without connectivity infor-
mation

generally, we need N(p), then decide where to insert new points

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 79�� 95�

� £

�¶w«

' 4

ò Ñ

4.5.2 One-ring neighborhood selection

• a critical step : decides the new points’ position

• directly affect the robustness of the refinement algorithm

The choice of N(p) here is performed in three steps:

1 coarse selection

2 geodesic projection

3 fuzzy BSP selection

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 80�� 95�

� £

�¶w«

' 4

ò Ñ

Step 1 : Coarse selection

first, compute the Euclidean neighborhood Nr(p) of p as the indices set:

Nr(p) = {i|pi ∈ P l, pi 6= p, ‖ p− pi ‖< r}

then reduce it by several binary rules.

For instance, the co-cone rule : p0 and p1 can be neighbors only if p1(p0) is
in the complement of the double cone(co-cone) of apex p0(p1), axis n0(n1), and
angle θcocone:

Ccocone(p0, p1) ⇐⇒ Cos−1

(∣∣∣∣nT0 p1 − p0

‖ p1 − p0 ‖

∣∣∣∣) < θcocone

and Cos−1

(∣∣∣∣nT1 p1 − p0

‖ p1 − p0 ‖

∣∣∣∣) < θcocone

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 81�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 82�� 95�

� £

�¶w«

' 4

ò Ñ

a criterion between normals are also added:

Cnormal(p0, p1) ⇐⇒ Cos−1(nT0 n1) < θnormal

which allow us to separate very close surfaces.

Then, Nr(p) is reduced to:

Ñ(p) = {i ∈ Nr(p)|Ccocone(p0, p1)andCnormal(p0, p1)and · · · }

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 83�� 95�

� £

�¶w«

' 4

ò Ñ

Step 2 : Geodesic Projection

since direct projection to the tangent plane significantly reduces accuracy,
geodesic projection is used here.

procedure:

• approximate geodesic distance of p0 and p1 by a cubic Bézier : b0, b1, b2, b3

• further approximate by the length of control polygon

let q(pi, x) be the orthogonal projection operator, projecting x onto the tangent
plane of p:

q(pi, x) = x+ nTi (pi − x)ni

and define ti,j be the pseudotangent vector from pi toward pj:

ti,j =
‖ pj − pi ‖

3

q(pi, pj)− pi
‖ q(pi, pj)− pi ‖

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 84�� 95�

� £

�¶w«

' 4

ò Ñ

obviously,
b0 = p0, b1 = p1

and b1, b2 are given by:

b1 = p0 + t0,1
b2 = p1 + t1,0

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 85�� 95�

� £

�¶w«

' 4

ò Ñ

thus, the length of the control polygon, the approximated geodesic distance, is

g̃(p0, p1) =
2

3
‖ p1 − p0 ‖ + ‖ b2 − b1 ‖

and the geodesic projection of pi is:

pgi = p+ g̃(p, pi)
q(p, pi)− p
‖ q(p, pi)− p ‖

which allows a correctly sorted neighbors in the 2D domain, even in high cur-
vature case.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 86�� 95�

� £

�¶w«

' 4

ò Ñ

Step 3 : Fuzzy BSP Selection
Intuition : remove points

• strongly ”behind” another

• slightly ”behind” two others

the notion ”behind” is described by badnessωij defined by some angles:

ωij =
βij − θ0

θ1 − θ0
≈ cos(βij)− cos(θ0)

cos(θ1)− cos(θ0)

where βij = p̂pgjp
g
i varies from θ0 to θ1

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 87�� 95�

� £

�¶w«

' 4

ò Ñ

these fuzzy discriminant planes must be combined two by two.

Let

Succi = {j ∈ Ñ(p)|0 < p̂gi pp
g
j < π}

Predi = {j ∈ Ñ(p)| − π < p̂gi pp
g
j < 0}

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 88�� 95�

� £

�¶w«

' 4

ò Ñ

for each neighbor pi of p, we compute:

ωij = max
j∈Succi

(ωij) + max
j∈Predi

(ωij)

and finally, the one-ring neighborhood N(p) is chosen as:

N(p) = {i|i ∈ Ñ(p), ωi < 1}

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 89�� 95�

� £

�¶w«

' 4

ò Ñ

4.5.3 Refinement algorithm

for a triangular patch, we want the new point inserted near the center

• cubic Bézier triangular patch is used

Obtaining the control points :

1. 3 extremities b300, b030, b003 are p0, p1, p2

2. 6 boundary control points : depend on corresponding 2 extremities(as in
previous section), for instance

b210 = p0 +
‖ p1 − p0 ‖

3

q(p0, p1)− p0

‖ q(p0, p1)− p0 ‖
= p0 + t0,1

3. central point

b111 = c+
3

2
(a− c)

where c is the gravity of p0, p1, p2, and a is the average of 6 boundary
control points .

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 90�� 95�

� £

�¶w«

' 4

ò Ñ

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 91�� 95�

� £

�¶w«

' 4

ò Ñ

the position of the new point is given by:

pnew =
1

3
(p0 + p1 + p2) + φ(p0, p1, p2)

where φ is the smoothing operator :

φ(p0, p1, p2) =
1

6

2∑
i=0

ti,i+1 + ti,i+2

the normal is also estimated by the cross product of two tangent vectors:

∂B

∂u
(
1

3
,
1

3
) = 7(p1 − p0) + b120 − b102 + b012 − b210 + 2(b021 − b201)

∂B

∂v
(
1

3
,
1

3
) = 7(p2 − p0) + b102 − b120 + b021 − b201 + 2(b012 − b210)

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 92�� 95�

� £

�¶w«

' 4

ò Ñ

Sampling control

• avoid oversampling : needn’t insert in each triangle

• relevant new points : optimize the uniformity of the neighborhood

thus, criterions are needed to decide whether a new point should be inserted ,
or to form a new neighborhood N ′(p) of p in the refinement step.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 93�� 95�

� £

�¶w«

' 4

ò Ñ

Let

• Y (p) = {i|pi ∈ P l+1, λr <‖ pi − p ‖< r} be points already inserted,
sufficiently close but not enough to be in N ′(p)

• D(p) = {x|i ∈ Y (p), ‖ x − pi ‖< 1
2λr} be the discard space avoiding

oversampling.

• L(p) = {1
3(p0 + p1 + p2) + φ(p0, p1, p2)|i ∈ N(p)} be all possible new

points .

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 94�� 95�

� £

�¶w«

' 4

ò Ñ

The insertion procedure is as following :

1. select pj, pj+1 ∈ N ′(p) forming the maximal angle

2. select point in L(p) best balances the point sampling (a good candidate :
pk such that the minimal of p̂jppk and p̂kppj+1 is maximal)

3. if pk /∈ D(p), insert it into P l+1 and N ′(p); else no new point inserted, the
closest one in Y (p) is inserted to N ′(p)

thus, if the sample are locally dense enough, no new point is inserted.

http://192.9.200.1

�¯Ì�

I K �

JJ II

J I

1 95�� 95�

� £

�¶w«

' 4

ò Ñ

Thanks!

http://192.9.200.1

