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Abstract—In this paper, we study the link-oriented tasks in
signed network, i.e., labeling link signs and predicting new
links. Usually, prior arts directly focus on the link signs,
while their intrinsic structural regularities have been largely
ignored. Furthermore, these techniques suffer the sensitiveness
to the high dimension and sparsity of networks. To deal
with these tasks, with verifying the effect of second-order
distance in signed network, we propose a novel Link-oriented
Signed Network Embedding (LSNE) model, in which network
embedding technique is adapted to capture both first-order
and second-order distance. Along this line, the link-oriented
tasks will be intuitively solved. Extensive experiments on two
real-world datasets demonstrate that LSNE could significantly
outperform the comparison approaches.

1. Introduction

Recent years have witnessed the booming of various
social network services [18], where the definition of social
relationship has been extended as link signs emerge. For
instance, in Epinions 1, users could select to trust or distrust
other users, which results in “positive” or “negative” links,
and then the so-called “signed network” has been formed.
This new type of social network raised challenges in link
prediction [6] and labeling [15], as in these SNS platforms,
many users are not willing to build connections, especially
for the negative links, which leads to the severe sparsity of
network structure. Thus, identifying hidden relationships, for
both links and signs, has been a crucial task.

Traditionally, existing approaches attempt to exploit the
structures of signed network in following two aspects.
The first ones are usually unsupervised solutions based on
topological properties of signed network, like similarity-
based [1, 5] and low-rank approximation-based [10, 13, 14]
approaches. However, this type of solutions could only fit
the undirected signed networks, and the effectiveness of
low-rank approximation could be limited even dealing with
slightly larger dimension. At the same time, the second
ones are always supervised approaches following the idea
of classification problems, e.g., they treat degrees, triads
and common neighbors as features to train a classifier [7].
However, these approaches are incapable of capturing the

1. http://www.epinions.com/

intrinsic structural regularities of signed network, and even
highly sensitive to the minor alternations of structures. In
summary, an effective approach to capture the intrinsic
structural regularities is still required for the link-oriented
tasks in signed network.

With the development of deep learning techniques, net-
work representations have been widely studied to map
nodes in the network into a low-dimension vector space.
These techniques offer a more comprehensive perspective
to understand the network structure, and further predict
future network evolution. With the good performance of
DeepWalk [9], which firstly combines random walk with
skip-gram model to learning the representations of networks,
series of networks embedding methods like LINE [11] and
nove2vec [3] have been proposed. However, these works
mainly focus on ordinary networks, while the tasks in signed
networks still attract less attention.

To deal with these tasks, in this paper, we propose a
novel Link-oriented Signed Network Embedding (LSNE)
framework. To be specific, two models have benn proposed.
The first one, named as LSNE1, is inspired by first-order dis-
tance and embeds every node into a low-dimension vector.
Similarly, the second one, named as LSNE2, represents each
node as two low-dimension vectors, i.e., output embedding
vector and input embedding vector. Different from previous
approach, LSNE will not only captures the intrinsic struc-
tural regularities, but also consider the direction of signed
network. To the best of our knowledge, we are among the
first ones to profoundly analyze the relationships between
bi-directional embedding vectors. Besides, LSNE enables
to exploit embedding vectors as the features for supervised
learning and expand to heterogeneous signed networks by
conducting this algorithm in every single network and up-
dating alternately.

To the best of our knowledge, we are among the first
ones who demonstrate the effect of second-order informa-
tion in signed network, and then propose a novel framework
called LSNE to solve link-oriented tasks in signed network,
especially with considering the direction of bi-directional
signed network. Experimental results on two real datasets
demonstrate that LSNE outperforms several previous meth-
ods for these problems and further verifies the proposed
approach is capable of capturing the intrinsic structural
regularities in signed network.
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2. Signed Network Embedding
In this section, We first provide some definitions of the

problems. Then we illustrate the importance of first-order
and second-order information in signed network on two
public datasets. At last, we introduce our signed network
embedding model LSNE and optimization of the model.

2.1. Problem Definition

We first give the definition of the signed network as
follows:

DEFINITION 1 (Signed Network): The signed network
is defined as G = (U,E+, E−), where U = {u1, ..., un} is
the set of vertices, E+ and E− respectively represent the
sets of positive links and negative links in network.

In signed network, the local pairwise relationship be-
tween the nodes is very important. Therefore, the local
network structures must be preserved. Different from the
definition of the local network structure in general network,
we define this in signed network as First-order Distance :

DEFINITION 2 (First-order Distance): The First-order
distance is the local pairwise distance between two nodes.
For each node pair (ui, uj), the corresponding weight wij

indicates the First-order distance. When the link is positive,
like node 1 and node 4 in Figure 1, it indicates that two
nodes are similar and their First-order distance is closer.
While if the link is negative, it represents they are not similar
to each other and their First-order distance is far away, like
node 1 and node 8 in Figure 1.

However, only capturing the local structure is not suffi-
cient. Inspired by the balanced theory which means that the
friends of friends are friends and the enemies of friends are
enemies, we define the Second-order Distance as follows:

DEFINITION 3 (Second-order Distance): The Second-
order distance is determined by the similarity of the neigh-
borhood network structures between a node pair (ui, uj).
If these two nodes, like node 1 and node 2, share more
common nodes with the same sign, then they should be more
similar and tend to build a positive link, so their Second-
order distance is closer. If these two nodes hold links to
more common nodes with different signs, then they prefer
to build a negative link and be more dissimilar. Therefore
their Second-order distance is far away, for example: node
2 and node 3 in Figure 1.

We investigate both First-order Distance and Second-
order Distance for signed network embedding, which is
defined as follows:

DEFINITION 4 (Signed Network Embedding): Given a
signed network G = (U,E+, E−), we aim to learn a low-
dimensional embedding v⃗ ∈ Rd for each vertex u in signed
network, where d ≪ |U |.

This signed network embedding can preserve First-order
Distance and Second-order Distance. In order to prove this
learning embedding’s effectiveness, we select the link sign
prediction and link prediction tasks to demonstrate it.

Next, we analyze two public datasets to illustrate the
importance of First-order Distance and Second-order Dis-
tance, which is the basis of our model.

Figure 1. Example of a signed network

TABLE 1. STATISTICS OF THE DATASETS

Datasets Nodes Links Positive Links Negative Links
Slashdot 77,357 516,575 369,378 120,197
Epinions 131,828 841,372 717,667 123,705

2.2. Data Analysis

In this section, we want to verify the effectiveness
of First-order Distance and Second-order Distance. For
the First-order Distance, many of the previous research
works [2, 5] has proven its importance through matrix de-
composition or spectral clustering technologies, etc. Most of
them are based on the assumption: The nodes with positive
links are similar and the nodes with negative links are
not similar. We also utilize this as the assumption of our
First-order Distance Method. However, for the Second-order
Distance, a lots of research works have overlooked it or
simply utilize it as a part of features. In order to illustrate
the importance of the Second-order Distance, we utilize two
public signed network datasets [7] shown details in Table 1,
and put forward two questions as follows:

• If two nodes have more common friends with the
same sign links, whether they tend to build a positive
link?

• On the contrary, if two nodes have more common
friends with the different sign links, whether they
tend to build a negative link?

To answer the two questions, we randomly extract 1500
nodes from the two datasets to form a new subgraph for
statistical analysis. For arbitrary node pair (ui, uj) in sub-
graph, like u1 and u2 in Figure 1, we respectively count
the number of their neighbor nodes with the same sign
links and different sign links. Then we calculate the ratio
of node pair with positive link and negative link, below the
different number of neighbor nodes with the same signs and
different signs. The final statistical analysis results in the
Slashdot Dataset are shown in Figure 2 where the abscissa
10 indicates the number of neighbor nodes is greater than
or equal to 10:

From the left figure in Figure 2, we can find that as
the number of neighbor nodes with the same sign links
increases, the ratio of node pair with positive links signifi-
cantly increases. This conclusion suggests a positive answer
to the first question: Two nodes with more common friends
with the same sign links tend to build a positive link. For
the right figure in Figure 2, we can come to this conclusion
that the ratio of node pair with negative links grow with
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Figure 2. Data analysis in Slashdot

the number of common neighbor nodes with negative links.
This answers the second question: Two nodes with more
common friends with the different sign link prefer to build
the negative link. Also the similar results can be observed
in Epinions Dataset, we omit it here for brevity.

From the above data analysis, we illustrate the im-
portance of the Second-order Distance in signed network.
Further more, we make the following assumption that: The
closer the Second-order distance is, the more similar the
nodes are, vice versa, which is the basis of our Second-
order Distance Method.

2.3. Link-oriented Signed Network Embedding

In this section, we will propose our methods includ-
ing first-order distance method and second-order distance
method, which capture the intrinsic structures of signed
networks.

2.3.1. First-order Distance Method. We extend the first-
order distance put forward recently [11] to build our model.
The first-order distance preserves the local distance infor-
mation between two nodes in signed network. Specially,
for a positive link (ui, uj), we define the joint probability
distribution of node ui and node uj as :

p1(ui, uj) =
1

1 + exp(−v⃗Ti · v⃗j)
, (1)

where v⃗i ∈ Rd is the low-dimension representation of node
ui, and d is the space dimension given in advance in the
experimental setting. Moreover, the empirical distribution
of (ui, uj) can be defined as p̂1(ui, uj) = wij/W

+ where
wij is the weight of positive link (ui, uj), and W+ =∑

(i,j)∈E+ wij . In order to preserve the first-order distance
close for the corresponding nodes of the positive link, an
intuitive method is to measure the difference between the
two distributions taking advantage of KL divergence:

O+
1 = KL(p̂1(·, ·), p1(·, ·)), (2)

By minimizing the KL divergence to keep these distributions
close, we can obtain the following formula discarding the
irrelevant constants:

O+
1 = −

∑
(i,j)∈E+

wij logp1(ui, uj), (3)

For a negative link (uk, us), similarly, we should pre-
serve the fisrt-order distance alienated for the corresponding
nodes. Considering that for a positive link (ui, uj), it makes
p1(ui, uj) increased, which results in the representations of
node ui and node uj , i.e., v⃗i and v⃗j adjacent. Therefore, if
there is also a joint probability distribution p2(uk, us) for
the negative link (uk, us), it will cause p2(uk, us) increase,
so that the representations of these nodes, namely v⃗k and v⃗s,
will be away from each other. Through the above analysis,
we define p2(uk, us) as follows:

p2(uk, us) = 1− p1(uk, us) =
1

1 + exp(v⃗Tk · v⃗s)
, (4)

Equation (4) defines the probability distribution p2(., .) in
the space of node pairs, while the empirical distribution of
(uk, us) can be defined as p̂2(uk, us) = wks/W

−, where
the numerator wks is the weight of negative link (uk, us),
and the denominator W− =

∑
(k,s)∈E− wks. Similarly,

minimizing the KL divergence to obtain the corresponding
representations of nodes, after leaving the irrelevant con-
stant, we can get:

O−
1 = −

∑
(k,s)∈E−

wkslogp2(uk, us), (5)

To sum up, we can get the objective function of first-order
distance method in signed networks:

O1 = −(
∑

(i,j)∈E+

wij logp1(ui, uj)+
∑

(k,s)∈E−

wkslogp2(uk, us)),

(6)
By minimizing the equation (6), we can obtain the rep-
resentations {v⃗i}i=1..|U | in d-dimension space of nodes
{ui}i=1..|U |.

2.3.2. Second-order Distance Method. We extend the
second-order distance put forward recently [11] to build our
model, which was verified the effects in signed networks in
the data analysis section. The second-order distance method
assumes that the nodes with the same sign links to other
nodes will become similar, vice versa. For a directed positive
link (ui, uj) established link from node ui to node uj ,
also inspired by the concept of output matrix and input
matrix [17], we define the conditional distribution as:

p3(uj |ui) =
exp((v⃗inj )T · v⃗outi )∑|U |
t=1 exp((v⃗

in
t )T · v⃗outi )

, (7)

where |U | is the number of node set, v⃗outt is the out-
degree representation of node ut and v⃗int is the in-degree
representation of node ut. This equation define the condi-
tional distribution p(.|ui) for every node ui, which reflects
that similar conditional distributions lead to similar nodes.
What’s more, according to the above mentioned method, this
conditional distribution should be as close as possible to the
empirical distribution, i.e., p̂3(uj |ui), which can be defined
as p̂3(uj |ui) = wij/d

+
i , where wij is the weight of the

positive link (ui, uj) and d+i =
∑

k∈N+(i) wik with N+(i)
means the positive neighbor nodes of node i. Therefore, we
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leverage KL divergence to minimize the following objective
function:

O+
2 =

∑
ui∈U

λiKL(p̂3(·|ui), p3(·|ui)), (8)

where λi represents the importance of the node ui in the
signed network, set as d+i for convenience. Further simplify
the equation (8), we can obtained:

O+
2 = −

∑
(i,j)∈E+

wij logp3(uj |ui), (9)

For a negative link (uk, us) established from node uk to
node us, motivated by the relationship between equation
(1) and (4), we define the conditional distribution as:

p4(us|uk) =
exp(−(v⃗ins )T · v⃗outk )∑|U |
t=1 exp(−(v⃗int )T · v⃗outk )

, (10)

The empirical distribution of p4(us|uk) can be defined as
p̂4(us|uk) = wks/d

−
k with the numerator wks equals to

the weight of negative link (uk, us) and the denominator
d−k equals to

∑
t∈N−(k) wkt, where N−(k) represents the

negative neighbor nodes of node k. Similarly, KL divergence
is employed to derive this model, then the objective function
will be:

O−
2 = −

∑
(k,s)∈E−

wkslogp4(us|uk), (11)

Through the above analysis, we obtain the objective func-
tion in signed networks, utilizing the second-order distance
method, namely:

O2 = −(
∑

(i,j)∈E+

wij logp3(uj |ui)+
∑

(k,s)∈E−

wkslogp4(us|uk)),

(12)
By minimizing the equation (12), we can obtain the repre-
sentations {v⃗outi }i=1..|U | and {v⃗ini }i=1..|U | in d-dimension
space of nodes {ui}i=1..|U |.

2.4. Model Optimization

Since the calculations of the denominator of formula (7)
and (10) requires a significant time cost, we utilize negative
sampling [8] to optimize the proposed model. Specially, in
the second-order distance method, for each positive link
(ui, uj) established link from node ui to node uj , we
selected K negative sampling with N positive link (ui, uj),
and get:

N ·logσ((v⃗inj )T ·v⃗outi )+ΣK
n=1Eun∼Pn(u)[logσ(−(v⃗inn )T ·v⃗outi )],

(13)
Similarly, for each negative link (uk, us) established link
from node uk to node us, we can also get:

N ·logσ(−(v⃗ins )T ·v⃗outk )+ΣK
n=1Eun∼Pn(u)[logσ((v⃗

in
n )T ·v⃗outk )],

(14)
where σ(x) = 1/(1+exp(−x)) is the sigmoid function,

the first term in formula (13) represents the observed positive

link calculated N times, and the second term represents K
negative samples chosen by negative sampling. While in
formula (14), the first term represents the observed negative
link calculated N times, and the second term represents K
negative samples, too. In addition, the probability that each
node is sampled is Pn(u) ∝ d

3/4
n , where dn represents the

degree of the node un. Besides, considering that the solution
of formula (6) will be ordinary, we also employ the idea of
negative sampling to solve the first-order distance method.
Specifically, for each positive link or negative edge, we just
need to replace the out-degree representations and in-degree
representations of nodes as the representations of the node
in formula (13) or (14) respectively.

3. Experiments

In this section, we conduct extensive experiments to
verify the performances of our proposed algorithms with
comparsion methods in link-oriented tasks, i.e., sign predict
and link predict, followed by the analysis of parameter
sensitivities.

3.1. Experimental Settings

3.1.1. Datasets. We utilize the same datasets introduced in
the data analysis section to conduct our experiments. Since
the number of negative links in the datasets is relatively
small, guessing a given link is positive randomly will lead
to a high accuracy. Therefore, we refer to the methodol-
ogy of [4, 7] and obtain two balanced datasets with equal
numbers of positive and negative links. Specially, for each
negative link, we randomly select a positive link to ensure
the eventual datasets for training and testing is balanced.

3.1.2. Comparison Method. Since our model is an unsu-
pervised learning method, some supervised methods like [7]
will not be utilized for comparing. Therefore, we select
some representative unsupervised algorithms and utilizes
Hadamard operator [3] for predictions.

• BAL [16]: This method portrays the balance theory to
predict unknown links.

• PMF [10]: This widely used method adopts a proba-
bilistic low-rank matrix factorization and utilizes user-user
strength matrix for predictions.

• triMF [13]: This important method extended by PMF
ensures to handle directed networks.

• disMF [14]: This method incorporates the balance
theory into triMF model. It utilizes balanced information
and user-user relationship strength for predictions.

• LINE2 [11]: This method assigns each node a node
representation and an auxiliary content representation. It
will be extended by our proposed method to suitable for
signed networks, only employing node representations for
predictions.

• LSNE1: This is the proposed LSNE method with first-
order distance method.

• LSNE2: This is the proposed LSNE method with
second-order distance method.
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3.1.3. Parameters Setup. The parameters of the baselines
are set to the optimum values. As for the proposed methods,
i.e., LSNE1 and LSNE2, the dimension of representation
vector is set as 64. Moreover, the parameters N and K are
set from 1, 3, ... , 13 and 1, 3, ... , 9 respectively. The
corresponding parameters sensitivity test will be conducted
later.

3.1.4. Evaluation Metrics. We leverage two popular met-
rics, the Accuracy and the Recall, to evaluate the perfor-
mance of each method in the tasks of sign prediction and
link prediction respectively.

3.2. Sign Prediction Task

In this task, we randomly select x% of the links as the
set for training models, and further predict the signs of the
remaining (100-x)% of links, where x belongs to 20, 40,
60, 80. Our aim is to predict the sign of the testing set after
training the model with the training set.

The corresponding experimental results are shown in
Figure 3. Our algorithms LSNE1 and LSNE2, outperform
the baselines significantly, which verifies that our proposed
models are correct. Notice that in slashdot dataset, LSNE1
algorithm performs better than LSNE2, it may because
slashdot dataset is more suitable to first-order distance
method. And comparing with LINE2, which only utilizes
one node representation for predicting, LSNE2 achieves
better performance. This phenomenon explains the effec-
tiveness of the method motivated by second-order distance.
Moreover, when the training sets become smaller, the mod-
els proposed in this paper is more superior to the contrast
algorithms, fully showing that the proposed models can
significantly deal with sparse data.
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Figure 3. Accuracy in sign prediction task.

3.3. Link Prediction Task

In this task, we intend to predict the TopN positive
and negative links, since both of them are significant in
recommendations [12] and other applications. Without loss
of generality, we choose 80% of the links as a training set,
the remaining 20% as a testing set.

Figure 4 and 5 show the Recall@k with different k
and our proposed methods significantly outperform the
baselines. Comparing with LINE2, our algorithm LSNE2
still achieve better recall, which further demonstrates the
importance of out-degree representation and in-degree rep-
resentation. Besides, we notice that LSNE2 is always better
than LSNE1, this may because when data is large enough,
second-order distance can capture more information than
first-order distance.
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3.4. Parameters Sensitivity

In order the verify the effect of parameter N and K,
without loss of generality, we conduct experiments in sign
predict task. Figure 6 shows the accuracy of our algorithm
LSNE2 in Slashot and Epinions, respectively. We can notice
that the accuracy of our algorithm improves with increasing
N at the beginning, but improves first and then decreases as
K increases. This may because a small amount of negative
samples can approximate the original objective function,
while a large number of negative samples will cause in-
terference.

4. Conclusion

In this paper, we focus on solving link-oriented tasks
in signed networks, and leverage network representation
learning method to study them. We propose an effective
algorithm, called Link-oriented Signed Network Embed-
ding (LSNE). In this algorithm, we derive first-order dis-
tance and second-order distance methods, whose role has
been verified in the data statistics phase. The extensive
experiments demonstrate the superiority of our proposed
algorithm, LSNE. Our future direction is to develop this
algorithm and utilize it for heterogeneous signed networks.
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