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Abstract
Joint entity and relation extraction is critical for
many natural language processing (NLP) tasks,
which has attracted increasing research interest.
However, it is still faced with the challenges of
identifying the overlapping relation triplets along
with the entire entity boundary and detecting the
multi-type relations. In this paper, we propose an
attention-based joint model, which mainly contains
an entity extraction module and a relation detec-
tion module, to address the challenges. The key of
our model is devising a supervised multi-head self-
attention mechanism as the relation detection mod-
ule to learn the token-level correlation for each rela-
tion type separately. With the attention mechanism,
our model can effectively identify overlapping re-
lations and flexibly predict the relation type with
its corresponding intensity. To verify the effective-
ness of our model, we conduct comprehensive ex-
periments on two benchmark datasets. The experi-
mental results demonstrate that our model achieves
state-of-the-art performances.

1 Introduction
Joint entity and relation extraction is an important and chal-
lenging task in information extraction. Given an unstructured
text, this task aims to identify relation triplets consisting of
two entities and their semantic relation, such as (Cambo-
dia, Capital, Phnom Penh) in Figure 1. As the fundamen-
tal task for building knowledge bases, this task has attracted
widespread attention.

Traditional methods [Zelenko et al., 2003; Mintz et al.,
2009; Chan and Roth, 2011] divide this task into two isolated
subtasks, including entity recognition and relation classifica-
tion, and solve them in a pipeline manner. Although these
methods are flexible, they suffer from error propagation and
ignore the relevance between the two subtasks.

To avoid error propagation, most recent studies [Miwa and
Bansal, 2016; Zheng et al., 2017; Zeng et al., 2018] are ded-
icated to identifying entities together with their semantic re-
lations in a joint manner and have achieved great progress.
∗Corresponding author.
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Figure 1: An example of the EntityPairOverlap (EPO) and Sin-
gleEntityOverlap (SEO) triplets.

Despite the progress, the complicated relation structures still
pose great challenges for this task. First, it is challenging to
identify overlapping relation triplets. As shown in Figure 1,
given a sentence, there may exist EntityPairOverlap triplets
where two entities have multiple relations and SingleEnti-
tyOverlap triplets where two relation triplets share an over-
lapped entity. Early joint methods [Miwa and Bansal, 2016;
Zheng et al., 2017] fail to extract them due to the relation
classifiers, which suppose that a token only belongs to one
relation. Second, the characteristic of entity semantics un-
der different relation types should be considered. For exam-
ple, as shown in Figure 1, the location semantics should be
captured when the model predicts the contains relation for
the entity pair (Cambodia, Phnom Penh), while the seman-
tics of administrative function should be learned when the
capital relation is predicted for the above entity pair. How-
ever, existing studies [Sun et al., 2019; Zeng et al., 2019a;
Nayak and Ng, 2019] generally utilize a standard classifier
to detect relation types, which neglects the semantic changes
and leads to unideal relation triplet extraction. Third, it is
crucial to recognize multiple possible relation types for an
EntityPairOverlap triplet accurately. For instance, as shown
in Figure 1, the entity pair (Cambodia, Phnom Penh) has
three relations, including contains, capital, and administra-
tive divisions. Thus, the two entities should have high cor-
relation intensity under all three relation types. But with
a multi-class classifier, all the possible relation types share
the same probability space, which makes them are essen-
tially mutually exclusive. Although the post-processing can
be used to obtain the EntityPairOverlap triplets [Fu et al.,
2019], the correlation intensity and discrimination for differ-
ent relation types will decrease. In this work, we argue that
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this problem should be treated as a multi-label classification
task, instead of a simple multi-class classification task.

To address the aforementioned challenges, we propose a
simple but effective attention-based joint model mainly con-
sisting of an entity extraction module and a relation detection
module. For entity extraction, we treat it as a sequence la-
beling task and adopt Conditional Random Field (CRF) [Laf-
ferty et al., 2001] to recognize the entity boundary. For re-
lation detection, we regard it as a multi-label classification
task and design a supervised multi-head self-attention mech-
anism. By mapping each relation type to a subspace of the
multiple heads, the distinctive token-level correlation seman-
tics for each relation can be learned, and the correlation in-
tensity under different relation types can be calculated sepa-
rately. Meanwhile, the interaction between different relation
types can be captured by sharing the same input representa-
tions of multi-head self-attention. Finally, we infer the triplets
based on the two modules with a given threshold. To ver-
ify the effectiveness of our model, we make a comprehensive
and comparative analysis on two benchmark datasets, and the
results demonstrate that our model achieves state-of-the-art
performances. In summary, our contributions are three-fold:

• We propose a supervised attention-based joint model1,
which can flexibly identify the overlapping triplets with
the entire entity boundary.

• To adequately capture the distinctive correlation seman-
tics and separately learn the correlation intensity under
different relation types, we transform the relation detec-
tion into a multi-label classification task and design a
supervised multi-head self-attention mechanism.

• Extensive experiments are conducted on two benchmark
datasets, and the results show that our model achieves
state-of-the-art performances with 1.3% and 14.2% im-
provements, respectively.

2 Related Work
Traditional approaches [Zelenko et al., 2003; Miwa et al.,
2009; Mintz et al., 2009; Chan and Roth, 2011; Zeng et al.,
2015; Shen and Huang, 2016] generally deal with joint en-
tity and relation extraction task in a pipeline manner, which
identifies the entities first and then predicts the relations be-
tween them. Because these methods treat entity recognition
and relation classification as two isolated steps, they suffer
from error propagation.

To consider the interaction between the two steps, Miwa
and Bansal [2016], Gupta et al. [2016], Zhang et al. [2017],
Zheng et al. [2017], and Sun et al. [2019] jointly extracted
entities and relations in a unified framework. But these meth-
ods can not precisely identify the overlapping triplets because
they assume that a token or an entity pair only belongs to one
relation.

Recently, many studies focus on predicting overlapping
triplets while considering the interactions between relations.
Fu et al. [2019] proposed a two-phase joint model based on
graph convolutional network (GCN). Takanobu et al. [2019]
introduced a hierarchical reinforcement learning framework,

1https://github.com/NKU-IIPLab/SMHSA

which includes a high-level policy for relation detection and
a low-level policy for entity extraction. Dai et al. [2019]
designed a novel tagging scheme and proposed a position-
attention mechanism to identify overlapping relations. Mean-
while, the seq2seq framework is also utilized to predict the
overlapping triplets [Zeng et al., 2018; Zeng et al., 2019b;
Zeng et al., 2019a; Nayak and Ng, 2019]. However, these
methods fail to treat different relation types as distinctive sub-
spaces and calculate the correlation degree separately under
different relation types. Besides, the seq2seq based models
generally suffer from inaccurate entity boundary recognition.

To deal with the above issues, we utilize CRF to recognize
the entity boundary and design a supervised multi-head self-
attention mechanism to flexibly extract overlapping relations
via treating each relation type as an isolated subspace.

3 Model
Given a sentence X = {x1, x2, ..., xN} with N tokens, joint
entity and relation extraction task aims to identify a collection
of relation triplets T = [(fl, rl, sl)]

L
l=1 from X , where fl, sl,

and rl represent the first entity, the second entity, and their
relation, respectively. Note that the entities are extracted from
the given sentence, and the relations are selected from a pre-
defined setR = {R1,R2, ...,RM} with M types.

To deal with this task, three issues should be considered,
including detecting the overlapping relations, learning the
characteristic correlation semantics for each relation type,
and calculating the correlation intensity for each relation type
independently. To this end, a supervised attention-based joint
model is proposed in this paper, and the framework of our
model is illustrated in Figure 2. Concretely, our model con-
sists of an encoding layer, an entity extraction module, and
a relation detection module. We adopt CRF as the entity ex-
traction module to recognize entities and devise a supervised
multi-head self-attention mechanism as the relation detection
module to learn the fine-grained correlation between tokens
for each relation type. Finally, we fuse the predicted results
from the two modules and infer triplets via a given threshold.

3.1 Encoding Layer
Given a sentence X , we first utilize bidirectional long short-
term memory (BLSTM) network [Hochreiter and Schmid-
huber, 1997] to encode the contextualized representation for
each token. Formally, the initial embedding ei of each to-
ken is calculated by concatenating the word embedding ewi ∈
Rdw and the character-level morphology feature2 eci ∈ Rdc ,
where dw and dc are the dimensions of word embedding and
morphology feature, respectively. And then, the contextual-
ized representation sequence H = {h1,h2, ...,hN} is ob-
tained as follows:

hi = [
−→
hi;
←−
hi], (1)

−→
h i = LSTMf (ei,

−→
h i−1),

←−
h i = LSTMb(ei,

←−
h i+1), (2)

where LSTMf and LSTMb denote the forward and backward
LSTM, respectively.

2We also adopt BLSTM to capture the morphology features.
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Figure 2: The framework of our model, which consists of an en-
coding layer, an entity extraction module, and a relation detection
module.

3.2 Entity Extraction Module
To recognize the entity boundary accurately, we treat entity
extraction as a sequence labeling task and adopt Conditional
Random Field (CRF) [Lafferty et al., 2001] as the entity ex-
traction module. Formally, CRF utilizes a state score matrix
P ∈ RN×k to model the mappings between tokens and la-
bels. Meanwhile, a transition score matrix V ∈ Rk×k is used
to learn the dependency between adjacent labels, where k de-
notes the dimension of the label space3. For a sequence of
predicted labels Ŷ = {y1, y2, ..., yN}, we define its score as
follows:

S(X, Ŷ ) =
N∑
i=1

Vyi−1,yi
+

N∑
i=1

Pi,yi
, (3)

P = UWp + bp, (4)
where U = {u1,u2, ...,uN} denotes the input hidden repre-
sentation sequence for the entity extraction module, which is
calculated from the context representation sequence H via
a fully-connection layer. The matrices Wp ∈ Rdu×k and
bp ∈ RN×k are model parameters, where du denotes the di-
mension of the input hidden representations in U .

Then, the probability of label sequence Ŷ can be calculated
as follows:

p
(
Ŷ | X

)
=

exp
(
S
(
X, Ŷ

))
∑

Ỹ ∈YX
exp

(
S
(
X, Ỹ

)) , (5)

where YX denotes all possible label sequences.
During training, we aim to maximize the likelihood proba-

bility p (Y | X) of the gold label sequence Y . Thus, we mini-
mize the negative log-likelihood loss function to optimize the
parameters as follows:

LE = log
∑

Ỹ ∈YX

exp
(
S
(
X, Ỹ

))
− S (X,Y ) . (6)

During decoding, we use the Viterbi algorithm to obtain
the predicted label sequence with the maximum score.

3Following the BIO tagging scheme, we define three labels, in-
cluding B (beginning of entity), I (inside of entity), and O (others).

3.3 Relation Detection Module
To flexibly predict the overlapping triplets, we transform the
relation detection into a multi-label classification task and de-
vise a supervised multi-head self-attention mechanism to deal
with it by regarding each relation type as an isolated sub-
space. Specially, we calculate the attention at token-level,
which can help our model learn more fine-grained correlation
semantics. Formally, we first couple a fully-connection layer
upon the encoding layer to obtain the input hidden representa-
tion sequence A = {a1,a2, ..., aN} for the relation detection
module:

A = HWa + ba, (7)
whereWa ∈ Rdh×da and ba ∈ RN×da are model parameters,
while dh and da are the dimensions of the contextualized rep-
resentations in H and the input hidden representations in A,
respectively. By sharing the input hidden representations, the
interaction between different relation types can be captured.

Considering that the characteristic correlation semantics
should be learned and the correlation degree should be cal-
culated independently for each relation type, we regard each
relation type as a subspace and project the input hidden rep-
resentations to different relation subspaces as follows:

Qm = AWm
Q , Km = AWm

K , (8)

where Qm ∈ RN×dr and Km ∈ RN×dr denote the queries
and keys for the m-th relation type. The matrices Wm

Q ∈
Rda×dr and Wm

K ∈ Rda×dr are model parameters, where dr
is the dimension of each relation subspace.

Then, we calculate the attention matrix Gm ∈ RN×N

whose elementGm
i,j denotes the correlation intensity between

the i-th token and the j-th token under the m-th relation type:

Gm = softmax
(
Qm(Km)T√

dr

)
. (9)

To guide this module to detect relation types, we further
introduce supervision information by maximizing the likeli-
hood probability as follows:

p (Z|X) =

M∏
m=1

N∏
i=1

N∏
j=1

p
(
Zm
i,j |xi, xj

)
, (10)

p
(
Zm
i,j |xi, xj

)
=

{
Gm

i,j , if Zm
i,j = 1

1−Gm
i,j , if Zm

i,j = 0
, (11)

where Zm
i,j = 1 denotes the fact that the m-th relation exists

between the i-th token and the j-th token, and vice versa.
To transform the relation detection into a multi-label clas-
sification task, we convert the gold annotation to a one-hot
matrix during training and minimize the binary cross-entropy
loss between the predicted distribution p̂

(
Zm
i,j |xi, xj

)
and the

gold distribution p
(
Zm
i,j |xi, xj

)
as follows:

LR =−
M∑

m=1

N∑
i=1

N∑
j=1

[p
(
Zm
i,j |xi, xj

)
logp̂

(
Zm
i,j |xi, xj

)
+(

1− p
(
Zm
i,j |xi, xj

))
log
(
1− p̂

(
Zm
i,j |xi, xj

))
].

(12)
With the supervision information, the multi-head self-

attention can be guided to detect relations more effectively.
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3.4 Joint Learning
To synchronously learn the proposed two modules and make
them mutually improve, we combine the loss functions of the
two modules to form the entire loss objective of our model:

L (θ) = LE + LR. (13)
The optimization problem in Eq. (13) can be solved by

using any gradient descent approach. In this paper, we adopt
the RMSprop [Ruder, 2016] approach.

3.5 Inference
Based on the two modules, the triplets can be easily inferred.
Concretely, with the label sequence Ŷ predicted by the en-
tity extraction module, we can obtain the entity set E =
{e1, e2, ..., eLE} with LE entities. Then, given the i-th entity
ei = {xpi , ..., xqi} and the j-th entity ej =

{
xpj , ..., xqj

}
,

the correlated intensity δ between them on the m-th relation
can be calculated based on the weight matrix G from the re-
lation detection module:

δ =
1

|ei|

qi∑
t=pi

qj∑
n=pj

Gm
t,n, (14)

where |ei| is the length of entity ei. The triplet 〈ei,Rm, ej〉
is extracted if δ is higher than a given threshold δ̂.

4 Experiments
4.1 Datasets
To verify the effectiveness of our model, we conduct exten-
sive experiments on two benchmark datasets, including New
York Times (NYT) [Riedel et al., 2010] and WebNLG [Gar-
dent et al., 2017]. The NYT contains 24 types of relations,
and the WebNLG has 246 relation types. For NYT, we fol-
low the dataset used in [Zeng et al., 2018]. For WebNLG,
we select the sentences containing the most triples in each in-
stance and discard the instances if all triplets are not found in
the corresponding sentences. To construct the development
set, we randomly select 10% samples from the training set.
The statistics of the above datasets are shown in Table 1.

4.2 Experimental Settings
We initialize the word embeddings with pre-trained Glove
840B vectors4 [Pennington et al., 2014] and randomly ini-
tialize the character embeddings with 50 dimensions. The
dimensions of hidden states for character LSTM, encoding
layer, entity extraction module, and relation extraction mod-
ule are set to 100, 600, 250, 250, respectively. For the relation
extraction module, the head number is the same as the num-
ber of relation types, and the dimension of each head is set to
30. During training, we use the RMSprop optimizer [Ruder,
2016]. The learning rate, learning rate decay, and batch size
are set to 0.001, 0.95, and 10, respectively. To ensure the
balance between entity extraction and relation detection, we
adopt an iterative two-step training manner where one train-
ing step optimizes the total parameters, and another only op-
timizes the parameters of the relation detection module and
the encoding layer. To avoid overfitting, we apply dropout at
a rate of 0.3.

4https://nlp.stanford.edu/projects/glove/

Category NYT WebNLG
Train Test Train Test

#Normal 37013 3266 1712 239
#EPO 9782 978 13 2
#SEO 14735 1297 3639 488
#ALL 56195 5000 5352 727
Average Entity Length 1.4 1.4 2.2 2.2
Max Entity Length 11 8 34 15
#Relation 24 246

Table 1: Statistics of datasets. #Normal, #EPO, and #SEO represent
the numbers of sentences which belong to Normal, EntityPairOver-
lap, and SingleEntityOverlap types, respectively. #ALL and #Re-
lation are the total number of sentences and relation types, respec-
tively.

4.3 Evaluation
We adopt precision, recall, and standard micro-F1 score to
evaluate the performances. Specifically, a predicted triplet
(f, r, s) is correct only if the relation type and the two cor-
responding entities are all the same as the golden standard
annotation. We report the corresponding results of the test set
when the development set achieves the best result.

4.4 Comparison Methods
To achieve the comprehensive and comparative analysis of
our model, we compare it with a series of advanced models:

• NovelTagging [Zheng et al., 2017] introduces a novel
tagging scheme which transforms the joint extraction
task into a sequence labeling problem.

• CopyRe [Zeng et al., 2018] is a seq2seq model with
copy mechanism, which can effectively extract overlap-
ping triplets. We report the results of the MultiDecoder.

• GraphRel [Fu et al., 2019] is a two phases model based
on GCN, where a relation-weighted GCN is utilized to
model the interaction between entities and relations.

• AntNRE [Sun et al., 2019] decomposes the joint extrac-
tion task into entity span detection subtask and entity re-
lation type detection subtask. Specially, the second sub-
task is tackled based on an entity-relation bipartite.

• MultiRe [Zeng et al., 2019b] applies the reinforcement
learning into a seq2seq model to automatically learn the
extraction order of triplets, where the interactions among
triplets can be considered.

• CopyMTL [Zeng et al., 2019a] is a multi-task learning
framework, where CRF is used to identify entities, and
a seq2seq model is adopted to extract relation triplets.

• WDec [Nayak and Ng, 2019] designs a new represen-
tation scheme and utilizes a seq2seq model to generate
triplets with the entire boundaries.

Besides, we also conduct several ablation experiments,
including “Ours w/o MHSA” which uses a standard multi-
class classifier to detect relations, “Ours w/o IT” which does
not utilize the iterative two-step training manner, and “Ours
w/o ALL” which does not adopt the multi-head self-attention
mechanism and the iterative training manner.
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Methods NYT WebNLG
Precision Recall F1 Precision Recall F1

NovelTagging [Zheng et al., 2017] 62.4% 31.7% 42.0% 52.5% 19.3% 28.3%
CopyRe [Zeng et al., 2018] 61.0% 56.6% 58.7% 37.7% 36.4% 37.1%
GraphRel [Fu et al., 2019] 63.9% 60.0% 61.9% 44.7% 41.1% 42.9%
AntNRE [Sun et al., 2019] 83.5%* 54.4%* 65.9%* 76.3%* 70.9%* 73.5%*
MultiRe [Zeng et al., 2019b] 77.9% 67.2% 72.1% 63.3% 59.9% 61.6%
CopyMTL [Zeng et al., 2019a] 75.7% 68.7% 72.0% 58.0% 54.9% 56.4%
WDec [Nayak and Ng, 2019] 88.1% 76.1% 81.7% 88.6%* 51.3%* 65.0%*
Ours w/o MHSA 68.4% 56.5% 61.9% 85.5% 88.0% 86.8%
Ours w/o IT 83.6% 75.8% 79.5% 88.2% 81.7% 84.8%
Ours w/o All 56.1% 48.9% 52.2% 83.7% 85.8% 84.7%
Ours 88.1% 78.5% 83.0% 89.5% 86.0% 87.7%

Table 2: Results on triplet extraction. The results with ‘*’ are reproduced by us, and all improvements of our model are significant (p < 0.05).
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Figure 3: Results on different sentence types according to the degree of overlapping.

4.5 Results
The results on relation triplet extraction are shown in Table 2.
According to the results, our model consistently obtains state-
of-the-art performances on two datasets. Compared with the
best baseline model, our model outperforms WDec by 1.3%
F1-score on NYT and is higher than AntNRE by 14.2% F1-
score on WebNLG, respectively. Specially, WDec [Nayak
and Ng, 2019] adopts the seq2seq model to generate relation
triplets and removes the duplicate triplets and fragmentary
triplets via post-processing. Therefore, WDec achieves high
precision on two datasets, while its recall is unsatisfactory. It
is worth to note that our model achieves the highest precision
and recall without any post-processing.

Furthermore, the performances of the seq2seq models are
generally better than other baselines because they can iden-
tify overlapping relations more flexibly by decoding differ-
ent triplets one by one. However, compared with other base-
lines, the seq2seq models fail to precisely recognize the entity
boundary. Thus, the longer the length of entity is, the worse
these models perform. Specially, the F1-score of the best
seq2seq model WDec is inferior to AntNRE on the WebNLG
dataset whose max entity length is 15 and the average en-
tity length is 2.2. Note that AntNRE can not deal with the
EntityPairOverlap triplets, so it performs poorly on the NYT
dataset which contains more complex relations. In contrast,
our model can effectively capture the overlapping triplets
along with the correct entity boundary.

Besides, we also investigate the performance of entity ex-
traction, and the results are shown in Table 3. It is clearly
shown that our model achieves state-of-the-art results on two

Methods NYT WebNLG
GraphRel [Fu et al., 2019] 89.2% 91.9%
AntNRE [Sun et al., 2019] 92.5%* 91.6%*
CopyMTL† [Zeng et al., 2019a] 75.6% 78.2%
WDec† [Nayak and Ng, 2019] 89.1% 88.8%*
Ours 94.8% 96.5%

Table 3: Results on entity extraction (F1 score, %). The results
with ‘*’ are reproduced by us, and the methods with ‘†’ are seq2seq
models.

datasets, while the results on the seq2seq models are worst.
The results also show that the lower F1-score on entity ex-
traction limits the performance of the seq2seq model.

4.6 Ablation Study
To prove the effectiveness of the proposed relation detection
module, we conduct the ablation study. As shown in the sec-
ond block of Table 2, the performance of “Ours w/o MHSA”
decreases significantly on NYT, while it is slightly worse on
WebNLG compared with our model. The reason is that the
EntityPairOverlap and SingleEntityOverlap triplets of NYT
are significantly more than them of WebNLG, which demon-
strates that the proposed supervised multi-head self-attention
mechanism can effectively identify overlapping triplets by
projecting each relation type to a separate subspace.

And we also analyze the effectiveness of the iterative two-
step training manner. Compared with our model, the F1-score
of “Ours w/o IT” decreases 3.5% and 2.9% on two datasets,
respectively. This shows that the imbalance between entity
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Figure 4: Results on different sentence types according to the number of triplets.
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Figure 5: Results on different inference thresholds.

extraction and relation detection can severely impact the per-
formance of triplet extraction. Without the above two com-
ponents, “Ours w/o ALL” performs worst.

4.7 Analysis of Different Sentence Types
To further verify the ability of our model to handle complex
triplets, we analyze the results on different sentence types.
Figure 3 shows the results on Normal, EntityPairOverlap, and
SingleEntityOverlap types. Our model achieves the best re-
sults on all three types, while the performances of AntNRE,
“Ours w/o MHSA” and “Ours w/o ALL” are the worst on
EntityPairOverlap and SingleEntityOverlap for NYT dataset.
This shows that it is difficult to deal with the overlapping
triplets if the relation detection is treated as a multi-class
problem. For WebNLG, WDec performs poorly on all types
due to the longer entity length.

Besides, we also evaluate the performance on different
triplet numbers, and the results are shown in Figure 4. Fol-
lowing Zeng et al. [2018], we divide the sentence into 5
classes, and each class consists of sentences with 1, 2, 3, 4, or
≥ 5 triplets, respectively. According to the results, our model
achieves more stable performance as the number of triples in-
creases, which shows that our model is more robust when it
is faced with the complicated relation situation.

4.8 Analysis of Inference Threshold
We also report the effect of different thresholds in Figure 5.
As the threshold increases, the recall of our model gradually
decreases, and the precision gradually increases. Thus, we
can flexibly select a suitable threshold according to the actual

demand. Our model has a low precision on WebNLG dataset
when the threshold is lower than 0.6, because the prediction
process is more difficult when entities are longer. The F1-
score first increases and then decreases when the threshold
increases, and the results show that our model achieves the
best performances on NYT and WebNLG datasets with 0.6
and 0.8 thresholds. Due to the longer sentence length of NYT,
the best threshold of NYT is less than WebNLG. In general,
our model identifies triplets with high confidence.

5 Conclusion
In this paper, we focused on joint entity and relation extrac-
tion task and proposed a simple but very effective attention-
based joint model. With the supervised multi-head self-
attention mechanism, the relation detection module can flex-
ibly detect EntityPairOverlap and SingleEntityOverlap re-
lations by regarding each relation type as a subspace and
maintaining the independence between them. Meanwhile,
the entity extraction module can accurately recognize the
entity boundary with CRF. Finally, we inferred the triplets
based on the results of the two modules. Extensive exper-
iments showed that our model achieves state-of-the-art per-
formances.
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