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Abstract—Aftershocks refer to the smaller earthquakes that
occur following large earthquakes, in the same area of the main
shock. The task of aftershocks detection, as a crucial and chal-
lenging issue in disaster monitoring, has attracted wide research
attention in relevant fields. Compared with the traditional de-
tection methods like STA/LTA algorithms or heuristic matching,
neural network techniques are regarded as an advanced choice
with better pattern recognition ability. However, current neural
network-based solutions mainly formulate the seismic wave as
ordinary time series, where existing techniques are directly
deployed without adaption, and thus fail to obtain competitive
performance on the intensive and highly-noise waveforms of
aftershocks. To that end, in this paper, we propose a novel
framework named Multi-Scale Description based Neural Net-
work (MSDNN) for enhancing aftershock detection. Specifically,
MSDNN contains a delicately-designed network structure for
capturing both short-term scale and long-term scale seismic fea-
tures. Therefore, the unique characteristics of seismic waveforms
can be fully-exploited for aftershock detection. Furthermore, a
multi-task learning strategy is introduced to model the seismic
waveforms of multiple monitoring stations simultaneously, which
can not only refine the detection performance but also pro-
vide additionally quantitative clues for discovering homologous
earthquakes. Finally, comprehensive experiments on the data
set from aftershocks of the Wenchuan M8.0 Earthquake have
clearly validated the effectiveness of our framework compared
with several state-of-the-art baselines.

Index Terms—Multi-Scale Description, Multi-Task Learning,
Aftershock Detection

I. INTRODUCTION

Nature always teaches human beings via disasters. Earth-

quake is one kind of worst nature disasters which may

cause injury and loss of life and collapse of buildings. The

solutions for automatic earthquake detection are regarded as

crucial to support a variety of emergence actions, and have

attracted wide attention by seismologist in the past decades.

Along this line, a critical challenge is how to effectively

detect aftershocks, which refer to the smaller earthquakes

that occur following a large earthquake, in the same area of

the main shock. Different from the main shock, aftershocks

usually have intensive waveforms with highly-noise and weak

signal, which limit the performance of traditional detection

methods [1]. Therefore, aftershock detection task requires an

effective method which can describe the seismic waveforms

according to the characteristics of aftershocks.
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Fig. 1: The diagrammatic sketch of extracting the multi-scale

description of seismic waves.

In the literature, prior arts for automatic earthquake detec-

tion are mainly based on classic STA/LTA algorithms [2]–

[4] or heuristic template matching [5], [6]. Traditionally, the

STA/LTA algorithms, which are also known as the energy

ratio criteria based methods, will define a characteristic func-

tion of waveforms for the first step, and then measure the

difference between the short-term average (STA) and the

long-term average (LTA) of this characteristic function. At

the same time, the heuristic template matching assumes that

similar waveforms may indicate similar seismic mechanism

or even “repeating earthquakes”. However, these methods

are usually either noise-sensitive, or computational extensive

for large-scale detection tasks [6]. Recently, with the rapid

development of deep learning technology, neural networks are

applied for earthquake detection task as a powerful method

for modeling waveforms [7], [8]. For instance, [9] proved that

neural networks are resistant to noise with better flexibility

and generalization ability. However, current neural network

based solutions mainly formulate the seismic waves as ordi-

nary time series, where existing neural network structures are

directly deployed without adaption for fully utilizing seismic

features. Therefore, they may still fail to satisfy the aftershocks

detection task, which usually have frequent and insignificant

fluctuation of waveforms compared with large earthquakes.

To that end, in this paper we propose a novel framework

named Multi-Scale Description based Neural Network (MS-

DNN) for aftershock detection task. Specifically, MSDNN

attempts to extract the multi-scale description of seismic waves

for fully revealing the latent characteristics in seismic waves of

aftershocks, which inspired by the classic STA/LTA methods
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mentioned above. According to the STA/LTA methods, the

long-term scale features could reflect the relatively stable

background of geological characteristics, while the short-term

scale features may reflect the real-time seismic status. Thus,

the comparison between features with different scales could be

significant clues to indicate the potential geological incidents.

The multi-scale description structure is summarized in Fig-

ure 1, where the left part shows original waveforms with three

channels. Also, the right part shows that different scales of

features are extracted from the waveforms, and then “com-

pared and mixed” to generate new mixed features. The new

mixed features will be “compared and mixed” with new scales

features, either, which leads to the iteration process until waves

within a pre-defined time window are resolved, and the final

mixed features (i.e., the multi-scale description features) could

better reveal the differences between aftershocks and noises.

Meanwhile, the neural network structure of MSDNN is in-

spired by the (1×1) convolutional layer of Inception Net [10],

[11] and memory unit of LSTM network [12]. Moreover,

one earthquake usually can be captured by several monitoring

stations and record as several different waveforms, which leads

to homologous earthquake waveforms. For better utilizing

the relationship between waveforms in different monitoring

stations, we regard homology detection as a sub-task and

develop a multi-task learning strategy [13], [14] for refining

the detection performance. To be specific, the contributions of

this paper can be summarized as follows:

• We propose a novel neural network based solution, i.e.,

MSDNN, for the aftershock detection task, which adapts

the traditional STA/LTA methods with integrating the

advanced neural networks, and fully exploits the seismic

features with multi-scale description.

• We design a multi-task learning strategy to better describe

the relationship between seismic waveforms recorded by

different monitoring stations, which further refines the

performance of aftershock detection.

• We evaluate our framework with extensive experiments

on the data set from aftershocks of the Wenchuan M8.0

Earthquake. The experimental results clearly validate the

effectiveness of MSDNN, compared with several state-

of-the-art baselines.

Overview. The rest of this paper is organized as follows. In

Section II, we briefly introduce the related works of this paper.

In Section III, we introduce the characteristics of the data and

the motivations of our approach. Afterwards, the details of our

MSDNN framework and multi-task learning strategy will be

introduced in Section IV. We comprehensively evaluate the

performances of our framework for aftershock detection, and

then conduct some further discussion in Section V. Finally, in

Section VI, we conclude the paper.

II. RELATED WORK

In the literature, solutions for aftershock detection task

could be roughly divided as two types, namely the traditional
solutions based on heuristic methods, as well as the machine-

learning-based solutions mainly based on neural networks

with different structures.

Traditional Solutions. Guided by practical experiences, seis-

mologists usually designed solutions following statistical anal-

ysis or heuristic template matching. For instance, the classic

STA/LTA [2] algorithms, as well as its variations, e.g., Allen
Picker [15], BK87 [3] and so on [16]–[18], are comprehen-

sively summarized and compared in [19], and then enhanced

in [4] with the FilterPicker algorithm. This solution applies

several filters to summarize the characteristic function of

seismic waves, thus is applicable to the real-time seismic mon-

itoring with adequate performance. However, these solutions

are easily disturbed by the noises, e.g., artificial explosions,

which severely limit the performance.

At the same time, some other researchers attempted to reveal

earthquakes via heuristic template matching, since similar

waves may indicate similar earthquake mechanism, or even

“repeating earthquakes”. These attempts, e.g., [5], [6], [20]–

[22], have been proven as sensitive and discriminative solu-

tions for finding a “repeating earthquakes” from seismograms,

but their computational burden could be extremely expensive

and the generalization ability could be poor. Thus, it will be

truly difficult to ensure the efficiency and robustness. Mean-

while, some prior arts target at improving the efficiency via in-

terdisciplinary technique, e.g., [23], [24] applied search engine

techniques to find similar templates, so that the parameters of

earthquake could be inferred within even a second. However,

these solutions only can detect earthquake waveforms which

are similar to the waveforms in seismic observed data.

Machine-learning-based Solutions. Due to the powerful fit-

ting and generalization ability, machine-learning-based meth-

ods are widely used for a variety of sequential problems [25]–

[28]. Since firstly proposed in [29] and [30] which applied

the fully-connected neural networks, the machine-learning-

based solutions are widely studied as a competitive choice

for earthquake detection task with better flexibility and gen-

eralization ability, especially for the detection task with much

noise [9]. Compared with the prior arts like [31]–[33] which

mainly rely on the classic neural network structure, recently,

the convolutional neural network structure has been treated

as an accurate and efficient [34], [35] solution. Along this

line, [7] adapted the convolutional neural network to achieve

better performance, without storing the perpetually growing

waveform templates. Though great achievements have been

made, these solutions mainly formulate the seismic waves as

ordinary time series, while seismic structure characteristics and

the relationship between different monitoring stations are not

fully utilized.

Compared with the main shocks of large earthquakes,

aftershocks usually have much higher frequency and insignif-

icant fluctuation of waveforms. Therefore, both of the above

solutions often fail to achieve satisfied performance in terms

of aftershock detection. In order to effectively distinguish

aftershocks from noises, we propose a novel neural network

based solution, named MSDNN.
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III. PRELIMINARIES

In this section, we briefly describe the real-world aftershock

data set used in our study, and then clarify the motivations of

our framework in detail, which is inspired by the characteris-

tics of the seismic data.

A. Data Set Description

The seismic data set used in our paper is the monitoring

signal from aftershocks of the Wenchuan M8.0 Earthquake.

To be specific, there are 2,833 aftershocks, corresponding to

9,891 pieces of seismic waveforms in short time window.

And all signals monitored by stations were recorded in three

spatial dimensions (i.e., Z for the vertical channel, N for the

north-south channel, and E for the east-west channel) by 15

monitoring stations. The frequency of the signals is 100Hz,

and we preprocessed the signals by Bessel filter with 2-10Hz

bandwidth for removing unexpected disturbing. Figure 2a

shows an example of our seismic data during a short time

period. Actually, the seismic signals always contain noise

waveforms which are extremely difficult to be distinguished

from aftershock waveforms.

B. Characteristics of the Data

Before introducing the technical details of our approach

to aftershock detection, here we discuss some important

characteristics, which significantly motivate the design of our

MSDNN model.

First, the seismic signal data contain three signals in three

spatial dimensions, which is different from general signal

data that only contains single signal. However, traditional

earthquake detection approaches usually analyze these signals

separately, instead of modeling them in a holistic manner.

In order to maximize the utilization of seismic information,

we need to consider three signals simultaneously. Mean-

while, convolutional neural network can capture multi-signal

as multi-channel, which is consistent with the characteristics

of seismic data. Moreover, the powerful feature extraction

capability of the convolutional neural networks can effectively

capture the unique characteristics of seismic waveforms.

Second, inspiring by the most widely-used earthquake de-

tection approach, i.e., STA/LTA [2]–[4], we extract the LTA

and STA of the signals. For example, in Figure 2b, we set

the time period of long-term and short-term as 10 second

(1000-time steps) and 0.5 second (50-time steps), respectively.

It can be seen that the long-term average reflects the trend

information and the background level of signal, however, the

information of local variation is insufficient. Correspondingly,

the short-term average may reflect the real-time change of the

signal without random fluctuations, while the trend informa-

tion is not clear. Therefore, the description of different scales

is required to reflect different level of features for signal. To

that end, we introduce STA
LTA to present the comparison, as well

as mixture of different scale-aware descriptions, as shown in

the bottom of Figure 2b. It can be seen that STA
LTA is extremely

sensitive to the change of signals and reflects the arrival time of

waves. Indeed, the traditional approach mainly take advantage

(a) Example for aftershock detection.

(b) Example of classical multi-scale description.

Fig. 2: Some motivating examples of our multi-scale descrip-

tion based aftershock detection approach.

TABLE I: The number of aftershock waveforms.

Station Number Homology Number Percent

JMG 1,208 1,208 100%

YZP 1,072 1,015 94.7%

QCH 894 890 99.6%

PUW 1,350 1,338 99.1%

WXT 839 838 99.9%

SPA 574 574 100%

XJI 614 612 99.7%

HSH 821 821 100%

YGD 166 166 100%

JJS 908 903 99.4%

MXI 1,215 1,196 98.4%

XCO 223 223 100%

WDT 6 6 100%

MIAX 1 1 100%

SUM 9,891 9,791 99.0%

of these characteristics for aftershock detection. Based on these

characteristics, we design a multi-scale description structure in

our neural network to extract different scale-aware features,

and then mix these features to obtain special features for

improving the performance of aftershock detection.

Third, each earthquake could be usually captured by mul-
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TABLE II: The mathematical notations.

Symbol Description

D The data set of waveform windows

Si The input memory status of i-th MSD-cell

Fi The input feature status of i-th MSD-cell

Si+1 The output memory status of i-th MSD-cell

Fi+1 The output feature status of i-th MSD-cell

F c
i The current scale feature of i-th MSD-cell

Ji The joint feature of Si and F c
i

Jmix,i The comparison and mixture feature

Wc,i The parameter matrix of (1× 3× 32/1) convolutions

Wm,i The parameter matrix of (1× 1× 32/1) convolutions

d The element of D
y The classification result of d
l The label of d
jn,i The n-th channel of J

jmix,i
k The k-th channel of Jmix

αn,k,i The (n× k)-th kernel of Wm

tiple monitoring stations, which results in the homologous

earthquake waveforms (i.e., the waveforms generated by the

same earthquake). According to the summarization in Table I,

we realize that almost all the earthquakes may generate

homologous waveforms. Thus, we set homology detection as a

sub-task, and propose a multi-task learning strategy [13], [14]

for improving the performance of aftershock detection.

In summary, the neural network approach we proposed in

this paper is based on the multi-scale description structure

and the multi-task learning strategy. In follwing section, we

will provide technical details regarding how we design the

aftershock detection approach.

IV. TECHNICAL FRAMEWORK

In this section, we first introduce the problem formulation of

this paper, and then introduce the technical details of our MS-

DNN framework. For better illustration, related mathematical

notations used in this paper are summarized in Table II.

A. Problem Formulation

The problem studied in this paper is to use machine

learning technologies for aftershock detection, which focuses

on distinguishing the primary waves (P-waves) of aftershocks

from other waveforms. Specifically, to formulate the problem,

we use D to denote a data set of n equal-length waveforms

windows, represented as D = {d1, d2, ..., dn}. The waveform

windows are sliced from real-time signals, and each of

them contains 3 channels waveforms corresponding to three

spatial dimensions (i.e., vertical, north-south, and east-west),

denoted as di = {zi, ni, ei}. Correspondingly, we have a label

li ∈ {0, 1} to indicate whether the di contains an aftershock

P-wave arrival. Therefore, the problem of machine-learning-

based aftershock detection can be defined as follow.

Definition 1. Machine-learning-based Aftershock Detec-
tion. Given a set of waveform windows D, where each di ∈ D
has a label li for indicating the existence of seismic P-wave,

MSD-cell

Concatenate

1x2/2  MaxPooling 1x2/2  MaxPooling

i
cFi

cF
Ji

Jmix,i

Si-1 Fi-1

Si+2 Fi+2

MSD-cell
FiSi

Si+1 Fi+1

MSD-cell

Fig. 3: The detailed structure of MSD-cell, which can be

expanded easily.

the objective is to learn a predictive model M for classifying

waveform windows with respect to the label yi.

B. MSD-cell: Generating Multi-Scale Description

As discussed in section III, the comparison between dif-

ferent scale features might be significant clues to indicate

the potential geological activities. Therefore, inspired by the

classic STA/LTA methods, we develop a unique module in

MSDNN for extracting the multi-scale description of seismic

waves, which is named MSD-cell. Along this line, the module

needs to implement two key functions. The first function

can remember prior features on different scales and add new

scale feature, while the second function can compare and

mix these two kinds of features. Thus, multi-scale description

can be extracted in the process of constantly comparing and

mixing new scale feature with prior features. Because of

the similar ability to the first function, the memory unit of

LSTM networks [13], [36], which can remember long time

information and add new short time information, could be

adapted as a reliable framework. Correspondingly, for the

second function, the Inception Net [10], which combines

different filters together in convolutional neural network, is

chosen to compare and mix different features.

The detailed structure of MSD-cell will be introduced as

follows. In each MSD-cell, as shown in Figure 3, there are

two inputs, namely Si and Fi, where Si is a memory status

and Fi is a feature status. Specifically, Si is used to store multi-

scale features, and Fi represents input scale feature. When Fi

enters MSD-cell, a (1 × 3 × 32/1) convolutional layer (i.e.,

convolutional layer with (1× 3) kernel size, 32 channels and

1 strides) will be applied on it to get a feature on higher scale,

named F c
i , which is the current scale feature of this cell. Then,

on the one hand, F c
i will go through a (1× 2/2) max-pooling

layer, with the output as Fi+1. On the other hand, F c
i will be

jointed with Si to prepare for comparison and mixture. The

output of the joint operation is denoted as Ji, which will go
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through a (1 × 1 × 32/2) convolution layer to compare and

mix the multi-scale features Si with the current scale feature

F c
i . Finally, it will be passed through a (1×2/2) max-pooling

layer, with the output as Si+1.

The detailed structure of MSD-cell is illustrated in Figure

3. Formally, for the output Si+1 and Fi+1, we have

F c
i = relu(conv(Fi,Wc,i)), (1)

Ji = concat(Si, F
c
i ), (2)

Jmix,i = relu(conv(Ji,Wm,i)), (3)

Si+1 = maxpool(Jmix,i), (4)

Fi+1 = maxpool(F c
i ), (5)

where Wc,i and Wm,i are the parameter matrixes of (1× 3×
32/1) convolutional layer and (1 × 1 × 32/1) convolutional

layer in one MSD-cell, respectively. At the same time, func-

tions in these formulas are defined as follows:

• relu(): the non-linear activation function.

• conv(): the convolutional layer.

• concat(): the concatenation of two matrixes along the

last dimension.

• maxpool(): the max-pooling layer with 2 strides.

According to these formulas, the feature status Fi increases

the feature scale and evolves into Fi+1, the memory status Si

involves new scale feature F c
i and evolves into Si+1. Specially,

the key of multi-scale comparison and mixture is Equation 3.

For understanding the Equation 3 in detail, we have

jmix
k,i = relu(

Ci∑
n=1

jn,i × αn,k,i), (6)

where Ci is the channels number of input Ji, k means the

channel of output Jmix,i, and α denotes the coefficients which

need learning. The objective of this layer is to multiply each

channel of the input, i.e, jn,i, by the coefficients, and then

sum them together. Different output channels will use different

coefficient schemes. The half of the channels in Ji are multi-

scale features that contain information of all prior different

scale features Si, the other half are the current scale features

F c
i . Therefore, after passing the convolutional layer with (1×

1) kernel size, these two parts will be compared and mixed

in various schemes, and the coefficients in schemes reflect

the comparison way between different features. After that, the

features of different scales are correlated, and the information

of current scale feature is added to memory status Si+1. In

our experiment, similar with the heuristic solution in [7], the

output channel numbers of convolutional layers are set to 32.

The max-pooling layers are set at the end of MSD-cell to

ensure the feature map size consistently when comparing and

mixing, and to expand the scale of feature in next cell.

C. Multi-Scale Description based Neural Network

For the aftershock detection task, the input is a waveform

group of three channels, corresponding to three spatial dimen-

sions (i.e., vertical channel, north-south channel, and east-west

channel). Therefore, the size of the input data is 1 ×m × 3,

auxiliary input

128 FC

2 FC

128 FC

2 FC

... ... ... ...

auxiliary part

auxiliary input

Fig. 4: The framework of MSDNN and multi-task learning,

which is divided into shared, detection and auxiliary part.

where m represents the length of the detection window. The

data sampling frequency used in our experiment is 100Hz,

and the length of detection window is set to 50s, namely

m = 5000. In our MSDNN framework, the beginning of the

neural network is a (1× 3× 32/1) convolutional layer, which

can initialize the data and prepare for the input to MSD-cells.

Then, the output of the convolutional layer is fed into both

two inputs of MSD-cell as the first scale feature, and two

outputs of this cell are fed into next MSD-cell. The size of the

feature map is reduced by half for each time passing an MSD-

cell. There are 10 MSD-cells in total, where the output of the

last MSD-cell is S11 and F11, and the sizes of them are both

1×5×32. We take the output S11 as the multi-scale description

feature, which contains the information of all scale description

features. After that, S10 is fed into two fully connected layers,

with the output of the first layer being 128 and the output of

the second layer being 2. Finally, we use softmax function to

get the classification result of the aftershock detection.

The shared part and detection part in Figure 4 show the

detailed structure of MSDNN, and the shared part will be

shared in multi-task learning strategy. Since our network is

relatively deep, for improving the efficiency and effectiveness

of training process, as well as preventing the problem of over-

fitting and gradient disappearance in backpropagation, we add
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Fig. 5: Sampling pairs of multi-task learning.

batch normalization after each convolutional layer and fully

connected layer [37], and add parameter regularization to the

optimization goal. The main optimization goal in our network

is the cross-entropy loss, which is widely used in classification

problems. The loss function of MSDNN can be written by:

Lmain = − 1

n

n∑
i=1

[
li log yi+(1−li) log (1− yi)

]
+

λ

2n

∑
w

||w||2

where yi ∈ {0, 1} represents the prediction of input (yi = 1
means there exists an aftershock, and vice versa), li ∈ {0, 1}
represents the label of input, and n is the number of the

inputs batch. The second part is the L2 regularization term,

and λ is the regularization coefficient, reflecting the degree of

regularization constraints.

D. Multi-Task Learning Strategy

Finally, we turn to introduce our novel multi-task learning

strategy for improving the detection performance. This strategy

aims at a unique characteristic of seismic data, i.e., when an

earthquake occurs, it is usually detected by multiple monitor-

ing stations, which results in the homologous seismic waves

with the same seismic source mechanism. Therefore, we want

to leverage the information from multi-stations for improving

the performance of aftershock detection.

In this paper, we construct an auxiliary task of homologous

earthquake detection to form a multi-task learning strategy

together with the aftershock detection task. The objective of

this auxiliary task is to determine whether the two seismic

waveforms are homologous. Thus, we treat each pair of wave-

forms as the input for this auxiliary task, which is identical to

the input of the aftershock detection network. Specifically, for

each pair of waveforms detected by different stations, if the

label of pair is True, both waveforms in the pair are mutually

homologous earthquakes. On the contrary, the label as False
means that the pair of waveforms are not homologous. Figure 5

shows the inputs of multi-stations.

Moreover, multi-task learning requires that the networks of

main task (i.e., aftershock detection task) and the auxiliary task

need have some parameters shared, thus it can leverage the

domain-specific information contained in the training signals

of auxiliary tasks to improve the detection performance. To

this end, we share all MSD-cells. For easily sharing the begin

part of the network, the paired inputs of the auxiliary task

can be seen as the parallel inputs, which is the same with the

main task. After passing through the shared part, two features

corresponding to the input can be obtained. Here, we hope that

if the input pair are homologous earthquakes, the features of

them are similar. If one of the pair is not an aftershock, that

is, the pair are not homologous earthquakes, the features of

them are difference. So that, the features obtained by shared

part are more distinguishable for aftershock waveforms. In

order to achieve this goal, in auxiliary part, we first subtract

the two features obtained by shared part. Then, we send the

output to two fully-connected layer. The output of the first

layer is 128, and the output of the second layer is 2. Finally, we

use the softmax function to get the classification result of the

homologous earthquake detection. Figure 4 shows the detailed

structure of multi-task learning strategy. For the auxiliary task,

we still use the cross entropy as the main optimization goal.

The final loss function of our MSDNN framework with multi-

task learning strategy can be written as

Lmulti = Lmain +
λ

2k

∑
wh

||wh||2

−1

k

k∑
i=1

[
lhi log y

h
i + (1− lhi ) log (1− yhi )

]
,

where the first part is the loss function of aftershock detection

task. When a pair is subjected to homology detection, they also

perform aftershock detection separately. The second part is the

L2 regularization term. The third part is the cross entropy of

auxiliary task, where yhi , lhi ∈ {0, 1}. When yhi = 1, the

waveforms will be predicted as homologous. On the contrary,

yhi = 0 indicates the non-homologous ones. Similarly, lhi
represents the label of input pair.

V. EXPERIMENTS

To validate the performance of MSDNN framework, in

this section, we conduct a series of experiments on a large-

scale real-world data set from aftershocks of the Wenchuan

M8.0 Earthquake [38]. Also, some empirical case studies and

discussions will be presented.

A. Data Pre-processing

As introduced in section III, the real-world data set is the

monitoring signal from aftershocks of the Wenchuan M8.0

Earthquake during July 1-31, 2008, which is provided by

the China Earthquake Administration. We preprocessed the

signals by Bessel filter with 2-10Hz bandwidth for removing

unexpected disturbing.

Samples for Aftershock Detection. For labeling the sam-

ples, intuitively, 9,891 waveform windows which contains

aftershocks were treated as positive samples. At the same

time, considering that in most cases, the signals monitored

by stations kept as stable as nearly a straight line, thus

random sampling for negative samples would extremely ease

the discrimination, as waveform for aftershock could be much

more significant. To that end, we generated the negative
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samples by the FilterPicker [4] model, i.e., those “aftershocks”

which were wrongly captured by FilterPicker, but not belong

to the 9,891 waveform windows, were treated as negative

samples. Totally, 109,719 waveform windows were captured

as “negative”. In this case, the aftershock detection task would

be challenging enough.

However, the number of negative samples are much more

than positive samples, which results in the imbalanced data set.

As mentioned in [39], the distribution of training data would

severely impact the performance, as a balanced training set

could be optimal. Therefore, similar with the heuristic solution

in [7], we generated additional “aftershocks” by perturbing

existing ones with zero-mean Gaussian noise, whose signal-

to-noise ratio was set between 20-80dB, thus the waveforms

won’t be violently influenced. Finally, the amount of positive

samples was equal with the negative ones.

Samples for Multi-task Learning. Along this line, to build

the specific data set for multi-task learning framework, we

grouped the waveforms based on their distances and time

differences. In detail, the distance between epicenter and

monitoring station should be within the range as the time

difference multiply the spread speed of seismic waves, namely

the minimal spread speed is 3km/s. Correspondingly, if two

monitoring stations captured aftershock waveforms by the

same epicenter, they should be grouped together as homolo-
gous earthquakes. What should be noted is that, as mentioned

above, we considered both “true pairs” (i.e., pairs of positive

samples) and “false pairs” (i.e., at least one negative sample),

as shown in Figure 5, where the similarities between “true

pairs” should be minimized, and vice versa. Finally, 642,112

“true pairs” and 288,962 “false pairs” were captured in total.

B. Experimental Settings

Details of Implementation. Our MSDNN framework is

implemented by the TensorFlow framework [42]. Specifically,

the mini-batch size of Stochastic Gradient Descent (SGD)

was set as 8 for the aftershock detection task (main task).

Along this line, pairs including these 8 inputs in the multi-

task learning training set were selected to form the mini-batch

of multi-task learning task. During the training process, both

main task and multi-task learning were trained in turn, so that

the multi-task learning acted as a constraint to guide network

structure developing in a beneficial direction.

All the tasks were trained using Momentum [43] with a

decay rate as 0.8. The initial learning rate of main task was

set as 0.02. However, to reduce the constraint effect of multi-

task learning, the learning rate of multi-task learning was set

as 0.02*0.1 initially. Besides, ReLU was performed right after

each Batch Normalization, except the output layer.

Baseline Methods To comprehensively validate the perfor-

mance of MSDNN framework, we compared it with four types

of baseline methods as follows:

• ConvNetQuake [7], which is the state-of-the-art method

that firstly introduced the convolutional neural network to

detect earthquakes. Currently, ConvNetQuake was treated

as one of the most effective solutions for this task.

• Inception Net [11], which is one of state-of-the-art con-

volutional neural network methods for classification.

• XGboost [41] and Random Forest [40], which are repre-

sentative methods for classification with ensemble learn-

ing, and perform well in real-world applications.

• Support Vector Machine and Logistic Regression, which

are traditional solutions for classification task.

In order to compare each method in the same seismic

information, the inputs of all the above methods and our

method are the same.

Evaluation Metrics As a typical classification task, to mea-

sure the performance, we selected the accuracy metric to

measure the overall effectiveness. Also, as an unbalanced

classification task, we also selected the precision and recall
metrics to measure the performance on positive samples,

i.e., the aftershocks, which could be more important for our

task. Finally, the F1 metric was selected to measure the

comprehensive effectiveness of precision and recall.

C. Overall Performance

First of all, we summarized the overall performance of

validation. Specifically, considering the temporal correlation,

we treated the former 5/6 of samples as training samples, while

half of the rest 1/6 samples is the validation samples and an-

other half is the test samples. Also, the length of time window

for each sample was set as 50 seconds. The sensitiveness for

these two parameters and the reason of temporal correlation

data set split will be discussed in following subsection.

The results are illustrated in Table III. Unsurprisingly, we

observed that our MSDNN methods consistently outperform

all the baselines in terms of most of the metrics, especially

for the F1 score. Besides, the multi-task learning can improve

performance in all metrics. Meanwhile, it can be observed that

the Random Forest and XGboost achieve high performance

of recall, but the performance of precision is noneffective,

which means these methods have a high false positive rate

and tend to classify waveforms as aftershocks. This is because

that the models of these methods cannot learn the waveform

features which can effectively distinguish between noise and

aftershock waveforms. These low precision methods cannot

be accept in real-world earthquake detection systems. When

considering the performance of both recall and precision, the

F1 value can reflects the recognition ability of the model. The

F1 value of our method is 125% higher than Random Forest,

37.8% higher than XGboost, and 12.3% higher than the best

baseline method, Inception Net. In other words, our methods

can achieve a better balance between recall and precision
for aftershock detection which is important for real-world

earthquake detection systems.

D. Discussion with Experiment Settings

In this subsection, we turn to evaluate the experiment

settings. In our MSDNN framework, three settings were con-
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TABLE III: The overall performance.

Method Accuracy Recall Precision F1

Logistic Regression 0.505 0.520 0.080 0.130

Support Vector Machine 0.515 0.520 0.080 0.130

Random Forest [40] 0.767 0.680 0.190 0.300

XGboost [41] 0.882 0.770 0.350 0.490

ConvNetQuake [7] 0.935 0.602 0.544 0.571

Inception Net [11] 0.941 0.637 0.582 0.608

Our Solutions
MSDNN 0.952 0.638 0.678 0.658

MSDNN+Multi-task Learning 0.954 0.667 0.683 0.675

TABLE IV: Performance with different split strategy.

Strategy Accuracy Recall Precision F1

Temporal Correlation 0.952 0.638 0.678 0.658

Random Mixing 0.963 0.651 0.859 0.740

TABLE V: Performance with ratio of training data.

Ratio Accuracy Recall Precision F1

1/2 0.944 0.605 0.630 0.617

3/4 0.943 0.636 0.620 0.628

5/6 0.952 0.638 0.678 0.658

TABLE VI: Performance with different time window.

Length (s) Accuracy Recall Precision F1

10 0.942 0.569 0.604 0.586

20 0.949 0.520 0.671 0.625

30 0.949 0.624 0.655 0.639

40 0.952 0.598 0.693 0.642

50 0.952 0.638 0.678 0.658

(a) Temporal Correlation

(b) Random Mixing

Fig. 6: Examples of our data set split strategies.

cerned, i.e., the strategy of data set split, the ratio of training

samples, as well as the length of time window for each sample.

First, in order to discuss the temporal correlation of the data,

we set two strategies of data set split . One strategy consid-

ered temporal correlation and treated the former 5/6 of samples

as training samples, another strategy treated the random 5/6 of

samples as training samples. Figure 6 shows these strategies

in detail and Table IV shows the results of different data set

split strategies. Obviously, the performance of random mixing

split strategy is better than temporal correlation split strategy.

It is because that the training samples with random mixing

split strategy contained samples for the same period as the

test samples [44], [45]. In real world experiments, the training

samples cannot contain the samples of the test period, so we

must split the data set according to the temporal correlation

to conduct experiments. General cross-validation cannot be

applied to this temporal correlation data set, thus, we used

different ratio of training samples to evaluate the performance

of our model. The experiments with different ratio of training

samples will be discussed following.

For the ratio of training samples, we conducted experi-

ments with three different ratios, namely 1/2, 3/4 and 5/6. All

the samples were split by the temporal order so that their time

dependence would not be destroyed. The results are shown

in Table V. Obviously, the performance becomes better with

increasing ratio of training samples, however, generally the

improvements were not so significant, which indicates the

robustness of our MSDNN framework, which keeps relatively

stable with less training samples.

At the same time, for the length of time window, five

different lengths were set, namely 10-50 seconds. According

to the results in Table VI, as expected, generally most metrics

becomes better with longer time window, especially for the

F1 metric, which is reasonable as richer information was col-

lected. However, it is well known that a shorter time window

leads to an earlier warning of upcoming aftershocks, so that

more lives could be potentially saved. Thus, it is necessary

to keep the balance between effectiveness and efficiency to

ensure the capability.

E. Discussion with Case Studies

Finally, we turn to conduct some discussions to better

understand the performance of our MSDNN framework. On

the one hand, we would like to know in which position the

MSDNN framework will fail to detect the aftershocks, so that

further enhancement could be deployed. First, we picked up

those “False Positive” samples, i.e., those negative samples

that MSDNN detected as aftershocks. As shown in Figure 7,

we can find that the average waveform (shown in Figure 7a),

as well as correspondingly example (shown in Figure 7b) look

quite similar with typical aftershocks (or True Positive sample,
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(a) Average of False Positive (b) True Positive (c) False Positive

(d) Average of False Negative (e) False Negative (f) False Negative

Fig. 7: The average waveforms and samples.

(a) MSDNN (b) MSDNN+Multi-task Learning

Fig. 8: The visualization of PCA results based on features

learned by our approaches.

as shown in Figure 7c). Considering that the generation of

ground truth (mainly by manual labeling) may miss some

aftershocks, we asked several geophysical experts to re-check

these 163 “False Positive” samples. Interestingly, 161 samples

of them were labeled as “Positive”. To a certain degree,

this phenomenon further proves the performance of MSDNN

framework with making up the fault of manual checking.

Second, we picked up those “False Negative” samples, i.e.,

those positive samples that were missed by MSDNN. Based

on Figure 7d, 7e, 7f, we realized that those waveforms with

insignificant tail of second waves (S-wave), or the waveforms

where primary waves (P-wave) and S-wave are close could be

probably missed, which should be refined in the future.

On the other hand, we would like to check whether the

multi-task learning framework indeed improve the effective-

ness, not only based on the evaluating metrics. As mentioned

above, the multi-task learning framework targets at refining

the features of each sample, so that the samples in “true pairs”

should be more similar, and vice versa. To that end, first, we

counted the Euclidean distances between network features of

positive and negative samples. The network features are the

outputs of the shared part according to Figure 4. According

to the results, without the multi-task learning framework,

the average distance was 3.7. Then, this distance turned to

4.3 after deploying the multi-task learning framework, which

proved that the differences between positive and negative

samples were enlarged by the multi-task learning framework,

and the discrimination task for aftershock detection is eased.

Second, we applied Principal Component Analysis (PCA) to

the network features for showing the effect of multi-task

learning. As shown in Figure 8, blue dots are the positive

samples and the red dots are negative samples. Compared

the Figure 8a and Figure 8b, it can be seen that the positive

blue dots are close together and easily separated from the red

dots when multi-task learning is deployed. In summary, multi-

task learning can optimizes the distribution of features and

improves the performance of aftershock detection.

VI. CONCLUSION

In this paper, inspired by the classic STA/LTA method, we

proposed a novel solution for the aftershock detection task,

named Multi-Scale Description based Neural Network (MS-

DNN). Specifically, with considering both short-term scale

and long-term scale seismic features and comparing them to

each other, the MSDNN framework could fully describe the

seismic waves. Along this line, we further deployed the multi-

task learning framework to better analyze the seismic waves

of multiple monitoring stations, so that additionally clues

for discovering homologous earthquakes could be provided

and the performance of aftershock detection were improved.

Comprehensive experiments on the data set from aftershocks

of the Wenchuan M8.0 Earthquake have clearly validated the

effectiveness of our framework compared with several state-

of-the-art baselines, which demonstrated the capability of our

MSDNN framework in aftershock detection task.
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