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◆ Aftershock Detection

Definition: Machine-learning-based Aftershock Detection. 
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◆ Characteristics of the Data

We design a Multi-Scale Description 
Based Neural Network  to extract 
appropriate features for improving 
the performance of aftershock 
detection.



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description  
◆ The first function can remember prior 

features on different scales and add new 
scale feature.

◆ Implemented by a 1x3x32/1 convolutions

Second function: mix multi-scale description 
◆ the second function can compare and mix 

these two kinds of features. 
◆ Implemented by a 1x1x32/1 convolutions



Lab. Of Big Data Analysis and Application

Methodology

◆ MSDNN

Multi-Scale Description based Neural Network

Shared part
◆ The shared part can extract multi-scale 

description feature from seismic waveforms 
with three spatial dimensions. 

◆ Implemented by 1 conv(1x3) and 10 MSD-cell

Detection part
◆ the Detection part can distinguish multi-scale 

description features for earthquake detection. 
◆ Implemented by  fc(128) , fc(2) and softmax 



Lab. Of Big Data Analysis and Application

Methodology

◆ MSDNN

Multi-Scale Description based Neural Network

Shared part
◆ The shared part can extract multi-scale 

description feature from seismic waveforms 
with three spatial dimensions. 

◆ Implemented by 1 conv(1x3) and 10 MSD-cell

Detection part
◆ the Detection part can distinguish multi-scale 

description features for earthquake detection. 
◆ Implemented by  fc(128) , fc(2) and softmax 



Lab. Of Big Data Analysis and Application

Methodology

◆ Homologous Earthquake Waveforms

◆ Homologous Earthquake waveforms are one 
earthquake detected by multiple monitoring 
stations.

◆ Each pair of waveforms can be label as 
positive pair (means homology) or negative 
pair (means non-homology)



Lab. Of Big Data Analysis and Application

Methodology

◆ Homologous Earthquake Waveforms

◆ Homologous Earthquake waveforms are one 
earthquake detected by multiple monitoring 
stations.

◆ Each pair of waveforms can be label as 
positive pair (means homology) or negative 
pair (means non-homology)



Lab. Of Big Data Analysis and Application

Methodology

◆ Homologous Earthquake Waveforms

◆ Homologous Earthquake waveforms are one 
earthquake detected by multiple monitoring 
stations.

◆ Each pair of waveforms can be label as 
positive pair (means homology) or negative 
pair (means non-homology)



Lab. Of Big Data Analysis and Application

Methodology

◆ Multi-Task Learning Strategy

◆ Auxiliary task : homologous earthquake 
detection task.

◆ Main task: aftershock detection task. 

◆ Auxiliary task can optimize the multi-scale 
description feature



Lab. Of Big Data Analysis and Application

Methodology

◆ Multi-Task Learning Strategy

◆ Auxiliary task : homologous earthquake 
detection task.

◆ Main task: aftershock detection task. 

◆ Auxiliary task can optimize the multi-scale 
description feature



Lab. Of Big Data Analysis and Application

Methodology

◆ Multi-Task Learning Strategy

◆ Auxiliary task : homologous earthquake 
detection task.

◆ Main task: aftershock detection task. 

◆ Auxiliary task can optimize the multi-scale 
description feature



Lab. Of Big Data Analysis and Application

2 Problem Formulation

3 Methodology

5 Conclusion

1 Background

4 Experiments



Lab. Of Big Data Analysis and Application

Experiments

◆ Overall Performance

◆ our MSDNN methods consistently outperform all the baselines.

◆ the Multi-task Learning can improve performance in all metrics. 



Lab. Of Big Data Analysis and Application

Experiments

◆ Overall Performance

◆ our MSDNN methods consistently outperform all the baselines.

◆ the Multi-task Learning can improve performance in all metrics. 



Lab. Of Big Data Analysis and Application

Experiments

◆ Overall Performance

◆ our MSDNN methods consistently outperform all the baselines.

◆ the Multi-task Learning can improve performance in all metrics. 



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ Case Studies

◆ The “False Positive” waveforms and the “True Positive” waveforms are 
similar. 

◆ Several geophysical experts re-check 163 “False Positive” waveforms, and 
161 waveforms of them were labeled as “Positive”. MSDNN framework can 
help manual checking.



Lab. Of Big Data Analysis and Application

Experiments

◆ PCA Visualization

◆ Blue dots are the positive samples and the red dots are negative samples. 

◆ The positive blue dots are close together and easily separated from the red 
dots when multi-task learning is deployed. 



Lab. Of Big Data Analysis and Application

Experiments

◆ PCA Visualization

◆ Blue dots are the positive samples and the red dots are negative samples. 

◆ The positive blue dots are close together and easily separated from the red 
dots when multi-task learning is deployed. 



Lab. Of Big Data Analysis and Application

Experiments

◆ PCA Visualization

◆ Blue dots are the positive samples and the red dots are negative samples. 

◆ The positive blue dots are close together and easily separated from the red 
dots when multi-task learning is deployed. 



Lab. Of Big Data Analysis and Application

2 Problem Formulation

3 Methodology

4 Experiments

1 Background

5 Conclusion



Lab. Of Big Data Analysis and Application

Conclusion

◆ Contributions

◆ We propose a novel neural network based solution: MSDNN (Multi-Scale 
Description based Neural Network)

◆ We design a multi-task learning strategy for utilizing the relationship 
between different monitoring stations.

◆ We evaluate our framework on a real-world data set from aftershocks of the 
Wenchuan M8.0 Earthquake. 

◆ Future Work

◆ Earthquake Rapid Report and Time-series Event Detection 



Lab. Of Big Data Analysis and Application

The 19th International Conference on Data Mining (ICDM’19) 
2019/11/8-2019/11/11, Beijing

Thank you for listening ! 
Q&A

Reporter: Qi Zhang

zq26@mail.ustc.edu.cn


