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Background

¢ Earthquake Events

Earthquake is one kind of worst nature disasters which may cause injury

and loss of life and collapse of buildings.

Events Distribution
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Background

¢ Aftershock

Aftershocks refer to the smaller earthquakes that occur following large
earthquakes, in the same area of the main shock.

¢ Difficult to detect.

¢ Collapse buildings
that are damaged
from the main shock.
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Background

¢ Motivation

Benefit
¢ Automatic aftershock detection can support emergence actions.

o Useful for the research of geological activity and seismic mechanism.

Challenges
¢ Highly-noise and weak signal. How to effectively detect aftershocks?
Multi-Scale Description based Neural Network.

¢ Multiple monitoring stations. How to utilize this relationship?
multi-task learning strategy .
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Problem Formulation

¢ Aftershock Detection

Definition: Machine-learning-based Aftershock Detection.

Given a set of waveform windows D, where each d; € D has a label [; for
indicating the existence of seismic P-wave, the objective is to learn a predictive
model M for classifying waveform windows with respect to the label y;.

lit1

Earthquake ?
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Ea rt h q ua ke . (a) Example for aftershock detection.
TABLE I: The number of aftershock waveforms.

¢ There are 2,833 aftershocks, corresponding

Station Number Homology Number Percent

to 9,891 pieces of seismic waveforms in IMG 1208 1208 100%
. . YZP 1,072 1,015 94.7%

short time window. OCH 204 200 00,60
. PUW 1,350 1,338 99.1%

¢ These waveforms were recorded in three WXT 230 438 99.9%
. . . . . SPA 574 574 100%
spatial dimensions (i.e., Z for the vertical o o o 00761
channel, N for the north-south channel, and HSH 821 821 100%
YGD 166 166 100%

E for the east-west channel) by 15 S 908 903 99.4%
. . . MXI 1,215 1,196 08.4%
monitoring stations. XCO 3 3 100%
WDT 6 6 100%

MIAX 1 1 100%

SUM 9.801 9,791 99.0%
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TABLE I: The number of aftershock waveforms.

Station Number Homology Number Percent

IMG 1,208 1,208 100%
YZP 1,072 1,015 94.7%
QCH 894 890 99.6%
PUW 1,350 1,338 99.1%
WXT 839 838 99.9%
SPA 574 574 100%
XJ1 614 612 99.7%
HSH 821 821 100%
YGD 166 166 100%
JIS 908 903 99.4%
MXI 1,215 1,196 98.4%
XCO 223 223 100%
WDT 6 6 100%
MIAX 1 1 100%
SUM 9,891 9,791 99.0%
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Methodology

¢ Characteristics of the Data

o STA/LTA(Short-Term Average/Long-Term
Average) is the most widely-used
earthquake detection approach.

¢ The different scale-aware descriptions
reflect different characteristics of seismic
waveform.
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Fig. 2: Some motivating examples of our multi-scale descrip-
tion based aftershock detection approach.
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Methodology

¢ MSD-cell: Generating Multi-Scale Description

the module needs to implement two key functions

First function: extract multi-scale description ( + = )
¢ The first function can remember prior MSD-cell

features on different scales and add new ‘ ¥ ¥ ’

scale feature. B | cor: convoluions ||
¢ Implemented by a|1x3x32/1 convolutions T cljlh ¥ i
Second function: mix multi-scale description )
¢ the second function can compare and mix =5 ¥

these two kinds of features. MSD-cell
¢ Implemented by a|1x1x32/1 convolutions &+ X3

Fig. 3: The detailed structure of MSD-cell, which can be
expanded easily.
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Methodology

¢ MSDNN

Multi-Scale Description based Neural Network

Shared part

¢ The shared part can extract multi-scale
description feature from seismic waveforms
with three spatial dimensions.

¢ Implemented by 1|conv(1x3){and 10|MSD-cell

Detection part
o the Detection part can distinguish multi-scale

description features for earthquake detection.

¢ Implemented by [fc(128)|,|fc(2)[and|softmax
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Methodology

¢ Homologous Earthquake Waveforms

¢ Homologous Earthquake waveforms are one
earthquake detected by multiple monitoring
stations.

o Each pair of waveforms can be label as
positive pair (means homology) or negative
pair (means non-homology)
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Methodology

¢ Multi-Task Learning Strategy

o Auxiliary task : homologous earthquake
detection task.

¢ Main task: aftershock detection task.

o Auxiliary task can optimize the multi-scale
description feature
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Experiments

¢ Overall Performance

¢ our MSDNN methods consistently outperform all the baselines.

¢ the Multi-task Learning can improve performance in all metrics.

TABLE III: The overall performance.

Method Accuracy Recall Precision F
Logistic Regression 0.505 0.520 0.080 0.130
Support Vector Machine 0.515 0.520 0.080 0.130
Random Forest [40] 0.767 0.680 0.190 0.300
XGboost [41] 0.882 0.770 0.350 0.490
ConvNetQuake [7] 0.935 0.602 0.544 0.571
Inception Net [11] 0.941 0.637 0.582 0.608
Our Solutions
MSDNN 0.952 0.638 0.678 0.658
MSDNN+Multi-task Learning 0.954 0.667 0.683 0.675
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Experiments

¢ Case Studies

¢ The “False Positive” waveforms and the “True Positive” waveforms are
similar.

o Several geophysical experts re-check 163 “False Positive” waveforms, and

161 waveforms of them were labeled as “Positive”. MSDNN framework can
help manual checking.
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Experiments

¢ PCA Visualization
¢ Blue dots are the positive samples and the red dots are negative samples.

¢ The positive blue dots are close together and easily separated from the red
dots when multi-task learning is deployed.

(a) MSDNN (b) MSDNN+Multi-task Learning
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Conclusion

¢ Contributions

¢ We propose a novel neural network based solution: MISDNN (Multi-Scale
Description based Neural Network)

¢ We design a multi-task learning strategy for utilizing the relationship
between different monitoring stations.

¢ We evaluate our framework on a real-world data set from aftershocks of the
Wenchuan M8.0 Earthquake.

¢ Future Work

¢ Earthquake Rapid Report and Time-series Event Detection
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