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Micro-expressions (MEs) are spontaneous and involuntary facial subtle reactions which often reveal the
genuine emotions within human beings. Recognizing MEs automatically is becoming increasingly crucial
for many areas such as diagnosis and security. However, the short time duration and low spatial intensity
of MEs pose great challenges for accurately recognizing them. Additionally, the lack of sufficient and bal-
anced spontaneous MEs data also makes this problem even harder to solve, and some adaptive modeling
strategies have been quite urgent recently. To this end, this paper draws inspirations from few-shot
learning to propose a novel two-stage learning (i.e., prior learning and target learning) method based on
a siamese 3D convolutional neural network for MEs recognition (MERSiamC3D). Specifically, in the prior
learning stage, the proposed MERSiamC3D is used to extract the generic features of MEs. In the target
learning stage, the structure and parameters of the MERSiamC3D will be carefully adjusted and the
Focal Loss is adopted for high-level features learning. Afterwards, in order to effectively retain the spa-
tiotemporal information of the original MEs video, an adaptive construction method based on adaptive
convolutional neural network is proposed to construct the key-frames sequence to summarize the orig-
inal MEs video, which is able to help drop the redundant frames and relatively highlight the movement of
the apex frame. Then, the new key-frames are taken as the input of the two-stage learning method.
Finally, through extensive evaluations and experiments on three publically available MEs datasets, the
proposed method in this work could outperform traditional methods and other deep learning baselines,
which provides a novel insight on how to leverage scarce data for MEs recognition.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Micro-expressions (MEs) are spontaneous and subtle facial
movements, which usually occur in a high-risk environment when
people attempt to conceal their true feelings [9,32]. As one of the
facial expressions, MEs have some special and unique characteris-
tics. For example, MEs usually occur in a very short time
(0:04s � 0:5s) [9,51] with a quite low intensity in local facial units.
Meanwhile, because MEs are repressed and cannot be posed to
deceive others, they especially reflect the genuine psychological
state of an individual [9]. These characteristics make MEs totally
different from general facial expressions and its analysis has many
potential applications such as lie detection [8,48], treatment of
depression [16], business negotiation [14], homeland security
[8,39,48] and so on.
Previous investigations on MEs were mainly carried out in the
field of psychology and relied on tedious manual analysis
[2,7,10]. Recently, with the rapid development of the video acqui-
sition technologies and intelligent learning algorithms [32], many
researchers turn to focus more on automatic MEs analysis in the
field of computer vision and affective computing, especially for
MEs recognition (MER) tasks. For example, Polikovsky et al. [38]
proposed to use 3D histograms of oriented gradients (3DHOG)
descriptor to recognize the motion of MEs, and Wu et al. [49]
adopted the gabor filters to extract MEs features rather than using
the support vector machine (SVM) to recognize them. Afterwards,
Pfister et al. [37] proposed to harness the local binary pattern-three
orthogonal planes (LBP-TOP) [54] descriptor and SVM classifier to
recognize MEs. Recently, to extract the discriminative spatiotem-
poral MEs features, Kim et al. [20] designed a CNN-LSTM model
and the expression-states are taken into account in the objective
functions for MER. In addition, Song et al. [42] also proposed a
three-stream convolutional neural network (TSCNN) to recognize
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MEs by learning discriminative features in three key-frames of ME
videos. Furthermore, many other deep learning-based methods
[18,19,27,29,33–35,43,47,53,55] have been proposed for better
extracting features for MER.

However, there is still a huge gap between the actual demands
and high-precision MER methods, with three main technical and
domain challenges inherent in MEs feature extraction and classifi-
cation. Firstly, MEs usually have low intensity and only occur in
local facial units, which is indistinct and hard to perceive. Secondly,
MEs are usually captured and recorded by the high-speed camera
due to their short duration (0.04–0.5 s) [9,51]. While high-speed
camera usually captures a lot of redundant frames and produces
much noisy data during recording [32], which is also a detrimental
factor for the extraction of scarce MEs features. Thirdly, since MEs
are self-repressed facial expressions of emotions and hard to
induce, it is a gordian knot to collect large scale spontaneous
MEs datasets, and the existing datasets usually contain insufficient
samples. For instance, merely 255 micro-expression sequences for
all emotion categories in the largest CASME II dataset [50]. More-
over, the distribution of samples per class is quite imbalanced,
e.g., 99 sequences for category ‘‘Happiness” and 15 sequences for
category ‘‘Sadness” in CASME II dataset with objective class labels
[3,50]. The above problems have brought great difficulties for
training a deep CNNs model to extract discriminative spatiotempo-
ral features for MEs, let alone recognize them accurately.

To address the above challenges, our work here proposes MER-
SiamC3D, a novel two-stage learning (i.e., prior learning and target
learning) method based on a siamese 3D convolutional neural net-
work for MEs recognition. To be specific, we first propose an adap-
tive construction method based on adaptive CNN to construct the
key-frames sequence to summarize the original MEs video. This
method can help to preserve the spatiotemporal information of
the original MEs video without using redundant frames andrela-
tively highlight the movement of the apex frame. Moreover, to
Fig. 1. An illustration of the proposed two-stage features learning strategy for MER. The le
key-frames) into a collection of same and different samples pairs for training model to get
right part shows the idea of target learning, where we continue to train the model on
classification.
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solve the problem of insufficient samples in MER and inspired by
the few-shot learning methods [22,24], we subdivide the features
learning of MEs into two stages, i.e., prior learning and target learn-
ing. As illustrated in Fig. 1, at the prior learning stage, we divide the
original MEs dataset (with key-frames) into a collection of same and
different sample-pairs according to the original class labels for
training our MERSiamC3D to get basic experiences, which are cap-
able of extracting generic features of MEs. Then, we carefully fine-
tune the structure and parameters of MERSiamC3D, and continue
to train it on the original datasets (with key-frames) to get advanced
features of MEs for target classification at the target learning stage.
Furthermore, we also introduce the Focal Loss [26] into MER-
SiamC3D to alleviate the inefficient model training caused by the
class imbalance in the MEs Datasets. To the best of our knowledge,
this paper is the first work to incorporate techniques in few-shot
learning to deal with data deficiency in MER task, and extensive
and comprehensive experiments have been conducted on the pub-
lic SMIC–HS [25], CASME II [50] and SAMM [4] datasets to demon-
strate the superiority and rationality of our methods.

The rest of this paper is organized as follows: Section 2 briefly
reviews the related work. Section 3 introduces the technical details
of our proposed methods. Section 4 presents our extensive exper-
iments on three publically available MEs datasets SMIC–HS, CAS-
MEII and SAMM to demonstrate the superiority and rationality of
our MERSiamC3D. Afterwards, Section 5 presents the ablation
studies to verify the rationality and effectiveness of each part of
our method. Finally, we summarize the whole paper in Section 6.
2. Related work

Over the past few years, MER has garnered increasing attention
with a special focus on exploring the efficient and discriminative
spatiotemporal features for MEs. These works could be roughly
divided into two distinct categories: hand-crafted approaches
ft part depicts the prior learning stage. Here, we divide the original MEs dataset (with
basic experiences, which are capable of extracting generic features of MEs. While the
the original datasets (with key-frames) to learn high-level MEs features for target
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and deep learning approaches. In this section, we will give an over-
view on features extraction for MEs, together with related studies
on few-shot learning.

2.1. Hand-crafted approaches

These approaches for MER could date back to one decade ago. At
first, Polikovsky et al. [38] proposed a 3D histograms of oriented
gradients (3DHOG) descriptor and used k-means algorithm to clas-
sify onset, apex and offset frames. Later, recognition research grad-
ually focused on spontaneous micro-expression. Then, Pfister et al.
[37] harnessed the temporal interpolation model (TIM) to increase
the frames and use local binary pattern-three orthogonal planes
(LBP-TOP) [54] as a spatiotemporal local texture descriptor to
extract dynamic features. Afterwards, the support vector machine
(SVM), multiple kernel learning (MKL) and random forest (RF) have
been applied in the classification. Moreover, the basic histogram of
oriented optical flow (HOOF) descriptor [1] was exploited by Liu
et al. [30] as a comparative feature when spotting MEs and then
performing recognition. Recently, many MER approaches have
relied on the above three descriptors. For example, Huang et al.
[15] proposed spatiotemporal local quantized pattern (STCLQP),
which exploits magnitude and orientation as complementary of
sign information for improving the performance of MER. Later,
Guo et al. [13] proposed the extended local binary patterns on
three orthogonal planes (ELBP-TOP) for MER, which is actually a
further extension of LBP-TOP. Besides, Davison et al. [3] proposed
to utilize action units (AUs) to classify MEs for spontaneous MEs
datasets CASME II [50] and SAMM [4], then the proposed classes
were tested by using 3DHOG, LBP-TOP and HOOF.

2.2. Deep learning approaches

The first work to explore the possibility of using deep learning
for MER is proposed by Patel et al. [33], where the deep CNN mod-
els are used for transfer learning from objects for features extrac-
tion on small MEs datasets. However, only 47% accuracy could
obtained on the CASME II dataset. At the same time, Kim et al.
[20] designed a CNN-LSTM model and the expression-states are
taken into account in the objective functions to extract the spa-
tiotemporal features for MEs, whose overall accuracy achieved
60:98% on CASME II. Later, Peng et al. [35] proposed a dual-
template 3DCNN model to adapt to the different frame rates of
MEs video clips, which is a two-stream shallow network with 3D
convolution units fed with the optical-flow sequences. To avoid
the overfitting problem on small MEs datasets, Wang et al. [47]
proposed a Transfer Long-term Convolutional Neural Network
(TLCNN) and alleviated this problem to some extent. As an
improvement, Khor et al. [19] further proposed an Enriched
Long-term Recurrent Convolutional Network (ELRCN). Besides,
Sun et al. [43] proposed a novel knowledge transfer technique dis-
tills and transfers knowledge from action unit for MER. Addition-
ally, Song et al. [42] proposed a TSCNN model to learn ME-
discriminative features by fusing the spatial, temporal and facial
local region cues or the MEs video clips. Recently, Liong et al.
[28] have demonstrated that it is sufficient to encode facial MEs
features by only utilizing the apex frame. Inspired by this, Khor
et al. [18] and Liu et al. [29] creatively utilized the single optical
flow image estimated by the onset frame and apex frame to repre-
sent the entire MEs video, then the CNN-based models could be
used directly. Considering the fact that using the apex frame could
get rid of redundant video frames but the relevant temporal evi-
dence of MEs would be thereby left out, Peng et al. [34] proposed
an Apex-Time Network (ATNet) to recognize MEs. On the whole,
the MER has been boosted ever since the introduction of deep
learning approaches. However, deep learning-based MER research
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is still in its infancy, and the lack of large-scale MEs datasets still
remains the biggest challenge.

2.3. Few-shot learning

Since deep learning methods are often data-intensive, they can-
not provide satisfactory performance for learning features from
limited samples. Fortunately, few-shot learning strategies could
well deal with such cases. Recent years have witnessed the power
of few-shot learning in extracting informative features from small
datasets. As a result, many few-shot learning methods have been
proposed one after another. Koch et al. [22] first employed a super-
vised metric-based approach with siamese convolutional neural
networks to learn good features, then reused the network’s fea-
tures for one-shot learning without any retraining. For the same
task, Vinyals et al. [45] and Snell et al. [41] respectively proposed
matching networks and prototypical networks to alleviate this
issue. However, to the best of our knowledge, there are no studies
currently in the literature adopting few-shot learning ideas for
MER. To this end, we propose our MERSiamC3D for spatiotemporal
feature extraction and MEs recognition, which could enjoy the
advantage of few-shot learning hence provide robust performance
when faced with small datasets.
3. Methodology

In this section, we will introduce our methods mainly from two
aspects. Firstly, we propose an adaptive construction method to
construct the key-frame sequences and establish the correspond-
ing optical flow (OF) sequences for data preparation, which is
shown in Fig. 2. Then, we delve into the technical details of our
MERSiamC3D as shown in Fig. 3 by elaborating the two-stage
MEs feature learning strategy (i.e., prior learning and target
learning).

3.1. Data preprocessing

3.1.1. Adaptive construction of key-frames sequence.
As different MEs samples have different durations, the first step

to use them as our model’s input is to normalize the length of all
MEs samples. Additionally, since the original MEs video is usually
captured by high-speed cameras, it is unavoidable to contain a
lot of redundant frames and noise. Therefore directly using the
original MEs samples as the model input will be unpractical and
bring lots of unnecessary noise. On the one hand, training with
inadequate samples is very likely to encounter overfitting prob-
lems. On the other hand, the noise existing in input is fatal for
extracting the weak and scarce micro-expression features, which
will seriously hinder our feature learning process. Taking these fac-
tors into account, we propose to construct key-frames sequence to
summarize the original MEs sequence.

To obtain the key-frames sequences, three important principles
need to be satisfied: (i) The key-frames sequence needs to be suf-
ficient and consistent with the temporal dynamics of MEs, which
refers to the movements of MEs that involve onset (start), apex
(peak), offset (end), and transitions between them [32]. (ii) No or
as few noisy frames as possible in the key-frames sequence. (iii)
The movement of the apex frame needs to be highlighted since it
has been proven to contribute major information for facial-
expression recognition [6].

Following the above principles and based on the 3 known key-
frames, i.e., the onset frame, apex frame and offset frame, we propose
an adaptive construction method to generate the final RGB key-
frames sequence, and then the corresponding OF key-frames
sequence is calculated to describe the dynamic spatiotemporal



Fig. 2. A schematic illustration of data preparation. Based on the onset frame, apex frame, and offset frame from the original MEs sequence, we leverage the adaptive
construction method to generate 8 intermediate transition frames. The 11 RGB key-frames are used to summarize the original MEs sequence. Finally, the optical-flow
sequence with 10 frames will be obtained by calculating the adjacent frames of the 11 RGB key-frames sequence.
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information of the original MEs video. Besides, the length of the
final OF key-frames sequence is empirically set to 10, which has
also been proven to be effective by many previous works
[13,19,25,36]. That is, based on the 3 known key-frames, the adap-
tive construction method will generate 8 intermediate transition
frames, therefore using an RGB sequence with 11 key-frames to
describe a MEs sample. Besides, it should be mentioned that
although the onset frame, apex frame and offset frame are anno-
tated in the CASME II [50] and SAMM [4] datasets, the apex frames
in the SMIC–HS [25] are omitted. To solve this problem, and
inspired by the work of Zhou et al. [55], the mid-position frame
between the onset and offset is applied as the approximated apex
frame in the SMIC–HS dataset.

To be more specific, the adaptive construction method includes
spatially adaptive and temporally adaptive strategies. For the for-
mer ones, when given two frames, the adaptive convolutional neu-
ral network (AdConv) [31] is used to generate the middle frame,
which could well integrate motion estimation and pixel synthesis.
For the latter ones, the numbers of interpolated frames for the
onset-apex clip and apex-offset clip are not equal, which will be
respectively determined by time intervals and the length of the
original sequence. For notation convenience, we utilize Nsp and
Npe to respectively denote the number of interpolated frames for
the onset-apex clip and apex-offset clip, and use ts; tp and te to
respectively represent the time index of onset frame (ks), apex
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frame (kp) and offset frame (ke) in the original MEs video. Then,
for a given MEs video with N frames, we could have the equations
below:
Nsp ¼ ðtp � ts þ 1Þ � 8=N;
Npe ¼ ðte � tpÞ � 8=N;

Nsp þ Npe ¼ 8:
ð1Þ

Furthermore, as the apex frame contains the strongest intensity
expression, the motion of the apex frame should be highlighted
when considering the spatiotemporal variations between MEs
adjacent frames. Meanwhile, from the perspective of movement,
the motion intensity of the apex frame could be regarded as the
continuous accumulation of the motion intensities of all frames
before it. Therefore, when generating the intermediate transition
key-frames in the onset-apex clip and apex-offset clip, increasing
the time interval between the apex frame and its adjacent frames
can relatively highlight the change in the motion intensity of the
apex frame when calculating the optical flow of adjacent frames.
To this end, we introduce the sparse generation of intermediate
transition frames on both sides of the apex frame and estimate
the optical flow of adjacent two frames to describe the MEs
motion. The method of adaptively constructing key-frames
sequence is shown in Algorithm 1.



S. Zhao, H. Tao, Y. Zhang et al. Neurocomputing 448 (2021) 276–289
Algorithm 1. Adaptive construction of key-frames
sequence. N is the length of a MEs video. Nsp and Npe

respectively denote the number of interpolated
frames for the onset-apex clip and apex-offset clip. [
dontes ordered merge operation, and = indicates the
division to round down here.
Input: the 3 key-frames sequence:Ii ¼ fks; kp; keg, and
its time index collection:Ti ¼ fts; tp; teg.
Parameter: N, Nsp, Npe, I0i, I
00
i , T

0
i, T

00
i , k

0
m, m.
Output: the final key-frames sequence Io.

1: Let N ¼ te � ts þ 1.

2: Let I0i ¼ fks; kpg, I00i ¼ fkp; keg.

3: Let Nsp ¼ ðtp � ts þ 1Þ � 8=N, Npe ¼ 8� Nsp.

4: Let t1 ¼ ts, t2 ¼ tp, k1 ¼ ks, k2 ¼ kp, L1 ¼ 0, t ¼ 0.

5: Clear T 0

i, T
00
i

6: while Nsp > L1 and t ¼ 0 do

7: Update m ¼ ðt1 þ t2Þ=2, and it’s the time index of

frame k0m.

8: if j m� t1 j> 1 then

9: Update k0m ¼ AdConvðk1; k2Þ.

10: Update t2 ¼ m, k2 ¼ k0m, L1 ¼ L1 þ 1.

11: I0i ¼ I0i [ k0m, T

0
i ¼ T 0

i [m.

12: else

13: Let t ¼ 1, L ¼ L1, I ¼ fg.

14: while t < L and L1 < Nsp do

15: Update m ¼ ðT 0

i½t� þ T 0
i½t � 1�Þ=2.
16: if j m� T 0
i½t � 1� j> 1 then
17: Update k0m ¼ AdConvðI0i½t�; I0i½t þ 1�Þ.

18: Update I ¼ I [ k0m, L1 ¼ L1 þ 1.

19: end if

20: Update t ¼ t þ 1

21: end while

22: I0i ¼ I0i [ I, Io ¼ Io [ I0i

23: end if

24: end while

25: Let t1 ¼ te; t2 ¼ tp; k1 ¼ ke;

k2 ¼ kp; T
0
i ¼ T 00

i ; I
0
i ¼ I00i ; L1 ¼ 0; t ¼ 0.
26: while Npe > L1 and t ¼ 0 do

27: Repeat step7-24.

28: end while

29: Let M denotes the length of the collection Io.

30: while M < 11 do

31: Using ke padding Io.

32: Let M ¼ M þ 1.

33: end while

34: return Io
3.1.2. Optical flow sequence estimation
To describe the dynamic spatiotemporal information of the MEs

sequence, and considering that if the RGB key-frames sequence is
directly taken as our model input, it will be challenging to train
the model to extract the high-level MEs features when the sample
size of MEs datasets is small. To this end, based on the obtained
RGB key-frames sequence, our work here choose to further esti-
mate the corresponding OF sequence, which can approximately
describe the facial motion in MEs video and has also been demon-
strated by many current research works [19,27,29,35,55] that it
can be used to enrich the input except for RGB channels. Hence,
the optical flow between two adjacent RGB key-frames are calcu-
lated to obtain a 10-frames OF sequence as our model input.

Specifically, for an RGB key-frames sequence, Iðx; y; tÞ denotes
the image intensity at position ðx; yÞ and time t. Based on the
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assumption that brightness during a short period dt is invariant,
we could have the equation below:

Iðx; y; tÞ ¼ Iðxþ dx; yþ dy; t þ dtÞ: ð2Þ
Furthermore, we assume that the image flow field is continuous

and differentiable in both spatial and temporal domains. According
to the Taylor series expansion, the formula above can be expanded
as:

Iðxþ dx; yþ dy; t þ dtÞ ¼ Iðx; y; tÞ þ @I
@x

dxþ @I
@y

dyþ @I
@t

dt þ n; ð3Þ

where n is the two-order or above estimator of time dt. When dt
tends to be infinitesimal, we can get the OF constraint by combining
(2) and (3) as follows:

@I
@x

dx
dt

þ @I
@y

dy
dt

þ @I
@t

¼ 0: ð4Þ

Then, the corresponding OF vector V could be calculated via the
following equation:

V ¼ u ¼ dx
dt

;v ¼ dy
dt

� �T
; ð5Þ

where the amplitude is m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. We follow the classic Farne-

back method [11] to implement the OF estimation, which has been
implemented and integrated into the Opencv library and can be
used easily.

3.2. Spatiotemporal MEs feature learning

In fact, it is relatively common for us that when a child sees a
new object for the first time, he or she could generalize the charac-
teristics of the new object by comparing it with other objects and
identifying it as the same or different class, even without knowing
what it is. This kind of prior experience may indeed form memo-
ries, which contributes to further learning and understanding.
Inspired by similar ideas, many few-shot learning methods have
been proposed to guide machine to successfully learn features
from little data [22,45,41]. Encouraged by these methods, our work
propose to divide the features learning of MEs into two stages, i.e.,
prior learning and target learning. In fact, the prior learning is anal-
ogous to the early exploration for new objects by a child men-
tioned above, which aims to train our model to acquire the
ability and experience of extracting generic features by inputting
MEs sample pairs and judging their similarity. Moreover, the target
learning refers to the high-level features extraction and classifica-
tion of the model based on the prior learning. The two-stage learn-
ing method is actually forming the subject of our MERSiamC3D
model to obtain MEs features. Consequently, as shown in Fig. 3,
the structure of MERSiamC3D model will have two different vari-
ants which correspond to prior learning and target learning,
respectively.

3.2.1. Prior learning
Here, our intention lies in training a neural network first to get

basic experience which are capable of extracting generic features
of MEs and could be stored for target learning. As shown in Fig. 3
(A), a variance of siamese 3D convolutional neural network (MER-
SiamC3D) is designed which takes MEs-sample pairs as input.

3.2.1.1. The architecture of MERSiamC3D model. Our MERSiamC3D
model is solidly designed based on 3D convolutional neural net-
works (C3D), which has the capability of extracting features from
spatial and temporal dimensions simultaneously by performing
3D convolutional operations in multiple contiguous frames. Mean-
while, the 3D convolution is achieved by convolving a 3D kernel to



Fig. 3. Illustration of the MERSiamC3D framework for MEs features learning and classification. (A) is the architecture of MERSiamC3D and using MEs pair (I1; I2) as input for
prior learning. (B) shows the target learning stage and corresponding model structure used, specifically, using the parameters obtained in the prior learning stage as the initial
value of SinC3D and fine-tuning the middle layers for target learning and classification. (C) shows the process of feature mapping by SinC3D.
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the cube formed by stacking multiple contiguous frames together
[17]. As shown in Fig. 3(A), our MERSiamC3D model actually con-
sists of twin networks whose parameters are tied together. For
each network, it is mainly composed of five components: 1) a sin-
gle C3D network (SinC3D); 2) a flatten layer; 3) a fully-connected
layer (or dense layer); 4) a similarity measurement layer with
L1-distance; and 5) an output layer with the sigmoid function.
Among all of them, the SinC3D network is the core component of
MERSiamC3D, which is shown in Fig. 3 (C). It consists of five 3D
Convolutional (3DConv) layers and five corresponding 3D Max-
Pooling (3D-MP) layers. Besides, we apply the ReLU activation
function in the convolutional layers to get the output feature maps.
Formally, the value at position (x; y; z) on the j-th feature map in
the i-th layer could be formulated by:

vxyz
ij ¼ ReLU bij þ

X
m

XPi�1

p¼0

XQi�1

q¼0

XRi�1

r¼0

wpqr
ijmv

ðxþpÞðyþqÞðzþrÞ
ði�1Þm

 !
; ð6Þ

where bij is the bias for this feature map, Pi;Qi and Ri are the size of
the 3D kernel along the X-space, Y-space and temporal dimension.
While m indexes over the set of feature maps in the ði� 1Þ-th layer
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connected to the current feature map, and wpqr
ijm is the value at the

position ðp; q; rÞ of the kernel connected to the mth feature map.

3.2.1.2. The training of MERSiamC3D model. Before training MER-
SiamC3D model, a key step is to build the collection of positive
and negative samples from the original datasets. To this end, we
make sample pairs according to the original labels of the samples,
i.e., if two samples are taken from the same category of MEs, they
are treated as the ‘‘same” and labeled as ‘‘1”, otherwise they are
treated as ‘‘different” and labeled as ‘‘0”. Supposing the original
dataset have a total of K-categories and N samples, and the number
of samples in each category is Ni, then the number of sample pairs
M could be obtained through:

M ¼ 1
2

XK
i¼1

C1
Ni
C1
Ni�1 þ C1

Ni
C1
N�Ni

� �
: ð7Þ

Afterwards, during the training process, for an input sample
pair ½I1; I2�, the model will output two feature vectors F1 and F2

after the processing of SinC3D modules, flatten layers and dense
layers like that of Fig. 3 (A). To determine whether F1 and F2 are



Table 1
Summary of characteristics for SMIC–HS, CASME II and SAMM datasets.

Characteristics SMIC CASME II SAMM

Samples 164 255 159
Subjects 16 26 29
Ethnicities 3 1 13
FPS 100 200 200
Resolution 640 � 480 640 � 480 2040 � 1088
Facial Area 160 � 130 340 � 280 400 � 400
Emotion Classes 3 7 8
Objective Classes – 7 7
FACS Coded NO YES YES
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the ‘‘same” or ‘‘different”, the L1 distance between F1 and F2

together with a sigmoid function are applied, which maps onto
the interval ½0;1�. Then, the prediction vector could be computed
through:

PðI1; I2Þ ¼ sigmod
XD
j¼1

j f 1j � f 2j j
 !

; ð8Þ

where D is the dimension of F1 and F2. Naturally, the binary cross
entropy objective is a suitable choice for training the neural
network.

3.2.2. Target learning and classification
After the procedure of prior learning, SinC3D, the core of MER-

SiamC3D, has mastered the basic experience to extract the general
features for MEs. However, it is not enough for identifying and
learning weak movements of MEs. To handle this issue, our work
here proposes to continue training MERSiamC3D to obtain the
high-level features for target classification.

3.2.2.1. Fine-tuning the MERSiamC3D model. For solving the multi-
classification tasks, we first adjust the structure of MERSiamC3D
as shown in Fig. 3(A) to that in Fig. 3(B). From Fig. 3(B), we could
observe that the new architecture is identical to one of the MER-
SiamC3D except for the last two layers. Specifically, the SinC3D
module is followed by a flatten layer, a fully-connected layer, a
dropout layer, and an output layer sequentially. In the output layer,
the softmax regression is choosen as the activation function. For-
mally, given a sample x and the output vector is
V ¼ fv1;v2; . . . ;vng, the probability of classifying x into class k is
calculated as:

~y ¼ Pðy ¼ k=v iÞ ¼ ev iPK
j¼1e

v j
; k 2 ½1;K�; ð9Þ

where y is the ground-truth value of input v i, and K is the number of
total categories.

3.2.2.2. Training with the focal loss. For multiple classification tasks,
the cross-entropy (CE) loss is usually used for back propagation to
update model parameters. However, there is an imbalanced distri-
bution of samples in the spontaneous MEs datasets. This could be
biased toward particular emotions that constitute a larger portion
of the training set. Therefore, applying a fairer loss function is
critical.

Fortunately, according to [26], the focal loss is designed to
address the one-stage object detection where there is an extreme
imbalance between foreground and background classes during
training, which has been widely used in object-detection tasks
with excellent performance. Therefore, the aim of our work here
is trying to introduce the focal loss to solve the unfair training
problem caused by unbalanced MEs samples. The original defini-
tion of focal loss is shown as follows:

FL ptð Þ ¼ �at 1� ptð Þclog ptð Þ; ð10Þ
where at is the weight balance factor for samples, c is the balance
factor for loss, and pt is the binary classification probability distribu-
tion of the sample. To adapt for our multi-classification task, we
modify the focal loss in this paper by combining Eq. (9) and (10),
which is shown as:

FLðy; ~yÞ ¼ �
XK
i¼1

ai 1� yi � ~yið Þc log ~yi; ð11Þ

where c is set as 2 in practice, and a is treated as a hyper-parameter
to set by cross validation.
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4. Experiments

In this section, the validation experiments including experi-
mental settings and results will be detailed, where the experimen-
tal settings consist of datasets description, implementation details,
and the introduction of evaluation metrics.
4.1. Experimental settings

4.1.1. Datasets
To fit the problem we are dealing with, three popular sponta-

neous MEs datasets are used to evaluate the recognition perfor-
mance of the proposed method, including SMIC–HS [25], CASME
II [50] and SAMM [4]. The different characteristics of these datasets
are summarized in Table 1. It is worth mentioning that these data-
sets are collected by high-speed cameras: the SMIC–HS is recorded
at 100fps, the CASME II and SMIC are both recorded at 200fps.
Besides, the SMIC–HS dataset has only one type of class labels,
including positive (51), negative (70) and surprise (43), however,
the CASME II and SMIC datasets have two kinds of class labels,
i.e., objective classes and original emotion classes. For the former
one, the two datasets have uniform classes I-VII, which are based
on facial Action Units (AUs) with the bias of human reporting
removed by Davison et al. [3]. Moreover, the classes I-VI are
respectively linked with happiness, surprise, anger, disgust, sad-
ness, and fear. While class VII relates to contempt and other AUs
without emotional link in EMFACS [10]. The number of samples
for each objective class in CASME II and SAMM datasets is shown
in Table 2, from which we could easily see that the total size of
two datasets is both small, with a distinct imbalance between
the sample sizes of different classes. For the original emotion
classes, the CASME II and SAMM datasets are usually categorized
into five different classes: the samples in CASME II are divided into
happiness (32), surprise (25), disgust (63), repression (27), and
others (99), but for the SAMM, the samples are divided into happi-
ness (26), anger (57), contempt (12), surprise (15), and others (26).
4.1.2. Implementation details
To comprehensively evaluate the performance of our method

and compare it as much as possible with current other methods,
two kinds of experiments were conducted: (1) Five-classification
experiments on the CASME II and SAMM datasets with their objec-
tive classes and emotion classes. For the objective classes classifi-
cation, the distribution of samples is shown in Table 2.
Considering the extremely small sample size of class VI and the
fact that class VII is ambiguous in terms of emotion, only classes
I-V are selected for utilization. (2) Three-classification experiment
fully refers to MEGC 2019 [40] on the SMIC–HS, CASME II, SAMM
and their combination. At first, the original emotion classes of each
dataset are grouped into three main categories: negative (including
‘‘repression”, ‘‘anger”, ‘‘contempt”, ‘‘disgust”, ‘‘fear” and ‘‘sadness”),
positive (‘‘happiness”) and surprise. Then, the three datasets cap-



Table 2
Distribution of samples based objective classes for both CASME II and SAMM.

Objective classes based on AUs CASME II SAMM

I (Happiness) 25 24
II (Surprise) 15 13
III (Anger) 99 20
IV (Disgust) 26 8
V (Sadness) 20 3
VI (Fear) 1 7
VII (Contempt and other AUs) 69 84
Total Size 255 159
Subjects 26 21
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tured from different stimuli and environment are merged to form a
single composite dataset. The summary of samples distribution for
these three datasets and their combination are shown in Table 3.

In the preprocessing procedure, to avoid the interference of the
non-facial area and the influence of the head posture, the basic
processing over each frame is first conducted in MEs video to
detect, align and crop face region by using the DLib toolkit [21]
and the face alignment method described in [42], then resize the
face region to 112�112 pixel resolution to match the input spatial
dimension of our model.

In the model training procedure, our models are implemented
on Keras with Tensorflow as the backend. For the parameter set-
ting of MERSiamC3D, all of the 3D convolution filters are set as
3� 3� 3 with stride 1� 1� 1, and all of the 3D max-pooling lay-
ers are set as 2� 2� 2 with stride 2� 2� 2 except for the first
layer which has a kernel size of 2� 2� 1 and a stride of
2� 2� 1 with intention of preserving the temporal information
in the early phase. Additionally, the number of convolutional ker-
nels corresponding to each layer is set as 32, 64, 128, 128, 256.
For both prior learning and target learning stages, the stochastic
gradient descent (SGD) is used as the optimizer with the momen-
tum set to 0.9, and the learning rate is initialized with 0.004 which
will decrease 10 times smaller after every 10 epochs in SGD. Mean-
while, the total epoch is set as 100. To be more specific, at the prior
learning stage, 90% of the samples pairs are used as training set and
the rest 10% are applied as testing set. Afterwards, the final convo-
lutional layers parameters are kept for target learning. Then, at the
target learning stage, the original labeled datasets are exploited as
input, and the convolutional layers parameters obtained by the
prior learning stage are used to initialize SinC3D module. In our
experiments, the best recognition performance could be obtained
by fixing the first two convolutional layers of SinC3D for retraining.

Additionally, data augmentation is also applied to alleviate
over-fitting, and each frame of samples is first cut randomly with
2–5 pixels at different places, i.e., up, bottom, left, right, center, upper
left, upper right, lower left and lower right part of the frame, then
resize to its previous size by using bilinear interpolation. Besides,
for each MEs sample, three new samples are constructed by dis-
carding one or all of the first two frames and copying the last frame
to fill them. As a result, 36 times more data combined with original
samples could be obtained, which substantially alleviates the
adverse effects brought by data sparsity.

4.1.3. Evaluation metrics
For the purpose of ensuring subject-independent evaluation,

most of the existing methods adopt leave-one-subject-out (LOSO)
Table 3
Distribution of samples after being classified into 3-categories.

Classes SMIC CASME II SAMM Combined

Negative 70 88 92 250
Positive 51 32 26 109
Surprise 43 25 15 83
Total Size 164 145 133 442
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strategy for evaluation [18,40,42,47]. In view of their practice, we
also apply LOSO for evaluation in our experiments. That is to say,
for each fold, all samples from one subject are used as a testing
set and the rest for training. Therefore, there are 16 training and
testing procedures for SMIC–HS dataset, 26 training and testing
procedures for CASME II dataset, while the SAMM dataset has 21
(27) procedures for five-classification with objective (original emo-
tion) five-classes and 28 procedures for three-classification, the
composite 3-dataset has 68 procedures for three-classification. Fol-
lowing the previous studies, Accuracy (Acc) and F1-score are used
here to measure the performance of the five-classification experi-
ments. Differently, when experimenting on three-classification,
we refer to MEGC 2019 using the unweighted F1-score (UF1) and
unweighted average Recall (UAR) to evaluate the model perfor-
mance. Actually, UF1 is also commonly known as the macro-
averaged F1-score and UAR is the ‘‘balanced accuracy” [40]. Given
the true positives (TPc), false positives (FPc) and false negatives
(FNc) for each class k (K classes in total) over N folds, UF1 and
UAR could be calculated as:

UF1 ¼
XK
i¼1

UF1i=K; ð12Þ

UAR ¼
XK
i¼1

ACCi=K; ð13Þ

where we have:

UF1i ¼ 2 � TPi

2 � TPi þ FPi þ FNi
; ð14Þ

ACCi ¼ TPi=Ni: ð15Þ
4.2. Experimental results

4.2.1. Five-classification experiments
4.2.1.1. Objective classes classification. In this subsection, the effec-
tiveness of our proposed method is demonstrated by comparing
its recognition performance on the five objective classes classifica-
tion with several recent state-of-the-art (SOTA) methods, which
consist of hand-crafted methods and deep learning methods. The
hand-crafted methods include LBP-TOP [54], 3DHOG [38], HOOF
[1] and ELBP-TOP [13], in which LBP-TOP, 3DHOG and HOOF were
also reproduced by Davison et al. [3] to recognize the objective
class labels, while ELBP-TOP is an improvement based on LBP-
TOP and recently proposed by Guo et al. [13]. The deep learning
methods mainly include ResNet with attention by Wang et al.
[46], and DSCNN model proposed by Khor et al. [18], which is also
reproduced by this paper to recognize the five objective class
labels. Accordingly, the comparison results are shown in Table 4.

Actually, when evaluating the recognition performance, F1-
score is more objective and convincing because there are serious
class imbalances in CASME II and SAMM [52]. From Table 4, it
could be observed that the MERSiamC3D consistently achieves
the highest F1-score of 0.81 on CASME II and 0.60 on SAMM, which
significantly outperforms the comparison methods. Particularly,
although the class imbalances on SAMM dataset are much more
severe than that of CASME II, while the MERSiamC3D could gain
a higher performance than any other baselines. The main cause
for this phenomenon might be that the introduction of focal loss
effectively solves the class imbalance problem, which will be dis-
cussed in detail in the following sections. Besides, the proposed
method also gains the highest accuracy of 80.05% on CASME II
and 64.03% on SAMM. Compared with other deep learning meth-
ods (i.e., DSCNN [18] and ResNet model with Attention [46]) in
Table 4, despite the same challenges caused by the lack of large-



Table 4
Performance of comparison methods on five-classification experiment with objective classes.

MER methods CASME IIa SAMMa

Acc (%) F1-score Acc (%) F1-score

LBP-TOP [3] (repetition 2018)b 67.80 0.51 44.70 0.35
3DHOG [3] (repetition 2018)b 69.64 0.56 42.17 0.33
HOOF [3] (repetition 2018)b 69.53 0.51 34.16 0.22
ResNet + Attention [46] (2018)c 65.90 0.54 48.50 0.40
ELBP-TOP [13] (2019)c 79.55 0.66 63.44 0.48
DSCNN [18] (repetition 2019)c 72.68 0.74 59.91 0.49
MERSiamC3D (Ours)c 80.05 0.81 64.03 0.60

a CASME II and SAMM with the uniform objective classes I-V.
b The hand-crafted method.
c The deep learning-based method.
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scale MEs data, the MERSiamC3D still achieves an improvement of
7.37%, 14.15% on CASME II, 4.12%, 15.53% on SAMM in accuracy,
which also reflects the superiority of our proposed two-stage
learning strategy.
4.2.1.2. Original emotion classes classification. Meanwhile, there are
also some significant works [3,18,42,43] carrying out the five-
classification experiment to recognize the original five emotion
class labels of CASME II and SAMM datasets. Table 5 shows the
recognition performance of our proposed method and others for
this five-classification task.

As shown in Table 5, our MERSiamC3D also yields the highest
recognition accuracy (81.89%) and F1-score (0.83) on the CASME
II dataset among other SOTA methods, which mainly includes the
AlexNet [23] model with apex frame as input, the SSCNN and
DSCNN models proposed by Khor et al. [18], the knowledge distil-
lation based method by Sun et al. [43], the TSCNN-I and TSCNN-II
models by Song et al. [42]. However, for the SAMM dataset, the F1-
score we obtained is 5% lower than the TSCNN-II model. By infer-
ring the following two main possible reasons: (1) Subjectively,
compared with TSCNN-II, although our MERSiamC3D considers
more the temporal dynamic information of MEs, it does not deal
with local spatial information of MEs in a more focused manner
like TSCNN-II. (2) Objectively, the SAMM dataset has a smaller
sample size than the CASME II, in which case our model is more
prone to be overfitting. Nevertheless, compared with other meth-
ods in Table 5, our method is relatively competitive, which clearly
proves the rationality and superiority of our method for MER.
4.2.2. Three-classification experiment
In this subsection, we fully follow the MEGC 2019 [40] and con-

duct a series of three-classification experiments on the SMIC–HS,
CASME II, SAMM and their composite dataset. Especially for the
last one, the samples in it come from different datasets collected
from a diverse range of subjects under different experimental sce-
narios, which requires higher robustness of the model. Similar to
the five-classification experiments, the best results achieved by
our method are also compared with the SOTA methods in the
MEGC 2019, and the comparison methods also include hand-
crafted methods (i.e., LBP-TOP by Zhao et al. [54], Bi-WOOF by
Liong et al. [28]) and deep learning-based methods (i.e., Cap-
suleNet by Quange et al. [44], OFF-ApexNet by Gan et al. [12],
Dual-Inception Network by Zhou et al. [55], Shallow Triple Stream
Three-dimensional CNN (STSTNet) by Liong et al. [27], Expression
Magnification and Reduction (EMR) with adversarial training by
Liu et al. [29]).

As illustrated in Table 6, our proposed MERSiamC3D yields
competitive results on all datasets, particularly on the composite
dataset and the CASME II dataset, successfully surpassing the top
4 [12,55,27,29] in MEGC 2019. Indeed, the MERSiamC3D achieves
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the highest UF1 of 0.8068 and the highest UAR of 0.7986 on the
composite dataset, also gets the best performance (UF1-0.8818,
UAR-0.8763) on the CASME II, which clearly proves the effective-
ness and robustness of our method. In a more in-depth analysis,
the most significant difference between our method and the top
4 methods is that they only use the apex frame to describe the
MEs sequence, which indicates that when facing the same MEs
datasets, they could utilize fewer parameters but deeper CNN-
based models to extract the high-level spatial MEs feature. More-
over, many large-scale image datasets [5] can also be used to
knowledge transfer, so as to alleviate the overfitting problem
caused by the insufficient MEs samples. In contrast, our approach
considers more temporal dynamic information of MEs and uses
the key-frames sequence with more frames to describe the MEs
sequence. Although MERSiamC3D faces a higher risk of overfitting,
it has achieved corresponding improvements in the composite
dataset and the CASME II dataset, which is mainly due to the effec-
tiveness and rationality of our two-stage learning strategy and key-
frame sequences representation method. However, our MER-
SiamC3D are slightly behind the Top 1 [29] on the SMIC and SAMM
datasets, which is partly due to the finer but more complex prepro-
cessing of that method. Additionally, compared with the CASME II
dataset, the SMIC and SAMM datasets are more challenging, which
mainly comes from two objective factors: (1) The samples of SMIC
are captured by a slower frame rate and lower resolution, which
means that some fine-grained MEs information is missing. (2)
The SAMM dataset is more diverse because the samples are col-
lected frommore ethnicities and ages, which puts forward a higher
requirement for models’ generalization.
5. Ablation studies

To further validate the rationality and effectiveness of the
design of our method, we perform a series of ablation studies,
which could answer the following questions:

� Does the prior learning strategy work? How much does it con-
tribute to the performance improvement?

� Does the focal loss work well in MER?
� Is the key-frames construction method reasonable? Does it
work?

5.1. The effect of prior learning

In this study, extensive five-classification experiments with the
objective class labels are conducted on the CASME II dataset to ver-
ify the proposed prior learning strategy effectiveness. To this end,
we firstly compare the recognition performance between the MER-
SiamC3D model without a prior learning (PL) stage and transfer
knowledge with prior learning stage. Then, the results are detail-



Table 5
Performance of comparison methods on Five-classification experiment with original emotion classes.

MER Methods CASME IIa SAMMa

Acc (%) F1-score Acc (%) F1-score

LBP-TOP [3] (repetition 2018)b 68.24 0.48 N/Ad N/A
AlexNet [23] (repetition 2019)c 62.96 0.67 52.94 0.43
SSCNN [18] (2019)c 71.19 0.72 56.62 0.45
DSCNN [18] (2019)c 70.78 0.73 57.35 0.46
Knowledge Distillation [43] (2020)c 72.61 0.67 N/A N/A
TSCNN-I [42] (2019)c 74.05 0.73 63.53 0.61
TSCNN-II [42] (2019)c 80.97 0.81 71.16 0.69
MERSiamC3D (Ours)c 81.89 0.83 68.75 0.64

a CASME II with the emotion classes: happiness, surprise, disgust, repression and others. SAMM with the emotion classes: happiness, anger, contempt, surprise and others.
b The hand-crafted method.
c The deep learning-based method.
d N/A – no results reported.

Table 6
Performance of comparison methods on Three-classification experiment.

MER Methods SMIC CASME II SAMM 3DB-combined

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [54] (2007)a 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102 0.5882 0.5785
Bi-WOOF [28] (2018)a 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139 0.6296 0.6227
CapsuleNet [44] (2019)b 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989 0.6520 0.6506
OFF-ApexNet [12] (2019)b 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392 0.7196 0.7090
Dual-Inception [55] (2019)b 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663 0.7322 0.7278
STSTNet [27] (2019)b 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810 0.7353 0.7605
EMR with adversarial training [29] (2019)b 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152 0.7885 0.7824
MERSiamC3D (Ours)b 0.7356 0.7598 0.8818 0.8763 0.7475 0.7280 0.8068 0.7986

a The hand-crafted method.
b The deep learning method.

Table 7
Comparative results of different feature learning strategies.

Method Fixed Convolution Layers
of SinC3D

CASME II

MERSiamC3D
without PLa

— 73.27 0.7578

MERSiamC3Db — 75.74
(" 2:47)

0.7728
(" 0:0150)

MERSiamC3Db Conv1 77.93
(" 4:66)

0.7937
(" 0:0359)

MERSiamC3Db Conv1,Conv2 80.05
(" 6:78)

0.8131
(" 0:0553)

MERSiamC3Db Conv1,Conv2,Conv3 78.18
(" 4:91)

0.7969
(" 0:0391)

MERSiamC3Db Conv1,Conv2,Conv3,
Conv4

75.61
(" 2:34)

0.7704
(" 0:0126)

MERSiamC3Db Conv1,Conv2,Conv3,
Conv4,Conv5

58.79
(# 14:48)

0.5878
(# 0:1700)

a Without prior learning.
b After the prior learning, and the convolution layers’ parameters are transferred

from prior learning.
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edly analyzed after fixing different convolutional layer parameters
of the SinC3D network in the target learning stage.

As shown in Table 7, after applying the prior training strategy,
the performance of various variants of our model is improved sig-
nificantly except for the last one. Especially, after fixing the first
two convolutional layers of the SinC3D network, our model could
achieve the best performance, which is 6.78% higher in accuracy
and 5.53% higher in F1-score than those models without prior
learning. These results are quite in accordance with our assump-
tions, because fixing all convolution layers of our model means
that all parameters of convolutional layers obtained at the prior
learning stage will be thoroughly duplicated to the network of tar-
get learning stage, and will no longer be updated in model training
at the latter stage. Consequently, the model’s ability of extracting
high-level MEs features will not be improved through the training
on target datasets. On the contrary, the fixation of parameters in
the first two convolutional layers and the initiation of parameters
in other layers based on the corresponding parameters obtained at
the prior learning stage can not only decrease the update of low-
level parameters in target learning, but also enhance the model’s
ability to extract high-level MEs features, which will facilitate the
target classification tasks.

As a summary, the significant improvement over accuracy and
F1-score clearly proves the effectiveness of our proposed two-
stage learning strategy (i.e., prior learning and target learning) for
MER.
5.2. The effect of focal loss

To verify the effectiveness of focal loss in MER tasks, we utilize
the standard cross-entropy (CE) loss and focal loss (FL) with differ-
ent balance factor a to guide the training of MERSiamC3D respec-
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tively. Then, through the comparison of five-classification
performance, the effect of the focal loss for MER could be verified.
Intuitively, the results of our proposed MERSiamC3D with different
loss functions are shown in Fig. 4.

As depicted in Fig. 4, it is obvious that the recognition perfor-
mance is consistently and significantly improved on CASME II
and SAMM datasets with objective classes when the focal loss is
used and matched with the optimal balance factor a. Concretely,
our model could indeed obtain the best results on CASME II when
a is set as 7. However, setting the value of a to 8 to get the best



Fig. 4. Comparative results of different loss functions with various hyperparameters.
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results on SAMM is what we need. Furthermore, by comparing the
statistics in Table 2 and Fig. 4, we could find an interesting thing
that the classification performance of our model is better when a
is set close to the maximum class ratio, which is equal to the ratio
of the largest single class samples size to the smallest single class
samples size in the datasets. For example, the maximum class ratio
of SAMM is 8, which is equal to the sample size (24) of category I
divided by the sample size (3) of category V, and our model
appears to get the best classification performance exactly when
the balance factor a is set to 8. By combining the above analysis
together, we can conclude that FL can effectively solve the problem
of low recognition performance caused by imbalance samples in
MER.
5.3. Analysis of adaptive construction of key-frames

5.3.1. The rationality of adaptive construction of key-frames
In this subsection, we conduct a rationality analysis on the key-

frames sequence obtained by our method from the perspective of
vision and movement. In fact, MEs are a facial reaction that could
reflect the change of facial action caused by emotions. Therefore,
the constructed key-frames sequence requires not only to summa-
rize visually of the original MEs video but also need to be highly
consistent with the movement of the original MEs sequence.

To specify our analysis, we take the ‘‘Happiness-EP05-02” sample
in the CASME II dataset as an example. Note that, this sample is one
Fig. 5. The key-frames result by our adaptive construction
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specific MEs clip that contains 97 frames, of which the onset frame
(25), apex frame (91), and offset frame (121) are three key-frames
that have been located. Based on the three key-frames and our pro-
posed adaptive construction method, the final 11 RGB key-frames
sequence and its corresponding 10 optical-flow key-frames
sequence are obtained and shown in Fig. 5. As expected, we could
observe that the key-frames sequence obtained by the proposed
adaptive construction method can well visually summarize the
MEs of ‘‘Happiness”. Besides, it could also be concluded that the
motion of the apex frame (91) is the tensest one from the
optical-flow sequence.

Meanwhile, as for the original MEs sequence and the key-
frames sequence obtained by our method, to intuitively show the
movements of their MEs, we use the first frame as the reference
frame, and then sequentially calculate the OF amplitudes of every
subsequent frames and the reference frame according to the
method of Section 3.1.2. Last but not least, the motion curve is also
shown in Fig. 6. Intuitively, the motion changing curves showed in
Fig. 6(a) and (b) are highly consistent with each other, which
reflects that the key-frames sequence obtained through the adap-
tive construction method in this paper is highly consistent with
the original MEs sequence in terms of movement changes.
5.3.2. The effect of adaptive construction of key-frames
For further analysis, another experiment is carried out in this

paper to explore how the adaptive construction method of key-
method (the sample ‘‘Happiness-EP05-02” as input).



Fig. 6. Comparison of motion trends between the original micro-expression sequence and the key-frame sequence.
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frames affects the final recognition performance. Specifically, three
different methods are first applied to extract 11 RGB key-frames
sequences based on the annotated three key-frames (i.e., onset-
apex-offset frames). Then we conduct a series of five-
classification experiments on the CASME II dataset. The three dif-
ferent key-frames extraction methods include time interpolation
model (TIM) [56] adopted by most jobs [19,13,33], time adaptive
sampling (TAS) and ours. It should be noted that TAS is quite sim-
ilar to our method. Since both of the two methods first determine
the time index of the key-frame according to the method described
in Section 3.1.1, and then obtain the key-frame at the correspond-
ing position. The main difference lies in that TAS directly takes the
frame at the corresponding time index from the original ME
sequence as the key-frame, while our method is to generate the
intermediate transition frame at the corresponding position by
using the adaptive convolutional neural network [31]. The compar-
ison results are shown in Fig. 7, from which it could be observed
that our adaptive construction method has achieved the best
recognition performance. And it also proves the adaptive construc-
tion method of key-frames sequence can help boost the final recog-
nition performance.

Nevertheless, since the proposed adaptive construction method
for key-frames relies on manually annotated apex frame, which is
not always accurate. Therefore, in the future, it is necessary to
Fig. 7. Comparison of performance results obtained by different key-frames
construction methods.
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design an intelligent and more accurate method for apex frame
locating and then construct key-frames.
6. Conclusion

In this work, a novel two-stage learning method with MER-
SiamC3D model are proposed, which has significant advantages
in tackling insufficient and imbalance samples problem in MER.
Specifically, in order to effectively retain the spatiotemporal infor-
mation of the original MEs video, an adaptive construction method
was firstly proposed to construct the key-frames sequence to sum-
marize the original MEs video, which has the ability of helping
drop the redundant frames and highlight the movement of the
apex frame. Afterwards, considering the shortages of directly uti-
lizing current MEs samples, we choose to decompose the ordinary
feature learning procedure into two-stage, i.e., prior learning and
target learning, which means that we first divide the original data-
set (with key-frames) into a collection of same and different sample
pairs for training our MERSiamC3D to extract the generic features
of MEs at the prior learning stage, and then fine-tune the MER-
SiamC3D’s structure and parameters so as to introduce the focal
loss for target learning and classification. Finally, through the eval-
uations on three publically available MEs datasets, we could find
that the proposed method outperformed other deep learning and
traditional methods. The extensive experimental results demon-
strated the effectiveness and superiority of the proposed method.

In the future, we will continue our exploration to make efforts
to design more granular and differentiated MEs features, which is
the premise for achieving real-time, more accurate and efficient
MER applications.
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