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Abstract—Recently, the boom of media contents on the
Internet raises challenges in managing them effectively and
thus requires automatic media annotation techniques. Mo-
tivated by the observation that media contents are usually
shared frequently in online communities and thus have a lot
of social diffusion records, we propose a novel media anno-
tating approach depending on these social diffusion records
instead of metadata. The basic assumption is that the social
diffusion records reflect the common interests (CI) between
users, which can be analyzed for generating annotations.
With this assumption, we present a novel CI-based social
diffusion model and translate the automatic annotating task
into the CI-based diffusion maximization (CIDM) problem.
Moreover, we propose to solve the CIDM problem through
two optimization tasks, corresponding to the training and test
stages in supervised learning. Extensive experiments on real-
world data sets show that our approach can effectively generate
high quality annotations, and thus demonstrate the capability
of social diffusion analysis in annotating media.

Keywords-Automatic annotation; common interests; diffusion
maximization; social diffusion; social media.

I. INTRODUCTION

Recent years have witnessed the boom of media con-

tents on the Internet. On one hand, traditional media, like

television or newspapers are accelerating digitized. On the

other hand, thanks to the emergence of Web 2.0, various

social media applications “allow the creation and exchange

of user-generated content” [6]. Those huge amount of media

contents raise significant challenges for efficient manage-

ment and retrieval, e.g. keyword-based search on non-textual

contents. Thus, automatic media annotation techniques are

required. In this case, the annotation set is predefined by the

content manager as system-level annotations, which target

on describing the general properties of media contents.
From the machine learning perspective, the system-level

automatic annotation can be casted as a (supervised) multi-

label classification problem. In the literature, there are sev-

eral sources to be used for automatic annotating. First, the

metadata, usually provided by the publishers, is valuable, but

“user generated contents” often lack high quality metadata.

Second, the textual context, such as the title, description

and comments. However, the context may not directly relate

to the media, and even unavailable in some cases. Third,

the personalized tags given by end users could be analyzed,

but the ambiguity and irrelevance of personalized tags may

influence the results [4], and also, processing the tags is not

a easy work due to problems like cross-language transla-

tion [11]. Last but not least, some works learn annotations

from the characteristics of the media content itself, e.g. low-

level image/video features [12]. However, feature extraction

from multimedia is computationally expensive and the learn-

ing effectiveness is restricted due to the gap between low-

level features and high-level semantic annotations.

A distinct property of user generated media contents is

that many of them are frequently shared in online commu-

nities such as social network services (SNS), which leading

to a lot of social diffusion records. With this observation, in

this paper, we propose a novel media annotation approach

that adopts mining the social diffusion records, which are

on hand or can be easily extracted from the web log of

social network services. Our basic idea is motivated by a

common phenomenon in our daily life that the diffusion

of media contents usually reflects the common interests
between sharers as well as the property of shared media.

Researches have indicated that, on one hand, users tend to

rely on their friends as “collector” and “filter” of interesting

information rather than the other sources like system rec-

ommendations [10]; on the other hand, users with similar

interests tend to build more tight social relationships, even

constitute social communities, which in turn strengthens the

influence from friend to friend [9].

Thus, we propose to use the common interests (CI)

between users as the intermediate when learning social

diffusion records to annotate. Note that common interests

can be discovered from the media contents that users have

shared. The more sharing concerns the same category, the

stronger “common interest” is obvious. Reversely, users’

sharing behaviors indicate that the shared media content

meets their common interests. In order to describe such

relationship, we present a novel Common-interest-based (CI-
based) diffusion model. With this model, we need to solve

two problems. First, how to learn the parameters to describe

common interests. Second, how to use the model to annotate

media contents. In this paper, borrowing the idea from tradi-

tional social diffusion analysis, we translate these problems

into two optimization tasks, known as the CI-based Diffusion
Maximization (CIDM) problem. For the model building,

a diffusion maximization problem is formulated based on

the set of annotated media contents with social diffusion

records, and then solved to learn the “common interests”.
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For the annotation, another diffusion maximization problem

is formulated for the set of media contents to be annotated,

and then solved to get the annotations. We conduct extensive

experiments on several data sets and the experimental results

clearly show that our approach can effectively generate high

quality annotations for shared media contents, and thus

demonstrate the capability of social diffusion analysis on

media annotation.

The remainder of this paper is organized as follows.

Section II describes our proposed CI-based diffusion model,

and mathematically presents the CIDM problem. Followed

in Section III, we present how to solve the two optimiza-

tion tasks of the CIDM problem, respectively. Section IV

presents the experimental results to validate the effectiveness

of our approach. Section V discusses some related work, and

finally, section VI concludes this paper.

II. ANNOTATING MEDIA CONTENTS THROUGH CIDM

In this section, we will first introduce the CI-based diffu-

sion model and then discuss how to annotate media contents

through the common interest based diffusion maximization.

And finally, we formally propose the formulation of the

CIDM problem as two optimization tasks.

A. CI-based Diffusion Model

Social diffusion models are usually adopted to analyze the

spread of information in social networks, e.g. the diffusion

of media contents. A social network is depicted by a graph

G = 〈V,E〉, where V is a set of nodes representing users,

and E includes the edges or links between users. Each edge

{esr|us, ur ∈ V } is augmented with a weight wsr, which

measures the probability of diffusion from us to ur. On

this graph, social diffusion can be simulated as stochastic

processes. At any time, nodes are either active, which means

they have the information, or inactive. Active nodes will

propagate the information to their inactive neighbors with

the probabilities defined on the corresponding edges. At the

beginning of the process, some nodes have the information

and these are known as “seed” nodes, i.e. activated initially.

As time unfolds, more and more nodes become active.

As discussed in Section I, the diffusion of media con-

tents between users indicates that the content more or less

meets the common interests between users. Therefore, in

our adapted common-interest-based diffusion model, W =
{wsr}, the edge weights in the graph G, will vary for

different contents, and will relate to the “common-interest”

parameters. Let Ti denote the set of annotations for the

item i, Ti ⊂ T , where T is the complete set of pre-defined

annotations. And C = {csr|us, ur ∈ V } denote the common

interest parameters between pairs of users. Note that in this

assumption, common interests are independently considered

for each pair of users, and independent from different items.

We assume wi
sr (the superscript i indicates wsr depends on

the item i) can be approximated by wi
sr ≈ corr(Ti, csr)

where corr() denotes a correlation function between the

item properties and the common interests. Details of the

correlation function will be discussed in Section III-B.

B. CIDM based Media Annotation
Now let us turn to the social diffusion records of media

contents. Still using the graph model, for the item i, its diffu-

sion records can be summarized as one graph Gi = 〈Vi, Ei〉.
Here Vi consists of the users who viewed the item, and Ei

depicts how the item was diffused. Note that the edges in Ei

indeed represent historical behaviors rather than “potential

links”, thus edges are directed and no circle exists, i.e. it is

a directed acyclic graph (DAG).
As mentioned in Section II-A, social diffusion can be

simulated as stochastic processes on a general social graph;

Therefore, we try to “reproduce” the Gi’s by social diffu-

sion, rather than to predict how the diffusion may happen.

Using our common-interest based diffusion model, where

Ti and C are parameters, we can mathematically present

the “reproducing” problem as follows: given the diffusion

graph Gi, how to find out the proper C and Ti, so that Gi

has the maximum likelihood, i.e.

(T ∗
i , C

∗) = arg max
(Ti,C)

P (Gi|Ti, C), (1)

where P (Gi|Ti, C) can be represented as P (〈Vi, Ei〉 |Ti, C).
We further propose to run the social diffusion simulation

only on the graph Gi, i.e. diffusion may happen only on the

fixed edges in Ei. This way, Ei is embedded into the diffu-

sion processes. Thus, maxP (Gi|Ti, C) can be simplified as

maxP (Vi|Ti, C), while the latter is virtually the traditional

diffusion maximization task on the nodes Vi. Should be

noted that “seed” nodes are no longer free variables here,

while P (Vi) indeed relies on three factors: Gi, Ti, and C|Ei

denoting part of the common interest parameters C that are

relevant to the edges in Ei.

C. CIDM Problem Formulation
We cast the automatic annotating task as a supervised

learning problem and divide the CIDM problem into two

optimization tasks, which correspond to the training and

test stages in a typical supervised learning problem, re-

spectively. For simplicity, the target function of the CIDM

problem, i.e. the maximum expected diffusion, is denoted as

maxD(Gi, Ti, C|Ei).

Problem Formulation:
1) Training Stage – given a set of annotated media

contents and their social diffusion graphs, i.e., a set of
〈Gi, Ti〉 which denotes the diffusion graph and annotations
for item i, where Gi = 〈Vi, Ei〉, and i ∈ Ia is a training
sample, the problem is how to find a common interest
parameter set C∗ so as to maximize the diffusion of training
samples, which can be formulated as follows:

C∗ = argmax
C

∑

i∈Ia

D(Gi, Ti, C|Ei
). (2)

6981159



2) Test Stage – given a set of media contents to be
annotated, and their social diffusion graphs {Gi} where
i ∈ Iu is an item to be annotated, and C|Ei learnt from
the training stage, the problem is how to find an annotation
set Ti for each item i to maximize the likelihood of Gi, which
can be formulated as follows:

T ∗
i = argmax

Ti

D(Gi, Ti, C|Ei
), ∀i ∈ Iu. (3)

Indeed, both training and test stages utilize our CI-based

diffusion model, but the optimization objectives and the

control variables are different. In the training stage, we

regard the common interest parameters C as the control

variables to maximize the expected diffusion, and during

this process, the proper C∗ will be learnt. In the test stage,

we utilize the common interests learnt during the training

stage, and regard the annotations Ti as control variables to

maximize the expected diffusion, then the solution T ∗
i that

leads to the maximum diffusion is the answer for annotation.

III. CI-BASED DIFFUSION MAXIMIZATION

In our approach, both the optimization tasks in the training

and test stages are dependent on common interest based

diffusion simulation. In this section, we first explain how to

simulate CI-based diffusion, and then introduce the details

of the two optimization tasks, respectively.

A. Simulating Social Diffusion

As mentioned in Section II-B, diffusion simulation in

our model is the same as in traditional models. Actually,

the diffusion simulation in our approach can adopt any

generic social diffusion model. For computation simplicity,

here we adopt the state-of-the-art Steady State Spread (SSS)

model [1] for diffusion simulation as an instance.

Generally, the activation probability of one node will be

determined by two factors: 1) the statuses of its neighbors,

and 2) diffusion probabilities from neighbors. Thus, the

SSS model intuitively simulates the diffusion as a step-by-

step evolving procedure, and the expectation of activation

probability of node ur at step k is

Pr(k) = 1−
∏

us∈N(r)

(1− wsrPs(k − 1)) , (4)

where wsr and Ps(k − 1) correspond to the two factors

mentioned above: wsr denotes the diffusion probability from

us to ur, and Ps(k−1) denotes the expectation of activation

probability of us at the previous step; N(r) includes the

neighbors of node ur. At step 0, those “seed” nodes have

Pr(0) set to 1, while all the others have 0. And then, step-

by-step iterations will be executed.

With the SSS model defining the expectation of activa-

tion probability, the expected diffusion D(Gi, Ti, C|Ei
) in

Section II-C can be defined as

D(Gi, Ti, C|Ei
) = lim

k→∞

∑

ur∈Vi

Pr,i(k), (5)

where Vi includes all the nodes but those “seed” nodes in the

graph Gi, and Pr,i(k) denotes the activation probability that

the user ur has accessed the item i at the k-th step. Since all

the Gi’s are DAGs, it is easy to prove that according to the

SSS model all the Pr,i(k) will keep unchanged after limited

steps, thus the convergence of D(Gi, Ti, C|Ei) is ensured.

B. Introducing Common Interest into Diffusion Simulation

According to Eq. (4), activation probability Pr(k) relies

on the weights {wsr}. Thus, we need to design a method

for calculating wsr, i.e., a proper corr(Ti, csr) function

mentioned in Section II-A.

First, we need to determine the form of common interest

parameter csr. Usually, multiple common interests may

exist between users at different levels. Further, since we

aim to leverage common interests to annotate the shared

media contents, predefined annotations set T can be used

to describe the abstract concept of “interest”. Therefore, we

propose to use a |T |-dimensional vector {czsr} to represent

the “common interests” between users us and ur, where czsr
indicates the level of the z-th (1 ≤ z ≤ |T |) “interest”, or

indeed the z-th predefined annotation. For normalization, we

have a constraint that
∑

z c
z
sr = 1.

Also, the item-wise annotations Ti can be represented

as a |T |-dimensional vector {tzi } as well, in which each

element tzi indicates whether the z-th predefined annotation

is selected (tzi = 1) or not (tzi = 0). Based on these two

|T |-dimensional vectors, we treat the edge weights on the

graphs, or the diffusion probabilities, as an accumulation of

multiple interests as:

wi
sr = 1−

|T |∏

z=1

(1− czsr · tzi ). (6)

C. Learning Common Interests

By simulating CI-based diffusion we can now address

the optimization problem of Eq. (2). If we simply expand

Eq. (2) with Eqs. (4)–(6), the optimization problem will

be very complex and difficult to solve since there are

so many diffusion graphs and each contains thousands of

edges. To simplify the optimization problem, we observed

that each D(Gi, Ti, C|Ei) in Eq. (2) is a sum of several

Pr,i(k = ∞) according to Eq. (5). Also, according to

Eq. (4), if all the other variables are fixed, Pr,i(k) is

monotonically non-decreasing with respect to wi
sr. Thus,

the original optimization problem could be simplified as to

maximize all the wi
sr, which has a trivial solution wi

sr ≡
1, ∀s, r, i : esr ∈ Ei. Then, we relax the original problem

as min
∑

s,r,i:esr∈Ei,i∈Ia
(1 − wi

sr), where Ia denotes the

training sample set. Combined with Eq. (6) for weight

calculation, we utilize the gradient descent method to deal
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with the optimization task as:

F =
∑

s,r,i:esr∈Ei,i∈Ia

(

|T |∏

z=1

(1− czsr · tiz))

czsr(l + 1) = czsr(l)− λ
∂F

∂czsr

= czsr(l) + λ
∑

s,r,i:esr∈Ei,i∈Ia

(tiz ·
∏

y �=z

(1− cysr(l) · tiy))

(7)

where l indicates the round of iterations. After each step,

csr should be re-normalized.

It is worth noting that according to the above algorithm,

we can calculate csr if and only if esr appears in {Ei} ,

which means at least one training item has been diffused

from us to ur. However, in practice, especially in the

“cold-start” period, training samples are not enough so

that {csr} may be sparse. There are several alternative

approaches to solve the problem, currently, we simply define

czsr = 1/|T |, ∀z as a remedy for those edges that are needed

but not covered in training samples.

D. Annotation Selection for Maximizing Diffusion

After learning common interest parameters from training

samples, we can focus on the optimization task of the test

stage, i.e., Eq. (3), which is indeed similar to a typical

diffusion maximization problem, whereas the annotation set

replaces “seed” node set as control variables. Theoretically,

all the non-empty subset of T , i.e., 2|T | − 1 kinds of

combinations, can be enumerated as input to find out the

maximal diffusion. But in practice, although the pre-defined

annotation set T is usually not too large, the computational

complexity of exhaustive search is still too expensive.

Therefore, when the efficiency is considered as an im-

portant factor, we can adopt a greedy algorithm, similar to

the one to find the optimal seed nodes in the traditional

diffusion maximization problem [1]. To be specific, we can

test all the unselected annotations, and put the annotation

that leads to the maximum incremental diffusion into the

selected annotation set. This process will repeat until enough

annotations are selected in order.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of extensive experi-

ments to verify the effectiveness of our approach, then some

further discussion is presented.

A. Experimental Setup

Raw data. We perform our experiments on two real-

world data sets extracted from Douban.com, one of the

most famous Chinese SNS which allows users to contribute

comments on movies, books, and music1. Totally, we extract

view logs of 107,164 users. For Douban Movie data set,

89,667 contents are extracted, and the number is 475,820

1 http://en.wikipedia.org/wiki/Douban/ (on Wikipedia)

for Douban Book. For each data set, 2,500 media contents

are randomly selected and labeled for experiments.

Diffusion records extraction. In typical online SNS,

if one user “share” (e.g. mark a movie as “have seen it

before” in Douban) some media contents, all the friends (or

“followers”, i.e. unidirectional friends such as in Twitter or

Douban) will be notified, then they can continue the sharing

to more friends. Thus, we extract diffusion trace based on

the social relationship and the time of sharing, in a similar

way to some previous work (e.g. [2]). Specifically, if us

shares the media content i, and later on, ur, a follower of

us shares the same content, we extract a diffusion record

of i from us to ur, i.e., the edge esr exists in the diffusion

graph Gi. With this method, we extract on average 1393.82

diffusion records for each item in the Douban Movie data

set, and 167.18 for Douban Book.

Parameters. In our approach, three parameters are

needed, namely, iteration stopping threshold and the step

length for the gradient descent algorithm in training stage,

and the iteration stopping threshold for the SSS model in test

stage. In our experiments we empirically set the iteration

stopping threshold and the step length for the gradient

descent algorithm to be 0.0001 and 0.01, respectively. For

the SSS model, since the iteration will onverge after limited

steps, the stopping threshold is set to 0.

Evaluation metrics. To measure the effectiveness of our

approach, precision (P ) and recall (R) are calculated for

the top-K annotation results, where P means the ratio of

correct annotations in the test result, and R means the ratio

of retrieved annotations in the ground truth. To reflect the

trade-off between precision and recall, F-measure is also

introduced as F = 2×P×R
P+R .

Besides, the mean reciprocal rank (MRR) is also used for

evaluation. As one item may have multiple annotations, we

define the MRR-N as 1
N

∑N
i=1

1
Li

, where N is the number

of retrieved correct annotations, and Li, i = 1, 2, . . . , N
represents the rank of each correct annotation. This measure

evaluates the ranking quality of test result.

B. Baseline Approaches

Since we focus on the media annotation task that does

not rely on metadata and/or textual description, traditional

annotating approaches are not directly applicable for com-

parison. Here we select three baselines that rely on the same

data source as our approach.

1) Voting of users’ preferences: This approach is based on

the assumption that the aggregated preferences of all viewers

may indicate the feature of media content, where preferences

are represented by annotations extracted from the individual

view logs. Then, viewers vote with their preference, and the

top-ranked annotations are selected.

2) Item-based CF: It is adapted from the basic item-

based collaborative filtering (CF), with the assumption that

“similar items attract similar users”. In our experiments, the
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(a) (b) (c)

Figure 1. Comparison results of different annotation methods on the Douban Movie data set, with different values of K: (a) precision vs. recall (both
for top-K), (b) F-measure w.r.t. K, and (c) MRR-N w.r.t. K.

non-negative matrix factorization (NMF) technique [14] is

utilized to represent items as vectors over latent factors by

decomposing the original user-item matrix, and the similar-

ity between items is calculated as the distance between the

latent factor vectors. Then, given an item to annotate, train-

ing samples vote with their labels, and similarity is treated

as weight, then the top-ranked annotations are selected.
3) Diffusion based Bayesian approach: It is a naive

Bayesian approach based on the diffusion records as ex-

tracted in our CIDM approach. Assuming that all the pair-

wise diffusion records are independent, the annotating task

can be translated into a maximum a posteriori probability

(MAP) estimation problem as

P (t | i) ∝
∑

s,r:esr∈Ei

P (t | 〈us, ur〉)

=
∑

s,r:esr∈Ei

P (〈us, ur〉 | t)P (t)∑
t P (〈us, ur〉 | t)P (t)

,
(8)

Here the likelihood P (〈us, ur〉 | t), which means the

probability that us shares an item with annotation t to ur,

can be estimated as P (〈us, ur〉 | t) = Nt(us,ur)
N(us,ur)

, where

N(us, ur) indicates the total number of diffusion records

from us to ur in the training data, and Nt(us, ur) indicates

the number of diffusion records on training items that have

annotation t. Besides, P (t) can be obtained from the global

frequency of annotation t in the training data.

C. Experimental Results
We first evaluate our CIDM approach as well as the three

baselines on the Douban Movie data set. A standard 5-fold

training-test is performed, and the average results of the

5 tests are reported with different values of K for more

detailed comparison. As the average number of annotations

of each movie is about 3 according to ground truth, and 95%

of movies contain less than 5 annotations, thus, we set the

value of K from 3, 5, 8, up to 10. The results are shown in

Figure 1. We can clearly see that our approach consistently

outperforms the baselines. Moreover, the improvement are

more significant under smaller K. Note that in practice, a

small K is preferred for the purpose of content management,

then our CIDM approach seems more promising.

Table I
TWO CASES OF ANNOTATING RESULTS

Name Final Destination We Were Soldiers
Annotations America, Suspense, Horror America, War, Action, History

CIDM
America, Horror, Suspense

Comedy, Love, China
Action, Hongkong

America, Action, Classic
Comedy, Sci-Fi, Drama

War, Love

Bayesian
America, Comedy, Love

Horror, Drama, Suspense
China, Hongkong

America, Comedy, Love
Action, Drama, Classic

Hongkong, Sci-Fi

Voting
America, Comedy, Love

Classic, Drama, Hongkong
Action, Animation

America, Drama, Comedy
Classic, Action, Love

Hongkong, Sci-Fi

Item-CF
Love, Comedy, TV Series

Japan, Hongkong, Animation
Drama, Horror

Comedy, Love, Hongkong
Japan, TV Series, Animation

Drama, Suspense

Then, we further evaluate our CIDM approach and the

three baselines on the data set extracted from Douban Book.

Again, standard 5-fold training-test is performed, and we

achieve similar results with the Douban Movie data set that

our approach consistently outperforms the baselines under

different K values, and for smaller K, the improvement of

our approach is more significant. Due to the limitation of

space, the figures of experimental results are omitted.

D. Case Study & Discussion

To better understand the experimental results, two exem-

plar movies are selected from the Douban Movie data set,

which are shown in Table I. For each movie, its ground-truth

annotations are first listed out, followed by the annotating

results given by different approaches, where top K = 8
annotations are shown in order.

Obviously, in both cases our CIDM approach generates

better annotations compared to baselines, since almost all

the ground-truth annotations are retrieved and ranked at prior

positions by the CIDM approach. When looking into the

results, we could clearly find that our CIDM approach is able

to not only find the frequent annotations such as “America”,

but also find less frequent (and correct) ones like “Horror”

or even rare (and correct) ones like “War”. On the contrary,

the Bayesian and Voting approaches are good at finding out

the frequent annotations, but are less capable in finding less

frequent ones, or rank them at posterior positions (such as
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“Horror” and “Suspense” in the result of Final Destination
by the Bayesian approach). Moreover, since comedy movies

or love stories are quite popular in the Douban movie data

set, the baseline approaches (Bayesian, Voting, Item-CF)

are always prone to assign these hot annotations, but this

is not correct in the shown cases.. We may conclude that

our CIDM approach is less influenced by varying frequency

of annotations, thanks to the detection of common interests

among minorities.

V. RELATED WORK

A. Media Annotation

The most related work to ours is media annotation

techniques. Based on the utilization of user factors, the

work on automatic annotation could be roughly divided

into two categories: generalized annotating and personalized

annotating, while the former is more relevant to our work.

As introduced in Section I, rich textual descriptions [16]

or characteristics of multimedia [18] could all be utilized

for automatic annotating. Besides, personalized tags are also

used, for instance the tagging graph based approach [20].

For personalized annotating, the task is translated as

to recommend the proper open-vocabulary tag to certain

user. Usually, connections between user, item and tags are

formed as tuple structure, and then methods like adapted

PageRank [5] or tensor factorization [13] are utilized to

“generate” the new connections. Some other works ask end

users to input some “seed tags”, and then other tags are

recommended based on the correlation like “co-occurrence”

frequency [15].

B. Social Diffusion Analysis

Another category of related work is social diffusion anal-

ysis. Though some work studies social diffusion in implicit

networks (e.g. [19]), where potential links exist between

any pair of nodes, most researches in this field focus on

social diffusion in explicit networks, i.e. the links between

nodes are given. Among them, the Independent Cascade

(IC) model [7], following the assumption that influences

from different nodes are mutually independent, is one of the

most widely studied models. Other simulation models are

also proposed, such as the maximum influence arborescence

(MIA) model [3], the shortest-path based approximated

model in [8], and the iteration-based Steady State Spread

(SSS) model [1] that we adopted in our approach. With

introducing topical factors, Tang et al. proposed a Topical

Affinity Propagation (TAP) model [17] to represent the

topic-level social influence on large networks.

VI. CONCLUSION

In this paper, we focused on automatic annotating task

for media contents based on social diffusion analysis. As the

“common interests” between users influence social diffusion

behaviors, the annotating task was converted to the CI-

based diffusion maximization (CIDM) problem. Then, we

formulated the CIDM problem as two optimization tasks and

proposed the solutions with CI-based diffusion simulation.

The experimental results show that our approach can ef-

fectively generate high quality annotations and outperforms

baseline approaches with a remarkable margin.
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