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« Boom of media contents, especially the original “user
generated content” by “grassroot” authors.

 Significant challenges to support efficient
management and retrieval.
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e Thus, system-level annotations are urgently required
to generalize media contents.
* E.g., Nationality, Author, Genre, Topic ...

« However, how to annotate?

« At the same time, we realize that media contents are
frequently shared in online social networks, which result in
a lot of diffusion records.
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Common Interest (CI) based Diffusion
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» Social diffusions might reflect common interests.
« E.g., big fan of love story may share new Titanic.

* Prior arts point out that common interests influence
both social connection and information flow.

* Thus, common interests act as intermediate.

» Basic Assumption

Diffusion Records of media contents usually reflect
the common interests between sharers, as well as the

property of shared media.
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CI-based Diffusion — Preliminary

* System-level Annotation Set

* A pre-defined annotation set T, a subset T, C T will
be selected to annotate new media .

e Common Interest (CI) Factor

* A normalized |T|-dimensional vector ¢ within each
pair of sharers.

* Cl-based Diffusion Graph

» The Cl vectors act as weights in the Cl-based
P diffusion graph, which is denoted as G=<V,E,C>,

» C presents the set of CI factors (vectors).
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Cl-based Diffusion — Diffusion Analysis

* How to analyze diffusion process with graph
structure?
 Traditional social diffusion (influence) model
» Activating Probability (AP) - Probability of
Successful Diffusion

» Cl-based Diffusion Model

 To calculate AP based on the correlation between
property of media contents and CI factors.

* Defined as Corr(T, C), formulated as follow:

T

wh o=1-— H (1 —cZ,. - t7).
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) Cl-based Diffusion — Maximal Likelihood
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o At the same time, we extract the CI-based
Diffusion Graph G, from the diffusion records.
With proper annotations, we could “reproduce” G;
through the social diffusion models with maximal
likelihood, which 1s formulated as follow:

(17", C™) = arg max P(G;|T;,C),
(75,C) |
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Optimization Task — Two Targets
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*  We solve the maximal likelihood problem with two

optimization targets, which separately corresponds to the
training and test stages 1n a typical supervised learning
problem. To be specific:

e Training Stage:
Given labeled samples to learn the common interest factors.
C* = arg max Z D(G;,T;,C|E, ).
1el,
o Test Stage:

Given learned CI factors to annotate new media contents.

T = arg max D(G;,T;,C|g,;),Vi € L.
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Optimization Task — Framework

Training Stage . Test Stage
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Optimization Task — Training Stage
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* The global optimization 1s a tough task.

« Millions of edges.

* Some edges even reappear in majority of samples.
* Trivial Solution

» Higher AP leads to higher expectation.

« Maximal Probability, 1.e., w,=1 for all the edges.
* The optimization target could be summarized as:

T
min Z (H (1 —cZ, -th)).

. s,niegr€EE; 1€l z=

s.t. Z Cor = 1.
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Optimization Task — Test Stage

« Maximize the diffusion of test sample with
adaptive Cl-based diffusion model.

» Candidate 1s added through greedy algorithm.

* In each round, the annotation with the maximum
incremental diffusion will be selected. This
process will repeat until enough annotations are
selected.

* Early ones might be more significant for the
annotating task.

niversity of Science and Technology of China



(P

0
=
8
T,
[

/) Experimental Results

ol

, o

3 £
e, o
€nce yng T

« To verify the effectiveness, we perform extensive
experiments on two real-world data sets that are extracted
from Douban.com.

* The voting results of individual viewers and pairwise
sharers are introduced as baselines.

« Standard 5-fold experiments are conducted to sufficiently
measure the performance.

Term Details Douban Movie Douban Book

[tem Total Num. 89,667 475,820

Selected Num. 2,500 2,500

Avg. Shared Frequency 2309.79 740.92

. User Total Num. 42,947 42,231
Avg. Friend Num. 81.91 80.27
Avg. Share Frequency 134.46 43.86
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* Our approach consistently outperforms the baselines with a
significant margin, especially when K is smaller, which
indicates that unpopular annotations are successfully mined.
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Experimental Results — Cold Start Problem
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« Early viewers may contain more clear preterence.

« Early viewers may be more than willing to share.
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Conclusion

* A novel framework to annotate through CI-based
diffusion analysis.

* Graph structure plays an important role.

e Administrators of social media should pay more
attention to interest-based group, and also the
detection of latent community.
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Thanks!

tongxu@mail.ustc.edu.cn
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