Towards Annotating Media Contents through Social Diffusion Analysis

Tong Xu1, Dong Liu2, Enhong Chen1, Happia Cao2, Jilei Tian2

1University of Science and Technology of China,
2Nokia Research Center
Background

- Boom of media contents, especially the original “user generated content” by “grassroot” authors.
- Significant challenges to support efficient management and retrieval.

Compiled by Website-Monitoring.com
• Thus, *system-level* annotations are urgently required to generalize media contents.
 • E.g., Nationality, Author, Genre, Topic …
• However, how to annotate?
 • At the same time, we realize that media contents are frequently *shared* in online social networks, which result in a lot of *diffusion records*.
Common Interest (CI) based Diffusion

- Social diffusions might reflect *common interests*.
 - E.g., big fan of love story may share new Titanic.
 - Prior arts point out that common interests influence both social connection and information flow.
 - Thus, common interests act as *intermediate*.

- Basic Assumption

 *Diffusion Records of media contents usually reflect the *common interests* between sharers, as well as the *property* of shared media.*
CI-based Diffusion — Preliminary

- System-level Annotation Set
 - A pre-defined annotation set T, a subset $T^*_c \subset T$ will be selected to annotate new media.

- Common Interest (CI) Factor
 - A normalized $|T|$-dimensional vector c within each pair of sharers.

- CI-based Diffusion Graph
 - The CI vectors act as weights in the CI-based diffusion graph, which is denoted as $G=<V,E,C>$.
 - C presents the set of CI factors (vectors).
CI-based Diffusion — Diffusion Analysis

• How to analyze diffusion process with graph structure?
 • Traditional social diffusion (influence) model
 • Activating Probability (AP) - Probability of Successful Diffusion

• CI-based Diffusion Model
 • To calculate AP based on the correlation between property of media contents and CI factors.
 • Defined as $\text{Corr}(T, C)$, formulated as follow:

$$w_{sr}^i = 1 - \prod_{z=1}^{\lvert T \rvert} (1 - c_{sr}^z \cdot t_{i}^z).$$
• At the same time, we extract the **CI-based Diffusion Graph** G_i from the diffusion records. With proper annotations, we could “**reproduce**” G_i through the social diffusion models with **maximal likelihood**, which is formulated as follow:

$$(T_i^*, C^*) = \arg \max_{(T_i, C)} P(G_i | T_i, C),$$
Optimization Task — Two Targets

• We solve the maximal likelihood problem with two optimization targets, which separately corresponds to the training and test stages in a typical supervised learning problem. To be specific:

• **Training Stage:**
 Given labeled samples to learn the common interest factors.

\[
C^* = \arg \max_C \sum_{i \in I_a} D(G_i, T_i, C|E_i).
\]

• **Test Stage:**
 Given learned CI factors to annotate new media contents.

\[
T_i^* = \arg \max_{T_i} D(G_i, T_i, C|E_i), \forall i \in I_u.
\]
Optimization Task — Framework

Training Stage

- Server
- Database
- Diffusion Graph Extraction
- Diffusion Graph of Training Data
- Learning Common Interests

<table>
<thead>
<tr>
<th>Pairwise Common Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1, u_2, C_{12})</td>
</tr>
<tr>
<td>(u_2, u_3, C_{23})</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Pairwise “common interest” in database

Test Stage

- New Media Content
- New Diffusion Graph
- Social Diffusion Graph
- Diffusion Simulation

Maximizing Diffusion

Annotating Result
Optimization Task — Training Stage

• The **global optimization** is a tough task.
 • Millions of edges.
 • Some edges even reappear in majority of samples.

• Trivial Solution
 • Higher AP leads to higher expectation.
 • Maximal Probability, i.e., $w_{sr} = 1$ for all the edges.

• The optimization target could be summarized as:

$$
\min \sum_{s,r,i:e_{sr} \in E_i, i \in I_a} \left(\prod_{z=1}^{T} (1 - c_{sr}^z \cdot t^i_z) \right),
\sum_{z=1}^{T} c_{sr}^z = 1.
$$
Optimization Task — Test Stage

- Maximize the diffusion of test sample with adaptive CI-based diffusion model.
- Candidate is added through greedy algorithm.
 - In each round, the annotation with the maximum incremental diffusion will be selected. This process will repeat until enough annotations are selected.
 - Early ones might be more significant for the annotating task.
Experimental Results

- To verify the effectiveness, we perform extensive experiments on two real-world data sets that are extracted from Douban.com.
- The voting results of individual viewers and pairwise sharers are introduced as baselines.
- Standard 5-fold experiments are conducted to sufficiently measure the performance.

<table>
<thead>
<tr>
<th>Term</th>
<th>Details</th>
<th>Douban Movie</th>
<th>Douban Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Total Num.</td>
<td>89,667</td>
<td>475,820</td>
</tr>
<tr>
<td></td>
<td>Selected Num.</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>Avg. Shared Frequency</td>
<td>2309.79</td>
<td>740.92</td>
</tr>
<tr>
<td>User</td>
<td>Total Num.</td>
<td>42,947</td>
<td>42,231</td>
</tr>
<tr>
<td></td>
<td>Avg. Friend Num.</td>
<td>81.91</td>
<td>80.27</td>
</tr>
<tr>
<td></td>
<td>Avg. Share Frequency</td>
<td>134.46</td>
<td>43.86</td>
</tr>
</tbody>
</table>
Experimental Results — Overall Performance

- Our approach consistently outperforms the baselines with a significant margin, especially when K is smaller, which indicates that unpopular annotations are successfully mined.
Experimental Results — Cold Start Problem

- Early viewers may contain more clear preference.
- Early viewers may be more than willing to share.
Conclusion

• A novel framework to annotate through CI-based diffusion analysis.
• *Graph structure* plays an important role.
• Administrators of social media should pay more attention to interest-based group, and also the detection of latent community.
Thanks!

tongxu@mail.ustc.edu.cn