



## Towards Annotating Media Contents through Social Diffusion Analysis

Tong Xu<sup>1</sup>, Dong Liu<sup>2,</sup>, Enhong Chen<sup>1</sup>, Happia Cao<sup>2</sup>, Jilei Tian<sup>2</sup>

<sup>1</sup>University of Science and Technology of China,

<sup>2</sup>Nokia Research Center





- Boom of media contents, especially the original "user generated content" by "grassroot" authors.
- Significant challenges to support efficient management and retrieval.



Compiled by Website-Monitoring.com





- Thus, *system-level* annotations are urgently required to generalize media contents.
  - E.g., Nationality, Author, Genre, Topic ...
- However, how to annotate?
  - At the same time, we realize that media contents are frequently *shared* in online social networks, which result in a lot of *diffusion records*.







> Social diffusions might reflect *common interests*.

- E.g., big fan of love story may share new Titanic.
- Prior arts point out that common interests influence both social connection and information flow.
- Thus, common interests act as *intermediate*.

### Basic Assumption

Diffusion Records of media contents usually reflect the common interests between sharers, as well as the property of shared media.





- System-level Annotation Set
  - A pre-defined annotation set T, a subset  $T_c^* \subset T$  will be selected to annotate new media .
- Common Interest (CI) Factor
  - A normalized |**T**|-dimensional vector **c** within each pair of sharers.
- CI-based Diffusion Graph
- The CI vectors act as weights in the CI-based diffusion graph, which is denoted as **G=<V,E,C>**.
- C presents the set of CI factors (vectors).



- How to analyze diffusion process with *graph structure*?
  - Traditional social diffusion (influence) model
  - Activating Probability (AP) Probability of Successful Diffusion
- CI-based Diffusion Model
  - To calculate AP based on the correlation between property of media contents and CI factors.
  - Defined as *Corr(T, C)*, formulated as follow:

$$w_{sr}^{i} = 1 - \prod_{z=1}^{|T|} (1 - c_{sr}^{z} \cdot t_{i}^{z}).$$







At the same time, we extract the *CI-based Diffusion Graph G<sub>i</sub>* from the diffusion records.
 With proper annotations, we could "*reproduce*" *G<sub>i</sub>* through the social diffusion models with *maximal likelihood*, which is formulated as follow:

$$(T_i^*, C^*) = \arg \max_{(T_i, C)} P(G_i | T_i, C),$$





- We solve the maximal likelihood problem with *two optimization targets*, which separately corresponds to the *training and test* stages in a typical supervised learning problem. To be specific:
- Training Stage:

Given labeled samples to learn the common interest factors.

$$C^* = \arg\max_C \sum_{i \in I_a} D(G_i, T_i, C|_{E_i}).$$

• Test Stage:

Given learned CI factors to annotate new media contents.

$$T_i^* = \arg\max_{T_i} D(G_i, T_i, C|_{E_i}), \forall i \in I_u.$$





#### **Training Stage**





University of Science and Technology of China

Test Stage

## Optimization Task — Training Stage

- The global optimization is a tough task.
  - Millions of edges.
  - Some edges even reappear in majority of samples.
- Trivial Solution
  - Higher AP leads to higher expectation.
  - Maximal Probability, i.e.,  $w_{sr} = 1$  for all the edges.
- The optimization target could be summarized as:

$$\min \sum_{\substack{s,r,i:e_{sr}\in E_i, i\in I_a \\ s.t.}} (\prod_{z=1}^{|T|} (1 - c_{sr}^z \cdot t_z^i)),$$
  
s.t.  $\sum_{z=1}^{|T|} c_{sr}^z = 1.$ 





- Maximize the diffusion of test sample with adaptive CI-based diffusion model.
- Candidate is added through *greedy algorithm*.
  - In each round, the annotation with the maximum incremental diffusion will be selected. This process will repeat until enough annotations are selected.
  - Early ones might be more significant for the annotating task.





- To verify the effectiveness, we perform extensive experiments on two real-world data sets that are extracted from *Douban.com*.
- The *voting results* of *individual* viewers and *pairwise* sharers are introduced as baselines.
- Standard 5-fold experiments are conducted to sufficiently measure the performance.

| Term | Details               | Douban Movie | Douban Book |
|------|-----------------------|--------------|-------------|
| Item | Total Num.            | 89,667       | 475,820     |
|      | Selected Num.         | 2,500        | 2,500       |
|      | Avg. Shared Frequency | 2309.79      | 740.92      |
| User | Total Num.            | 42,947       | 42,231      |
|      | Avg. Friend Num.      | 81.91        | 80.27       |
|      | Avg. Share Frequency  | 134.46       | 43.86       |







• Our approach consistently outperforms the baselines with a significant margin, especially when *K* is smaller, which indicates that unpopular annotations are successfully mined.



## Experimental Results — Cold Start Problem





- Early viewers may contain more clear preference.
- Early viewers may be more than willing to share.



- A novel framework to annotate through CI-based diffusion analysis.
- *Graph structure* plays an important role.
- Administrators of social media should pay more attention to interest-based group, and also the detection of latent community.





# Thanks!

#### tongxu@mail.ustc.edu.cn



University of Science and Technology of China