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Background

• Boom of media contents, especially the original “user 
generated content” by “grassroot” authors.

• Significant challenges to support efficient 
management and retrieval.

Compiled by Website-Monitoring.com
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Background Cont.

• Thus, system-level annotations are urgently required 
to generalize media contents.

• E.g., Nationality, Author, Genre, Topic …

• However, how to annotate? 
• At the same time, we realize that media contents are 

frequently shared in online social networks, which result in 
a lot of diffusion records.
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Common Interest (CI) based Diffusion

 Social diffusions might reflect common interests.

• E.g., big fan of love story may share new Titanic.

• Prior arts point out that common interests influence 
both social connection and information flow.

• Thus, common interests act as intermediate.

 Basic Assumption

Diffusion Records of media contents usually reflect 
the common interests between sharers, as well as the 
property of shared media.
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CI-based Diffusion — Preliminary

• System-level Annotation Set

• A pre-defined annotation set T, a subset Tc
∗ ⊂ T will 

be selected to annotate new media .

• Common Interest (CI) Factor

• A normalized |T|-dimensional vector c within each 
pair of sharers.

• CI-based Diffusion Graph

• The CI vectors act as weights in the CI-based 
diffusion graph, which is denoted as G=<V,E,C>. 

• C presents the set of CI factors (vectors).
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CI-based Diffusion — Diffusion Analysis

• How to analyze diffusion process with graph 
structure?

• Traditional social diffusion (influence) model

• Activating Probability (AP) - Probability of 
Successful Diffusion

• CI-based Diffusion Model

• To calculate AP based on the correlation between 
property of media contents and CI factors.

• Defined as Corr(T, C), formulated as follow:
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CI-based Diffusion — Maximal Likelihood

• At the same time, we extract the CI-based 
Diffusion Graph Gi from the diffusion records. 
With proper annotations, we could “reproduce” Gi

through the social diffusion models with maximal 
likelihood, which is formulated as follow:
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Optimization Task — Two Targets

• We solve the maximal likelihood problem with two 

optimization targets, which separately corresponds to the 
training and test stages in a typical supervised learning 
problem. To be specific:

• Training Stage:

Given labeled samples to learn the common interest factors.

• Test Stage:

Given learned CI factors to annotate new media contents.
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Optimization Task — Framework
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Optimization Task — Training Stage

• The global optimization is a tough task.

• Millions of edges.

• Some edges even reappear in majority of samples. 

• Trivial Solution

• Higher AP leads to higher expectation.

• Maximal Probability, i.e., wsr= 1 for all the edges.

• The optimization target could be summarized as:
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Optimization Task — Test Stage

• Maximize the diffusion of test sample with 
adaptive CI-based diffusion model.

• Candidate is added through greedy algorithm.

• In each round, the annotation with the maximum 
incremental diffusion will be selected. This 
process will repeat until enough annotations are 
selected.

• Early ones might be more significant for the 
annotating task.
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Experimental Results

• To verify the effectiveness, we perform extensive 
experiments on two real-world data sets that are extracted 
from Douban.com.

• The voting results of individual viewers and pairwise
sharers are introduced as baselines.

• Standard 5-fold experiments are conducted to sufficiently 
measure the performance.
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Experimental Results — Overall Performance

• Our approach consistently outperforms the baselines with a 
significant margin, especially when K is smaller, which 
indicates that unpopular annotations are successfully mined.
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Experimental Results — Cold Start Problem

• Early viewers may contain more clear preference.

• Early viewers may be more than willing to share.
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Conclusion

• A novel framework to annotate through CI-based 
diffusion analysis.

• Graph structure plays an important role.

• Administrators of social media should pay more 
attention to interest-based group, and also the 
detection of latent community.
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Thanks!

tongxu@mail.ustc.edu.cn


