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Abstract

Nowadays, it is commonly seen that an offline social event is

organized through online social network services (SNS), in

this way cyber strangers can be connected in physical world.

While there are some preliminary studies on social event

participation through SNS, they usually have more focus on

the mining of event profiles and have less focus on the so-

cial relationships among target users. In particular, the im-

portance of dynamic mutual influence among potential

event participants has been largely ignored. In this paper,

we develop a novel discriminant framework, which allows to

integrate the dynamic mutual dependence of potential event

participants into the discrimination process. Specifically, we

formulate the group-oriented event participation problem as

a variant two-stage discriminant framework to capture the

users’ preferences as well as their latent social connections.

The experimental results on real-world data show that our

method can effectively predict the event participation with

a significant margin compared with several state-of-the-art

baselines, which validates the hypothesis that dynamic mu-

tual influence could play an important role in the decision-

making process of social event participation.

1 Introduction

The newly emerged event-driven Social Network Ser-
vices (SNS) target at providing the opportunities for on-
line people to gather together in offline events, which has
become popular and attractive for millions of users all
around the world. For instance, at Meetup.com, more
than 10,000 events are organized every day, and invita-
tions may even exceed 100 times per minute. This new
business model imposes new challenges on social event
analysis with considering social factors, and raises the
difficulties for the event organizers to draw the event
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plan and predict the attendance.
Indeed, the “word-of-mouth” effect can strongly af-

fect the decision-making process of social event partici-
pation, especially for the users without strong opinions.
It is common to see that users simply follow the advices
from their friends when they are hesitating. For in-
stance, prior study has revealed that 10%-30% of human
movement could be explained by social factors, even
more evident on long-ranged travel [3]. Since face-to-
face communication is inevitable for offline social gath-
erings, people usually tend to stay with the familiars,
which leads to more cohesive communities for event-
driven social networks than the ordinary ones [11], and
definitely, more explicit social effects. Therefore, there
is a critical need to investigate the social effects on the
social event decision-making.

For the past several years, some researchers like [23]
and [21] have considered the social factors as features
or constraints in their studies, which can effectively im-
prove the performance. However, these techniques can-
not capture the dynamic network evolution and time-
variant mutual influence within potential attendants of
event series. Some other works like [10] attempt for
social group decision-making, where personal impact,
social relations and game equilibrium are integrated to-
gether to provide a unified decision. However, social
factors here are simplified as game-playing or delegate-
voting, and personalized analysis could not be provided.
In fact, the importance of dynamic mutual influence has
not been fully exploited in the above studies.

When we describe the effect of social factors in event
participation, we realize that mutual influence should
be considered as dynamic. For example, when making
a decision within a group, people may listen to and
can be influenced by some friends, and they will further
influence the others. Also, if two friends hold the same
idea, their tendency will be mutually strengthened; on
the contrary, opposite ideas lead to weaken confidence.
As a result, the chain reaction based onDynamic Social
Influence (DSI) will be formed. As shown in Figure 1,
potential participants share their ideas in the social
network, where mutual influence is digested to form new
decisions and further spread. The iterative process will
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Figure 1: An illustration of dynamic mutual influence
within event participation.

repeat until the final decision achieved stably.
To that end, in this paper, we aim at exploring dy-

namic mutual influence in the decision-making process
of social event participation. To be specific, we propose
a novel two-stage discriminant framework, which allows
integrating the dynamic mutual dependence of poten-
tial participants into the learning process. Based on the
framework, we can model the group-oriented decision-
making process to capture the users’ preferences as well
as their latent social connections. To the best of our
knowledge, we are the first to investigate the impact of
dynamic mutual influence on social event participation.

Finally, experimental results on real-world social
network data indicate our framework can effectively im-
prove the event participation prediction. This validates
the hypothesis that mutual social influence indeed plays
an important role in the decision making process of po-
tential event participants.

Overview. The rest of this paper is organized
as follows. Section 2 further illustrates the motivation
of this study with related statistics. In Section 3, we
define the participation prediction task and formulate
our discriminant framework, then technical details are
explained in Section 4. In Section 5, we evaluate the
performances and discuss some interesting findings with
a case study. Section 6 presents the related works.
Finally, in Section 7, we conclude the paper.

2 Investigation on Social Effects:
Are Participation Affected by the “Social”?

In this section, we will deeply discuss the social effects
on event participation as some questions still remain.
First, social effects on event series have not been studied
before. Second, homophily is not distinguished, i.e.,
attendance might be due to similar preference but not
mutual influence. To study on these questions, we
provide some discussion based on related statistics.
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Figure 2: User distribution on attendance. (a) Distri-
bution of responses for each event (b) Percentages for
different amount of attendances.

2.1 Data Set Description We conduct our study
on a real-world data set collected from Meetup.com 1,
which is one of the most popular websites that facili-
tates offline activities. Specifically, we extracted event
logs and user profiles via the official APIs of Meetup,
which totally consists of 422 user groups, 9,605 social
events and 24,107 related users. Summary of event par-
ticipation is shown in Figure 2(a).

What should be noted is that Meetup executes
the group-based scheme, thus users have to join the
groups in order to receive invitations, which results
in the long-term group-oriented event series. Also,
Meetup highlights group structure but ignore point-to-
point connection, thus we build connection based on
co-occurrence of pairwise users, and the frequency is
treated as link strength, which is commonly used in
related work like [11] and [9].

To describe the attributes of social events, we ex-
ploited key words in group descriptions, and users’ pref-
erences are summarized by the events they attended.
Similar with other relevant studies in social user profil-
ing like [25], LDA model [2] was introduced to learn the
topics. Finally, all profiles are presented as attribute
vectors.

2.2 Social Effects on User Engagement We first
discuss on the long-term social effects in event series.
Active users, i.e., those who have attended at least 3
events are labeled as valuable to groups. Totally, only
14.74% of attendants are labeled as active ones, who
attended 11.08 events in average, much more than 3.24
for overall users. The details are shown in Figure 2(b).

Two sets of statistics are conducted. First, we
count the degree and weights of users at their first
attendance, to explore whether their initial status may
influence their long-term activity. Second, we would like
to know whether small communities formed by active
ones are indeed denser than the ordinary ones, so we

1http://www.meetup.com/
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Table 1: Comparison for social factors in event series.
Average for All Events First Attendance

Density Ave. Weight Degree Ave. Weight

Active 0.7849 0.2343 0.1249 0.0109

Overall 0.4694 0.1305 0.0498 0.0062

P-Value 0.000 0.000 0.001 0.004

Table 2: Comparison for user preference to events.
Single Event All Events

Attendant 0.108 Active Users 0.106

Absentee 0.094 Overall Users 0.105

P-Value 0.016 P-Value 0.334

count the average density and weights during the event
series. The results are shown in Table 1, in which
P-Value presents the T-test result for the assumption
that measures of active users are higher than ordinary
ones. Unsurprisingly, differences on all the measures
are significant, however, the initial connection on the
first attendance is extremely low. It is quite similar to
the related work [18] that usually attendants are not
connected to the majority, but only a few initiators,
which results in the typical “star network” structure.

Though social factors might be insufficient initially,
they will soon be enhanced. As shown in Figure 3,
when users attend more events, both the degree and
weight grow rapidly. Interestingly, the degree turns
stable soon, then decreases slowly, while the weight
still keeps increasing. Clearly, some friends leave, but
retained connection become more strong due to more co-
occurrences. In summary, long-term active users hold
denser communities than ordinary ones, which definitely
means more significant social effects.

2.3 Preference in Social Event Participation
Then, we study the preference factors in event partici-
pation. As preferences are presented in vectors, Cosine
similarity is introduced to estimate participation with-
out considering the social factors. Two pairs are com-
pared: attendants vs. absentees of single events, and
active users vs. overall users for all the events. The re-
sults are shown in Table 2 with corresponding T-test re-
sult (assuming the former one is higher than the latter).
Interestingly, though the attendants hold clear interest
than the absentees, we found that the active users do
not express explicit preference than ordinary ones.

Considering that most people, who hold similar
preference with the active ones, quit after attending
only one or two events, we could do fair reasoning. For
inactive users, they may be attracted by the topics at
first; however, they quit soon as they don’t like the
group or event hardly fit in the group. At the same time,
for active users, though sometimes they don’t like the
events, they attend due to invitation from their friends.

0 5 10 15 20 25 30
0

2

4

6

8

 Ave. Degree
 Ave. Weight

Time of Attendance

A
ve

. D
eg

re
e

0.0

0.1

0.2

0.3

0.4

 A
ve

. W
ei

gh
t

Figure 3: Average degree and weight for attendants on
different times of occurrence.

This phenomenon validates our motivation that the
social factors indeed affect the decision-making process
of event participation, especially for the well-connected
group. Also, the social factors might not be reflected by
similar preferences, but direct effect on decisions.

3 Social Effects Formulation and Framework

As our motivation has been intuitively supported, in
this section, we first formally define the problem and
introduce some preliminaries. Then, our novel discrimi-
nant approach with social-influence-based threshold will
be formulated. And finally, we demonstrate our two-
stage framework for social event participation predic-
tion.

3.1 Problem Statement In this paper, we focus
on the individual participation. However, to consider
the social effects within users, it is necessary to put
individuals into a group. Therefore, here we use the
definition target user group to represent the group
of users to be predicted instead of individual users.
Formally, the problem can be defined as follows.

Definition 3.1. (Problem Statement) Given the

target user group U with weighted connections, the prob-

lem is to predict the individual participation si,k of tar-

get event ek for each user ui ∈ U, here si,k = 1 indicates

the attendance, while si,k = 0 means the absence.

To model user profiles, we first exploit a vector pi

to present the preferences of user ui, in which each
element denotes the preference level on a specific aspect.
Correspondingly, we also have a vector ak for each
event ek to indicate the attributes, which has the same
dimensions with pi. Indeed, the similarities between
pi and ak may roughly indicate the probability of ui

attending ek without considering the social factors.
For the weighted connection within target user

group U, we use W = {wij} to indicate the set of
connection strengths (weights) that are not achieved
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Table 3: Mathematical Notations.
SYMBOL DESCRIPTION

U = {ui} the set of users

E = {ek} the set of events

pi preference vector for ui

ak attributes vector for ek
wij social connection strength from ui to uj

fi,k intention for ui to attend ek
hi,k threshold for ui to attend ek
si,k attendance for ui to ek

initially, and wij corresponds to the social influence
strength from ui to uj . The mathematical notations
used throughout this paper are summarized in Table 3.

3.2 Discrimination with Social-based Thresh-
old When we treat the event participation as a discrim-
inant problem, specifically, we have similarity function
f(ui, ek) and a threshold h(ui, ek) for user ui and event
ek, the individual participation si,k = 1, iff. f(ui, ek) ≥
h(ui, ek) and si,k = 0, iff. f(ui, ek) < h(ui, ek).

To formulate the social effects in decision-making
process, we have two choices, i.e., merging the social
factors with f(ui, ek) or h(ui, ek). Traditionally, prior
works integrate the social factors into f(ui, ek) following
the assumption that the social connections leads similar
preferences, thus usually the social factors are formu-
lated as constraint or features. However, as discussed
above, we realize that social influence may directly affect
the decision-making, but not the preference indirectly.
Therefore, here we choose to merge the social effects
with calculation of threshold h(ui, ek).

Along this line, we assume that h(ui, ek) depends
on the participation of friends. In our approach, the
dependence is reflected by the variance of threshold
h(ui, ek). To formulate the dependence, we borrow and
adapt the classic Independent Cascade (IC) model [6]
for simulating the dynamic mutual influence within
users. What should be noted is that IC model here could
be replaced by other social influence model if needed,
we choose IC here since it is widely used as one of the
basic models, and its effectiveness has been well proved.
Particularly, if we denote f(ui, ek) as fi,k and h(ui, ek)
as hi,k, the threshold can be formulated as follows.

h(ui, ek) = hi,0 ·
∏

j∈Ni

[1− I(fj,k − hj,k) · wji],(3.1)

where hi,0 denotes the parameter for personal partic-
ipating activity, i.e., active users will hold lower hi,0.
Also, Ni means friends of ui in the target group U, and
wji indicates the strength of social influence from uj to
ui. Interestingly, higher wji may not only indicate the
strong connection from uj to ui, but also indicate that ui

could be easily influenced, especially when all the wli for

Figure 4: Overview of our framework for event partici-
pation prediction.

ul ∈ Ni are relatively high. Furthermore, wij < 0 is eli-
gible to present the situation that ui and uj usually hold
opposite opinions, which is different from the setting
of traditional social influence problems. Besides, I(x)
presents the discriminant function to indicate friend’s
option. To smooth the variation and ease the optimiza-
tion, we introduce the sigmoid function here to approx-
imate the sign function as follows.

I(x) =
1

1 + e−αx
,(3.2)

where α presents the parameter to regulate the slope.
Definitely, since the sigmoid function is smooth and
derivable on the R set, the related optimization task
will be much easier to solve.

For the preference function f(ui, ek), which depends
on the characteristics of data set, the details will be
introduced in experimental part.

With the above formulation, we can integrate the
users’ profiles and mutual influence into the unified
discriminant framework. Indeed, this framework can
reflect the intuition that users usually make their own
decision for event participation, then they are influenced
by friends to change their mind, this process repeats
until they finally achieve the final equilibrium.

3.3 Two-stage Framework Based on the defini-
tions above, now we can formally present our two-stages
framework for event participation prediction. Figure 4
demonstrates the overview of s framework.

Training Stage. Given a target user group U =
{ui} and a set of historical events E = {ek}, in which
corresponding attendance record S = {s0i,k} for each
pair of ui and ek are pre-known. Also, we have the
event attributes ak for each ek. In this stage, we aim at
inferring the latent profile pi and activity measure hi,0

for each ui, as well as learning the connection strength
{wij} for pairwise friends in the social network.
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Algorithm 1 Iterative Solution for Training Stage.

Input: target user group U = {ui}, event set E = {ek} and
attendance records {s0i,k};
Store: event attributes ak for each ek ∈ E;
Output: users’ profile 〈pi, hi,0〉 and social strength wij

1: Iteration = True;
2: while (Iteration)
3: Iteration = False;
4: for ui ∈ U, ek ∈ E

5: update 〈pi, hi,0〉 and {wij} until convergency;
6: update fi,k, hi,k based on Equation 3.1;
7: update si,k as I(fi,k − hi,k);
8: if si,k changed then Iteration = True;
9: end if

10: end for

11: end while

12: return {〈pi, hi,0〉}, {wij};

Test Stage. After obtaining the users’ profiles
〈pi, hi,0〉 and mutual affection strength {wij} in the
training stage, in the test stage, given a certain event
ek with attributes ak and the corresponding target
user group Uk = {ui}, we aim at predicting event
participation si,k for each ui ∈ Uk.

4 Technical Details for the Prediction of Social
Event Participation

In this section, we introduce the technical solutions for
both training and test stage of our framework.

4.1 Iterative Optimization for Training Stage
Indeed, the task in training stage can be regarded as a
supervised learning problem, which targets at minimiz-
ing the cost of discrimination errors on training data.
Therefore, we can formulate the objective function, i.e.,
the cost function, for training stage as follows.

arg min
p,h0,w

∑

ui∈U

∑

ek∈E

[s0i,k − I(fi,k − hi,k)]
2,(4.3)

Here s0i,k presents the ground truth of attendances.
Intuitively, discrimination errors lead to higher cost, and
minimizing the cost function may result in the optimized
inference of users’ profiles and social strength. However,
since the calculation of hi,k of users depends on the
fj,k and hj,k of their friends, to optimize the mutual
dependence is extremely difficult.

To address this challenge, we propose a step-by-step
iterative approach. To be specific, we treat the dynamic
social influence as an iterative generation process, where
the decision made in current round will only affect
friends’ thresholds in next round. Iteration of our

objective function is formulated as follows.

F t(U,E) =
∑

ui∈U

∑

ek∈E

[s0i,k − I(f t
i,k − ht

i,k)]
2,(4.4)

where we have

ht
i,k = ht

i,0 ·
∏

j∈Ni

[1− I(f t−1
j,k − ht−1

j,k ) · wt
ji].(4.5)

After each round, all parameters will be updated and
the mutual influence will be digested to achieve the new
discrimination results. During this process, some ones
may change their mind, e.g., they may be activated
to join the event, or quit due to negative influence.
Besides, discriminant errors will also affect the iteration.
This process will repeat until the cost is stable, which
indicates that no one will further change their minds. To
optimize the new objective function (i.e., Equation 4.5),
we exploit the gradient descent method.

4.2 Prediction for Test Stage With the users’
profiles and social connection strength inferred in the
training stage, in the test stage, we aim at predicting
the participation for the target user group to a certain
event. Since all the parameters are pre-learned, here
we even don’t need an objective function, but directly
achieve the prediction with iteration.

To be specific, we first calculate raw intention for
each user. Then, in each step, threshold will be updated
based on Equation 3.1, and attendance will be re-
predicted afterwards. This process will repeat until the
prediction results are stable. What should be noted is
that as negative influence may exist, which is different
from traditional social influence problem. Thus, active
users may not keep rising, which increase the steps to
iterate. The details are illustrated in Algorithm 2.

5 Experiments and Discussions

To validate our hypothesis that dynamic mutual influ-
ence may affect the decision making of social event par-
ticipation, in this section, we conduct series of exper-
iments on a real-world data set. Also, some empirical
case studies and discussion will be presented.

5.1 Experimental Setup In this section, we sum-
marize the data set pre-processing and selected baseline
algorithms for the experiments.

5.1.1 Data Set Pre-processing As introduced in
Section 2, we conduct our experiments on the real-
world data set collected from Meetup. To describe
the users’ profiles as well as the events’ attributes, 30
topics, similar with 34 categories defined by Meetup,
were learned by leveraging the LDA model.
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Algorithm 2 Iterative Solution for Test Stage.

Input: target user U and event ek with attributes ak;
Store: users’ profiles 〈pi, hi,0〉 and connection weights wij ;
Output: si,k for each ui ∈ U

1: for ui ∈ U

2: calculate fi,k for each ui;
3: end for

4: Iteration = True;
5: while (Iteration)
6: Iteration = False;
7: for ui ∈ U

8: update hi,k based on Equation 3.1;
9: update si,k based on fi,k and hi,k;

10: if si,k changed then Iteration = True;
11: end if

12: end for

13: end while

14: return S = {si,k};

For the preference function f(ui, ek) mentioned in
Section 3.2, as description could be easily normalized
and presented in vectors, we could intuitively select
the Cosine similarity. However, some cost factors,
e.g., distance, time spending or financial cost may
also affect the decision. Since these factors could
hardly be normalized, we further multiply the Cosine
similarity with Gaussian probability for each cost
factor, where means are learned during the training
stage, and variances are set based on statistics. To be
specific, f(ui, ek) will be estimated as follows,

f(ui, ek) = Cosine(aT

k ,p
T

i ) ·
∏

c

N (pci |a
c
k, σ

2

c )(5.6)

where aTk and pT
i present the vector corresponds to

topics, and {c} presents the cost factors. σc presents the
variance which is determined by statistics of samples.

Besides, since we introduce the IC model to describe
the dynamic mutual influence within potential atten-
dants, we treat the event organizers as “seed users” to
start the influence process. Those organizers will be
treated as input for certain event (although we still at-
tempt to learn their preferences, since they may appear
in other event as ordinary attendants).

5.1.2 Evaluation Baselines As we integrate the
mutual social influence into the event participation pre-
diction analysis, we choose three state-of-the-art base-
lines which correspond to both the traditional recom-
mendation methods and social influence simulation for
more comprehensive comparison.

1) Cost-aware PMF (GcPMF) [5]. Probabilistic
matrix factorization (PMF) is one of the basic tools
for recommender system. To be specific, we utilize

Table 4: Overall performance of each approach.

DSI SoRec GcPMF PSS

Precision (%) 75.88 60.23 47.47 46.15

Improvement (%) - +25.98 +59.85 +64.42

Variance 0.022 0.102 0.134 0.059

P-Value - 0.000 0.000 0.000

Recall (%) 75.34 75.21 21.73 41.82

Improvement (%) - +0.17 +246.71 +80.16

Variance 0.030 0.112 0.234 0.180

P-Value - 0.063 0.000 0.000

the GcPMF [5] as baseline, in which the cost factors
mentioned in above subsection are also integrated.

2) Social-based PMF (SoRec) [13]. Following the
intuition that a user’s social network will affect personal
behaviors on the Web, the SoRec model introduces an-
other matrix which indicates the social network into the
PMF framework for representing the social constraint.
Indeed, it is a enhanced PMF with merging the static
social factors. As no explicit social network could be
achieved in Meetup data set, we constructed the con-
nection based on the rules described in Section 2.1.

3) Preference-sensitive Social Spread (PSS) [20].
To analyze the event participation in the perspective of
social spread, we also introduce the preference-sensitive
social spread (PSS) method as baseline, which is a
typical two-stages framework with the basic assumption
that the social spread is sensitive to users’ common
preference. Note that as social spread is actually a series
of random events, thus, we repeat experiments for 500
times for each prediction to reduce the uncertainty.

5.2 Experiment Results Due to the group-based
scheme of Meetup, we treat group as the unit of our
experiments. In other words, each group leads to a set
of independent experiments, and the average results for
422 groups are presented as the finals.

For the evaluation metric, as a typical discrimina-
tion problem, we select the common used Precision
and Recall rates. In our framework, both discriminant
function and threshold are learned, while for the former
two PMF-based baselines, we choose the best threshold
based on the ROC curve.

5.2.1 Comparison of Overall Performance First
of all, we validate our prediction performance of our
novel discriminant approach comparing with different
baselines. Since we face to the severe sparse data issue
that only less than 20% users attended at least 3 events
in a group, we assign 90% events within one group as
training samples to ensure the quality of training, while
the rest 10% are test samples.
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The experimental results of overall precision perfor-
mance are shown in Table 4. Our DSI approach achieves
the performance above 70% and outperforms the base-
lines with significant margin, and the results are quite
stable, which indicates that the dynamic social influence
indeed affects the event participation. At the same time,
based on the comparison between GcPMF and SoRec,
as social constraints on preference lead to significant
improvement, the effects of social factors has been fur-
ther proven, regardless they may function in different
perspectives (static or dynamic).

Finally, we find that the baseline with preference-
sensitive social spread (PSS) achieves the worst perfor-
mance. Indeed, though preferences are integrated be-
tween pairwise users, PSS assumes that all the attenders
interact with each other, and the strength depends on
their common interests. However, as discussed in Sec-
tion 2, social factors mainly function within active users,
and the connections could hardly be estimated only by
similar preferences. Besides, considering the cold-start
problem, which leads to sparse social network and in-
teraction records, the performance may be further hurt.

5.2.2 Parameter Sensitiveness Then, we evaluate
the sensitiveness of the slope parameter α in Sigmoid
function. Results are shown in Figure 5(a). In our
experiments, the default α is set as 10.

For the slope α, as mentioned in Section 3.2, we
utilize the Sigmoid function to approximate the sign
function jumping from 0 to 1, thus a higher α might be
better for approximation. However, smooth variation
is still needed especially for those who don’t hold
clear preference, thus their hesitation shall not lead to
dramatic change in social influence. That may explain
why performance achieves the peak when α is around
10, but not monotonously increasing as we expected.

5.2.3 Sample Allocation Sensitiveness Also, we
discuss about the sensitiveness of the training sample
proportion, which is summarized in Figure 5(b). We un-
surprisingly find that our performance degenerates with
less training samples, which indicates that our frame-
work is sensitive social network structure. However, it
still works better than almost all the baselines.

On the contrary, SoRec keeps relatively stable dur-
ing the change, since it requires only some social-related
statistics, but not the network structure. Besides, the
high ratio of freshmen leads to the severe “cold-start”
problem, which impacts the result severely.

5.2.4 Discussion on Complexity Finally, we dis-
cuss about the complexity. Though social influence sim-
ulation is integrated, we still believe that it could apply
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Figure 5: Verification on robustness: (a) Performance
with different α. (b) Performance with different per-
centage of training samples.
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Figure 6: Statistics for complexity: (a) Execution
times of our framework for each group in average with
different ratio of training samples. (b) Amount and
average weights of negative edges for each group.

to large-scale network. On one hand, for the test stage,
if there is no negative edges, we realize that the com-
putational complexity is the same with Linear Thresh-

old [6] model, which is fast enough for large-scale com-
putation. As shown in Figure 6(b), usually we have
less than 10% negative edges and relatively low weights
(lower than 0.1), thus they won’t interfere a lot. On
the other hand, for the training stage, which could be
conducted offline and updated infrequently, the overall
computational cost will be limited.

We summarize the execution time for different
proportion of training samples in Figure 6(a). Indeed,
we find for each group, which contains more than 20
events in average, it costs only a few milliseconds to
predict potential attendants for all the events. Clearly,
it demonstrates the potential of our framework to deal
with large-scale social network.

5.3 Case Study To better understand the perfor-
mance, i.e., how the dynamic social influence affects
the prediction, we randomly select four groups as exam-
ples to illustrate some interesting discoveries concerning
about the social factors. Details about these four groups
are listed in Table 5, in which the precision is also listed
for clear comparison. Considering about the social fac-
tors, two crucial issues should be studied: 1) who in-
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fluences the others and who are influenced; 2) how the
mutual social influence functions.

5.3.1 Participants of Social Influence Process
For the first issue, two types of potential attendants
should be carefully observed, namely the event organiz-
ers (also “seed users” in social influence), and the new
comers who are fresh to the group and causing the “cold-
start” problem. For the former two groups, namely A
and B, we realize that at least 5 members have been
organizers in each group, and for every event, usually
there are at least 2 hosts, even up to 5. On the con-
trary, for the latter two groups who suffer relatively
poor precision, we found that they have stable hosts,
i.e., only one or two users act as hosts for all the events.
As organizers are usually authoritative in the group,
for group C and D, though they are huge groups with
hundreds of members, the “authority” nodes are quite
limited, which result in the limited social influence and
definitely interfere the prediction.

Also, we find that almost all the groups suffer severe
“cold-start” problem, i.e., former members quitting and
new ones coming. Usually, higher ratio of freshmen
causes problems in prediction. Interestingly, we find
that though the ratio of freshmen for Group B reaches
more than 50%, it still gains more than 94% precision.
With deep looking into the data, we realized that
actually there is only one event in the test samples, and
for this event, nearly half of the participators are active
users, while the rest are all strongly connected to them.
There is even a freshman who acts as the organizer
directly, which is rarely found in other groups. This
phenomenon implies that the strong social influence
may help to overcome the “cold-start” problem, which
also supports our hypothesis of social effects.

5.3.2 Affection of Negative Social Influence
Then, we discuss about the function of mutual influ-
ence. As mentioned in Section 3.2 that the social in-
fluence strength could be negative to indicate that the
two users are usually conflicting. For the four groups
here, we find that the former two groups with better
performance contain almost 100% positive edges, while
the Group C suffers 7% negative edges, and nearly 4%
for D, which definitely increases the level of uncertainty.

It might indicate that strongly connected commu-
nity with common goal will lead to better prediction,
while an intricate group, in which members who are
conflicting with each other will be in confusion. Inter-
estingly, it might also answer the high ratio of freshman
and low level of activity of these groups, e.g., most of
members attend only 1-2 events and only around 10 at-
tendants for each event. It seems that a smaller size

Table 5: Examples for Case Study

Group A B C D

Precision 96.15% 94.64% 48.20% 47.01%

Members 129 160 1088 273

Ave. Freshmen 20% 50% 35% 35%

Negative Edges < 1% < 1% 7% 4%

leads to more intensive connection and more sufficient
interaction, which is accordance with the idea in [19].

6 Related Work

Generally, two types of social event analysis have been
intensively studied in recent years, namely social event
recommendation, and decision-making analysis. Specif-
ically, some researchers focused on the conformity be-
tween users’ profiles and event attributes. For exam-
ple, [7] proposed a hybrid approach that is enriched with
social influential features and user diversity model on
decision making, and [9] studied the offline ephemeral
social networks to infer the latent preferences and so-
cial relations for ranking the recommended social events.
Furthermore, there are some related works focused on
other practical problems. For example, [14] built the
connections between events at different times by bor-
rowing the feedback from past events to deal with the
deficiency of explicit feedback, and [15] attempted to
solve the cold-start problem of mobility via discover-
ing the rule of popular events among the residents of
an certain area. Finally, some researches focus on the
event-driven social groups. For example, [23] considered
the geographical features, social features, and implicit
patterns simultaneously in an unified model to achieve
the recommendation of event-based groups.

Another related topic of this paper is the group-
based recommendation, i.e., to recommend events to
a social group but not individuals. Usually, previous
works mainly follow two different schemes. The first
is to select a representative from the group, and then
the representative will draw the overall conclusion. For
example, [10] proposed a personal impact topic (PIT)
model to enhance the group preference profile. Another
direction is to achieve the agreement within group based
on a certain consensus function, like, [4] captures the so-
cial, expertise, and interest dissimilarity among multiple
group members. Indeed, some other factors might also
be considered during the agreement process, e.g., [16]
analyzed that how the personality of cooperation and
trust could influence the group recommendation results,
and [1] discussed the monotonicity and efficiency for
group recommendation. Finally, some prior works, e.g.
targeted at combining social recommendation with tra-
ditional personalized recommendation [12].
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In addition, although some works do not directly
focus on the event participation problem, they still con-
centrate on some related topics. For instance, [11] con-
cerned about the comparison of social structure between
online and offline social network, and discussed about
the information flow within event-based social network.
Also, [18] studied the spatial and temporal characteris-
tics of event participation, and revealed the group evolu-
tion rule for event organization. Some other works tar-
get at forming the proper group for social event maximal
participation, such as [17] and [8]. Finally, some related
work study the offline user behaviors in the perspec-
tive of ephemeral social networks, like [24] developed a
factor graph model based framework to infer the likeli-
hood of future encounter, and [22] recommended offline
geo-friends based on pattern-based heterogeneous infor-
mation network analysis.

7 Conclusion

In this paper, we investigated how to exploit the impact
of dynamic mutual influence on the decision-making
process for social event participation. A unique char-
acteristic of our method is that the social influence is
integrated into the threshold calculation for the discrim-
inant function, which reflects the dynamic mutual de-
pendence within friends for event participation. Then,
we formulated the group-oriented event participation
problem as a variant two-stage discriminant framework
to capture both users’ preferences and their latent so-
cial connections. Finally, experimental results on the
real-world data showed that our method could effec-
tively predict the participation with a significant margin
compared with several state-of-the-art baselines. This
shows that social connections may not only affect the
user preferences, but also directly affect the decision-
making process of event participation.

As we discussed that dynamic social influence
mainly functions on active users, further study will be
conducted on how to integrate our framework with ex-
isting techniques to improve the applicability. Also,
since the proposed techniques could be applied for some
other application problems, such as social group forma-
tion and group target design, in the future, we would
like to exploit more applications of the proposed method
and develop the techniques to integrate more types of
social constraints into the learning framework.
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