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ABSTRACT
Recently, multimodal dialogue systems have engaged increasing
attention in several domains such as retail, travel, etc. In spite of the
promising performance of pioneer works, existing studies usually
focus on utterance-level semantic representations with hierarchical
structures, which ignore the context-aware dependencies of multi-
modal semantic elements, i.e., words and images. Moreover, when
integrating the visual content, they only consider images of the
current turn, leaving out ones of previous turns as well as their
ordinal information. To address these issues, we propose a Multi-
modal diAlogue systems with semanTic Elements, MATE for short.
Specifically, we unfold the multimodal inputs and devise a Multi-
modal Element-level Encoder to obtain the semantic representation
at element-level. Besides, we take into consideration all images
that might be relevant to the current turn and inject the sequential
characteristics of images through position encoding. Finally, we
make comprehensive experiments on a public multimodal dialogue
dataset in the retail domain, and improve the BLUE-4 score by 9.49,
and NIST score by 1.8469 compared with state-of-the-art methods.
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1 INTRODUCTION
In recent years, we have witnessed the rise of dialogue systems
and the introduction of conversational agents to the market (e.g.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413679

Hi, there

I would love to see a few of your best caftan 
that would suit me, just like this one.

Sorry, I dont think I have any placket but I 
can show you in polyester

The third one, for rvca, it's about today, 
tomorrow and life as the big picture.

What about the 4th result? Will it pair 
well with the one in this image?

Yes, it will go well with caftan.

Hi, can I help you with something?

Figure 1: An example of a multimodal dialogue between a
user and an agent. The user expresses her requirements and
preference for products, and the agent generates the multi-
modal responses according to the context.

Apple Siri1, Amazon Alexa2, Microsoft Cortana3 and Google As-
sistant4). Generally speaking, traditional dialogue systems focus
on two broad categories: open-domain conversations with casual
chit-chat [17, 32] and task-oriented dialogue systems that are de-
signed to accomplish a particular task [26, 40]. However, most of
the existing dialogue systems only focus on the textual or voice
modality [31, 32, 39], ignoring the important visual cues. Pictures of-
ten express the intentions more vividly, and content from different
modalities usually provides various complementary information,
especially in the fashion domain[14, 20]. As shown in Figure 1,
the user searches for a caftan by entering a query with a product
picture. This facilitates the user to express demands and enables
the agent to understand the products better. Therefore, there exists

1https://www.apple.com/siri
2https://www.alexa.com
3https://www.microsoft.com/en-us/cortana
4https://assistant.google.com
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an urgent requirement for conversational agents that can converse
by combining different modalities.

Along this line, there are several studies integrating the visual
content into the traditional textual dialogue systems, the so-called
multimodal dialogue systems. As a leading study, Saha et al. [29]
released a multimodal dialogue dataset (MMD) for the online retail
domain. Meanwhile, they also presented a basic Multimodal HieRar-
chical Encoder-Decoder (MHRED) model. On the basis of MHRED
model, UMD [8] devised a user attention-guided multimodal dia-
logue model that focuses on the user requirements in the attribute
level. Nie et al. [27] employed adaptive decoders to generate general
responses, knowledge-aware responses, and multimodal responses
dynamically based on various user intentions.

Although existing multimodal dialogue systems have shown
promising performance, they are all based on the MHRED architec-
ture, in which the encoder compresses each utterance to a vector.
For this reason, prior methods only obtain the utterance-level in-
formation, making it difficult to learn the context dependencies of
multimodal semantic elements, i.e., words and images. Actually, the
element-level context is essential to understand the users’ inten-
tions in the dialogue process, especially in the multimodal scenarios.
For example, as illustrated in Figure 1, when the user inquires about
the style-tip information, it is necessary for the agent to capture the
dependencies between various multimodal semantic elements, i.e.,
the words “caftan”, “4th” and referred images. If we simply replace
“4th” by “5th”, the meaning would change significantly. Merely mod-
eling semantics at the utterance-level makes it difficult to discover
these element-level semantic differences and understand the users’
real intentions. Thus, in this paper, we attempt to track this problem
by capturing the dependencies of multimodal semantic elements
and generate context-relevance responses for dialogue systems.

However, capturing these element semantic dependencies in the
multimodal dialogue system is a non-trivial task. First, exploring
a unified architecture that can unfold element-level semantics is
difficult. Second, when integrating the visual elements with textual
context, we have to determine which images are related and take
all of them from multiple conversational turns into consideration.
Last, the ordinal information of images is of great importance since
it is often mentioned explicitly in the dialogue, such as “4th” in the
example above. How to utilize their ordinal information in dialogue
context is still largely unexplored.

To address the aforementioned issues, we present aMulti-modal
diAlogue system with semanTic Elements (MATE) to deeply ex-
plore the semantic dependencies of multimodal elements in a dia-
logue context. To be more specific, for each turn, we first leverage a
self-attentionmodule [38] to encode textual utterances into continu-
ous representations. Then, we use an image selector to determinate
referred images from previous and current turns and extract their
features using convolutional neural networks (CNN). In order to
make full use of the ordinal information of these images, positional
encoding is used to inject the sequential characteristics of visual
features. Thereafter, an attention mechanism is used to produce
joint representations of multimodal semantic elements. Finally, such
representations are fed into a two-stage decoder for response gen-
eration. The first decoder concentrates on multimodal context from
the encoder, while the second decoder refines the results of the first
decoder by combining them with the relevant domain knowledge.

This process is motivated by the human cognition process: humans
usually first focus on the previous utterance, and then answer with
background knowledge.

The key contributions of our work are as follows:
• We present a new perspective to address the response gen-
eration task in multimodal dialogue systems by utilizing the
element-level semantics.

• We propose a novel Multi-modal diAlogue system with se-
manTic Elements (MATE), which is capable of capturing the
dependencies of multimodal semantic elements and lever-
aging related images from dialogue history as well as their
ordinal information to generate context-aware responses.

• We conduct extensive experiments to evaluate the proposed
model and push the BLEU-4 score to 38.06 (9.49 points abso-
lute improvement) and NIST score to 6.0604 (1.8469 points ab-
solute improvement), compared with state-of-the-art meth-
ods. And we release our code and data5 to facilitate the
research in this field.

2 RELATEDWORK
Generally, the related work of this study can be grouped into three
categories: traditional dialogue systems, unimodal dialogue systems
and multimodal transformer.

2.1 Unimodal Dialogue Systems
Recently, great efforts have been made to develop dialogue systems
that automatically generate responses based on text or voice infor-
mation. Traditional dialogue systems can be generally categorized
into two groups: open-domain and task-oriented dialogue systems.
The open-domain systems aim to converse with humans in diverse
topics to provide reasonable responses and are usually implemented
by retrieval-based or generation-based methods. Retrieval-based
methods leverage the dialogue history to select proper responses
from a repository, benefiting from informative and fluent responses
[42, 46, 48]. By contrast, generation-based methods [17, 32] gener-
ate responses utilizing an encoder-decoder framework [36].

In contrast to former systems, task-oriented dialogue systems fo-
cus on helping users to accomplish specific tasks, such as looking for
restaurants and booking movies. Traditional task-oriented dialogue
systems [26, 47, 49] usually employ a typical pipeline. They first
classify the users’ intentions and determine users’ requirements.
Then, a policy network is used to decide the next action. Finally, the
language generation component produces the responses through
predefined templates or some generation-based models. However,
such methods suffer from several serious problems [16], such as
error propagation, heavy interdependence among the components
and a requirement of large-scale annotated datasets.

Recently, the effectiveness of deep learning has shown remark-
able improvement in dialogue systems [4, 39]. For example, Wen
et al. [40] presented an end-to-end trainable dialogue system that
linked input representations to slot-value pairs from a database. Ser-
ban et al. [31] extended the hierarchical encoder-decoder (HRED)
neural network to generate responses. Besides, deep reinforce-
ment learning is also used to strengthen generation-based dialogue

5https://github.com/githwd2016/MATE
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systems [9, 18]. Although the existing systems have made much
progress, they are still restricted to a single modality.

2.2 Multimodal Dialogue Systems
With the development of many industrial domains, such as travel
and e-commerce retail, multimodal conversational agents are gain-
ing importance. To this end, Saha et al. [29] constructed a Mul-
timodal Dialogue (MMD) dataset for the fashion domain, which
consists of over 150K conversation sessions and contains domain
knowledge curation. Along with the dataset, they also presented a
basic Multimodal HieRarchical Encoder-Decoder model (MHRED).

In order to generate reasonable responses, there are two issues
that need to be considered. The first one is how to understand
multimodal semantics. To this end, Liao et al. [22] extracted the
visual representation using an Exclusive&Independent tree [21].
Chauhan et al. [5] proposed a novel position and attribute aware
attention mechanism to learn enhanced image representation. Cui
et al. [8] devised a User attention-guided Multimodal Dialogue
(UMD) model that paid more attention to the user requirements
explicitly in the attribute level and encoded the dialogue history
dynamically based on users’ attention. The second one is when
and how to incorporate the domain knowledge. For this one, Liao
et al. [22] stored style tips knowledge into memory networks and
employed an attention mechanism to decide which knowledge en-
try is useful. Nie et al. [27] presented a Multimodal diAloG system
with adaptIve deCoders (MAGIC), which could generate general
responses, knowledge-aware responses, and multimodal responses
dynamically based on various user intentions. However, all existing
methods are based on MHRED, which is unable to learn the depen-
dencies between multimodal semantic elements. Our work differs
from these existing works on the MMD dataset since we propose
a novel transformer-based model, which can deal effectively with
the dependencies between multimodal semantic elements.

Another body of work relevant to ours is the class of Vision-to-
Language problems, such as image captioning [45], visual question
answering [1], video summarization [50] and cross-modal retrieval
[6]. By comparison, multimodal dialogue systems focus more on
multi-turn multimodal interaction between users and agents, and
usually is not limited to a single image.

2.3 Multimodal Transformer
The transformer [38] was first introduced for neural machine trans-
lation (NMT) tasks and has been applied to many other tasks, such
as language modeling [3] and document grounded conversations
[19]. Due to the huge success of the transformer, recent works also
seek to employ transformer networks for multimodal tasks, such
as multimodal sentiment analysis [37] and pre-training multimodal
model [24, 35]. However, how to utilize transformer networks for
multimodal dialogue tasks is still unexplored. The main differences
are that prior works do not maintain a multimodal context and
usually use aligned data from different modalities. Nevertheless, in
multimodal dialogues, we have to keep the multimodal dialogue
context and select related images for each utterance. Moreover, ex-
isting works are insensitive for the order of images or only involve
a single image, while in our situation an utterance might involve
multiple pictures and their ordinal information is important.

3 PRELIMINARY
In this section, we first formalize our problem. Then, we introduce
the Transformer Block (TB) [38], which is widely used in our model.

3.1 Problem Statement
In this paper, we focus on the task of textual response generation
conditioned on multimodal conversational history as proposed in
[29]. To be specific, given a multimodal dialogue history HT ={
(Ut , It )

}T
t=1 and a user query (Uq , Iq ), the task is to generate the

textual system response Ur. Here, Ut = {uti }
mt
i=1 denotes the t-th

text utterance containingmt words, and It = {itj }
nt
j=1 denotes the

t-th image utterance containing nt images. Note that nt may be
zero, i.e., there is no image in t-th turn. Similarly, Uq = {u

q
i }

mq
i=1

containsmq words and Iq = {i
q
j }

nq
j=1 contains nq images. Formally,

the probability to generate the response Ur is computed by

P(Ur |HT ;Uq ; Iq ;θ ) =
∏m

i=1 P(u
r
i |HT ;Uq ; Iq ;ur<i ;θ ), (1)

where ur<i = (ur1 , . . . ,u
r
i−1) denotes words that have been already

generated and θ denotes trainable parameters.

3.2 Transformer Block
We consider two sequences Sα ∈ Rlα×dα and Sβ ∈ Rlβ×dβ , where
l(.) and d(.) represent sequence length and feature dimension re-
spectively. Note that Sα and Sβ could be same, i.e., the so-called
self-attention. We suppose that Sα is the target sequence. A trans-
former block is composed of a stack ofM identical layers. Each layer
is composed of a multi-head attention sub-layer (Multihead(.)) and
a position-wise fully connected feed-forward network (FFN(.)). The
process is as follows:

S0α = Sα , (2)

Ŝiα = LayerNorm(Multihead(Si−1α , Sβ , Sβ ) + S
i−1
α ), (3)

Siα = LayerNorm(FFN(Ŝiα ) + Ŝiα ), i = 1, . . . ,M (4)

where LayerNorm(.) means layer normalization [2] and SMα ∈

Rlα×dmodel is the final output of the transformer block. The multi-
head attention sub-layer containsh single-head attention. The input
of the j-th head consists of a query matrix Q, a key matrix K and a
value matrix V. The multi-head attention is as follows:

Qj = QWQ
j ,Kj = KWK

j ,Vj = VWV
j (5)

headj = softmax
(
QjK⊤

j√
dk

)
Vj , (6)

Multihead(Q,K,V) = [head1, . . . , headh ]W
O (7)

where [.] is the concatenation operation. WQ
j ∈ Rdα×dk , WK

j ∈

Rdβ×dk , WV
j ∈ Rdβ×dv and WO ∈ Rhdv×dmodel are trainable pa-

rameters. Note that in practice, we usually use dk = dv = dmodel /h
to keep the similar computational cost as single-head attention
with full dimensionality. After the multi-head attention sub-layer,
a position-wise fully connected feed-forward network is injected
to complete the transformer block:

FFN(Ŝiα ) = max
(
0, ŜiαW1 + b1

)
W2 + b2, (8)
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Figure 2: The framework of proposed MATE model.

4 METHODOLOGY
The overall architecture of our proposed MATE model is shown in
Figure 2. It consists of two main components:

Multimodal Element-level Encoder: In this component, all
images from the dialog history and the user query are organized as
dialog image memory. Then, we allocate related images to each turn
and obtain image-enhanced text embeddings through an attention
mechanism. Meanwhile, all images are integrated with a user query
to get a query-enhanced image embeddings. Finally, all embeddings
are concatenated as multimodal semantic element embeddings.

Knowledge-aware Two-Stage Decoder: It is a variant of a
transformer decoder for generating better responses. The first-stage
decoder focuses on the multimodal conversation context from the
encoder, while the second-stage decoder takes domain knowledge
and results from the first decoder to further refine the responses.

4.1 Multimodal Element-level Encoder
The goal of this component is to learn joint representations of
multimodal semantic elements. First, we introduce the text and
image embedding. For text utterance, we utilize the mentioned
transformer block (TB) to obtain its representation. Formally, the
text embedding of t-th turn Et ∈ Rmt×dmodel is calculated by

eti = u
t
iWemb + PE(i), (9)

Int =
[
et1, . . . , e

t
mt

]
, (10)

Et = TB(Int , Int , Int )), (11)

whereWemb ∈ Rdvocab×dmodel is the word embedding matrix, and
dvocab is the size of vocabulary. PE(.) is the positional embedding
[38] to make use of the order of the sentence.

As for the visual modality, we utilize convolutional neural net-
works (CNN), such as VGGNet-16 [33] or ResNet [13], to obtain
initial image embedding. Compared with the previous works, our
method has two main differences. The first one is that we not only
employ images in the current turn, but also previous images. In our
opinion, it’s important to take previous images into consideration,
especially for the turn without any pictures. To be specific, for each
turn, we utilize an Image Selector to mask out images after the
current turn. The second one is that we also construct position en-
coding for images since the ordinal information of the images is es-
sential for generating the correct system responses. Formally, we de-
note imagememory for turn t as Img = (i11, . . . , i

1
n1 , . . . , i

t
1, . . . , i

t
nt ),

and corresponding image representation as Vt ∈ RNt×dimaдe ,
where Nt =

∑t
i=1 ni and dimaдe is the embedding size of images.

The image embedding of t-th turn Vt is calculated by

vti = CNN(Imgi ) + PE(i), (12)

Vt =
[
vt1, . . . , v

t
Nt

]
(13)

Afterwards, we introduce the information fusion of two modal-
ities (on the left-top of Figure 2). For text utterance in turn t , we
utilize the corresponding image embeddings to enhance the text
representations. Besides, in order to indicate the dialogue turn
explicitly, we devise to add turn embeddings (TE(.)) to text embed-
dings of each turn, which are similar to positional embeddings. The
t-th image-enhanced text embeddings Ẽt is calculated by

Ẽt = TB(Et ,Vt ,Vt ) + TE(t), (14)

The situation is similar for the user query. The main difference
is that we also utilize the user query to enhance dialog images.
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The motivation is that user queries often provide clues about the
image importance of responses. Finally, we concatenate the image-
enhanced text embeddings and query-enhanced image embeddings
to obtain the context embeddings, which we call multimodal se-
mantic element embeddings. The process is formulated as follows:

Ẽq = TB(Eq ,V,V) + TE(T + 1), (15)

Ṽq = TB(V,Eq ,Eq ), (16)

C =
[
Ẽ1, . . . , ẼT , Ẽq , Ṽq

]
, (17)

where Eq is text embeddings of user query, which are obtained
like Et . V is the representations of all images in memory and C ∈

RNc×dmodel is the final output of multimodal encoder, where Nc =∑T
i=1mi +mq +

∑T
i=1 ni + nq . It is worth noticing that in practice,

we do not use the complete conversation history because of storage
and computation power limitations.

4.2 Knowledge-aware Two-Stage Decoder
This component utilizes multimodal context information from the
encoder and structured domain knowledge to generate context- and
knowledge-aware system responses. Inspired by [19], it consists of
a first-stage decoder and a second-stage decoder. The first-stage de-
coder takes the multimodal semantic elements as input and focuses
on how to generate responses contextual coherently. The second-
stage decoder takes the first-stage decoding results and domain
knowledge as input and focuses on increasing knowledge usage
and guiding the following conversations. When generating the i-th
word ûri , we have already generated the previous words ûr<i . We
use Inr to denote the embeddings of those earlier generated words
as following:

eri = û
r
i Wemb + PE(i), (18)

Inr =
[
erSOS , e

r
1 , . . . , e

r
i−1

]
, (19)

where erSOS is the vector representation of the sentence-start token.
As shown in Figure 2 (right), two decoders have a similar archi-

tecture but different input for sub-layers. The first-stage decoder is
identical to the original transformer decoder:

Er1 = MultiHead(Inr1 , In
r
1 , In

r
1), (20)

R1 = TB(Er1 ,C,C), (21)

P(ûr1,<(i+1)) = softmax(R1W
proj
1 ), (22)

where Inr1 is the input for first-stage decoder calculated by Equa-
tion 19, and Er1 is the embeddings of generated words after the
self-attention layer. In addition, ûr1,<(i+1) = (ûr1,1, . . . , û

r
1,i ) are the

words decoded by the first-stage decoder, andWproj
1 ∈ Rdmodel×dvocab

is the linear projection matrix.
For the second-stage decoder, we first introduce the related do-

main knowledge. Inspired by Nie et al. [27], in the MMD dataset,
we introduce two kinds of domain knowledge, namely style tips
and celebrities preference. Specifically, style tips describe the match
between different products, such as sandals going well with T-shirts,
while celebrities preference presents the preference distribution
of celebrities over products. For example, some celebrities prefer
black T-shirts over blue ones.

To incorporate the style tips knowledge, take (T-shirts, sandals)
as an example, first we embed T-shirts and sandals into vectors
respectively and then concatenate them to obtain the knowledge
entry. Thus, we obtain the style tips matrix ST ∈ RNs×dknд , where
Ns is the number of style tips and dknд is the embedding size of
knowledge. Similarly, for celebrities preference, we embed celebri-
ties and products separately and then concatenate them. We use
CP ∈ RNc×dknд to denote knowledge entries of celebrities pref-
erence, where Nc is the number of celebrities. Finally, the repre-
sentation of domain knowledge DK ∈ R(Ns+Nc )×dknд is obtained
by concatenating ST and CP. The second-stage decoder generates
responses as follows:

Er2 = MultiHead(Inr2 , In
r
2 , In

r
2), (23)

H = MultiHead(Er2 ,DK,DK), (24)
R2 = TB(H,R1,R1), (25)

P(ûr2,<(i+1)) = softmax(R2W
proj
2 ), (26)

where H is the hidden state from the knowledge attention layer,
and ûr2,<(i+1) are the words produced by the second-stage decoder.

4.3 Model Training
For training, we employ the commonly used teacher forcing [41]
algorithm at every decoding step. Our two-stage decoder is inspired
by Deliberation Network [43]. In the original paper, they proposed
a complex joint learning framework to train the model. In contrast
to them, we minimize the negative log-likelihood loss from two
decoders, following Xiong et al. [44]:

Lmle = Lmle1 + Lmle2, (27)

Lmle1 = −

K∑
k=1

mk
r∑

i=1
log P(ur1,i ), (28)

Lmle2 = −

K∑
k=1

mk
r∑

i=1
log P(ur2,i ), (29)

where Lmle1 and Lmle2 are the loss from the first and second stage
decoder, respectively. K is the number of responses in the dataset
andmk

r is the number of words in k-th responses.

5 EXPERIMENTS
In this section, we conduct external experiments to evaluate our
proposed method on a real-world dataset. We first introduce the
experimental dataset and settings, including hyper parameters,
evaluation metrics and compared methods. Then, we present the
experimental results and analyses from multiple perspectives to
answer the following research questions:

(1) Can our model generate better responses compared with
state-of-the-art methods?

(2) What are the effects of employing dialog image memory and
image position embedding in our model?

(3) Will element-level semantic embeddings help to improve the
performance of response generation in dialogue systems?
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5.1 Dataset
We utilize the Multimodal Dialogue (MMD) dataset from [29] in
the retail domain. During the conversations, customers mention
their requirements and the agent introduces different products step
by step until they make a deal. The dialogues seamlessly incorpo-
rate multimodal data in utterances and also demonstrate domain-
specific knowledge during the conversation. Over 1 million fashion
products with their available semi/unstructured information are
collected from several well-known online retailing websites, such
as Amazon6, Jabong7, and Abof8.

Based on the MMD benchmark dataset, Saha et al. [29] proposed
two major research tasks, including the textual response generation
and the image response selection task. The former task is to generate
the next text response when given a context of k turns. The latter
task is to retrieve and rankm images from a database based on their
relevance to the given context. Our work focuses on the textual
response generation task.

5.2 Experiment Setup
We implemented our model using the deep learning framework
PyTorch9. Following former studies [8, 27, 29], we use two-turn
utterances before the responses as the context in the training period.
The vocabulary size is 26,422 and the low-frequency words in the
vocabulary are mapped to the special token “UNK”. The dimension
of word embeddings is 512, which was determined empirically. This
dimension is shared by utterances and generated responses. The
number of layers of both encoder and decoder are set to 3. The
number of attention heads in the multi-head attention is 8 and the
inner-layer size is 2048, as described in [38]. We use a dropout rate
of 0.1 [34]. The model parameters are randomly initialized using a
Gaussian distribution with Xavier scheme [12]. We use Adam [15]
for optimization and the initial learning rate is 1e-5.

5.3 Compared Methods
To demonstrate the effectiveness of our proposed model, we com-
pare it with the following representative methods:

Seq2seq: It is a classic encoder-decoder framework [36] with
global attention [25] that has demonstrated its effectiveness inmany
natural language processing tasks.

HRED: HRED is the most representative method [30] in textual
multi-turn dialogue systems. It is composed of a word-level LSTM
for each sentence and a sentence-level LSTM connecting utterances.

MHRED: The multimodal hierarchical encoder-decoder from
Saha et al. [29] incorporates the visual features into the basic HRED
model and achieves a promising performance. This is the first work
on multimodal task-oriented dialogue systems in the retail domain.

UMD: Based on MHRED, the user attention-guided multimodal
dialogue system by Cui et al. [8] considers the hierarchical product
taxonomy and the users’ attention to products.

OAM: Chauhan et al. [5] proposes a novel ordinal and attribute
aware attention mechanism for natural language generation ex-
ploiting images and texts. We refer to this model as OAM.

6https://www.amazon.com/
7https://www.jabong.com
8https://www.abof.com
9https://pytorch.org/

MAGIC:Multimodal dialog system with adaptive decoders [27]
leverages user intentions explicitly to generate general responses,
knowledge-aware responses, and multimodal responses dynami-
cally. It’s the strongest baseline that achieves the best performance
on the MMD dataset.

5.4 Evaluation Metrics
To understand the quality of responses, we adopt both automatic
and human evaluation methods to compare the performance of
different models.

5.4.1 Automatic Evaluation. We use the BLEU-N [28], and NIST
[10] as automatic evaluation metrics, following recent studies in
this field [27, 29]. Since the length of about 20% target responses in
the MMD dataset is less than 4, we calculate BLEU-N by varying N
from 1 to 4. Higher Bleu scores mean that more n-gram overlaps
between the predicted and target responses. Based on BLEU, NIST
considers the weights of n-grams dynamically, i.e., the weight of an
n-gram is proportional to its rareness. We use the same evaluation
scripts10 as MAGIC [27].

5.4.2 Human Evaluation. Considering that the automatic met-
rics are not always completely accurate to evaluate the responses
[23], we also evaluate the dialogue generation based on the opin-
ion of humans. We randomly sample 15 conversations containing
300 multimodal contexts from the testing data and then feed these
contexts into MATE and two state-of-the-art models (OAM and
MAGIC) to generate the textual responses. Thereafter, the 300 re-
sponses of MATE are compared with the corresponding responses
generated by the two baselines. In this way, we obtain 600 pair-
wise responses. After that, three experts are asked to compare the
pair-wise responses from three perspectives independently:

• Fluency: Whether the generated response is grammatically
correct, natural, and fluent.

• Context Coherence: Whether the response is in accordance
with the aspect being discussed (style, colour, etc.) and guides
the following dialogue utterances.

• Knowledge Relevance: Whether the response uses relevant
and correct domain knowledge, such as celebrities preference
and style tips.

The annotators are invited to judge which response is better in
the context. If two responses are both meaningful or inappropriate,
the comparison of this pair is treated as “draw”. Ultimately, we
average the results of three experts and calculate their Fleiss’ kappa
scores [11].

5.5 Experimental Results
In this section, we present the detailed experimental results using
automatic and human evaluation metrics simultaneously.

5.5.1 Automatic Evaluation. Table 1 shows the results of auto-
matic evaluation between baselines and MATE. From that, we have
the following observations. First, MATE significantly outperforms
the baselines on both BLEU and NIST scores. For example, in terms
of BLEU-4 score, it improves the performance by 10.64 and 9.49
points as compared to the state-of-the-art model OAM and MAGIC,
10https://www.nist.gov/itl/iad/mig/tools
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Table 1: Performance comparison between the different models on textual response generation. Results with † are reported
by Nie et al. [27].

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 NIST

Text-only Seq2seq† (Sutskever et al. [36]) 35.39 28.15 23.81 20.65 3.3261
HRED† (Serban et al. [30]) 35.44 26.09 20.81 17.27 3.1007

Multimodal

MHRED† (Saha et al. [29]) 32.60 25.14 23.21 20.52 3.0901
UMD (Cui et al. [8]) 44.97 35.06 29.22 25.03 3.9831
OAM (Chauhan et al. [5]) 48.30 38.24 32.03 27.42 4.3236
MAGIC† (Nie et al. [27]) 50.71 39.57 33.15 28.57 4.2135
MATE (first-stage) 56.08 47.47 41.86 37.65 6.0037
MATE (second-stage) 56.55 47.89 42.48 38.06 6.0604

Table 2: Human evaluation results between our model and other baselines regarding three evaluation factors.

Fluency Context Coherence Knowledge Relevance
Opponent Win Loss Draw Kappa Win Loss Draw Kappa Win Loss Draw Kappa
vs. OAM 33.6% 13.8% 52.6% 0.70 59.9% 16.4% 23.7% 0.40 66.4% 11.8% 21.7% 0.51
vs. MAGIC 25.8% 15.2% 59.0% 0.65 49.6% 15.6% 34.8% 0.51 48.8% 21.3% 29.9% 0.53

respectively. The superior performance of the proposed method
demonstrates the usefulness of the novel architecture. Secondly, the
BLEU-1 score of our model is relatively high. When analyzing the
MMD dataset, we find that there are a lot of “Yes or No” responses
(around 12% of total responses) about knowledge-aware questions,
e.g., "Does T-shirts go well with sandals?". We calculate the accuracy
of these responses and our model achieves superior accuracy up to
90.14%. Thirdly, comparing results from the first and second stage
decoder, we find that MATE benefits from the two-stage setting. A
more detailed analysis of individual model components is provided
in an ablation study later.

5.5.2 Human Evaluation. Table 2 illustrates the human evalua-
tion results. Firstly, the kappa scores indicate a substantial agree-
ment on fluency, and a moderate agreement on context coherence
and knowledge relevance among the annotators. Secondly, MATE
surpasses the baselines in all comparisons, especially in the context
coherence and knowledge relevance. It demonstrates that MATE is
capable of utilizing element-level context information and domain
knowledge. Thirdly, all three models perform relatively well on
fluency so that the annotators often assign equal ratings.

5.6 Model Ablation
Although our model shows good performance, the contributions of
each model components are unclear. Hence, we conduct ablation
study and Table 3 lists the results. First, we evaluate the effective-
ness of introducing dialog image memory. Compared with model
1, model 2 and 3 remove the positional embedding and previous
images, respectively. We can see that model 1 outperforms the two
variants, which demonstrates the necessity of the dialog image
memory. Then, we test the influence of the multimodal semantic
elements. To be specific, for model 4, we utilize a bidirectional
Gate Recurrent Units (GRU) [7] to encode each image-enhanced
text from our multimodal encoder and discard the query-enhanced
image embeddings. The final hidden states of each GRU are concate-
nated and sent to the decoder. Through this way, the decoder only

Table 3: Ablation study of the proposed model.

Methods No. BLEU-1 BLEU-2 BLEU-3 BLEU-4 NIST
MATE 1 56.55 47.89 42.48 38.06 6.0604
- image position 2 55.50 47.27 41.79 37.65 5.9744
- previous images 3 55.01 46.69 41.21 37.10 5.8711
- element-level 4 54.04 45.69 40.23 36.10 5.7407
- turn embedding 5 55.03 46.72 41.21 37.03 5.8765
- knowledge 6 55.33 46.96 41.47 37.30 5.9453
ME + HRED 7 52.51 43.24 37.38 32.96 5.1820
MHRED 8 32.60 25.14 23.21 20.52 3.0901

receives the utterance-level information, just like MHRED. We can
observe that the performance drops significantly, demonstrating
the importance of introducing multimodal semantic elements.

Moreover, we also eliminate turn embedding (model 5). The
result shows that the impact of turn embedding on the final perfor-
mance is almost the same as the dialog image memory. Thereafter,
we remove the second-stage decoder to test the effect of knowl-
edge (model 6). However, the effect of domain knowledge is not
as obvious as in previous works [27]. The possible reason is that
we did not assign a suitable type of domain knowledge based on
users’ intentions classification. For example, introducing knowl-
edge into general responses like “Hi, can I help you?” might have a
negative impact. We plan to investigate the effective use of domain
knowledge in our future work.

Last but not least, we also test the entire multimodal encoder.
In particular, we replace the low-level encoder in MHRED by our
multimodal encoder (model 7). We surprisingly discover that it
improves the performance of HRED a lot, it even surpasses MAGIC.
This result shows the effectiveness of our encoder.

5.7 Case Study
Figure 3 lists four typical responses sampled from the testing data.
Due to the limited space, we only show the responses generated by
OAM, MAGIC and MATE, and omit the part context with an ellipsis.
From these cases, we have several observations. First, for the gen-
eral responses, we find that all three models generate appropriate

Poster Session C2: Emerging Multimedia Applications MM '20, October 12–16, 2020, Seattle, WA, USA

2761



 GT: It would help to also know your gender.
 OAM: Great! just wait a few seconds while I search through my catalog quickly.
 MAGIC: Surely. I'll just take a few seconds to browse quickly through my catalog.
 MATE: May I know your gender?

I intend to look for a few sunglasses for myself.

General Response

Hello

 GT: Hello, can I help you with something today?
 OAM: Hello, please tell me how can I help you?
 MAGIC: Hello, what can I help you with today?
 MATE: Hello, please tell me what I can help you with today?

......

Response for style-tips
......

Image context:

 GT: It can go well with mesh fabric, chest pattern bag.
 OAM: It can go well with black or, and with, and, and and with and 
 MAGIC: It can go well with mesh fabric bag.
 MATE: It can go well with chest print, mesh fabric, bubble type bag.

These results will go well with which all items?

 GT: No.
 OAM: Yes.
 MAGIC: No product will go well with it.
 MATE: No.

Will the product in the 4th image go well with sherwani?

Response for attribute

Can you tell me the type of style in the result 5th?

Image context:

 GT: In the first item, this dress is truly one of a kind, and it has the 
perfect amount of glamour in it!
 OAM: What you can see, the dress it is perfect perfect perfect evening 
dress evening it!
 MAGIC: To describe the 2nd one, this dress is truly one of a kind, and it 
has the perfect amount of glamour in it!
 MATE: What you see in the first one, this dress is truly one of a kind, 
and it has the perfect amount of glamour in it! and

 GT: The maxi dress in the 5th image has beautiful and casual style.
 OAM: The style in the image is has. 
 MAGIC: The style in 1st image is denim.
 MATE: The style in 5th image is casual.

......

Does celebrity cel_1227 usually wear the kind of formal shoes in the 2nd image?

......
Response for celebrity

 GT: Yes. Celebrities cel_970, cel_298 and cel_321 also endorse this type of 
formal shoes
 OAM: Yes.
 MAGIC: Yes. Celebrities cel_245 also endorse this type of derby.
 MATE: Yes. Celebrities cel_970, cel_203 and cel_619 also endorse this type of 
formal shoes.

Image context:

 GT: Yes. Celebrities cel_309 and cel_529 also endorse this type of formal shoes.
 OAM: Yes.
 MAGIC: Yes. Celebrities cel_1878 and cel_245 also endorse this type of formal 
shoes
 MATE: Yes. Celebrities cel_309 and cel_47 also endorse this type of formal shoes.

And what about celebrity cel_4362 for the 3rd one?

Figure 3: Four typical responses generated by the different models, including the ground truth responses (GT), and the re-
sponses generated by OAM, MAGIC and MATE.

responses. The only thing worth noting is that MATE performs
better when requiring users to provide personal information (see
second turn response in the general response case). Then, when
answering questions about style-tips, responses generated by our
model are more accurate. In the first turn, OAM fails to generate
meaningful responses, while the other two succeed. Moreover, our
model produces more informative sentences. As for the celebrity,
we discover that it is a relatively difficult task. In the case, we could
find that all three models fail to predict all celebrities correctly. In
most cases, only partial celebrities are predicted correctly, or only
“Yes / No” are answered. Finally, we discuss the responses about
attributes. In the first turn, both MAGIC and MATE give perfect
descriptions, while the former chooses the wrong image. Thanks
to the incorporation of image position embedding, our model picks
the right image. Meanwhile, our model also captures important
semantic elements in the context, such as “formal shoes” in the
celebrity case and “style” and “5th” in the attribute case. This ability
is crucial for the agent to produce context-aware answers.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel multimodal dialogue systemwith
semantic elements for natural language generation in multimodal

dialogue systems. In particular, we first unfolded the multimodal
dialogue context and utilized a multimodal element-level encoder
for effective integration. Thereafter, we leveraged a knowledge-
aware two-stage decoder for response generation, consisting of
two decoders that could deal with context information and domain
knowledge respectively. Extensive experiments exhibited the superi-
ority of our proposed model on response generation, demonstrating
the effectiveness of the architecture.

Our studymay bring some new insights for unfolding the element-
level semantics to multimodal dialogue systems. In the future, we
will further explore the use of domain knowledge, especially the
cross-modal knowledge, such as the visual patterns of style. More-
over, we will extend and apply our model in some other tasks, such
as the image response selections.
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