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Abstract. With the thriving of social network analysis, large efforts
have been made on link prediction for event-based social networks
(EBSNs). Unfortunately, since society is evolving with constantly emerg-
ing social events, it is extremely difficult to accurately capture their
semantics and evolution rules at an early stage. Meanwhile, traditional
solutions require extensive training from scratch to accommodate new
events, leading to lagging predictions and high maintenance costs. To
tackle these challenges, we investigate this cross-network few-shot prob-
lem and propose a novel meta-learning model for link prediction on new
EBSNs. To accurately simulate the few-shot scenarios, we first utilize
existing EBSNs to define a task distribution that augments the new
event with other observed events. Specifically, we define a unified and
generalized target event to be transferred as the few-shot event. Then,
we empower a simple but effective event-aware graph attention network
to encode existing fine-grained events and the few-shot target events.
Furthermore, we follow gradient-based episode learning to obtain trans-
ferable knowledge and adapt to unseen EBSNs with sparse connections.
Finally, extensive experiments on both public and industrial datasets
have demonstrated the performance of fast adaption and even overall
performance.
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1 Introduction

The widespread popularity of social services has brought us a tremendous volume
of social interaction data and various spontaneously formed communities. Over
the last decade, service providers are motivated to create and promote a series
of interest-driven social events to improve information dissemination and further
increase the vitality of platforms. Along this line, the concept of Event-Based
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Fig. 1. An example of overlapping EBSNs generated by product share records on an
e-commerce platform, where B and G denote boys and girls, respectively.

Social Networks (EBSNs) has emerged which provides explicit fine-grained
information to show the diverse social preferences of users.

With the prosperity of social services, society is evolving with successive
social events. Taking Fig. 1 as an example, various social-oriented promotions are
launched to promote communication within and outside communities. Specifi-
cally, couples (e.g., B0&G0, B1&G1) kept in touch on Valentine’s Day. The girls
(e.g., G0, G1, and G2) would share beauty products, while boys (e.g., B0, B1,
and B2) would connect during Electronics Shopping Festival. Notably, the inter-
action (B0, G0) always holds, exhibiting an event-agnostic relationship, while
most users show various social patterns. However, with the advent of the Sports
Festival, there is an urgent need to identify and attract users to establish con-
nections in the corresponding EBSN, thus we have to quickly find potential links
on the sparsely-estimated network. This motivates us to consider a more chal-
lenging setting of graph few-shot learning, which expects to enable fast adaption
and high-quality prediction on newly-deployed EBSNs without abundant data.
We emphasize that an effective early prediction of the evolution of the novel
community will provide indispensable guidance to assist decision-making.

In this paper, we study few-shot link prediction for EBSNs. Intuitively, due to
the cold-start problem, new EBSNs would suffer from data deficiency and even
distorted topology [1]. A straightforward idea is to apply a multi-relation model
to encode all events [6,8] and retrain it to accommodate new events, which results
in lagging predictions and high maintenance costs. Recent years have witnessed
the rapid development of few-shot learning (FSL) [1,2,4,10]. As a prevailing
paradigm, MAML [2] obtains knowledge from similar tasks and transfers it to
unseen tasks with a few instances. We notice that the key is to perfectly simulate
the few-shot scenarios, which guarantees the transferability and robustness of the
meta-knowledge. Specifically, we have the following observations:

– The dependencies among EBSNs could be utilized to enhance the
semantics and structures of the few-shot event. Prior arts of FSL on
disjoint attributed networks [1,4] are not compatible with densely connected
EBSNs from the same domain. Since emerging EBSNs can be noisy, sparse,
and unbalanced in scale, previous interactions could be naturally utilized.
Correspondingly, we have the challenge to define a task distribution over
dense EBSNs, further contributing to knowledge transfer.
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– The shared characteristics of few-shot events could be learned and
transferred to guarantee generalizability. Indeed, the exact semantics of
constantly emerging events are difficult to capture [1]. However, the semantics
of existing events can be explicitly captured and naturally transferred. Thus,
we expect a unified well-initialized representation for the few-shot event as a
good starting point for fine-tuning. Correspondingly, we have the challenge
to design an effective model as the carrier of meta-knowledge.

We propose a meta-learning framework to address the aforementioned chal-
lenges. Briefly, new sparse target events leverage the knowledge from existing
dense events, as there are shared semantics and structures worth exploiting.
First, to simulate few-shot scenarios, we fully utilize existing EBSNs to define a
task distribution, where a cross-network sampling strategy is designed to han-
dle interconnected EBSNs. Afterward, a unified and generalizable target event is
proposed to simulate the few-shot event. For each task, fine-grained source events
and the special target event are jointly encoded by an event-aware graph atten-
tion network (EA-GAT), where both target and auxiliary loss are jointly opti-
mized. Overall, we follow the standard episode learning to learn well-initialized
parameters from tasks. In this case, when new events appear, we can individ-
ually fine-tune the tasks with a handful of associative instances, and adapt
quickly with few resources. Our contribution can be summarized as follows: (1)
To the best of our knowledge, we are the first to investigate FSL on intercon-
nected EBSNs, which is universal and significant for early decision-making. (2)
To achieve fast adaption, we propose a meta-learning framework for knowledge
transfer. To simulate the few-shot scenario, we define a task distribution with
network augmentation and learn a unified, generalizable few-shot event. (3) To
validate the effectiveness, experiments are conducted on public and industrial
datasets to show the superiority of fast adaption and convergence performance.

2 Related Works

Graph Neural Networks (GNNs). Recently, GNNs have been widely
adopted to preserve properties and structures on graphs, such as GCN, GAT, and
GraphSAGE. Moreover, R-GCN [6] and CompGCN [8] are proposed to model
graph heterogeneity. HGT [3] decomposes the interactions with a Transformer-
like architecture. However, these approaches learn global parameters with abun-
dant data while we focus on emerging events (relations) with insufficient data.

Graph Few-Shot Learning. Remarkable success has been made on FSL of
images and text while the exploration of graphs is still in its infancy, especially
in multi-graph settings. Some studies formulate the transferable knowledge as
meta-optimizer and metric space, e.g., Prototypical Network [7]. By contrast,
Meta-GNN [10] integrates MAML with GNNs and facilitates gradient descent
across tasks. However, little literature can be adapted to few-shot link prediction.
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Algorithm 1. Meta-Training Task Sampling
Input: R = {R1, ..., RN},G = {G1, ..., GN} where Gi = {Vi, Ei}
Output: The distribution of meta-training tasks p (T )

1: while not done do
2: Select Rk ∈ R;
3: Set Rk to Rtgt, Define Raux = R − {Rk};
4: Split Etgt = Esupport

tgt ∪ Equery
tgt ;

5: Construct G = (V,E), where E = Esupport
tgt ∪ Eaux and Eaux =

⋃
i�=k Ei;

6: Compose S = (Stgt,Saux) from Esupport
tgt and Eaux, respectively;

7: Compose Q = (Qtgt,Qaux) from Equery
tgt and Eaux, respectively;

8: T = (G,S,Q)
9: end while

To list a few, G-Meta [4] proposes to reduce parameters by encoding local sub-
graphs for large-scale graphs. Meta-Graph [1] recovers graphs with a variational
auto-encoder and learns knowledge from disjoint attributed graphs. Despite the
progress, these works fail to handle the cross-network dependency for EBSNs.

3 Problem Definition

Definition 1. Event-Based Social Networks (EBSNs). Suppose the user
set is denoted as V and there have been N events R = {R1, R2, ..., RN}. The
corresponding EBSNs are denoted as G = {G1, G2, ..., GN}, where the i-th EBSN
is represented as Gi = (Vi, Ei), where Vi ⊆ V and Ei = {(u,Ri, v)|u, v ∈ Vi}.

Definition 2. Few-shot Link Prediction for EBSNs. Assume we have
observed the social events R = {R1, R2, ..., RN}, and the corresponding EBSNs
are G = {G1, G2, ..., GN}. For an emerging few-shot event Rfew, and Gfew =
(Vfew, Efew), Vfew ⊆ V. We follow the few-shot setting and split Efew =
Esupport

few ∪ Equery
few , where Esupport

few ∩ Equery
few = ∅. As a small fraction of inter-

actions are available to support the network inference, i.e. |Esupport
few | � |Efew|,

our goal is to predict Equery
few with limited true edges from Esupport

few .

4 Methodology

In this section, we present the technical details of our model in Fig. 2, including
task sampling, event-aware link prediction task, and meta-learning framework.

4.1 Cross-Network Task Sampling

The meta-learning approaches assume there are exploitable, shareable structures
across similar tasks. Thus, its success relies heavily on making full use of exist-
ing data to create tasks that delicately simulate real-world few-shot scenarios.
Specifically, when new events emerge, we enhance the new, sparse, and noisy
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EBSN with previous, dense, and complete EBSNs, denoted as auxiliary and tar-
get events, respectively. To this end, we leverage existing EBSNs to define a task
distribution. Taking Fig. 1 as an example, we possibly choose Women’s Beauty
Festival as the target event (few-shot event), so the Valentine’s Day and
Electronics Shopping Festival become auxiliary events. Note any of them can
be selected as the target event to generate sufficient tasks.

Unfortunately, the support samples are insufficient to express the semantic
meaning of the target event. Therefore, we propose a unified, generalizable target
event and attempt to make it transferable to unseen few-shot events, i.e. transfer
Rtgt to Rfew. In other words, the learnable target event shared across tasks will
be adopted to represent the real emerging few-shot event in meta-testing.

Fig. 2. The proposed meta-learning framework including (1) Few-shot task sampling
with network augmentation, (2) EA-GATs, and (3) Joint learning for link prediction.
Without loss of generality, we sample B meta-training tasks as a batch.

Meta-Training Tasks. As illustrated in Algorithm 1, we first randomly select
Rk from R = {R1, ..., RN} as the target event, and set the others are auxiliary
events, i.e. Rtgt = Rk, Raux = R − {Rk}. Then, following the few-shot setting,
we allow Gtgt = {Vtgt, Etgt} to be divided into Etgt = Esupport

tgt ∪ Equery
tgt , where

Etgt = Esupport
tgt ∩ Equery

tgt = ∅. Next, we utilize Eaux to augment the sparse
Esupport

tgt and build G = (V,E), where E = Esupport
tgt ∪ Eaux, Eaux =

⋃
i�=k Ei.

Afterwards, we dynamically sample edges from Esupport
tgt and Eaux and compose

the support set as S = (Stgt,Saux). Similarly, we compose the query set Q =
(Qtgt,Qaux) from Equery

tgt and Eaux. So far, we have defined a task as T =
(G,S,Q). e can repeat the above steps to sample batches of training tasks.
Finally, we target at making prediction on Qtgt (Qaux only assists the training)
with limited Stgt to support the inference.
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Meta-Testing Tasks. Once event Rfew comes, we follow the above steps to
create a meta-testing task Tfew in a similar way. Differently, all existing events
R = {R1, ..., RN} could be auxiliary events as their semantics have been accu-
rately captured. Since Rtgt exactly simulates the few-shot event, the prior knowl-
edge of Rtgt will be naturally transferred to Rfew for fine-tuning.

4.2 Event-Aware Link Prediction Task

Event-Aware Graph Attention Networks (EA-GATs). We first denote
a generic encoder HG = fE (G;X, θE) parameterized by θE . X ∈ R

|V|×d is
learnable user embeddings. To incorporate the unified target event, R̃ = R ∪
{Rtgt} is involved in the augmented network G = (V,E). Generally, we set
X = h(1) and iteratively update the embedding of user u as follows:

h(l)
u = σ

(
∑

v∈Nu

α(l)
uvW

(l)
a h(l−1)

v

)

(1)

where α
(l)
uv is the attention weight between u and v, W (l)

a is the weight matrix.
Following [5], to handle event semantics, we allocate a dr-dimensional embedding
zr for each event r ∈ R̃. As multiple events (relations) may exist between any
pair of users, suppose the co-occurred events are ϕ(u, v), we accumulate all
contributions and compute the raw attention with event-specific representation:

α̂uv =

∑
r∈ϕ(u,v) exp(aT g(Whu ||Whv ||Wrzr ))

∑
k∈Nu

∑
r∈ϕ(u,k) exp(aT g(Whu ||Whk ||Wrzr ))

(2)

where W ∈ R
d×d and W r ∈ R

d×dr are node- and relation-type transforma-
tion matrices, and we omit superscript l for simplicity. aT ∈ R

3d is a weight
vector. Nu denotes the neighbors of u and g(·) denotes LeakyRELU. Follow-
ing HGB [5], with residual connections on attention scores, the final atten-
tion score is α

(l)
uv = βα

(l−1)
uv + (1 − γ) ˆαuv

(l), where γ is a scaling factor, i.e.,
0.05. Besides, we adopt multi-head attention mechanism to learn from differ-
ent subspaces. To capture long-range dependency, we stack L layers and use
layer normalization to stabilize the training process. The final embeddings are
hg

u = Pooling
(
h(1)

u ,h(2)
u , ...,h(L)

u

)
∈ R

dg with concatenation or mean pooling.

Decoder. We define a generic decoder as Y = fD (A; θD) to decode the triples
in support or query set, i.e. A ∈ {S,Q}. Inspired by [9], we instantiate the
decoder with bilinear score function with W ′ ∈ R

(N+1)×dg×dg . Thus for a triple
(u, r, v) ∈ A, the probability yr

uv that u and v holds in the event r ∈ R̃ is:

yr
uv = σ

(
hg

uW
′
rh

g
v

)
(3)

where W ′
r ∈ R

dg×dg is the event-aware matrix of r indexed from W ′.
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Joint Learning with Auxiliary Triples. Given candidate triple set A =
{(u, r, v)}, the binary cross-entropy loss can be written as:

L (A) =
1

|A|
∑

(u,r,v)∈A
yr

uv log (ŷr
uv) + (1 − yr

uv) log (1 − ŷr
uv) ,A ∈ {S,Q} (4)

where yr
uv is the ground-truth. Due to the overlapping between observed and few-

shot EBSNs, the reconstruction of auxiliary links will be helpful for prediction
on new EBSNs. Hence, for S = {Stgt,Saux}, the task-oriented loss is:

Ltgt = L (Stgt) ,Laux = L (Saux) ,L = Ltgt + λ0Laux + λ1‖θ‖ (5)

where λ0 is the trade-off parameter and θ denotes all task-level parameters.

4.3 Meta-learning Framework for EBSNs

Inspired by model-agnostic MAML [2], for emerging events, we learn general-
purpose parameters from meta-training tasks as the prior knowledge, so that the
model could produce good fine-tuning results through a few gradient steps.

Table 1. Statistics of the datasets for the proposed model

Dataset # events # nodes # connections # pairs Event Type

DBLP 11 37947 210260 183040 conference

Tmall 8 16961 48782 41186 promotion

Formally, we consider the link prediction model as a function fθ with θ =
{θE , θD,X}. When adapting to Ti = {Gi,Si,Qi} from p(T ), we first update the
task-level parameters with feeding Si, which can be expressed as:

θ′
i ← θi − α∇θLTi

(fθ) (6)

We only perform a one-step update here while extending to multiple steps (e.g.,
K = 5, 10, 20) is straightforward. For each meta-training task, we perform gradi-
ent descents individually. For the best performance of fθ with respect to θ across
tasks from p (T ), we validate each task Ti with Qi, so that the meta-objective is
to minimize the accumulated loss on queries across sampled tasks:

min
θ

∑

Ti∼p(T )

LTi

(
fθ′

i

)
=

∑

Ti∼p(T )

LTi

(
fθ−α∇θLTi

(fθ)

)

(7)

Formally, we optimize meta-parameters θ as follows:

θ ← θ − β∇θ

∑

Ti∼p(T )

LTi

(
fθ′

i

)

(8)

where α, β is the meta-level and task-level learning rate, respectively.



38 X. Zhu et al.

5 Experiments

5.1 Experiment Setup

Data Description. We validate the proposed model on both public and indus-
trial datasets. As summarized in Table 1, (1) DBLP1 is a synthetic dataset,
where we select 11 top AI conferences as events, and build EBSNs by connecting
the first and other authors of each paper in a pairwise manner as social links.
(2) Tmall2 is a real-world dataset collected from 8 category-aware e-commerce
promotions. Each social link corresponds to a product-sharing record during the
promotion. Users with only one neighbor are eliminated.

Reproducibility Settings. We use PyTorch to implement our model3. To
avoid accidental deviation caused by different event splitting, we use 5-fold cross-
validation and report the mean value of each metric. Following [1,4], we hold a
small percentage of true edges as the support set, i.e. {10%, 20%, 30%}, 10% for
validation and the rest for testing. 10 gradient update steps in meta-training and
20 steps in meta-testing are adopted. AdamW and SGD are applied for meta-
optimization and task-level optimization, respectively, while their learning rates
are turned in {1e−3, 1e−2, 1e−1}. As for the EA-GAT module, the dimension
is fixed to 32. The number of layers is selected in {1, 2, 3}, and the number of
attention heads is tuned in {1, 2, 4}. As for the task-level loss, λ0 is tuned in
{0.2, 0.4, 0.6, 0.8, 1.0}, and λ1 is set to 1e−4. The batch sizes of auxiliary and
target triples are set to 512 and 2048. We tune hyperparameters by grid search
and use AUC, Average Precision (AP), and Accuracy as the evaluation metrics.

Table 2. The convergence performance on both DBLP and Tmall datasets. ‘-’ means
the metrics are not reported in the original implementation. Best results in bold.

Models DBLP Tmall

30% 20% 10% 30% 20% 10%

AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc AUC AP Acc

GCN 71.9 71.9 67.7 71.2 72.9 67.2 69.5 70.9 66.0 72.9 77.5 70.8 71.5 76.6 69.4 70.4 74.9 68.7

GAT 75.0 75.3 68.8 74.6 76.4 68.5 72.5 75.1 67.0 76.6 80.8 70.8 75.6 79.7 70.1 74.8 78.9 69.3

GraphSAGE 76.2 78.8 70.4 74.1 77.0 68.8 72.1 75.6 67.6 76.3 81.1 71.3 75.5 80.4 70.6 74.6 79.5 69.4

R-GCN 70.2 72.4 66.7 69.4 70.4 65.8 67.5 69.2 64.2 60.0 64.8 60.4 57.6 62.5 58.6 56.8 61.3 57.7

CompGCN 77.5 79.8 67.4 76.9 79.4 66.1 74.6 76.9 64.5 76.4 80.9 68.9 74.7 79.2 68.0 74.5 79.0 67.0

HGB 76.7 77.7 69.5 74.9 76.3 67.9 73.6 74.4 66.9 74.8 80.1 69.6 72.4 78.4 66.2 72.0 76.4 65.9

MAML 71.8 73.8 64.2 68.7 71.8 61.6 65.7 69.1 59.6 71.9 75.8 67.0 67.5 70.1 62.5 63.5 66.8 58.6

Meta-Graph 77.2 79.1 - 76.2 78.6 - 73.9 75.7 - 75.8 80.1 - 73.4 78.9 - 73.0 77.0 -

Ours 81.3 84.7 72.6 78.6 82.1 70.9 75.3 79.3 69.1 80.6 84.8 74.7 79.2 83.7 73.9 78.2 82.6 72.1

1 https://dblp.org/.
2 https://www.tmall.com/.
3 https://github.com/xizhu1022/FSLP-EBSNs.

https://dblp.org/
https://www.tmall.com/
https://github.com/xizhu1022/FSLP-EBSNs
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Baselines. We compare our method against three categories of baselines: (1)
Single-relation models operated on homogeneous networks, such as GCN,
GAT, and GraphSAGE. (2) Multi-relation models that incorporate relation
learning, including R-GCN [6], CompGCN [8] and HGB [5]. (3) Meta-learning
models. Since little literature is applicable to link prediction, we adopt MAML
[2] and the closest multi-network FSL work Meta-Graph [1] as baselines. For
Meta-Graph, we use GraphSAGE pre-training embeddings as node attributes.

5.2 Experiments Results

Overall Convergence Performance. As shown in Table 2, we evaluate the
proposed model against various baselines for final convergence. Here are three
findings. First, our model outperforms other models on both datasets with steady
improvement in all few-shot settings. For example, as for DBLP in the 30%
setting, the absolute gains reach 3.81%/4.97%/2.16% for AUC/AP/Acc, which
illustrates the effectiveness of our work. Second, Meta-Graph is slightly inferior to
our model probably due to its individual nature and constant attributes. Third,
homogeneous models show competitive results, in some cases, even outperform
multi-relation models. We argue relations with many samples mistakenly domi-
nate the training process and impair the relation learning with insufficient data.

Table 3. The AUCs of different variants with 20-step finetuning. RD-B indicates the
relative decrease w.r.t. the convergence result of its backbone model (denoted in the
bracket). RD-O is the relative decrease w.r.t. the best convergence result of our model.

Variants 10% 20% 30%

Full RD-B RD-O Full RD-B RD-O Full RD-B RD-O

Direct Training (CompGCN) 50.34 -32.52% -33.12% 50.96 -33.68% -35.13% 51.11 -34.03% -37.12%

Train&Finetune (CompGCN) 73.07 -2.05% -2.92% 73.03 -4.98% -7.06% 74.73 -3.54% -8.06%

MAML (GAT) 65.46 -0.39% -13.3% 67.93 -1.09% -13.54% 69.17 -3.62% -14.90%

Ours (EA-GAT) 74.65 -0.83% -0.83% 76.89 -2.14% -2.14% 78.87 -2.97% -2.97%

Fig. 3. The AUC curves for convergence of DBLP dataset (200-step finetuning).
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Fast Adaption and Convergence Curves. We design the following vari-
ants to show the efficiency of rapid learning: (1) Direct Training directly
trains CompGCN [8], which is among the best traditional multi-relational mod-
els (see Table 2). (2) Training&Finetuning first extensively trains CompGCN
[8] based on existing events, then finetunes with additional few-shot instances.
(3) MAML is a pure meta-learning method with pure GAT as the meta-model.

Fast Adaption Performance. As shown in Table 3, MAML and our model
perform very closely to their convergence results with limited training (see RD-
B), which illustrates the remarkable rapid adaptability of meta-learning meth-
ods. Notably, we outperform Training&Finetuning which follows the traditional
solutions to handle new events. It indicates some common characteristics of few-
shot events have been captured to enhance newly-deployed events.

Convergence Curves. As shown in Fig. 3, our model not only outperforms
other variants but also achieves fast and stable convergence. Besides, in com-
parison, our model has a better starting point with more expressive embeddings
based on meta-training tasks. However, meta-learning models tend to overfit,
especially when the support set is small, which makes early stopping important.

Ablation Study. We conduct experiments on three ablations: (1) w/o net-
work augmentation that directly inputs the sparse EBSN to EA-GAT while
auxiliary triples are only for optimizing. (2) w/o auxiliary learning that
removes auxiliary learning in the task-level loss. (3) MAML removes both com-
ponents. According to Fig. 4, all ablations show relatively poor results compared
to the full model. Surprisingly, a significant drop is observed without auxiliary
learning, which identifies that the reconstruction of source EBSNs boosts user
preference learning. Besides, another decrease is found without network augmen-
tation. MAML shows the worst results without them, showing their synergistic
effects. Actually, both components are inspired by the interconnection nature of
EBSNs. Finally, as support edges decrease, a larger gap is found between the
full model and ablations, showing its superiority in few-shot scera.

Fig. 4. The ablation results for DBLP dataset.
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6 Conclusion

In this work, we studied FSL on new EBSNs. First, we defined a task distribution
and considered a unified target event as the few-shot event. Then, for each task,
an event-aware link prediction model was proposed with a joint objective. Over-
all, we followed MAML to achieve knowledge transfer. Finally, the experiments
have illustrated the superiority of fast adaption and overall results.
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