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Motivation
e

o Increasing concern of urban air quality
o Life quality of residents
1 Sustainable development of city
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Urban air quality is closely related to the health and lives of residents in a big city. Recent studies show air quality plays tremendously impactful role in protecting earth’s atmosphere, enhancing disease control, and developing livable and sus- tainable communities. Therefore, there is an increasing and urgent need for inference of urban air quality. 



Motivation
=

1 Challenge:

-1 The number of monitoring stations is limited

-1 Monitoring stations are not evenly distributed
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However, it is traditionally challenging for meteorological departments to infer fine-grained and high-accuracy AQI in a big city due to the following aspects: 
the high cost of building and maintaining a monitoring station has imposed signi cant constraint on planning su cient stations in a city
monitoring stations and corresponding reported AQIs are not always evenly distributed in a city as the spatial structure varies in terms of di erent neighborhoods, communities, and districts



Motivation

Two Intuitive Assumptions:

Temporal dependence: intra-station time
dependence within a single monitoring station,
as current AQI value won’t change a lot
compared with air quality in the near future.

Spatial relatedness : inter-station spatial
relatedness across all the stations, as two stations
which located nearby should have similar AQI.
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Urban Air Quality Inference Framework
=

0 Spatio-Temporal Smoothness:

Basic model
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Without considering temporal-spatial patterns of urban air, we can build individual regression model for each station in each time slot
we proposed a spatial regulation term to penalize the difference between two weight vectors of two regions
When dij is lager, meaning region i and region j closer, which pushes Wik and Wjk closer. 
This spatial term constrains that spatially close regions have similar weight vectors. 

we proposed a temporal regulation term to penalize the difference between two weight vectors of two adjacent time slots.
This temporal terms pushes two adjacent time slots have similar weight vectors. 





Urban Air Quality Inference Framework
=

0 Spatio-Temporal Smoothness:
1 Real-Time Feature-based Smoothness
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It is worth to note that traditional spatial penalty is simply based on static spatial distance, which cannot reveal the accurate relatedness among stations. In fact, the air quality reported by two stations may be quite different though they are spatially close, e.g., station 2 and 10 in Figure, because of the difference of function of region, traffic pattern and human mobility pattern. Therefore we introduce a feature-based penalty term to capture the real-time proximity across stations as:

This feature-based penalty softly constrain that stations having similar real-time features tend to have similar air quality, which is helpful for interpolating the air quality of locations that are not covered by monitoring stations. 




Urban Air Quality Inference Framework

0 Spatio-Temporal Smoothness:
Real-Time Feature-based Smoothness
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It is worth to note that traditional spatial penalty is simply based on static spatial distance, which cannot reveal the accurate relatedness among stations. In fact, the air quality reported by two stations may be quite different though they are spatially close, e.g., station 2 and 10 in Figure, because of the difference of function of region, traffic pattern and human mobility pattern. Therefore we introduce a feature-based penalty term to capture the real-time proximity across stations as:

This feature-based penalty softly constrain that stations having similar real-time features tend to have similar air quality, which is helpful for interpolating the air quality of locations that are not covered by monitoring stations. 




Urban Air Quality Inference Framework
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In summary, we proposed two terms to capture the temporal and spatial patterns of urban air

We leverage SGD framework to optimize the objective functions

If you are interested in the details. Please refer our paper
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Experiment Setting

Datasets:
Shanghai City, China
April 1 to April 30, 2015
9 stations as training set, 1 station as test set

Metric

Average root-mean-square-error (RMSE)
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We evaluate our method on the dataset from Beijing, which is collected from April 2015
Air quality data 
Meteorological data 
Taxi trajectories 
Point of interests 
Human mobility 

The performance is evaluated by average RMSE of all stations
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Experiment Results

]
TABLE I 40 . | | |
OVERALL PERFORMANCE (RMSE) OF EACH APPROACH. StMTR-¢
1 sthTR-s‘ 7
Temporal | 1 hour | 3 hour | Spatial | real-time 1, 30- %ig%;g Z§ .
ARIMA | 30225 [ 45787 || Average | 46.563 S TR AN g§ —=
VAR | 28756 | 42907 | IDW+ | 39.016 20- §§ = é§ =M
[ASSO | 25387 | 38653 || CoKriging | 35.91 AL é§ ;H A=l
SIMTL | 18176 | 30.009 | ANN | 29.667 JNEm NEl NE
SMTMV | 13.989 | 24239 | SFST | 25.290 1 hour 2 hour real-time
SthTR 12.595 20‘562 SthTR 22'633 Fig. 3. Performance comparison on model components.

» Our stfMTR performs the best with integrating spatial and temporal smoothness

» Feature similarity could be more important compared with distance proximity
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For temporal prediction, we evaluate the predictive performance with respect to its reports in next 1 and 3 hours. we have following obser- vations: 
All the techniques perform better in short-term prediction (1 hour v.s. 3 hours), which shows that prediction of the near time is easier than prediction of distant future. 
stMTL, stMTMV and stfMTR outperform the other three single-task learning methods, which demonstrates that the air monitoring stations are correlated. 
stMTL performs worse than stfMTR, since stMTL only uses air quality data, while stfMTR can incorporate multi-source heterogeneous infor- mation. 
stfMTR performs better than stMTMV, because stfMTR can capture the time-dependence within each station and real-time feature relatedness among all the stations. 		

For the spatial interpolation, we use leave-one-out validation, i.e., we first remove one station from Shanghai and infer the AQIs of this station with the remaining 9 stations.We have folwing observations: 
Our stfMTR model performs better in temporal pre- diction than spatial interpolation, because spatial interpolation lacks historical air quality data. 
CoKriging outperforms IDW+, because air quality interpolation is a non-linear system and Kriging could capture the distribution of the stations. 
ANN outperforms the former two methods, as ANN incor- porates multi-source heterogeneous information. 
stfMTR performs better than SFST, because stfMTR captures the feature relatedness among all the stations, and stfMTR is more adept at interpolation in fine-grained time scale. 




B
Conclusion

Intra-station time dependences and the inter-station
spatial relatedness are both benetficial.

Feature similarity will enrich the spatial
smoothness with removing the bias.

Theoretically, given the features and historical AQI,
we could predict AQI in any place.
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We evaluate our method on the dataset from Beijing, which is collected from April 2015
Air quality data 
Meteorological data 
Taxi trajectories 
Point of interests 
Human mobility 

The performance is evaluated by average RMSE of all stations


MISSOURI

S&l

U N l V E R S l T Y University of

Science & Technology

Thanks

tongxu@ustc.edu.cn



	Incorporating Spatio-Temporal Smoothness for Air Quality Inference���Xiangyu Zhao1,2, Tong Xu1, Yanjie Fu3, Enhong Chen1, Hao Guo1��1 University of Science and Technology of China �2 Michigan State University�3 Missouri University of Science and Technology 
	Motivation
	Motivation
	Motivation
	Urban Air Quality Inference Framework
	Urban Air Quality Inference Framework
	Urban Air Quality Inference Framework
	Urban Air Quality Inference Framework
	Experiment Setting
	Experiment Results
	Conclusion
	幻灯片编号 12

