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Abstract—Keyphrases have been widely used in large docu-
ment collections for providing a concise summary of document
content. While significant efforts have been made on the task of
automatic keyphrase extraction, existing methods have challenges
in training a robust supervised model when there are insufficient
labeled data in the resource-poor domains. To this end, in
this paper, we propose a novel Topic-based Adversarial Neural
Network (TANN) method, which aims at exploiting the unlabeled
data in the target domain and the data in the resource-rich
source domain. Specifically, we first explicitly incorporate the
global topic information into the document representation using
a topic correlation layer. Then, domain-invariant features are
learned to allow the efficient transfer from the source domain
to the target by utilizing adversarial training on the topic-based
representation. Meanwhile, to balance the adversarial training
and preserve the domain-private features in the target domain,
we reconstruct the target data from both forward and backward
directions. Finally, based on the learned features, keyphrase are
extracted using a tagging method. Experiments on two real-
world cross-domain scenarios demonstrate that our method can
significantly improve the performance of keyphrase extraction
on unlabeled or insufficiently labeled target domain.

Index Terms—Adversarial Network; Transfer Learning;
Keyphrase Extraction

I. INTRODUCTION

Keyphrase extraction is the task of automatically extracting

a set of phrases that provide a concise summary of a document

content. This task is important for many text mining applica-

tions, such as text categorization [1], recommendation [2] and

opinion mining [3].

In the literature, many efforts based on supervised learning

techniques have been made on the automatic keyphrase ex-

traction task. In other words, the supervised methods typically

treat keyphrase extraction as a classification problem [4], [5],

where given phrases are classified as keyphrases or non-

keyphrases. Although supervised methods perform well in

this task, it requires a large amount of labeled data which is

extremely expensive and time-consuming to collect in many

application scenarios [6]. Meanwhile, if there are insufficient

labeled data, unsupervised keyphrase extraction methods have

been proposed, such as graph-based ranking [6]–[8], cluster-

ing [9], and language modeling [10]. Although unsupervised

keyphrase extraction methods avoid the need for expensive la-

beled data, their performance cannot compare with supervised

* denotes the corresponding author.

methods, which were developed based on a sufficient amount

of labeled data [11], [12].

In real-world scenarios, when the labeled data is insufficient,

there may be a large number of labeled data in the related

resource-rich domains, and we can utilize such knowledge.

Taking the keyphrase extraction in research paper as an exam-

ple, labeled data are distributed unevenly across different do-

mains. There are few papers with author-assigned keyphrases

in the domain of Computer Graphs (CG) while there are a

large number of papers with author-assigned keyphrases in

Data Mining (DM) domain. In this scenario, we can leverage

a large amount of labeled data in DM domain (i.e., source

domain) to help keyphrase extraction in CG domain (i.e., target

domain). This is the idea of transfer learning which can utilize

the knowledge learned in the other related domains to improve

the performance of our target task. Indeed, transfer learning

has achieved success in many other domains, such as text

classification [13], recommendation [14].

However, to improve the performance of keyphrase ex-

traction task in the unlabeled or insufficiently labeled target

domain by transferring knowledge from resource-rich source

domain, there are still three major challenges to be solved.

1) Intuitively those words which could summarize the given

documents (i.e., covering the major topics [15]) should be

selected as keyphrases. Thus, how to integrate major topics

when extracting features? 2) There is a distribution mismatch

between the two domains as the domain knowledge and

user behavior of the two domains are quite different. Due

to the domain distribution mismatch, the traditional method

which is trained directly on the resource-rich source domain

may perform poorly in the target domain. The reason is

that supervised methods show bias towards the domain on

which they are trained and may not generalize well to new

domains [16]. Thus, when leveraging resource-rich labeled

data to improve the performance in target domain, how to deal

with the domain distribution mismatch? 3) As keyphrases are

also closely related to the domain-private knowledge, a good

representation for the target domain keyphrase extraction task

should contain not only the domain-invariant features but also

the domain-private features. Therefore, how to learn the target

domain-private features based on the target unlabeled data?

To tackle the challenges above, we investigate the problem

of keyphrase extraction in a cross-domain perspective, and
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Label Sequence: O  B E   O    O     O     O       S           O            O           O 
Text Sequence: effective    test   generation    and    adequacy   assessment   for     javascript    based    web  applications             ...

             ...

Fig. 1. An example of extracted keyphrases using sequence labeling method. The colored phrases are extracted keyphrases and corresponding labels whose
meanings are detailed in Section III.

propose a novel Topic-based Adversarial Neural Network

(TANN) for keyphrase extraction in the unlabeled target do-

main. It makes use of not only labeled data in the related

resource-rich domain, but also the unlabeled data in both

source and target domain. Specifically, to explicitly incorporate

the global topic information into the feature representation,

we first design a shared encoder in both domains with topic

correlation mechanism which gives more attention to the topic-

related words. Then, although there is a distribution mismatch

between two domains, there are some common words like

“we introduce/we propose” across domains, which are good

indicators for the following keyphrases. To efficiently bridge

the two domains with domain-invariant features (i.e., these

common words), inspired by Ganin et al. [17], we propose to

use adversarial training to ensure that the extracted features

by the encoder are invariant to the change of domains. To

prevent adversarial learning from eliminating all the domain-

private information and only learning the domain-invariant

features, we reconstruct the text sequence from both forward

and backward directions to preserve the rich context and

semantic information in target domain. Besides, our method

learns a shared keyphrase tagger in two domains using se-

quence labeling methods [18]. Finally, experimental results

on two real-world cross-domain keyphrase extraction tasks

demonstrate that the proposed model is especially useful when

the target domain is unlabeled or only limited annotated data

is available. Our contributions can be summarized as follows:

• We investigate an under-explored problem of cross-

domain keyphrase extraction. We show that it is possible

to use both labeled data from resource-rich domains

and unlabeled data in the source and target domains for

improving the performance of keyphrase extraction in the

unlabeled target domain.

• We propose a novel topic-based adversarial neural net-

work that can learn transferable knowledge across do-

mains efficiently by performing adversarial training. To

the best of our knowledge, we are the first to exploit the

adversarial learning technique for keyphrase extraction.

• We design a topic correlation layer to incorporate the

topic-based representation of the document. Moreover,

we also propose to reconstruct the document in the target

domain from both forward and backward directions to

learn the domain-private features.

II. RELATED WORK

In this section, we briefly review two classes of closely

related works: keyphrase extraction and adversarial networks.

A. Keyphrase Extraction

Various approaches to keyphrase extraction have been pro-

posed mainly along two lines: supervised and unsupervised

ones [19].

In the supervised approaches, keyphrase extraction is treated

as a classification problem. A classifier is trained to discrimi-

nate keyphrase and non-keyphrase. Different machine learning

methods have been used, such as Naı̈ve Bayes [4], Condition

Random Fields (CRF) [18] and Sequence Pattern Mining to

search keyphrase candidates [20]. The features used in super-

vised methods are mainly Term Frequency-Inverse Document

Frequency (TF-IDF), the first occurrence of the word, and

part-of-speech tag of phrase [21], [22]. A main drawback is

that these supervised methods mainly use statistical features,

which are unable to capture the deep semantic information in

the text. Recently, with the advanced performance of deep

learning [23], [24], Deep Neural Networks (DNN) based

models are used to solve keyphrase extraction problem. Zhang

et al. [25] proposed a neural tagging method named joint-

layer recurrent neural network to perform keyphrase extraction

tasks. Meng et al. [12] generated the keyphrases directly

from text with an encoder-decoder framework. Compared

with traditional supervised methods with statistical features,

these deep neural network based methods can grasp the deep

semantic information in the text. Our work is different from

these works since they are totally supervised, requiring a large

amount of labeled data to train the model, while our method

leverages both labeled data in the resource-rich domain and

unlabeled data in the target domain. Furthermore, the above

two deep neural network based methods did not consider the

document topic information explicitly while we design a topic

correlation mechanism to incorporate the topic information.

In the unsupervised approaches, keyphrase extraction is

formulated as a ranking problem using different techniques,

including graph-based ranking [7], [8], [15], [16], [26], clus-

tering [9], and language modeling [10]. Compared with these

totally unsupervised methods, our TANN method can also

leverage the source labeled data.

B. Adversarial Networks

Adversarial networks were originally proposed for image

generation [27], [28]. Concretely, Generative Adversarial Net-

works(GAN) incorporates two components: one generator and

one discriminator. Generator is trained to generate real-like

images while discriminator tries to discriminate the generated

images from the truth.

Recently, adversarial networks have also gained success on

domain adaptation [17], [29]. Specifically, Ganin et al. [17]

applied adversarial training to domain adaptation and the work

was built on the theory of domain adaptation [30]. The key
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Fig. 2. Overall architecture of the TANN model for keyphrase extraction. The model is composed of four components: one shared Topic-based Encoder,
Keyphrase Tagger, Domain Discriminator, and Target Bidirectional Decoder. The shared Topic-based Encoder contains one shared BiLSTM Encoder and one
shared Topic Correlation layer.

idea is that a good representation for domain adaptation is

the one that an algorithm cannot discriminate the origin of

its domain. Adversarial training is helpful to learn transfer-

able knowledge across domains efficiently and to address

the domain distribution mismatch problem in cross-domain

keyphrase extraction task. To the best of our knowledge, we

are the first to exploit the adversarial learning technique for

keyphrase extraction.

III. PROBLEM FORMULATION

In this paper, we aim to extract keyphrase in a specific do-

main without labeled data, while there is a sufficient number of

labeled data from related resource-rich domains. Specifically,

we are given a set of labeled samples Xl
s = {(xs

i ,y
s
i )}N

l
s

i=1 as

well as some unlabeled samples Xu
s = {xs

i}N
u
s

i=1 from source

domain DS . And a set of unlabeled samples Xt = {xt
i}Nt

i=1 are

from target domain DT . In our problem, xi is the document

text and yi is the corresponding keyphrases.

Then, keyphrase extraction is formulated as a sequence

tagging problem [18]. Given a word sequence of the text

x = (x1, x2, ..., xn), sequence tagging aims to predict labels

y = (y1, y2, ..., yn) for x. For the i-th word xi in text

x, its label yi ∈ {S,B,M,E,O} indicating current word

is a Single keyword, the Beginning of a keyphrase, the

Middle part of the keyphrase, the End of the keyphrase,

or Out of a keyphrase (i.e., the word is not any part of

a keyphrase) respectively. Fig. 1 shows an example of the

extracted keyphrases by sequence labeling method. As a result,

we can obtain the keyphrases of the given text according to

the label of each word.

IV. THE TANN MODEL

As shown in Fig. 2, our TANN model mainly includes

four components: topic-based encoder, domain discriminator,

target bidirectional decoder and keyphrase tagger.

In our model, the topic-based encoder, the domain discrim-
inator and the target bidirectional decoder jointly play the

role of learning a text representation which incorporates the

global topic information and captures both domain-invariant

and domain-private features. Specifically, we first leverage

the topic-based encoder to read the input text and build the

topic-based representation. Then, to deal with the domain

distribution mismatch problem, TANN learns domain-invariant

features using the domain discriminator with adversarial train-

ing. At the same time, we use target bidirectional decoder
to reconstruct the input text in both forward and backward

directions to learn the domain-private knowledge. Finally,

using the learned topic-based representation, the keyphrase
tagger predicts the label of each token in the text.

A. Topic-based Encoder

The role of the topic-based encoder is to incorporate the

document topic information into the text representation which

can give more attention to the topic-related words. We first

read the input sentence using a Bidirectional Long-Short Term

Memory Network (BiLSTM) [31], [32] encoder and then get

the topic-based representation leveraging the topic-correlation

layer.

1) BiLSTM Encoder: BiLSTM is used to capture the se-

quential information. Given the input text x = (x1, x2, ..., xn),
where n is the length of the text. We first map the text to

its word embedding E = (e1, e2, ..., en) by looking up word

embedding from a embedding matrix We ∈ R
de×V , where V

is the size of the vocabulary and de is the dimension of the

word embedding. BiLSTM is used to process the sequence to

incorporate the context information in both directions:

−→
h i = LSTM(ei,

−→
h i−1), (1)
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Fig. 3. An illustration of the Topic Correlation Mechanism in Topic-based
Encoder.

←−
h i = LSTM(ei,

←−
h i+1). (2)

The final hidden representation of position i is:

hi = [
−→
h i;

←−
h i]. (3)

Each LSTM cell can be computed as follows:⎡
⎢⎢⎣

ii
oi

fi
c̃i

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ
σ
σ
φ

⎤
⎥⎥⎦
(
Wg

ᵀ
[

ei
hi−1

]
+ bg

)
, (4)

ci = ci−1 � fi + c̃i � ii, (5)

hi = oi � φ(ci), (6)

where i,o, f , c are the input gate, output gate, forget gate, and

memory cell respectively. Wg ∈ R
(de+dh)×4dh , bg ∈ R

4dh

are trainable parameters. dh is the hyper-parameter indicating

the size of LSTM hidden unit. σ and φ are the sigmoid and

tanh function respectively. � is the element-wise multiplica-

tion operator to control the information flow.

2) Topic Correlation Layer: While the BiLSTM encoder

above only considers the local context of each word, it is

suggested that good keyphrases should be relevant to the

global information of the document, i.e., the major topics

of the given document [6], [15]. So, it is necessary to pay

more attention to the words related to the documents topics.

Therefore, to take the major topics of the document into

consideration and get good representation for the keyphrase

extraction task, we design a topic correlation mechanism to

get the topic-based representation of the document. As shown

in Fig. 3, the topic correlation mechanism explicitly pays

attention to the words that are more relevant to the major

topics of the given document by considering the correlation

score between the topic vector z and the text words.

Concretely, we first get the topic vector z by computing the

topic distributions of the source and target document using pre-

trained Latent Dirichlet Allocation (LDA) [33] model, where

z ∈ R
k and k is the hyper-parameter indicating the number

of topics in the document.

Then, the topic correlation gate ti between the topic vector

z and the hidden vector hi is:

ti = tanh(Wzhi +Uzz+ bz), (7)

where Wz ∈ R
2dh×2dh ,Uz ∈ R

2dh×k and bz ∈ R
2dh are

trainable parameters. ti controls the topic influence on the i-
th word’s hidden representation hi:

hz
i = hi � ti. (8)

Finally, we get the topic-based representation (hz
1,h

z
2, ...,h

z
n)

of the text sequence.

The parameters in topic-based encoder are denoted as θenc.

B. Domain Discriminator

To deal with domain distribution mismatch problem, the

domain discriminator in Fig. 2 is introduced to learn domain-

invariant features to bridge these domains using domain

adversarial loss. We denote the parameters of the domain
discriminator as θd. During training, the domain discrim-
inator is optimized to minimize the classification loss on

θd to correctly discriminate the document’s representation

from source and target domains. In converse, the topic-based
encoder’s parameters θenc are optimized to maximize the

domain discriminator’s loss, which works adversarially to fool

the domain discriminator and reduce its accuracy. Finally,

this adversarial process forces the learned features in the

topic-based encoder to be more domain-invariant, which can

generalize well across domains.

In this work, we use Convolution Neural Network (CNN)

as our domain discriminator since CNN has shown its ef-

fectiveness in various sequence classification tasks [34], [35].

Specifically, the topic-based representation hz ∈ R
n×2dh

is the input to the domain discriminator, where n is the

text sequence length and dh is the LSTM hidden dimension

size. Then applying one convolution operation with one filter

Wq ∈ R
c×2dh to a window size of c words produces a new

feature map :

q = f(Wq ∗ hz + bq), (9)

where ∗ is the convolution operator, q ∈ R
n−c+1, bq ∈

R
n−c+1. f is the nonlinear activation function and here we use

ELU function [36]. Finally, we use a max-over-time pooling

operation over the feature map and take its maximum value:

q̂ = max{q}.
The above process is for one filter. In this work, we use

a number of filters nq with different window size c to get

multiple features of the text sequence. After extracting the

features, we use a softmax layer to predict the domain d ∈
{0, 1}, where 0 and 1 indicate the source and target domain

respectively.

The domain discriminator aims to discriminate the domain

label using source and target samples. It tries to minimize the

following objective:

Ld = −
N l

s+Nu
s +Nt∑

i=1

di log d̂i + (1− di) log(1− d̂i), (10)

where d̂i is the predicted probability of domain label for the

i-th sample, di is the ground truth domain label di ∈ {0, 1}.

600



BiLSTM Encoder

Backward Decoder (Backward Reconstruction)

Forward Decoder (Forward Reconstruction)

Fig. 4. An illustration of bidirectional reconstruction loss using bidirectional
decoder.

C. Target Bidirectional Decoder

The above adversarial process by domain discriminator

mainly aims to learn the domain-invariant features and tries

to eliminate all the domain-private information, which may

be harmful to the target keyphrase extraction task. To pre-

serve the domain-private information in the target domain,

we propose to use a bidirectional decoder with bidirectional

reconstruction loss in the target domain. This unsupervised

objective can encourage model to preserve the main semantic

information in the target domain and can efficiently utilize

the unlabeled target domain data. As shown in Fig. 2, we use

target bidirectional decoder to reconstruct the input sequence

based on the output of BiLSTM encoder. Specifically, Fig. 4

shows two separate decoders to reconstruct both the forward

and the backward sequences of the input text to preserve the

domain-private information from both sides. The forward and

backward decoders are initialized with the last hidden state

in the forward and backward encoder of BiLSTM Encoder

respectively.

For the forward decoder, the output is (−→u 0, ...,
−→u n). the

output probability distribution over the vocabulary for the

predicted word −→u i in the i-th time stamp is:

p(−→u i|x<i) = softmax(Wᵀ
r
−→s i + br), (11)

where Wr ∈ R
dh×V ,br ∈ R

V are trainable parameters. And

x<i denotes the input words {x0, ..., xi−1} before the i-th time

stamp. The hidden state si is computed using LSTM based on

the ground truth word’s representation ei−1 in the previous

time stamp: −→s i = LSTM(ei−1,
−→s i−1), (12)

where −→s 0 =
−→
h n is the initial state. We use the last hidden

state of forward encoder to initialize the forward decoder.

Then, we get each word’s predicted probability distribution

(p(←−u 1), ..., p(
←−u n)) over the vocabulary from the backward

side similarly as the forward decoder and we initialize the

backward decoder with the last hidden state
←−
h n of the

backward encoder.
Finally, the target bidirectional reconstruction loss is:

Lrecon = −
Nt∑

m=1

lm∑
i=1

(xi log p(
−→u i) + xi log p(

←−u i)), (13)

where lm is length of the i-th text sequence. xi is the one-

hot vector of the i-th word, p(−→u i) is predicted probability

distribution over the vocabulary for the i-th word by the

forward decoder, p(←−u i) is the respective predicted probability

distribution by the backward decoder. The parameters in the

bidirectional decoder are denoted as θdec.

D. Keyphrase Tagger
As shown in the top right part of Fig. 2, the keyphrase tagger

takes the output representation of the topic-based encoder
as input to predict the label of each word in the source

text. Note that we train one shared keyphrase tagger between

two domains. Keyphrase tagging is a task where there are

strong connections between the labels. For example, label M
is impossible to be followed by label B. Hence, instead of

tagging them independently, we model the sequence jointly

using Conditional Random Field (CRF) [37].
Formally, given topic-based sequence representation hz =

(hz
1,h

z
2, ...,h

z
n) and the respective labels y = (y1, y2, ..., yn),

the conditional probability for sequence y is:

p(y|hz) =
exp(g(hz,y))∑

y′∈Y(hz)

exp(g(hz,y′))
, (14)

g(hz,y) =
n∑

i=1

Pi,yi
+

n∑
i=0

Ayi,yi+1
, (15)

P = Wᵀ
gh

z + bg, (16)

where Y(hz) is all the possible label sequences for hz , P ∈
R

n×|L| is the matrix of scores where |L| is the number of

the labels. Pi,yi
is the score of assigning the i-th word with

label yi. Ayi,yi+1
is the label transition matrix and we only

consider the interactions between two successive labels, where

Ai,j indicates the transition score from label i to label j. y0
and yn+1 is the start and end tags of the sequence. So A is a

square matrix of size k + 2, k is the number of labels, which

is 5. Wg ∈ R
2dh×|L| and bg ∈ R

|L| are trainable parameters.

We denote the parametes of the Keyphrase Tagger as θtag .
For CRF’s training, we minimize the negative log-likelihood

over the source labeled samples:

Ltagger = −
N l

s∑
i=1

log p(y|hz). (17)

During test, we search the label sequence y∗ with the

highest conditional probability:

y∗ = argmax
y∈Y(hz)

p(y|hz),

where y∗ can be efficiently computed using Viterbi algo-

rithm [38].
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Algorithm 1 Adversarial Training Procedure for TANN Model.

Input: Training data {{(xs
i ,y

s
i )}N

l
s

i=1, {xs
i}N

u
s

i=1, {xt
i}Nt

i=1}
Parameters: α, β – hyper-parameters of the loss weight

1: Initialize model’s parameters {θenc,θtag,θdec,θd}
2: repeat
3: sample a half mini-batch from source domain

{xs
i}N

l
s+Nu

s
i=1 and a half mini-batch from target domain

{xt
i}Nt

i=1. Update θd using gradient descent ∇Ld in

Eq.(10)

4: sample a mini-batch source data {(xs
i ,y

s
i )}N

l
s

i=1,

sample a mini-batch from target {xt
i}Nt

i=1. Update

θenc,θtag,θdec using gradient descent ∇Lf in Eq.(19)

5: until convergence

Output: Topic-based Encoder (θenc) and Keyphrase Tagger

(θtag) for prediction in the target domain

E. Adversarial Training Procedure

In this section, we will detail the training procedure of our

model. The overall training objective can be seen as a min-

max game played among the topic-based encoder (including

BiLSTM Encoder and Topic Correlation Layer), keyphrase
tagger, target bidirectional decoder and domain discriminator:

min
θenc,θtag,θdec

max
θd

Ltagger + αLrecon − βLd, (18)

where α, β are the weights of the reconstruction loss and

reverse domain classification loss respectively.

Specifically, we update the parameters of domain discrimi-
nator θd directly by minimizing Ld using Eq.(10).

To fool the domain discriminator and learn the domain-

invariant features, we use the reverse gradient of the domain

loss Ld to update the parameters of θenc. And we also combine

the above objectives Eq.(13), (17) and minimize the total loss

Lf to update the parameters of θenc:

Lf = Ltagger + αLrecon − βLd. (19)

Finally, we present the adversarial training algorithm for

the TANN model in Algorithm 1. The training procedure is

optimized alternatively between Eq.(10) for θd and Eq.(19) for

θenc,θtag,θdec. All parameters are optimized using standard

backpropagation.

V. EXPERIMENTAL SETUP

A. Dataset

To the best of our knowledge, there are no publicly-available

cross-domain keyphrase extraction datasets for keyphrase ex-

traction tasks, so we construct a dataset of research papers

from different domains in computer science domain since

research papers are widely studied in previous works [12],

[15], [18].

The selection of the domains is according to the recom-

mended international academic conferences and journals 1 by

1http://www.ccf.org.cn/xspj/gyml/

TABLE I
THE STATISTICS OF THE DATASET.

Domain Labeled Unlabeled AvgKp AvgLength
DM 10,550 2,146 3.73 180
SL 1,476 8,639 4.55 162
CG 1,423 6,716 4.91 155

TABLE II
JACCARD DISTANCE BETWEEN THE PHRASES SET OF TWO DIFFERENT

DOMAINS.

Domain Pairs
Jaccard Distance

unigrams bigrams trigrams

DM and SL 0.817 0.827 0.928
DM and CG 0.814 0.850 0.940

the China Computer Federation (CCF), which were already

categorized into different domains. We crawled the corre-

sponding paper abstracts in these domains. Here, we selected

three different domains where the number of abstracts is

larger than other domains: Data Mining (DM), Software and

Language (SL) and Computer Graphics (CG). Some basic

statistics of the crawled dataset are summarized in Table I.

Table I describes the number of labeled (i.e., with author-

assigned keyphrases) and unlabeled abstracts in each domain

where AvgKp is the average number of the author-assigned

keyphrases per abstract, and AvgLength is the average number

of words per abstract.

As there are a large number of labeled abstracts in domain

DM, we denote the DM domain as source domain S and the

other two domains as target domain T . For each transfer pair

S → T , we randomly sampled 500 abstracts from Labeled

data in domain DM as validation data. For the test dataset in

the domain SL and CG, we randomly sampled 500 abstracts

from the labeled data in domain SL and CG respectively. Note

that in the main settings, we did not use any labeled data from

the target domain T during training. To carry the experiments

with limited data in Section VI-D, we also randomly sampled

the rest 800 abstracts as additional target domain training data

from the labeled data in domain SL and CG respectively.

Table II shows the discrepancy between different domains.

Specifically, We calculated the Jaccard Distance 2 of two sets

of phrases of different length in the domain D1 and D2 to

estimate the overlap degree of the two sets phrases in the

document:

JV (D1, D2) = 1− |V1 ∩ V2|
|V1 ∪ V2| , (20)

where V1, V2 are the phrases for D1 and D2 respec-

tively. Specifically, we use n-grams which is consecutive

words of length n in the abstracts as the phrases set.

JV (D1, D2) ∈ [0, 1], and the high value means large discrep-

ancy. The results for unigrams, bigrams and trigrams are in

Table II. As the length of the phrase increase, the jaccard

distance between the two sets of phrases becomes significantly

2http://en.wikipedia.org/wiki/Jaccard index
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larger. The high value of JV in Table II indicates that there is

an explicit distribution mismatch between these domains.

B. Implementation Details

We combined one paper title and abstract as one text. The

text was pre-processed with word tokenization, replacing the

digits with zero. We selected the words with the frequency

more than 15 as vocabulary, and the word embeddings We

were initialized with public 300-dimensional glove vectors 3.

The hidden layer dimensions dh of biLSTM encoder and

target bidirectional decoder were set to 300. For the CNN

discriminator, we used filter windows (c) of sizes {3, 4, 5}
with nq = 200 feature maps each. The weights in the

network were initialized with Xavier initialization [39]. We

used dropout [40] on the input embeddings and the input of

the CNN discriminator with dropout rate 0.5.

Similar to [17], the adversarial strength β was increased

gradually during training to prevent the domain discriminator

from the noisy signal in the early training phrase. And β =
2

1+exp(−10·p)−1, where p = t
T , t is the current epoch and T =

100 is the maximum epoch. The reconstruction loss strength

α was set to 0.2 and 0.05 in the DM → SL and DM → CG

respectively. The topic numbers used in topical correlation in

both source and target domains were set to 50 and 100 in the

DM → SL and DM → CG respectively. We further analyse

the influence of the hyperparameters in the following section.

In order to compute topic distribution of the text, we used

LDA implementation in the topic modeling toolkit [41] to train

the topic model. We trained the model using about 500,000

scientific papers collected by [12].

We trained the model parameters using Stochastic Gradient

Descent plus momentum [42] with learning rate 0.1, and

gradient clipping value was 1. We used mini-batch size 64.

Models were selected using early stop. 4

C. Baseline Methods

To validate the performance of TANN model, several state-

of-the-art models were selected as baseline methods.

As our target domain is unlabeled, we first compared our

model against four unsupervised keyphrase extraction methods

directly on the target domain: TF-IDF, TextRank, [7], Ex-
pandRank [8], and Topical PageRank(TPR) [15]. For these

four methods, we used the optimal settings according to their

papers. The topic distribution of words in TPR was obtained

following the same procedure as our TANN model. For these

unsupervised methods, we considered top 5 ranked phrases

when computing the F1-score.

Supervised baseline methods are as follows:

• CRF: Keyphrase extraction can be formulated as a

sequence tagging problem. Here we train a keyphrase

tagger using CRF with a lot of hand-crafted features

for keyphrase extraction in [18], including parse-tree

features, stopword features and compound features. We

trained CRF using source labeled data.

3https://nlp.stanford.edu/projects/glove/
4Code will be released at https://github.com/wwwyn/TANN

TABLE III
F1-SCORE OF DIFFERENT METHODS. BOLD NUMBERS ARE THE BEST

SCORES.

Methods DM → SL DM → CG
TF-IDF 0.156 0.129

TextRank 0.170 0.175
ExpandRank 0.152 0.124

TPR 0.196 0.160
CRF 0.164 0.147

Joint-layer RNN 0.185 0.165
SourceOnly(BiLSTM-CRF) 0.179 0.167

BiLSTM-CRF+MMD 0.211 0.187
TANN 0.296 0.243

• Joint-layer RNN: Joint-layer RNN [25] is a recent state-

of-the-art neural tagging method for keyphrase extraction.

Here we used the labeled source domain data to train the

Joint-layer RNN model.

• SourceOnly: SourceOnly is part of our model, with

the topic correlation layer, adversarial training and tar-

get bidirectional decoder removed from our TANN

model and trained in the source domain. Note that our

SourceOnly model is a BiLSTM-CRF model [43].

• BiLSTM-CRF+MMD: This is a transfer learning

method. We add Maximum Mean Discrepancy

(MMD) [44] regularization at the output layer of

the BiLSTM to minimize the domain discrepancy

between the source and target domain. Here we used

the Gaussian kernel in MMD, the standard deviation

parameters in MMD was turned on the validation set.

BiLSTM-CRF + MMD used labeled data in the source

domain and unlabeled data in both domains.

D. Evaluation Metrics

Similar to previous methods, we used keyphrases that ap-

pear in the text as the ground truth keyphrases [18]. When

determining the match of two keyphrases, we used Porter’s

stemmer [45] for preprocessing. We used F1-score to evalu-

ate the performance. The F1-score is computed as follows:

P = #Correct
#Extract , R = #Correct

#Truth , F1 = 2×P×R
P+R , where

#Correct,#Extract,#Truth is the number of correctly

predicted, number of predicted and number of ground-truth

keyphrases respectively for all the test documents.

VI. RESULTS AND ANALYSIS

A. Overall Performance

Table III shows the F1-scores of TANN model and baseline

methods on the two cross-domain keyphrase extraction tasks.

We observe that TANN model consistently outperforms all

the baseline methods by a large margin. The TANN model

outperforms the baseline models by at least 8.5% and 5.6%

when the target domain is SL and CG respectively. These

results show that by utilizing both labeled data in the source

domain and unlabeled data in the source and target domain,

our TANN model significantly improve the performance in the

unlabeled target domain.
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TABLE IV
ABLATION STUDY FOR TANN MODEL.

Model
F1-score

DM → SL DM → CG

TANN 0.296 0.243
−adversarial 0.214 0.179
−topic 0.238 0.185
−reconstruction 0.250 0.227
−backward reconstruction 0.282 0.236

TABLE V
F1-SCORE FOR DIFFERENT TOPIC NUMBER k OF TANN MODEL.

topic number k DM → SL DM → CG
10 0.248 0.221
20 0.285 0.234
30 0.284 0.225
50 0.296 0.200
100 0.280 0.243
200 0.279 0.234
300 0.293 0.232

Among the baseline methods, directly using unsupervised

ranking based methods on the target domain performs quite

well compared with the supervised methods trained on the

source domain and applied on the target domain. In the

DM → SL task, TPR performs the second best among the

baseline methods, perhaps because TPR also leverages the

topic information and runs PageRank once for each topic.

TextRank is the second best baseline method in the DM→ CG

task but still significantly lower than the TANN model. The

poor performance of CRF method with hand-crafted features

demonstrates that the designed rules may not grasp the deep

semantic information of the text. For Joint-layer RNN method,

it is not surprising that it performs poorly across different

domains as it has a large number of parameters and may

overfit in the source domain, consequently failing to adapt

to the target domain.

SourceOnly model provides an empirical performance

lower bound of our model. The quite poor performance of

SourceOnly compared to TANN model indicates that there

is a distribution mismatch between the source domain and

target domain, and directly applying the model trained in the

source domain to target domain may fail to extract keyphrase

in the target domain. While TANN model can efficiently deal

with the domain distribution mismatch by using adversarial

learning. By adding MMD regularization to minimize the

domain discrepancy, the performance of BiLSTM-CRF+MMD

is better than SourceOnly model but is still lower than TANN

model.

From Table III, we also observe that TANN’s performance

on DM → CG task is worse than the performance on DM

→ SL task. The reason may be that the average domain

discrepancy between DM → CG is larger than that of DM

→ SL which is reported in Table II.

TABLE VI
F1-SCORE FOR DIFFERENT RECONSTRUCTION LOSS WEIGHT α OF TANN

MODEL.

α value DM → SL DM → CG
0.01 0.239 0.215
0.05 0.241 0.243
0.1 0.265 0.222
0.2 0.296 0.231
0.4 0.226 0.226
0.8 0.244 0.210

(a) (b)

Fig. 5. Performance with varying percentage of source labeled data N l
s.

B. Ablation Study for Model Components

Table IV shows F1-score on two target domains by remov-

ing the proposed adversarial training, topic correlation layer

and bidirectional reconstruction loss from the TANN model

respectively. We observe substantial drops of 8.2%, 5.8%,

4.6% by removing adversarial training, topic correlation layer

and bidirectional reconstruction loss respectively in the DM

→ SL task. Similar significant drops are 6.4%, 5.8%, 1.6%

respectively in the DM → CG task. These results indicate

the importance of the proposed adversarial training, topic

correlation layer and target bidirectional reconstruction loss

for keyphrase extraction task. We also observe that our TANN

(Full) outperforms the TANN-(Backward Reconstruction) in

the two target domains, indicating adding backward recon-

struction loss can further improve the performance.

C. Influence of Hyperparameters

We conduct several experiments on the influence of model

hyperparameters, including the number of topics c, reconstruc-

tion loss weight α and the source labeled data size N l
s.

We demonstrate the influence of the topic number k used in

the topic correlation layer in Table V. Table V shows different

numbers of topics ranging from 10 to 300. The best F1-score

is obtained when the topic number is 50 for DM → SL and

100 for DM → CG. The performance is poor when the topic

number is very smaller such as k = 10.

Table VI shows the F1-score of TANN model over different

reconstruction loss weight α. We observe that too small recon-

struction loss weight (α = 0.01) or too large weight (α = 0.8)

are poor for the TANN performance. TANN performs best

when α is 0.2 for the DM → SL task and α = 0.05 for the

DM → CG task.

As the target domain is unlabeled and TANN model only

utilizes the labeled data from the source domain, we investigate

the impact of the different size of source labeled training data
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(a) (b)

Fig. 6. Performance of TANN model with various amount of labeled target data in SL and CG domain.

Title: effective test generation and adequacy assessment for javascript based web applications 

Abstract: modern web applications rely heavily on javascript and client side runtime manipulation of the dom ( document object model ) tree . however , 

javascript is loosely typed , dynamic , and challenging to analyze and test . we propose an automated technique to generate regression test cases at two 

complementary levels ( 0 ) individual javascript functions , and ( 0 ) dom event sequences . moreover , to assess the quality of the test cases we 

propose a mutation testing technique that leverages static and dynamic program analysis to guide the mutation generation process towards parts of the code 

that are error prone or likely to influence the program ' s output
Keyphrase assigned by Paper Authors:
Test generation; Mutation Testing; JavaScript
Keyphrase predicted by SourceOnly model:
test generation; regression

Keyphrase predicted by TANN model:
test generation; javascript; regression; mutation testing

Fig. 7. An example of the predicted keyphrases by SourceOnly model and our TANN model in the DM → SL task, bold phrases indicate correct predictions.
We also visualize the topic correlation weights in the paper title and abstract, deeper color means larger correlation weights.

nl
s. As shown in Fig. 5, as the amount of source labeled data

increases, the F1-score of our model consistently improves

especially when the source labeled data size changes from

20% to 40%.

D. Experiments on Target Domain with Limited Label

In the above settings, we consider the tough situation where

there is no labeled data in the target domain. We also test

the proposed TANN model when additional small amount of

annotated data can be obtained in the resource-poor target

domain. A simple way to leverage the small amount of labeled

data in the target domain is to fine-tune the model after pre-

training TANN model in the above settings. Fig. 6 shows the

result of TANN model trained with different size of labeled

target data compared with Joint-layer RNN. As we can see,

the margin is significantly large when the size of labeled target

data is range from 0 to 800 comparing TANN with the Joint-

layer RNN trained directly on the target domain. These results

demonstrate that when the target labeled data is scarce, TANN

model can significantly improve the performance in the target

domain by leveraging source labeled data and unlabeled data in

both domains. By leveraging a large amount of source labeled

data, Joint-layer RNN(source + target) outperforms Joint-layer

RNN(target). However, TANN model still outperforms Joint-

layer RNN(source + target) by a large margin, indicating the

importance of leveraging unlabeled data.

E. Case Study

Finally, Fig. 7 shows the predicted keyphrases of an abstract

in the SL domain by SourceOnly Model and our TANN model

when performing the transfer task from DM to SL domain.

Clearly, TANN model predicts all the three author-assigned

keyphrases while SourceOnly model only predicts one cor-

rect keyphrase. Moreover, the keyphrases predicted by the

SourceOnly model only grasp one small point of this abstract.

However, TANN successfully predicts the word “javascript”,

which reflects the main topic of this abstract. We also visualize

the topic correlation layer in TANN model. As the topic

correlation weights ti is a multidimensional vector, we use the

first-derivative saliency [46] to visualize the topic correlation

weights ti of the words in Fig. 7 and we observe that

the word “assessment/javascript/dom/regression/mutation” has

larger correlation weights. The results demonstrate that TANN

can not only capture the global topic information but also give

more attention to the topic-related phrases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the TANN model for cross-

domain keyphrase extraction to address the problem of limited

labeled data in the target domain by means of resource-rich

labeled data. The proposed TANN model can efficiently make

use of data in the resource-rich domain and unlabeled data

in target domain. We first utilized a topic-correlation layer
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to incorporate the global topic information into the document

representation. Then, transferable knowledge was learned by

using adversarial training given the topic-based representa-

tion. At the same time, target domain-specific information

was preserved by leveraging bidirectional reconstruction loss.

Extensive experiments showed that our TANN model can

substantially improve the performance in the unlabeled or

insufficiently labeled target domain. In the future, we would

like to test our model on transfer pairs between more different

domains such as biological, physical and chemistry domains.

And we would like to extend our framework to other cross-

domain tasks like cross-domain recommendation.
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