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Abstract. Clinical diagnosis, which aims to assign diagnosis codes for
a patient based on the clinical note, plays an essential role in clinical
decision-making. Considering that manual diagnosis could be error-prone
and time-consuming, many intelligent approaches based on clinical text
mining have been proposed to perform automatic diagnosis. However,
these methods may not achieve satisfactory results due to the following
challenges. First, most of the diagnosis codes are rare, and the distribu-
tion is extremely unbalanced. Second, existing methods are challenging
to capture the correlation between diagnosis codes. Third, the lengthy
clinical note leads to the excessive dispersion of key information related to
codes. To tackle these challenges, we propose a novel framework to com-
bine the inheritance-guided hierarchical assignment and co-occurrence
graph propagation for clinical automatic diagnosis. Specifically, we pro-
pose a hierarchical joint prediction strategy to address the challenge
of unbalanced codes distribution. Then, we utilize graph convolutional
neural networks to obtain the correlation and semantic representations
of medical ontology. Furthermore, we introduce multi attention mecha-
nisms to extract crucial information. Finally, extensive experiments on
MIMIC-III dataset clearly validate the effectiveness of our method.

Keywords: Clinical automatic diagnosis · Hierarchical assignment ·
Co-occurrence graph · Graph Convolutional Network

1 Introduction

The clinical note is an essential part of Electronic Health Record (EHR), which
contains lengthy and terminological text records about medical history, chief
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complaint, current symptoms, and laboratory test results. To avoid the redun-
dancy and ambiguity caused by the text, the World Health Organization recom-
mends using the diagnosis codes in the International Classification of Diseases
(ICD) for each disease, symptom, and sign to represent the patient’s condition.
The goal of clinical diagnosis is to assign the most likely diagnosis codes for the
patient based on the clinical note. Traditionally, clinical diagnosis is completed
by well-trained clinical coders, which is labor-intensive and error-prone because
the diagnosis codes system is vast and growing. For example, in the United
States, about 20% of patients are misdiagnosed at the primary care level, and
one-third of the misdiagnosis will cause later severe injury to the patients [22].

Fig. 1. Illustration of clinical automatic diagnosis task. The input and output of the
model are EHR and diagnosis codes, respectively. The text related to the diagnosis
code in the EHR is marked in colored font.

Consequently, the automatic clinical diagnosis based on EHR has aroused
widespread attention in the industrial and academic circles [4]. Among the pro-
posed methods, supervised machine learning methods were trained to learn shal-
low feature combinations for clinical note [7,19]. Recently, most deep learning
models treated this task as a sequence learning problem, including used Convo-
lutional Neural Networks [9,16] and Recurrent Neural Networks [3,21] to cap-
ture complex semantic information. On this basis, medical ontology was further
introduced as auxiliary knowledge. Specifically, Bai et al. [1] incorporated the
disease encyclopedia of Wikipedia into the model to enhance its predictive abil-
ity. Besides, the patient’s history and demographic information could also be
leveraged to enhance the prediction of future admissions [1,14,20]. Although
these methods have made significant progress in automatic diagnosis, they may
also fail due to the following challenges:

– C1: The number of diagnosis codes is enormous, and the distribu-
tion is extremely unbalanced. For example, the MIMIC-III [6] dataset,
which is widely used for automatic diagnosis, contains 8,925 codes, but 4,344
appear less than five times in all data. The severe long-tail distribution makes
it difficult to assign proper codes to rare diseases, which may cause irreparable
damage to the patients.

– C2: The correlations between diagnosis codes are greatly over-
looked. However, the medical relationship between diseases can help us iden-
tify diseases that are not clearly reflected by the clinical note. As shown in



Inheritance-Guided Hierarchical Assignment 463

Fig. 1, we can extract clues (colored fonts) from the text to assign diagnosis
codes to the patient. For example, from the text “Hospital Acquired Pneumo-
nia”, we can easily infer the code “486 (Pneumonia Organism Unspecified)”.
Nevertheless, it is difficult to infer the code “410.81 (Acute Respiratory Fail-
ure)” only from the text. Fortunately, we can infer the code “410.81” from the
relationship between it and the code “486”, that is, “Pneumonia Organism
Unspecified” will in all probability cause patients to have the symptom of
“Acute Respiratory Failure”.

– C3: In clinical note, only a few key fragments can provide valuable
information for automatic diagnosis. For example, in the MIMIC-III
dataset, clinical notes usually contain more than 1,500 tokens, but only a few
tokens are related to specific diagnosis codes. Extracting crucial tokens for
specific diagnosis codes is as tricky as finding a needle in a haystack.

To this end, we propose a model named Inheritance-guided Hierarchical
Assignment with Co-occurrence-based Enhancement (IHCE) to address these
challenges. First, for C1, we design a hierarchical assignment method based on
the hierarchical inheritance structure of diagnosis codes defined by ICD, which
makes assignment level by level. As shown in Fig. 2, “405.0 (Malignant renovas-
cular hypertension)” and “405.1 (Benign secondary hypertension)” are mutually
exclusive. Moreover, “405.01 (Malignant renovascular hypertension)” inherits
the information of “405.0”. Consequently, if we assign “405.0” at the high level,
we will tend to further assign “405.01” instead of the children of “405.1”. With
the inheritance-guided hierarchical assignment, we can use the diagnostic results
of a high level to guide the low level, which addresses the challenge of unbal-
anced distribution. Second, for C2, we construct a co-occurrence graph based on
EHR data and use GCN to obtain the diagnosis codes’ semantic representations.
In this way, the representations of the diagnosis codes contain the correlation
between diseases, which help us to assign codes to diseases for where it is chal-
lenging to find textual clues from the clinical note. Third, for C3, we enhance the
ability to extract the tokens related to the diagnosis codes based on the attention
mechanism which models the interaction between diagnosis codes’ ontology rep-
resentations and the clinical note. Finally, experiments on a real medical dataset
show that IHCE is superior to the SOTA methods on all evaluation metrics.

Fig. 2. An example of diagnosis codes’ descriptors and their hierarchical inheritance
structure based on ICD.
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2 Related Work

2.1 Clinical Automatic Diagnosis

Clinical automatic diagnosis has become a research hot spot in medicine, aiming
to solve manual diagnosis limitations. In recent years, deep learning technolo-
gies [9,16,21] have shown substantial advantages over traditional machine learn-
ing methods [7,19] and have been widely used for this task. Most researchers
modeled this task as a multi-label text classification task based on the free text
in EHR. Among them, Shi et al. [21] proposed a character-perceived LSTM
network that generated written diagnosis descriptions and representations of
diagnosis codes. Baumel et al. [3] proposed a hierarchical-GRU with a label-
dependent attention layer to alleviate excessive text problem. Wang et al. [23]
proposed a label-word joint embedding model and applied the cosine similarity
to assign the codes. Moreover, some researchers incorporated external knowledge
into the model [1,14,20]. For example, Knowledge Source Integration (KSI) [1]
calculated the matching score between the clinical note and each knowledge doc-
ument based on the intersection of clinical notes and external knowledge for this
task. Our method is different from these methods, considering the hierarchy and
co-occurrence relationship to achieve better performance in automatic diagnosis.

2.2 Graph Convolutional Network

In the past few years, Graph Convolutional Network (GCN) [8] has been widely
used in various tasks to encode advanced graph structures, such as healthcare [11,
25], recommender systems [12], business analysis [10], machine translation [2],
text classification [18,24]. Specifically, in order to promote the sharing of disease
among patients, Liu et al. [11] applied GCN on text corpus to collect high-order
neighbor information, and predicted for patients based on projection. Yao et
al. [24] proposed Text-GCN, which was utilized to learn the representations of
words and documents to improve text classification. Peng et al. [18] proposed a
recursive regularized GCN to perform large-scale text classification on word co-
occurrence graphs. Inspired by this, we apply GCN to obtain a good correlation
between diagnosis codes and represent the medical ontology. Furthermore, we
utilize the ontology representations as interactive information to improve the
performance of automatic diagnosis.

3 Preliminaries

For a patient, the word sequence S = {w1, w2, ..., wn} of the patient’s clinical
note is included, where n is the length of S. Furthermore, a set of diagnosis
codes L =

{
l1, l2, ..., l|L|

}
∈ {0, 1}|L| are also contained to denote the diseases

of the patient, where |L| is the number of diagnosis codes. In addition, we also
introduce hierarchical inheritance structure L =

{
L1, L2, ..., LT }

to expand L
based on external knowledge (i.e., the hierarchical inheritance structure based
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on ICD in Fig. 2), where Lt =
{

lt1, l
t
2, ..., l

t
|Lt|

}
means all diagnosis codes of the

level-t, and T is the total number of hierarchical levels. Note that, LT = L, which
means that the last hierarchical level is the same as the patient’s diagnosis codes.
With above description, we can define the clinical automatic diagnosis task with
inheritance guidance as follows:

Definition 1. Given the patient’s clinical note sequence S and the diagnosis
codes hierarchical inheritance structure L, our goal is to predict the patient’s
diagnosis codes set L̂t =

{
l̂t1, l̂

t
2, ...

}
∈ {0, 1}|L̂t| level by level, and finally use the

last level L̂T as the prediction of the patient’s diagnosis.

4 The Proposed Model IHCE

As shown in Fig. 3, IHCE mainly contains three components: (1) Document
Encoding Layer (DEL), (2) Ontology Representation Layer (ORL), and (3) Hier-
archical Prediction Layer (HPL). Specifically, we first utilize the DEL to obtain
representations of the clinical note and diagnosis codes. Secondly, we apply the
ORL to obtain the correlation and semantic representations of medical ontol-
ogy. Finally, we design HPL to predict the patient’s diagnosis codes based on
hierarchical dependence and attention mechanism.

Fig. 3. The architecture of IHCE.

4.1 Document Encoding Layer

The goal of DEL is to generate unified representations for the clinical note and
diagnosis codes. We first utilize the Embedding Module to encode the patient’s
clinical note and diagnosis codes. Then, we apply the Feature Extraction Module
to enhance the semantic representation of the clinical note.
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Embedding Module. First, given the word sequence S = {w1, w2, ..., wn}, we
use the word vector matrix E =

[
e1, e2, . . . , e|E|

]
∈ R

|E|×de to obtain the word
embedding sequence X = [x1, x2, . . . , xn] ∈ R

n×de , where |E| is the size of the
vocabulary, and de is the dimension of the word vector. Similarly, we generate
the diagnosis code ontology embedding for each code lti ∈ Lt via averaging the
word embedding of its descriptor sequence:

vt
i = 1

|Nt
i |

∑
j∈Nt

i
ej , i = 1, . . . , |Lt|

V t =
[
vt
1, v

t
2, . . . , v

t
|Lt|

]
∈ R

|Lt|×de
, (1)

where N t
i is the text descriptor index set of lti , and vt

i denotes the word embedding
of the lti , and V t indicates the representations of all codes of the level-t.

Feature Extraction Module. As shown in the lower part of the Fig. 3, we
apply the multi-filter residual convolutional neural network [9] architecture for
deep feature extraction on clinical note’s embedding matrix X.

First, we utilize convolutional neural networks containing m filters to capture
different length patterns of word sequence:

X1 = F1 (X,W1) = tanh
[
. . . ,WT

1 Xj:j+s1−1, . . .
]

. . .
Xm = Fm (X,Wm) = tanh

[
. . . ,WT

mXj:j+sm−1, . . .
] ,where j = 1, 2, ..., n, (2)

Let us take the k-th operation as an example. Fk (X,Wk) denotes the con-
volution operation on the matrix X, where Wk ∈ R

(sk×de)×dc is the parameter
matrix, and dc indicates each convolutional layer’s feature mapping dimension.
s1, s2, ..., sm denote different convolution kernel sizes, and Xj:j+sk−1 ∈ R

sk×de

is the input matrix of the j-th to the (j + sk − 1)-th rows in X. Note that,
we set padding and stride as floor(sk/2) and 1. Finally, the feature matrices
Xk ∈ R

n×dc , k = 1, 2, ...,m can be obtained. In order to express conciseness, the
bias is ignored in all the calculation formulas in this paper.

Next, we connect m parallel residual blocks after the multi-filter convolutional
layer, capturing longer text features by expanding the receptive field. Taking the
k-th unit as an example, the residual block is formally defined as:

Xk1 = Fk1 (Xk,Wk1) = tanh
[
. . . ,WT

k1
Xj:j+sk−1

k , . . .
]
,

Xk2 = Fk2 (Xk1 ,Wk2) =
[
. . . ,WT

k2
Xj:j+sk−1

k1
, . . . ,

]
,

Xk3 = Fk3 (Xk,Wk3) =
[
. . . ,WT

k3
Xj:j

k , . . .
]
,

Xres
k = tanh (Xk2 + Xk3) ,

(3)

where j = 1, 2, ..., n, and Wki
is the weight matrix of the ki-th convolution layer

in the residual block, specifically Wk1 ∈ R
(sk×dc)×dr ,Wk2 ∈ R

(sk×dr)×dr ,Wk3 ∈
R

(1×dc)×dr . The output of each residual block is Xres
k , k = 1, 2, ...,m, where dr

indicates the feature mapping dimension. Finally, we concatenate them together
by rows to obtain an enhanced clinical note’s representation:

Xres = concat (Xres
1 , . . . , Xres

m ) ∈ R
n×dres ,where dres = (m × dr). (4)
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4.2 Ontology Representation Layer

Comorbidities and complications manifest the correlation between the diagnosis
codes ontology and play an auxiliary role for codes that are difficult to predict
based on the clinical note alone. To this end, we first use co-occurrence features at
each hierarchical level to construct a co-occurrence graph (co-graph) of diagnosis
codes ontology. Then, we use GCN to capture the ontology’s representations,
which contain the correlation between the ontology. Here we take the level-t as
an example to introduce the process.

Co-graph Construction. The co-graph is represented by Gt = (Lt, Et), where
Lt and Et indicate the diagnosis codes set and edge set of the level-t, respectively.
For any diagnosis code lti , if there is another code ltj in the EHR data that co-
appears, there is an edge e(lti , l

t
j) between them. And the corresponding weight

is calculated as follows:

e(lti , l
t
j) =

count(lti , l
t
j)∑

ltk∈Lt count(lti , l
t
k)

, (5)

where count(·, ·) indicates the number of times the two codes co-appear in the
whole EHR dataset, which can represent prior knowledge. After that, the edge
set Et can be described as follows:

Et = {e(lti , l
t
j) | lti , l

t
j ∈ Lt}. (6)

Co-graph Propagation via GCN. Now we turn to represent the diagnosis
codes. First, we can obtain the feature matrix Ht,(0) = V t ∈ R

|Lt|×de of the
diagnosis codes ontology by Eq. (1). For the sake of simplicity, we omit the
superscript t in the rest of this subsection. Then, we apply the GCN to propagate
the representations of the diagnosis codes on the co-graph G, which takes the
feature matrix H(l) and the matrix Ã as input, and update the embedding of
the codes by utilizing the information of adjacent codes:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
, (7)

where Ã = A + I, A is the adjacency matrix of G, I is the identity matrix,
D̃ii =

∑
i Ãij , and W (l) is a layer-specific trainable weight matrix. σ(·) denotes

an activation function, such as the ReLU(·) = max(0, ·). H(l) ∈ R
L×dg is the

matrix of activations in the l-th layer, where dg indicates the hidden layer size
of GCN. Then the last hidden layer is used to represent the diagnosis codes
ontology, i.e., Ht = Ht,(l+1) ∈ R

|Lt|×dg .

4.3 Hierarchical Prediction Layer

To simulate human diagnosis’s gradual progress from shallow to deep, we pro-
pose an inheritance-guided hierarchical joint learning mechanism. To be specific,
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Fig. 4. Hierarchical prediction module.

according to the hierarchical structure of the codes, the patient is diagnosed pro-
gressively from coarse-grained to fine-grained.

Figure 4 shows the core module Hierarchical Prediction Module(HPM) of
HPL. Specifically, HPM is mainly composed of three parts, namely Multi Atten-
tion Unit (MAU), Code Predicting Unit (CPU) and Dependency Passing Unit
(DPU) respectively. For the level-t, the input of HPM includes three parts, i.e.,
the clinical note’s representation Xres, the medical ontology representations Ht,
and the dependency information ct−1 of the previous level:

Rt = MAU (Xres,Ht) ,
Y t = CPU

(
ct−1, Rt

)
,

ct = DPU
(
ct−1, Ỹ t

)
.

(8)

We first utilize the MAU part to obtain the correlation representation Rt between
the clinical note and medical ontology. Next, the CPU part assigns the diagnosis
codes Ỹ t to the patient based on the Rt and ct−1. Finally, the DPU part generates
the level dependency information ct for the next level based on the previous
level’s memory and the current level’s assignment results. Note that we set c0 to
0 since the current level is 0 and does not contain the previous level’s information.
Next, we introduce each unit of the HPM at level-t.

Multi Attention Unit. By the operations above, we can obtain the clinical
note representation Xres and medical ontology representations Ht. Intuitively,
the patient’s clinical note is composed of a large number of lengthy text descrip-
tions and different codes may focus on different aspects of the document. There-
fore, for level-t, we need |Lt| aspects to focus on different codes to represent the
overall semantic of the whole clinical note. Next, we introduce the two attention
mechanisms we use.

Ontology Guided Attention. For some diagnosis codes that are difficult to predict
using only clinical text, we can improve it by interacting between the clinical
note and medical ontology. First, we pass the document feature matrix Xres

through a simple feed-forward neural network:

O′
t = tanh(W ′

t · (Xres)T ), (9)
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where W ′
t ∈ R

dg×dres is the transform matrix, dg is consistent with the dimension
of the columns of Ht, and O′

t ∈ R
dg×n is the intermediate result. Then, for each

code lt ∈ Lt, we can generate the attention vector guided by the ontology:

αlt = softmax(hlt · O′
t), (10)

where hlt ∈ Ht is the feature vector of label lt, and softmax(·) is the normalized
exponential function for row operations. The attention αlt ∈ R

1×n is then used
to compute vector representation for each label:

xatt
i

′ = αlt · Xres, (11)

Finally, we concatenate the xatt
i

′(i = 1, .., |Lt|) to obtain the ontology guided
document representation, denoted as Xatt

t
′ = [xatt

1
′
, xatt

2
′
, ..., xatt

|Lt|
′] ∈ R

|Lt|×dres .

Code Specific Attention. Similar to ontology guided attention, the code specific
attention is formalized as:

O′′
t = tanh(W ′′

t · (Xres)T ),
A′′

t = softmax(U ′′
t · O′′

t ),
Xatt

t
′′ = At

′′ · Xres,
(12)

where W ′′
t ∈ R

da×dres is the intermediate parameter matrix. da is a hyperpa-
rameter, O′′

t ∈ R
da×n is the intermediate result matrix and U ′′

t ∈ R
|Lt|×da is the

code-specific attention parameter matrix. Finally, Xatt
t

′′ ∈ R
|Lt|×dres denotes

code-specific document representation.
With the above description, we apply Rt = concat(Xatt

t
′
,Xatt

t
′′) ∈ R

|Lt|×2dres

as the output of the MAU.

Code Predicting Unit. For the level-t, we combine the result Rt of MAU
with the inherited information ct−1 of the previous level to assign diagnosis
codes to the patient. Specifically, the CPU uses a linear layer following a sigmoid
transformation for each code:

Xcls
t = concat(broadcast(ct−1), Rt),

Ỹ t = σ
(
Xcls

t · W t
y

)
,

(13)

where broadcast(·) is the process of making matrixes with different shapes have
compatible shapes for arithmetic operations, σ(·) denotes an activation function,
such as the sigmoid(x) = 1

1+e−x , W t
y ∈ R

(2dres+dt−1
c )×1 is the parameter of the

CPU, and Ỹ t ∈ R
|Lt|×1 is the prediction results of the level-t.

Dependency Passing Unit. We aim to preserve important information while
reducing the harm caused by the previous level’s error transmission. Therefore,
we employ the combination of a linear layer and sigmoid function to imitate the
gating mechanism to filter and integrate information as follows:
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Z = concat((Ỹ t)T , ct−1),
ct = σ(Z · W t

dpu),
(14)

where Z ∈ R
1×(|Lt|+dt−1

c ) and W t
dpu ∈ R

(|Lt|+dt−1
c )×dt

c is the parameter matrix.
Then, we can get the inter-level dependence ct ∈ R

1×dt
c based on the previous

level’s memory information and the prediction results of the current level.

4.4 Training

For training, we combine all levels of multi-label binary cross-entropy as the loss:

loss =
T∑

t

losst =
T∑

t

Lt
∑

i=1

[−yi log (ỹi) − (1 − yi) log (1 − ỹi)] ,where ỹi ∈ Ỹ t,

(15)
where losst indicates the loss function of level-t.

5 Experiments

5.1 Dataset and Evaluation Metrics

In this paper, we conduct experiments on a real-world dataset: the MIMIC-III
dataset, which is widely used in clinical automatic diagnosis. Following previous
studies [9,16], we use the discharge summaries as the model’s input and use
the full codes and the top 50 most common codes for experiments. Specifically,
for the MIMIC-III full setting, it includes the 8,925 codes, 47,719, 1,631, and
3,372 discharge summaries used for training, validation, and testing, respectively.
For the MIMIC-III top-50 setting, it includes 8,067, 1,574, and 1,730 discharge
summaries used for training, validation, and testing, respectively. In addition,
we expand the codes from fine to coarse according to the hierarchical inheritance
structure of ICD because EHR data only have the finest-grained codes (i.e.the
level-4 in Table 1). The specific statistical results are shown in Table 1.

The evaluation metrics used in the experiments are Precision@K (K = 5, 8,
and 15), Macro-F1, Micro-F1, Macro-AUC and Micro-AUC.

5.2 Implementation Details

We utilize PyTorch [17] to implement IHCE model and train it on a server with
4 × V100 GPU. For the training setting, we use AdamW [13] for learning and
set the learning rate and weight decay to 0.0001 and 0.00005, respectively. We
set the dropout probability 0.4 and set the batch size to 16. We also apply an
early stop mechanism, in which the training will stop if the Micro-F1 score on
the validation set does not improve in 10 continuous epochs. Since our model
has a number of hyperparameters, it is infeasible to search optimal values for



Inheritance-Guided Hierarchical Assignment 471

Table 1. The statistics of hierarchical levels.

Statistics Full Top-50

# codes in level-1 199 25

# codes in level-2 1,175 40

# codes in level-3 5,125 48

# codes in level-4 8,925 50

# avg codes per EHR in level-1 11.02 4.70

# avg codes per EHR in level-2 13.75 5.37

# avg codes per EHR in level-3 15.30 5.71

# avg codes per EHR in level-4 15.86 5.77

all hyperparameters. We keep the hyperparameters of the Feature Extraction
Module consistent with Li [9]. Specifically, the word embedding dimension de =
100, the number of convolution kernels m in feature extraction is 6, and the size
of the convolution kernels s1, s2, ...sm are set to “3, 5, 9, 15, 19, 25”, dc = de
and dr = 50. Besides, we pre-train word embeddings on all the text in the
training set using the word2vec [15] implemented by gensim1. The maximum
length of a token sequence is 2,500, and the one that exceeds this length will
be truncated. For the remaining parameters, we use the grid to search for the
optimal hyperparameters. Specifically, we set the number of hidden layers to
1, and the hidden layer size dg = 300 for GCN. In addition, we set da=300
for ORL’s attention dimension, and dtc = 500(t = 1, 2, ..., T − 1) for all DPUs’
parameters dimension.

5.3 Baselines

We compared IHCE with the following baselines, including machine learning and
deep learning models:

– LR: which is a bag-of-words logistic regression model.
– H-SVM [19]: which designs a hierarchical SVM algorithm from root to leaf

node by utilizing the hierarchical structure of diagnosis codes.
– Bi-GRU [16]: which employs bidirectional gated recurrent units to learn

clinical note’s representation for automatic diagnosis task.
– C-MemNN [20]: which combines the memory network with iterative com-

pression memory representation to improve diagnosis accuracy.
– C-LSTM-Att [21]: which uses an LSTM-based language model to gener-

ate clinical note and diagnosis code representations as well as an attention
mechanism to resolve the mismatch between notes and codes.

– LEAM [23]: which is proposed for text classification task by projecting labels
and words in the same embedding space and using the cosine similarity to
predict the label of text.

1 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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– HARNNN [5] which is initially used for multi-label text classification and
considers the hierarchy of categories. We apply it to the automatic diagnosis.

– CNN [16]: which uses a single layer convolutional neural network and a max-
pooling layer for automatic diagnosis task.

– CAML and DR-CAML [16]: which assign diagnosis codes based on clinical
text by using CNN to aggregate information among the clinical note and
attention mechanism to select the most relevant segment for each possible
code. DR-CAML further uses text description as a regularization.

– MultiResCNN [9]: which utilizes multi-fliter convolutional neural networks
and residual networks for automatic diagnosis and becomes the SOTA model
on MIMIC-III.

5.4 Overall Performance

In this section, we compare the IHCE with existing works for clinical automatic
diagnosis. Table 2 shows our overall performance on MIMIC-III full setting and
MIMIC-III 50 setting. T = 3 means that our experiment is based on the last
three levels (i.e., level-2 to level-4 in Table 1) in the hierarchy. Our model IHCE
surpasses all baselines on both settings. The results indicate that IHCE is able to
effectively perform clinical automatic diagnosis by exploiting the hierarchy and
co-occurrence structure of the medical ontology and the attention mechanism.
The specific analysis is as follows:

Table 2. Overall performance on MIMIC-III, where “–” means that the baseline did
not report the result of the corresponding metric.

Models MIMIC-III full MIMIC-III top-50

AUC F1-score P@K AUC F1-score P@K

Macro Micro Macro Micro 8 15 Macro Micro Macro Micro 5

LR 56.1 93.7 1.1 27.2 54.2 41.1 82.9 86.4 47.7 53.3 54.6

H-SVM – – – 44.1 – – – – – – –

C-MemNN – – – – – – 83.3 – – – 42.0

C-LSTM-Att – – – – – – – 90.0 – 53.2 –

HARNN – – – 40.5 – – – – – – –

BiGRU 82.2 97.1 3.8 41.7 58.5 44.5 82.8 86.8 48.4 54.9 59.1

LEAM – – – – – – 88.1 91.2 54.0 61.9 61.2

CNN 80.6 96.9 4.2 41.9 58.1 44.3 87.6 90.7 57.6 62.5 62.0

CAML 89.5 98.6 8.8 53.9 70.9 56.1 87.5 90.9 53.2 61.4 60.9

DR-CAML 89.7 98.5 8.6 52.9 69.0 54.8 88.4 91.6 57.6 63.3 61.8

MultiResCNN 91.0 98.6 8.5 55.2 73.4 58.4 89.9 92.8 60.6 67.0 64.1

IHCE (T = 3) 92.9 98.9 10.4 57.3 73.5 58.7 91.0 93.6 64.7 69.6 65.2

(1) In the MIMIC-III full setting, compared with the SOTA method Mul-
tiResCNN, the IHCE improves Macro-AUC, Macro-F1 and Micro-F1 by 2.1%,
22.4% and 3.8%, respectively. It is worth noting that all models have low Macro-
F1 scores on MIMIC-III full setting because the diagnosis codes space is too large,
and the distribution is extremely unbalanced. Nevertheless, what is exciting is
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that our model has 18.2% and 22.4% improvements in this metric compared to
CAML and MultiReCNN, respectively. The reason is the IHCE considers hierar-
chical inheritance structure and dependencies. So the IHCE can assists the pro-
cessing of low-frequency codes based on high-level prediction results. Similarly,
we can observe that H-SVM with a hierarchical structure is better than BiGRU
without a hierarchical structure in Micro-F1. However, the performance of H-
SVM is lower than that of CAML and MultiReCNN because CAML and Multi-
ReCNN utilize a primary attention mechanism to improve the ability to retrieve
critical information. Furthermore, compared to CAML and MultiResCNN, our
model has multiple attention mechanisms, so our model has more robust key
information retrieval capabilities and surpasses them in all metrics.

(2) In the MIMIC-III top-50 setting, compared with the SOTA method Mul-
tiResCNN, the IHCE improves Macro-F1 and Micro-F1 by 6.8% and 3.9%,
respectively. Although there are only 50 diagnosis codes in MIMIC-III top-50
setting, it still shows a slight long-tail effect. The IHCE has a significant improve-
ment on the Macro-f1, indicating that our model can employ the hierarchical
structure to alleviate this problem. It is worth noting that even though DR-
CAML utilize codes description as regularization to assist in the allocation of
diagnosis codes that are difficult to predict, the effect is still limited compared
to CNN. However, the IHCE utilizes the co-occurrence structure between codes
to solve this problem better.

5.5 Ablation Study

In this section, to verify each component’s effectiveness in the IHCE, we per-
form ablation studies. The specific results are shown in Table 3. It is observed
that removing each component will cause F1 to decrease, which illustrates the
effectiveness of each component of our model. (1) HPL’s effectiveness: After
removing the HPL module, the macro-average metrics drop significantly, indicat-
ing that the inheritance-guided hierarchical assignment mechanism introduced
by our IHCE has a significant effect on solving the long-tail effect. (2) ORL’s
effectiveness: After ORL is removed, the overall performance of IHCE declines
because the method cannot model disease co-occurrence relationships. However,
this ability is beneficial for assigning diseases for which it is not easy to find
textual clues in the clinical note. (3) Attention mechanism’s effectiveness:
We only retain the Code Specific Attention module, which expands the atten-
tion mechanism in MultiResCNN and improves almost all metrics. It shows that
our attention mechanism can better extract essential information to prevent the
situation of finding a needle in a haystack.

5.6 Performance at Different Levels

In the clinical automatic diagnosis task, it is important to assign the diagnosis
codes of the last level to the patient. It is also essential to evaluate the per-
formance at different levels because, in some cases, a different granularity of
codes may be required. Therefore, we compared the performance of IHCE and
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Table 3. Ablation study results, where “w/o” indicates without.

Models MIMIC-III full MIMIC-III top-50

Macro-AUC Macro-F1 Micro-F1 Macro-AUC Macro-F1 Micro-F1

MultiResCNN (SOTA) 91.0 8.5 55.2 89.9 60.6 67.0

w/o ORL& HPL 91.0 8.7 55.9 89.9 61.2 66.9

w/o HPL 92.6 9.2 56.0 89.9 62.1 67.5

w/o ORL 93.1 10.0 56.7 90.6 63.6 68.5

IHCE (T = 3) 92.9 10.4 57.3 91.0 64.7 69.6

IHCE-DPU at each hierarchical level. Note that this comparison is based on
T = 3. The IHCE-DPU ignores the dependency between the levels by removing
the DPU in the HPM. In Fig. 5, we can see that the performance of IHCE at
almost all levels is better than IHCE-DPU. Moreover, we can also notice that
the performance on all metrics tend to decrease when the hierarchy deepens,
and the trend on Macro-F1 in MIMIC-III full setting is the most obvious. The
reason is that as the level deepens, the number of codes of this level will increase
rapidly (e.g., the MIMIC-III full setting has 5,125, 8,925 unique codes in level-
3 and level-4 respectively, as shown in Table 1). Moreover, we can notice that
IHCE reduces this negative factor compared with IHCE-DPU by modeling the
dependency among different hierarchical levels.

(a) MIMIC-III top-50

(b) MIMIC-III full

IHCE IHCE-DPU

Fig. 5. Performance at different levels in hierarchy.

5.7 Effect of the Number of Hierarchical Levels

In this section, we turn to figure out the effect of the number of hierarchical
levels, i.e., T . To that end, a series of experiments are conducted to evaluate the
effectiveness under different settings. Specifically, T = n means choosing the last
n levels in Table 1. For example, T = 2 means that we choose level-3 and level-4.
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From Fig. 6, we can conclude that the models that consider hierarchical structure
preform much better than models that do not. The performance rises when the
number T of levels increases because high-level information has a guiding effect
on the low level. However, the performance decreases when the T continuously
increases. The reason is that when the number of codes between different levels is
not an order of magnitude, errors caused by high-level results will still seriously
affect low-level levels, although DPU has a mitigating effect. Specifically, for the
MIMIC-III full setting, when T = 4, the model will extend level-1 with only 199
diagnosis codes, which is not in the same order of magnitude as other levels. For
the MIMIC-III top-50 setting, each level’s magnitude is not much different, and
the impact of this error will also be reduced.

Fig. 6. Performance by varying the number of hierarchical levels.

6 Conclusion

In this paper, we proposed a novel Inheritance-guided Hierarchical Assign-
ment with Co-occurrence-based Enhancement (IHCE) framework for clinical
automatic diagnosis, which could jointly exploit code hierarchy and code co-
occurrence. We utilized GCN to obtain the correlation between medical ontol-
ogy. Moreover, we proposed a hierarchical joint prediction strategy based on the
attention mechanism. Experimental results on real medical datasets show that
our model has obtained state-of-the-art performance with substantial improve-
ments in different evaluation metrics. We believe that our method can also be
used for other tasks that require the application of hierarchical structure and
label co-occurrence, such as hierarchical multi-label classification.
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